1
|
Zhang J, Zeng S, Wang P, Chen Y, Zeng C. NLRP3: A Promising Therapeutic Target for Inflammatory Bowel Disease. Curr Drug Targets 2023; 24:1106-1116. [PMID: 37946354 DOI: 10.2174/0113894501255960231101105113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/06/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023]
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, is an intestinal disease with complicated pathological mechanisms. The incidence of IBD has been increasing in recent years, which has a significant negative impact on the lives of patients. Therefore, it is particularly important to find new therapeutic targets and innovative drugs for the development of IBD. Recent studies have revealed that NLRP3 inflammatory vesicles can play an important role in maintaining intestinal homeostasis and sustaining the intestinal immune response in IBD. On the one hand, aberrant activation of NLRP3 inflammatory vesicles may cause excessive immune response by converting caspase-1, proIL-18, and proIL-1β to their active forms and releasing pro-inflammatory cytokines to stimulate the development and progression of IBD, and we can improve IBD by targeting blockade of NLRP3 activation. On the other hand, NLRP3 may also play an enter protective role by maintaining the homeostasis of the intestinal immune system. In this paper, we reviewed the activation mechanism of NLRP3 inflammasome, and the effects of NLRP3 inflammasome activation on IBD are discussed from two different perspectives: pathology and protection. At the same time, we listed the effects of direct inhibitors, indirect inhibitors, and natural inhibitors of NLRP3 inflammasome on IBD in combination with cutting-edge advances and clinical practice results, providing new targets and new ideas for the clinical treatment of IBD.
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of Gastroenterology, Digestive Disease Hospital, the First Affiliated Hospital of Nanchang University, Nanchang, China
- Huankui Academy of Nanchang University, Nanchang, China
| | - Shuyan Zeng
- Department of Gastroenterology, Digestive Disease Hospital, the First Affiliated Hospital of Nanchang University, Nanchang, China
- Huankui Academy of Nanchang University, Nanchang, China
| | - Peng Wang
- Department of Gastroenterology, Digestive Disease Hospital, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Youxiang Chen
- Department of Gastroenterology, Digestive Disease Hospital, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chunyan Zeng
- Department of Gastroenterology, Digestive Disease Hospital, the First Affiliated Hospital of Nanchang University, Nanchang, China
- Huankui Academy of Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Xu Q, Zhou X, Strober W, Mao L. Inflammasome Regulation: Therapeutic Potential for Inflammatory Bowel Disease. Molecules 2021; 26:molecules26061725. [PMID: 33808793 PMCID: PMC8003415 DOI: 10.3390/molecules26061725] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022] Open
Abstract
Inflammasomes are multiprotein complexes formed to regulate the maturation of pro-inflammatory caspases, in response to intracellular or extracellular stimulants. Accumulating studies showed that the inflammasomes are implicated in the pathogenesis of inflammatory bowel disease (IBD), although their activation is not a decisive factor for the development of IBD. Inflammasomes and related cytokines play an important role in the maintenance of gut immune homeostasis, while its overactivation might induce excess immune responses and consequently cause tissue damage in the gut. Emerging studies provide evidence that some genetic abnormalities might induce enhanced NLRP3 inflammasome activation and cause colitis. In these cases, the colonic inflammation can be ameliorated by blocking NLRP3 activation or its downstream cytokine IL-1β. A number of natural products were shown to play a role in preventing colon inflammation in various experimental colitis models. On the other hand, lack of inflammasome function also causes intestinal abnormalities. Thus, an appropriate regulation of inflammasomes might be a promising therapeutic strategy for IBD intervention. This review aims at summarizing the main findings in these studies and provide an outline for further studies that might contribute to our understanding of the role of inflammasomes in the pathogenesis and therapeutic treatment of IBD.
Collapse
Affiliation(s)
- Qiuyun Xu
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226019, China; (Q.X.); (X.Z.)
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226019, China; (Q.X.); (X.Z.)
| | - Warren Strober
- Mucosal Immunity Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Correspondence: (W.S.); (L.M.)
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226019, China; (Q.X.); (X.Z.)
