1
|
Low dose photodynamic therapy harmonizes with radiation therapy to induce beneficial effects on pancreatic heterocellular spheroids. Oncotarget 2019; 10:2625-2643. [PMID: 31080554 PMCID: PMC6499000 DOI: 10.18632/oncotarget.26780] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
Photodynamic therapy (PDT) has seen long standing interest as a therapy for resistant cancers, but the main Achilles’ heel for its successful clinical exploitation is the use of poorly penetrating visible light. This limitation could be overcome by using radioluminescent nanoparticles, which can be excited during radiation therapy (RT) with penetrating X-rays. When infused in tumors, X-ray activated-nanoscintillators act as internal light sources and excite nearby photosensitizers. Recent studies demonstrated that it is realistic to achieve low dose PDT with current nanoscintillators. However, as the origin of enhanced RT efficacy with nanoscintillators may have varying origins, we aimed to answer the basic question: Is a combination of low-dose PDT beneficial to the RT efficacy in clinically relevant models of cancer? Pancreatic cancer (PanCa) remains a lethal disease for which RT is part of the palliative care and for which PDT demonstrated promising results in clinical trial. We thus evaluated the combination of low-dose PDT and RT delivered in absence of nanoscintillators on various heterocellular spheroid models that recapitulate the clinical heterogeneity of PanCa. Although therapeutic effects emerged at different timepoints in each model, the RT/PDT combination uniformly achieved favorable outcomes. With RT providing stunted tumor growth while PDT drove adjuvant apoptotic and necrotic cell death, the combination produced significantly smaller and less viable PanCa spheroids. In conclusion, the beneficial RT/PDT treatment outcomes encourage the further development of nanoscinitillators for X-ray-activated PDT. Assessment of such combination treatments should encompass multiparametric and temporally-spaced assessment of treatment effects in preclinical cancer models.
Collapse
|
2
|
Minchenko OH, Tsuchihara K, Minchenko DO, Bikfalvi A, Esumi H. Mechanisms of regulation of PFKFB expression in pancreatic and gastric cancer cells. World J Gastroenterol 2014; 20:13705-13717. [PMID: 25320508 PMCID: PMC4194554 DOI: 10.3748/wjg.v20.i38.13705] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 03/22/2014] [Accepted: 05/19/2014] [Indexed: 02/07/2023] Open
Abstract
Enzymes 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 and -4 (PFKFB-3 and PFKFB-4) play a significant role in the regulation of glycolysis in cancer cells as well as its proliferation and survival. The expression of these mRNAs is increased in malignant tumors and strongly induced in different cancer cell lines by hypoxia inducible factor (HIF) through active HIF binding sites in promoter region of PFKFB-4 and PFKFB-3 genes. Moreover, the expression and hypoxia responsibility of PFKFB-4 and PFKFB-3 was also shown for pancreatic (Panc1, PSN-1, and MIA PaCa-2) as well as gastric (MKN45 and NUGC3) cancer cells. At the same time, their basal expression level and hypoxia responsiveness vary in the different cells studied: the highest level of PFKFB-4 protein expression was found in NUGC3 gastric cancer cell line and lowest in Panc1 cells, with a stronger response to hypoxia in the pancreatic cancer cell line. Overexpression of different PFKFB in pancreatic and gastric cancer cells under hypoxic condition is correlated with enhanced expression of vascular endothelial growth factor (VEGF) and Glut1 mRNA as well as with increased level of HIF-1α protein. Increased expression of different PFKFB genes was also demonstrated in gastric, lung, breast, and colon cancers as compared to corresponding non-malignant tissue counterparts from the same patients, being more robust in the breast and lung tumors. Moreover, induction of PFKFB-4 mRNA expression in the breast and lung cancers is stronger than PFKFB-3 mRNA. The levels of both PFKFB-4 and PFKFB-3 proteins in non-malignant gastric and colon tissues were more pronounced than in the non-malignant breast and lung tissues. It is interesting to note that Panc1 and PSN-1 cells transfected with dominant/negative PFKFB-3 (dnPFKFB-3) showed a lower level of endogenous PFKFB-3, PFKFB-4, and VEGF mRNA expressions as well as a decreased proliferation rate of these cells. Moreover, a similar effect had dnPFKFB-4. In conclusion, there is strong evidence that PFKFB-4 and PFKFB-3 isoenzymes are induced under hypoxia in pancreatic and other cancer cell lines, are overexpressed in gastric, colon, lung, and breast malignant tumors and undergo changes in their metabolism that contribute to the proliferation and survival of cancer cells. Thus, targeting these PFKFB may therefore present new therapeutic opportunities.