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong 226019, China
- Correspondence: (W.S.); (L.M.)
| |
Collapse
|
3
|
Fultz R, Engevik MA, Shi Z, Hall A, Herrmann B, Ganesh BP, Major A, Haag A, Mori-Akiyama Y, Versalovic J. Phagocytosis by macrophages depends on histamine H2 receptor signaling and scavenger receptor 1. Microbiologyopen 2019; 8:e908. [PMID: 31369218 PMCID: PMC6813435 DOI: 10.1002/mbo3.908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/19/2019] [Accepted: 06/30/2019] [Indexed: 12/11/2022] Open
Abstract
The histamine H2 receptor (H2R) is a G protein‐coupled receptor that mediates cyclic AMP production, protein kinase A activation, and MAP kinase signaling. In order to explore the multifaceted effects of histamine signaling on immune cells, phagocytosis was evaluated using primary mouse‐derived macrophages. Phagocytosis is initiated by signaling via surface‐bound scavenger receptors and can be regulated by autophagy. Absence of H2R signaling resulted in diminished phagocytosis of live bacteria and synthetic microspheres by primary macrophages from histamine H2 receptor gene (Hrh2)‐deficient mice. Flow cytometry and immunofluorescence microscopy were used to quantify phagocytosis of phylogenetically diverse bacteria as well as microspheres of defined chemical composition. Autophagy and scavenger receptor gene expression were quantified in macrophages after exposure to Escherichia coli. Expression of the autophagy genes, Becn1 and Atg12, was increased in Hrh2−/− macrophages, indicating upregulation of autophagy pathways. Expression of the Macrophage Scavenger Receptor 1 gene (Msr1) was diminished in Hrh2‐deficient macrophages, supporting the possible importance of histamine signaling in scavenger receptor abundance and macrophage function. Flow cytometry confirmed diminished MSR1 surface abundance in Hrh2−/− macrophages. These data suggest that H2R signaling is required for effective phagocytosis by regulating the process of autophagy and scavenger receptor MSR1 abundance in macrophages.
Collapse
Affiliation(s)
- Robert Fultz
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA.,Integrative Program in Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Melinda A Engevik
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Zhongcheng Shi
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Anne Hall
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA.,Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Beatrice Herrmann
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Bhanu P Ganesh
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Angela Major
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Anthony Haag
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Yuko Mori-Akiyama
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - James Versalovic
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
4
|
Rodríguez-Nogales A, Algieri F, Vezza T, Garrido-Mesa N, Olivares M, Comalada M, Riccardi C, Utrilla MP, Rodríguez-Cabezas ME, Galvez J. The viability of Lactobacillus fermentum CECT5716 is not essential to exert intestinal anti-inflammatory properties. Food Funct 2015; 6:1176-84. [DOI: 10.1039/c4fo00938j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The viability ofL. fermentumCECT5716 did not affect its immune-modulatory and anti-inflammatory properties.
Collapse
Affiliation(s)
- Alba Rodríguez-Nogales
- CIBER-EHD
- Department of Pharmacology
- ibs.GRANADA
- Center for Biomedical Research (CIBM)
- University of Granada
| | - Francesca Algieri
- CIBER-EHD
- Department of Pharmacology
- ibs.GRANADA
- Center for Biomedical Research (CIBM)
- University of Granada
| | - Teresa Vezza
- CIBER-EHD
- Department of Pharmacology
- ibs.GRANADA
- Center for Biomedical Research (CIBM)
- University of Granada
| | - Natividad Garrido-Mesa
- CIBER-EHD
- Department of Pharmacology
- ibs.GRANADA
- Center for Biomedical Research (CIBM)
- University of Granada
| | | | | | - Carlo Riccardi
- Department of Clinical and Experimental Medicine
- University of Perugia
- Italy
| | - Ma Pilar Utrilla
- CIBER-EHD
- Department of Pharmacology
- ibs.GRANADA
- Center for Biomedical Research (CIBM)
- University of Granada
| | - Ma Elena Rodríguez-Cabezas
- CIBER-EHD
- Department of Pharmacology
- ibs.GRANADA
- Center for Biomedical Research (CIBM)
- University of Granada
| | - Julio Galvez
- CIBER-EHD
- Department of Pharmacology