Collapse
|
3
|
Barcelos RC, Pelizzaro-Rocha KJ, Pastre JC, Dias MP, Ferreira-Halder CV, Pilli RA. A new goniothalamin N-acylated aza-derivative strongly downregulates mediators of signaling transduction associated with pancreatic cancer aggressiveness. Eur J Med Chem 2014; 87:745-58. [PMID: 25305718 DOI: 10.1016/j.ejmech.2014.09.085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 12/20/2022]
Abstract
In this study, a novel concise series of molecules based on the structure of goniothalamin (1) was synthesized and evaluated against a highly metastatic human pancreatic cancer cell line (Panc-1). Among them, derivative 8 displayed a low IC50 value (2.7 μM) and its concentration for decreasing colony formation was 20-fold lower than goniothalamin (1). Both compounds reduced the levels of the receptor tyrosine kinase (AXL) and cyclin D1 which are known to be overexpressed in pancreatic cancer cells. Importantly, despite the fact that goniothalamin (1) and derivative 8 caused pancreatic cancer cell cycle arrest and cell death, only derivative 8 was able to downregulate pro-survival and proliferation pathways mediated by mitogen activated protein kinase ERK1/2. Another interesting finding was that Panc-1 cells treated with derivative 8 displayed a strong decrease in the transcription factor (c-Myc), hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) protein levels. Notably, the molecular effects caused by derivative 8 might not be related to ROS generation, since no significant production of ROS was observed in low concentrations of this compound (from 1.5 up to 3 μM). Therefore, the downregulation of important mediators of pancreatic cancer aggressiveness by derivative 8 reveals its great potential for the development of new chemotherapeutic agents for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Rosimeire Coura Barcelos
- Department of Organic Chemistry, Chemistry Institute, University of Campinas, CP 6154, 13083-970, Campinas, SP, Brazil
| | | | - Julio Cezar Pastre
- Department of Organic Chemistry, Chemistry Institute, University of Campinas, CP 6154, 13083-970, Campinas, SP, Brazil
| | - Marina Pereira Dias
- Department of Biochemistry, Biology Institute, University of Campinas, 13083-862, Campinas, São Paulo, Brazil
| | | | - Ronaldo Aloise Pilli
- Department of Organic Chemistry, Chemistry Institute, University of Campinas, CP 6154, 13083-970, Campinas, SP, Brazil.
| |
Collapse
|
4
|
Rossi ML, Rehman AA, Gondi CS. Therapeutic options for the management of pancreatic cancer. World J Gastroenterol 2014; 20:11142-11159. [PMID: 25170201 PMCID: PMC4145755 DOI: 10.3748/wjg.v20.i32.11142] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/11/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Since its initial characterization, pancreatic ductal adenocarcinoma has remained one of the most devastating and difficult cancers to treat. Pancreatic cancer is the fourth leading cause of death in the United States, resulting in an estimated 38460 deaths annually. With few screening tools available to detect this disease at an early stage, 94% of patients will die within five years of diagnosis. Despite decades of research that have led to a better understanding of the molecular and cellular signaling pathways in pancreatic cancer cells, few effective therapies have been developed to target these pathways. Other treatment options have included more sophisticated pancreatic cancer surgeries and combination therapies. While outcomes have improved modestly for these patients, more effective treatments are desperately needed. One of the greatest challenges in the future of treating this malignancy will be to develop therapies that target the tumor microenvironment and surrounding pancreatic cancer stem cells in addition to pancreatic cancer cells. Recent advances in targeting pancreatic stellate cells and the stroma have encouraged researchers to shift their focus to the role of desmoplasia in pancreatic cancer pathobiology in the hopes of developing newer-generation therapies. By combining novel agents with current cytotoxic chemotherapies and radiation therapy and personalizing them to each patient based on specific biomarkers, the goal of prolonging a patient’s life could be achieved. Here we review the most effective therapies that have been used for the treatment of pancreatic cancer and discuss the future potential of therapeutic options.