- ibs.GRANADA
- Center for Biomedical Research (CIBM)
- University of Granada
| |
Collapse
|
5
|
Crohn’s Disease. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Däbritz J. Granulocyte macrophage colony-stimulating factor and the intestinal innate immune cell homeostasis in Crohn's disease. Am J Physiol Gastrointest Liver Physiol 2014; 306:G455-65. [PMID: 24503766 DOI: 10.1152/ajpgi.00409.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Current literature consolidates the view of Crohn's disease (CD) as a form of immunodeficiency highlighting dysregulation of intestinal innate immunity in the pathogenesis of CD. Intestinal macrophages derived from blood monocytes play a key role in sustaining the innate immune homeostasis in the intestine, suggesting that the monocyte/macrophage compartment might be an attractive therapeutic target for the management of CD. Granulocyte macrophage colony-stimulating factor (GM-CSF) is a hematopoietic growth factor that also promotes myeloid cell activation, proliferation, and differentiation. GM-CSF has a protective effect in human CD and mouse models of colitis. However, the role of GM-CSF in immune and inflammatory reactions in the intestine is not well defined. Beneficial effects exerted by GM-CSF during intestinal inflammation could relate to modulation of the mucosal barrier function in the intestine, including epithelial cell proliferation, survival, restitution, and immunomodulatory actions. The aim of this review is to summarize potential mechanistic roles of GM-CSF in intestinal innate immune cell homeostasis and to highlight its central role in maintenance of the intestinal immune barrier in the context of immunodeficiency in CD.
Collapse
Affiliation(s)
- Jan Däbritz
- The Royal Children's Hospital Melbourne, Murdoch Children's Research Institute, Gastrointestinal Research in Inflammation & Pathology, Parkville, Victoria, Australia; University of Melbourne, Melbourne Medical School, Department of Paediatrics, Parkville, Victoria, Australia; University Children's Hospital Münster, Department of Pediatric Rheumatology and Immunology, Münster, Germany; and University of Münster, Interdisciplinary Center for Clinical Research, Münster, Germany
| |
Collapse
|
7
|
Frantz AL, Bruno ME, Rogier EW, Tuna H, Cohen DA, Bondada S, Chelvarajan RL, Brandon JA, Jennings CD, Kaetzel CS. Multifactorial patterns of gene expression in colonic epithelial cells predict disease phenotypes in experimental colitis. Inflamm Bowel Dis 2012; 18:2138-48. [PMID: 23070952 PMCID: PMC3476470 DOI: 10.1002/ibd.22923] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 01/27/2012] [Indexed: 12/19/2022]
Abstract
BACKGROUND The pathogenesis of inflammatory bowel disease (IBD) is complex and the need to identify molecular biomarkers is critical. Epithelial cells play a central role in maintaining intestinal homeostasis. We previously identified five "signature" biomarkers in colonic epithelial cells (CEC) that are predictive of disease phenotype in Crohn's disease. Here we investigate the ability of CEC biomarkers to define the mechanism and severity of intestinal inflammation. METHODS We analyzed the expression of RelA, A20, pIgR, tumor necrosis factor (TNF), and macrophage inflammatory protein (MIP)-2 in CEC of mice with dextran sodium sulfate (DSS) acute colitis or T-cell-mediated chronic colitis. Factor analysis was used to combine the five biomarkers into two multifactorial principal components (PCs). PC scores for individual mice were correlated with disease severity. RESULTS For both colitis models, PC1 was strongly weighted toward RelA, A20, and pIgR, and PC2 was strongly weighted toward TNF and MIP-2, while the contributions of other biomarkers varied depending on the etiology of inflammation. Disease severity was correlated with elevated PC2 scores in DSS colitis and reduced PC1 scores in T-cell transfer colitis. Downregulation of pIgR was a common feature observed in both colitis models and was associated with altered cellular localization of pIgR and failure to transport IgA. CONCLUSIONS A multifactorial analysis of epithelial gene expression may be more informative than examining single gene responses in IBD. These results provide insight into the homeostatic and proinflammatory functions of CEC in IBD pathogenesis and suggest that biomarker analysis could be useful for evaluating therapeutic options for IBD patients.
Collapse
Affiliation(s)
- Aubrey L. Frantz
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky
| | - Maria E.C. Bruno
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky
| | - Eric W. Rogier
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky
| | - Halide Tuna
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky
| | - Donald A. Cohen
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky
| | - Subbarao Bondada
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky
| | - R. Lakshman Chelvarajan
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky
| | - J. Anthony Brandon
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky
| | - C. Darrell Jennings
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky
| | - Charlotte S. Kaetzel
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
8
|
Li C, Yang G, Ruan J. Sphingosine kinase-1/sphingosine-1-phosphate receptor type 1 signalling axis is induced by transforming growth factor-β1 and stimulates cell migration in RAW264.7 macrophages. Biochem Biophys Res Commun 2012; 426:415-20. [PMID: 22960176 DOI: 10.1016/j.bbrc.2012.08.108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 08/22/2012] [Indexed: 12/22/2022]
Abstract
Macrophage recruitment to sites of inflammation is an essential step in host defense. However, the signals regulating the mobilization of these cells are still not fully understood. Sphingosine-1-phosphate (S1P), a pleiotropic bioactive lipid mediator, is known to regulate an array of biological activities in various cell types. Here, we investigated the roles of S1P and S1P receptors (S1PRs) in macrophage migration in vitro. Furthermore, we explored the cross-talk between transforming growth factor-β1 (TGF-β1) and S1P signalling pathways in this process. We found that S1P exerted a powerful migratory action on RAW264.7 macrophages, as determined in Boyden chambers. Moreover, by employing RNA interference technology and pharmacological tools, we have demonstrated that S1PR1, but not S1PR2 and S1PR3, is required for S1P-induced macrophage migration. Importantly, we observed a pronounced increase in sphingosine kinase-1 (SphK1) mRNA expression and subsequently increase in S1P production, following transforming growth factor-β1 (TGF-β1) stimulation in RAW264.7 macrophages. The expression of S1PR1, but not S1PR2 and S1PR3, was also significantly up-regulated after TGF-β1 stimulation. Interestingly, exogenously added S1P-induced up-regulation of SphK1 and the synthesis of additional S1P, suggesting a self-amplifying loop of S1P to enhance macrophage migration. In conclusion, our results reveal that SphK1/S1PR1 signalling axis is induced by TGF-β1 and stimulates cell migration in RAW 264.7 macrophages. This study provides new clues for the molecular mechanisms of macrophage recruitment during inflammation.
Collapse
Affiliation(s)
- Changyong Li
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, PR China.
| | | | | |
Collapse
|
9
|
Liu X, Yu H, Yang L, Li C, Li L. 15-Deoxy-Δ(12,14)-prostaglandin J(2) attenuates the biological activities of monocyte/macrophage cell lines. Eur J Cell Biol 2012; 91:654-61. [PMID: 22560326 DOI: 10.1016/j.ejcb.2012.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 03/12/2012] [Accepted: 03/12/2012] [Indexed: 11/24/2022] Open
Abstract
Monocytes/macrophages link the innate and adaptive immune systems, and in inflammatory disorders their activation leads to tissue damage. 15-Deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)), a natural peroxisome proliferator-activated receptor gamma (PPARγ) ligand, has garnered much interest because it possesses anti-inflammatory properties in a number of experimental models. However, whether it regulates monocytes/macrophage pathophysiology is still unknown. This study was designed to examine the effects of 15d-PGJ(2) on the phagocytosis, proliferation and inflammatory cytokines generation in mouse monocyte/macrophage cell line RAW264.7 and J774A.1 cells upon lipopolysaccharide challenge. Our results showed that 15d-PGJ(2) inhibited the phagocytic activity and cell proliferation in a dose-dependent manner, and suppressed proinflammatory cytokines expression, such as tumor necrosis factor-α, transforming growth factor-β1, interleukin-6, and monocyte chemotactic protein-1. These effects were independent of PPARγ, because PPARγ agonist (troglitazone or ciglitazone) and PPARγ antagonist (GW9662) did not affect these activities mentioned above in cells. Treatment of 15d-PGJ(2) also did not modulate expression and distribution of PPARγ. However, these effects of 15d-PGJ(2) were abrogated by antioxidant N-acetylcysteine. Moreover, treatment of 15d-PGJ(2) induced a significant increase in reactive oxygen species production in RAW264.7 and J774A.1 cells. In conclusion, 15d-PGJ(2) attenuates the biological activities of mouse monocyte/macrophage cell line cells involving oxidative stress, independently of PPARγ. These data further underline the anti-inflammation potential of 15d-PGJ(2).