Collapse
|
5
|
Kurenova E, Liao J, He DH, Hunt D, Yemma M, Bshara W, Seshadri M, Cance WG. The FAK scaffold inhibitor C4 disrupts FAK-VEGFR-3 signaling and inhibits pancreatic cancer growth. Oncotarget 2014; 4:1632-46. [PMID: 24142503 PMCID: PMC3858551 DOI: 10.18632/oncotarget.1365] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Even with successful surgical resection and perioperative chemotherapy and radiation, pancreatic ductal adenocarcinoma (PDA) has a high incidence of recurrence. Tumor cell survival depends on activation of signaling pathways that suppress the apoptotic stimuli of invasion and metastasis. Focal adhesion kinase (FAK) is a critical signaling molecule that has been implicated in tumor cell survival, invasion and metastasis. We have previously shown that FAK and vascular endothelial growth factor receptor 3 (VEGFR-3) are overexpressed in cancer cells and physically interact to confer a significant survival advantage. We subsequently identified a novel small molecule inhibitor C4 that targeted the VEGFR-3-FAK site of interaction. In this study, we have shown that C4 disrupted the FAK-VEGFR-3 complexes in PDA cells. C4 treatment caused dose-dependent dephosphorylation and inactivation of the VEGFR-3 and FAK, reduction in cell viability and proliferation, cell cycle arrest and apoptosis in PDA cells. C4 increased the sensitivity of tumor cells to gemcitabine chemotherapy in vitro that lead to apoptosis at nanomolar concentrations of both drugs. C4 reduced tumor growth in vivo in subcutaneous and orthotopic murine models of PDA. The drug alone at low dose, decreased tumor growth; however, concomitant administration with low dose of gemcitabine had significant synergistic effect and led to 70% tumor reduction. Combination of C4 with gemcitabine had a prolonged cytostatic effect on tumor growth after treatment withdrawal. Finally, we report an anecdotal case of stage IV pancreatic cancer treated with gemcitabine in combination with C4 that showed a significant clinical response in primary tumor and complete clinical response in liver metastasis over an eight month period. Taken together, these results demonstrate that targeting the scaffolding function of FAK with a small-molecule FAK-VEGFR-3 inhibitor can be an effective therapeutic strategy against PDA.
Collapse
Affiliation(s)
- Elena Kurenova
- Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Leconet W, Larbouret C, Chardès T, Thomas G, Neiveyans M, Busson M, Jarlier M, Radosevic-Robin N, Pugnière M, Bernex F, Penault-Llorca F, Pasquet JM, Pèlegrin A, Robert B. Preclinical validation of AXL receptor as a target for antibody-based pancreatic cancer immunotherapy. Oncogene 2013; 33:5405-14. [PMID: 24240689 DOI: 10.1038/onc.2013.487] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/22/2013] [Accepted: 09/20/2013] [Indexed: 01/16/2023]
Abstract
AXL receptor tyrosine kinase (RTK) is implicated in proliferation and invasion of many cancers, particularly in pancreatic ductal adenocarcinoma (PDAC), for which new therapeutic options are urgently required. We investigated whether inhibition of AXL activity by specific monoclonal antibodies (mAbs) is efficient in limiting proliferation and migration of pancreatic cancer cells. Expression of AXL was evaluated by immunohistochemistry in 42 PDAC. The AXL role in oncogenesis was studied using the short hairpin RNA approach in a pancreatic carcinoma cell line. We further generated antihuman AXL mAbs and evaluated their inhibitory effects and the AXL downstream signaling pathways first in vitro, in a panel of pancreatic cancer cell lines and then in vivo, using subcutaneous or orthotopic pancreatic tumor xenografts. AXL receptor was found expressed in 76% (32/42) of PDAC and was predominantly present in invasive cells. The AXL-knockdown Panc-1 cells decreased in vitro cell migration, survival