Collapse
Affiliation(s)
- Xin Liu
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | | | | | | | | |
Collapse
|
10
|
The immunomodulatory properties of viable Lactobacillus salivarius ssp. salivarius CECT5713 are not restricted to the large intestine. Eur J Nutr 2011; 51:365-74. [DOI: 10.1007/s00394-011-0221-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 06/07/2011] [Indexed: 01/19/2023]
|
11
|
Paclik D, Werner L, Guckelberger O, Wiedenmann B, Sturm A. Galectins distinctively regulate central monocyte and macrophage function. Cell Immunol 2011; 271:97-103. [PMID: 21724180 DOI: 10.1016/j.cellimm.2011.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 05/27/2011] [Accepted: 06/08/2011] [Indexed: 12/11/2022]
Abstract
Monocytes and macrophages link the innate and adaptive immune systems and protect the host from the outside world. In inflammatory disorders their activation leads to tissue damage. Galectins have emerged as central regulators of the immune system. However, if they regulate monocyte/macrophage physiology is still unknown. Binding of Gal-1, Gal-2, Gal-3 and Gal-4 to monocytes/macrophages, activation, cytokine secretion and apoptosis were determined by FACS, migration by Transwell system and phagocytosis by phagotest. Supernatants from macrophages co-cultured with galectins revealed their influence on T-cell function. In our study Gal-1, Gal-2, Gal-4, and partly Gal-3 bound to monocytes/macrophages. Galectins prevented Salmonella-induced MHCII upregulation. Cytokine release was distinctly induced by different galectins. T-cell activation was significantly restricted by supernatants of macrophages co-cultured in the presence of Gal-2 or Gal-4. Furthermore, all galectins tested significantly inhibited monocyte migration. Finally, we showed for the first time that galectins induce potently monocyte, but not macrophage apoptosis. Our study provides evidence that galectins distinctively modulate central monocyte/macrophage function. By inhibiting T-cell function via macrophage priming, we show that galectins link the innate and adaptive immune systems and provide new insights into the action of sugar-binding proteins.
Collapse
Affiliation(s)
- Daniela Paclik
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Germany.
| | | | | | | | | |
Collapse
|
12
|
Ebersole JL, Steffen MJ, Holt SC, Kesavalu L, Chu L, Cappelli D. Systemic inflammatory responses in progressing periodontitis during pregnancy in a baboon model. Clin Exp Immunol 2011; 162:550-9. [PMID: 21070210 DOI: 10.1111/j.1365-2249.2010.04202.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study tested the hypothesis that pregnant female baboons exhibit increased levels of various inflammatory mediators in serum resulting from ligature-induced periodontitis, and that these profiles would relate to periodontal disease severity/extent in the animals. The animals were sampled at baseline (B), mid-pregnancy (MP; two quadrants ligated) and at delivery (D; four quadrants ligated). All baboons developed increased plaque, gingival inflammation and bleeding, pocket depths and attachment loss following placement of the ligatures. By MP, both prostaglandin E(2) (PGE(2)) and bactericidal permeability inducing factor (BPI) were greater than baseline, while increased levels of interleukin (IL)-6 occurred in the experimental animals by the time of delivery. IL-8, MCP-1 and LBP all decreased from baseline through the ligation phase of the study. Stratification of the animals by baseline clinical presentation demonstrated that PGE(2), LBP, IL-8 and MCP-1 levels were altered throughout the ligation interval, irrespective of baseline clinical values. IL-6, IL-8 and LBP were significantly lower in the subset of animals that demonstrated the least clinical response to ligation, indicative of progressing periodontal disease. PGE(2), macrophage chemotactic protein (MCP)-1, regulated upon activation, normal T cell expressed and secreted (RANTES) and LBP were decreased in the most diseased subset of animals at delivery. Systemic antibody responses to Fusobacterium nucleatum, Porphyromonas gingivalis, Actinobacillus actinomycetemcomitans and Campylobacter rectus were associated most frequently with variations in inflammatory mediator levels. These results provide a profile of systemic inflammatory mediators during ligature-induced periodontitis in pregnant baboons. The relationship of the oral clinical parameters to systemic inflammatory responses is consistent with a contribution to adverse pregnancy outcomes in a subset of the animals.
Collapse
Affiliation(s)
- J L Ebersole
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Stronati L, Negroni A, Pierdomenico M, D'Ottavio C, Tirindelli D, Di Nardo G, Oliva S, Viola F, Cucchiara S. Altered expression of innate immunity genes in different intestinal sites of children with ulcerative colitis. Dig Liver Dis 2010; 42:848-853. [PMID: 20452301 DOI: 10.1016/j.dld.2010.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 03/09/2010] [Accepted: 04/06/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND Innate immunity has been very rarely investigated in ulcerative colitis and never in paediatrics. The present study was aimed at describing expression of innate immunity genes (NOD2, RIP2, α-defensins HD5 and HD6) in inflamed colon and in ileum of children with ulcerative colitis. Expression of TNFα and IL-1β was also analyzed. METHODS 15 children with ulcerative colitis (9 pancolitis, 6 left-sided colitis) and 10 control children were enrolled. mRNA and protein expressions were detected by real time PCR and western blot assays. RESULTS NOD2, RIP2, IL-1β, TNFα expression levels were significantly increased in colonic mucosa of patients compared to controls (p<0.01). These genes were also upregulated (p<0.01) in the ileum of both pancolitis and left-sided colitis children. HD5 and HD6 were significantly upregulated (p<0.01) in the inflamed colon of patients as well as in the ileum of those with pancolitis. CONCLUSIONS An increased mucosal expression of innate immunity genes was found in the inflamed colon of children with ulcerative colitis, outlining the role of the innate immune response in disease pathogenesis. Involvement of the ileum in ulcerative colitis suggests that an immune activation can also be established in intestinal sites classically uninvolved by the inflammation, carrying implications for the treatment and course of the disease.
Collapse
Affiliation(s)
- Laura Stronati
- Section of Toxicology and Biomedical Sciences, Enea, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight macrophages as central mediators of intestinal immune homeostasis and inflammation. RECENT FINDINGS We review recent developments elucidating distinct phenotypic adaptations in intestinal macrophages that determine their functional role in a microbe-rich environment. The involvement of intestinal macrophages in the pathogenesis of inflammatory bowel disease is also discussed. SUMMARY Intestinal macrophages represent the largest pool of tissue macrophages in the human body and a critical interface with the enteric microbiota. In normal physiology, luminal microbes breach the intestinal epithelial barrier and gain access to the lamina propria. Bacteria are efficiently phagocytosed by macrophages strategically located underneath the epithelium. The importance of functional adaptations of macrophages to perform their role in this unique environment is best illustrated by failure of these mechanisms during the development of chronic inflammatory bowel diseases. Compared with monocytes or macrophages from any other organ, intestinal macrophages express different phenotypic markers, efficiently eradicate intracellular bacteria, but do not mount potent inflammatory responses. Converging human genetic and functional findings suggest that dysregulation of macrophage-specific immune responses against an otherwise harmless enteric microbiota are key factors in the pathogenesis of inflammatory bowel disease.
Collapse
|
15
|
Talukder P, Satho T, Irie K, Sharmin T, Hamady D, Nakashima Y, Kashige N, Miake F. Trace metal zinc stimulates secretion of antimicrobial peptide LL-37 from Caco-2 cells through ERK and p38 MAP kinase. Int Immunopharmacol 2010; 11:141-4. [PMID: 21035435 DOI: 10.1016/j.intimp.2010.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 10/08/2010] [Accepted: 10/13/2010] [Indexed: 01/24/2023]
Abstract
Infectious diseases, especially, diarrhoea, are responsible for high mortality rates in developing countries. Zinc supplementation shows beneficial effects against such diseases, but the mechanism of action is poorly understood. Here, we examined whether zinc supplementation can improve mucosal innate immunity through induction of antimicrobial peptide secretion from intestinal epithelial cells. Zinc was found to induce secretion of the antimicrobial peptide LL-37 from Caco-2 cell in a dose (0.63±0.09ng/mL and 0.54±0.06ng/mL at 20μM and 50μM respectively) and time dependent manner. LL-37 secretion increased immediately (1h) after exposure to 20μM Zn (0.29±0.04ng/mL), which continued up to 48h of exposure (0.58±0.05ng/mL). Zinc induces the phosphorylation of ERK and p38 MAP kinase and regulates LL-37 secretion through these MAP kinases. Zinc supplementation may have beneficial effects on mucosal innate immunity via secretion of LL-37.
Collapse
Affiliation(s)
- Parimal Talukder
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan- ku, Fukuoka 814-0180, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ng SC, Kamm MA, Stagg AJ, Knight SC. Intestinal dendritic cells: their role in bacterial recognition, lymphocyte homing, and intestinal inflammation. Inflamm Bowel Dis 2010; 16:1787-807. [PMID: 20222140 DOI: 10.1002/ibd.21247] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) play a key role in discriminating between commensal microorganisms and potentially harmful pathogens and in maintaining the balance between tolerance and active immunity. The regulatory role of DC is of particular importance in the gut where the immune system lies in intimate contact with the highly antigenic external environment. Intestinal DC constantly survey the luminal microenvironment. They act as sentinels, acquiring antigens in peripheral tissues before migrating to secondary lymphoid organs to activate naive T cells. They are also sensors, responding to a spectrum of environmental cues by extensive differentiation or maturation. Recent studies have begun to elucidate mechanisms for functional specializations of DC in the intestine that may include the involvement of retinoic acid and transforming growth factor-β. Specialized CD103(+) intestinal DC can promote the differentiation of Foxp3(+) regulatory T cells via a retinoic acid-dependent process. Different DC outcomes are, in part, influenced by their exposure to microbial stimuli. Evidence is also emerging of the close interaction between bacteria, epithelial cells, and DC in the maintenance of intestinal immune homeostasis. Here we review recent advances of functionally specialized intestinal DC and their mechanisms of antigen uptake and recognition. We also discuss the interaction of DC with intestinal microbiota and their ability to orchestrate protective immunity and immune tolerance in the host. Lastly, we describe how DC functions are altered in intestinal inflammation and their emerging potential as a therapeutic target in inflammatory bowel disease.
Collapse
Affiliation(s)
- S C Ng
- Antigen Presentation Research Group, Faculty of Medicine, Imperial College London, Northwick Park and St Mark's Campus, Harrow, UK
| | | | | | | |
Collapse
|
17
|
Takayama T, Kamada N, Chinen H, Okamoto S, Kitazume MT, Chang J, Matuzaki Y, Suzuki S, Sugita A, Koganei K, Hisamatsu T, Kanai T, Hibi T. Imbalance of NKp44(+)NKp46(-) and NKp44(-)NKp46(+) natural killer cells in the intestinal mucosa of patients with Crohn's disease. Gastroenterology 2010; 139:882-92, 892.e1-3. [PMID: 20638936 DOI: 10.1053/j.gastro.2010.05.040] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 04/30/2010] [Accepted: 05/20/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Mucosal natural killer (NK) cells that produce interleukin (IL)-22 mediate intestinal homeostasis and inflammation in mice. However, their role in the pathogenesis of human inflammatory bowel diseases (IBDs) is not known. We investigated intestinal NK cells in intestinal mucosa samples of patients with Crohn's disease (CD). METHODS We isolated lamina propria NK cells from intestinal mucosal samples of patients with IBD and subjects without IBD (controls) and analyzed expression patterns of cell surface molecules and cytokine production. Interactions between lamina propria NK cells and intestinal macrophages were examined. RESULTS In intestinal mucosa samples from controls, NKp44 and NKp46 were expressed differentially on CD3(-)CD56(+) NK cells, NKp44(+)NKp46(-) (NKp44(+)) NK cells expressed CD127 and the transcription factor retinoic acid-related orphan receptor C (RORC) and produced IL-22 whereas NKp44(-)NKp46(+) (NKp46(+)) NK cells did not express CD127 or RORC and produced interferon (IFN)-gamma. NKp46(+) NK cells were predominant in intestinal mucosa of patients with CD compared with controls or patients with ulcerative colitis. Upon interaction with intestinal inflammatory macrophages NKp46(+), NK cells from patients with CD were activated via IL-23 and produced IFN-gamma; this activation required cell-to-cell contact. CONCLUSIONS The balance of NKp44(+)/NKp46(+) NK cells is disrupted in intestinal mucosa of patients with CD. NKp46(+) NK cells might mediate the pathogenesis of CD by producing IFN-gamma.
Collapse
Affiliation(s)
- Tetsuro Takayama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Epithelial-specific blockade of MyD88-dependent pathway causes spontaneous small intestinal inflammation. Clin Immunol 2010; 136:245-56. [PMID: 20452828 DOI: 10.1016/j.clim.2010.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 03/12/2010] [Accepted: 04/01/2010] [Indexed: 12/19/2022]
Abstract
Accumulating evidence suggests a role for Toll-like receptor (TLR) signaling at the intestinal epithelial cells (IECs) level for intestinal protection against exogenous injury or pathogenic infection. We hypothesized that MyD88 dependent TLR signaling at intestinal epithelium is critical for mucosal immune homeostasis. In the current study, a transgenic mouse model was generated in which a dominant-negative mutant of MyD88 (dnMyD88) was driven by an intestinal epithelial-specific murine villin promoter. Aged transgenic mice spontaneously developed chronic small intestinal inflammation, as revealed by increased CD4+ and CD8+ lymphocytes, neutrophil and macrophage infiltration, increased production of cytokines as TNF-alpha, IFN-gamma, IL-1beta, and IL-17, crypt abscesses, lymphedema, and Goblet cell depletion. The chronic inflammation was not due to increased epithelial apoptosis or permeability, but to a decreased Paneth cell-derived alpha-defensins (cryptdins) and RegIII-gamma and increased commensal bacteria translocation. Thus, epithelial MyD88-dependent pathway plays an essential role in limiting mucosal microflora penetration and preventing mucosal immunoregulation disturbance in vivo.
Collapse
|
19
|
Kamada N, Hisamatsu T, Honda H, Kobayashi T, Chinen H, Kitazume MT, Takayama T, Okamoto S, Koganei K, Sugita A, Kanai T, Hibi T. Human CD14+ macrophages in intestinal lamina propria exhibit potent antigen-presenting ability. THE JOURNAL OF IMMUNOLOGY 2009; 183:1724-31. [PMID: 19592647 DOI: 10.4049/jimmunol.0804369] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intestinal APCs are considered critical in maintaining the balance between the response against harmful pathogens and the induction of tolerance to commensal bacteria and food Ags. Recently, several studies indicated the presence of gut-specific APC subsets, which possess both macrophage and dendritic cell (DC) markers. These unique APC subsets play important roles in gut immunity, especially for immune regulation against commensal bacteria. Herein, we examined a unique macrophage subset, which coexpressed the macrophage (Mphi) marker CD14 and the DC marker CD209 in human intestinal lamina propria (LP). The LP Mphi subset in both normal control subjects or Crohn's disease (CD) patients induced proliferation of naive CD4(+) T cells as well as monocyte-derived DCs, and it expressed retinoic acid synthetic enzyme retinaldehyde dehydrogenase 2 and retinol dehydrogenase 10, which induced expression of gut homing receptors on T cells in a retinoic acid-dependent manner. Moreover, the LP Mphi subset strongly evoked differentiation of Th1 cells and slightly induced Th17 cells in both normal control subjects and CD patients; the inducing potential was highest in CD patients. In CD patients, Th17, but not Th1, induction by the LP Mphi subset was enhanced in the presence of commensal bacteria Ags. This enhancement was not observed in normal control subjects. The Th17 induction by the LP Mphi subset was inhibited by neutralization of IL-6 and IL-1beta, but it was enhanced by blockade of retinoic acid signaling. These observations highlight a role for LP Mphi in the enhanced Th1, and potentially in Th17 differentiation, at the inflammatory site of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Systemically Circulating Colitogenic Memory CD4+T Cells May Be an Ideal Target for the Treatment of Inflammatory Bowel Diseases. Keio J Med 2009; 58:203-9. [DOI: 10.2302/kjm.58.203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|