and proliferation, and reduced in vivo tumor growth. Two selected anti-AXL mAbs (D9 and E8), which inhibited phosphorylation of AXL and of its downstream target AKT without affecting growth arrest-specific factor 6 (GAS6) binding, induced downexpression of AXL by internalization, leading to an inhibition of proliferation and migration in the four pancreatic cancer cell lines studied. In vivo, treatment by anti-AXL mAbs significantly reduced growth of both subcutaneous and orthotopic pancreatic tumor xenografts independently of their KRAS mutation status. Our in vitro and preclinical in vivo data demonstrate that anti-human AXL mAbs could represent a new approach to the pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- W Leconet
- INSERM-U896, IRCM, Université Montpellier1, CRLC Val d'Aurelle-Paul Lamarque, 208 rue des Apothicaires, Montpellier-Cedex 5, France
| | - C Larbouret
- INSERM-U896, IRCM, Université Montpellier1, CRLC Val d'Aurelle-Paul Lamarque, 208 rue des Apothicaires, Montpellier-Cedex 5, France
| | - T Chardès
- INSERM-U896, IRCM, Université Montpellier1, CRLC Val d'Aurelle-Paul Lamarque, 208 rue des Apothicaires, Montpellier-Cedex 5, France
| | - G Thomas
- INSERM-U896, IRCM, Université Montpellier1, CRLC Val d'Aurelle-Paul Lamarque, 208 rue des Apothicaires, Montpellier-Cedex 5, France
| | - M Neiveyans
- INSERM-U896, IRCM, Université Montpellier1, CRLC Val d'Aurelle-Paul Lamarque, 208 rue des Apothicaires, Montpellier-Cedex 5, France
| | - M Busson
- INSERM-U896, IRCM, Université Montpellier1, CRLC Val d'Aurelle-Paul Lamarque, 208 rue des Apothicaires, Montpellier-Cedex 5, France
| | - M Jarlier
- Unité de Biostatistiques, CRLC Val d'Aurelle-Paul Lamarque, 208 rue des Apothicaires, Montpellier-Cedex 5, France
| | - N Radosevic-Robin
- Département de biopathologie Centre Jean-Perrin 63011 Clermont-Ferrand Cedex 1; ERTICa EA4677, Université d'Auvergne, Clermont-Ferrand, France
| | - M Pugnière
- INSERM-U896, IRCM, Université Montpellier1, CRLC Val d'Aurelle-Paul Lamarque, 208 rue des Apothicaires, Montpellier-Cedex 5, France
| | - F Bernex
- INSERM-U896, IRCM, Université Montpellier1, CRLC Val d'Aurelle-Paul Lamarque, 208 rue des Apothicaires, Montpellier-Cedex 5, France
| | - F Penault-Llorca
- Département de biopathologie Centre Jean-Perrin 63011 Clermont-Ferrand Cedex 1; ERTICa EA4677, Université d'Auvergne, Clermont-Ferrand, France
| | - J-M Pasquet
- INSERM-U876, Hématopoïèse Leucémique et Cible Thérapeutique, Université Victor Ségalen, Laboratoire d'hématologie CHU de Bordeaux, Bordeaux Cedex, France
| | - A Pèlegrin
- INSERM-U896, IRCM, Université Montpellier1, CRLC Val d'Aurelle-Paul Lamarque, 208 rue des Apothicaires, Montpellier-Cedex 5, France
| | - B Robert
- INSERM-U896, IRCM, Université Montpellier1, CRLC Val d'Aurelle-Paul Lamarque, 208 rue des Apothicaires, Montpellier-Cedex 5, France
| |
Collapse
|
7
|
Que R, Ding G, Chen J, Cao L. Analysis of serum exosomal microRNAs and clinicopathologic features of patients with pancreatic adenocarcinoma. World J Surg Oncol 2013; 11:219. [PMID: 24007214 PMCID: PMC3766671 DOI: 10.1186/1477-7819-11-219] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/25/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Altered expression of serum microRNAs (miRNAs) have been reported to correlate with carcinogenesis and progression of pancreatic adenocarcinoma (PC), but descriptions of serum exosomal miRNAs in PC are still lacking. This study was designed to evaluate serum exosomal miRNA levels in PC patients and to investigate their relationships with clinicopathologic features and prognosis. METHODS Four miRNAs (miR-17-5p, miR-21, miR-155 and miR-196a) related to PC were selected for examination in our research. Serum miRNA was examined by RT-PCR in a group of 49 patients, including 22 with PCs, 6 with benign pancreatic tumors, 7 with ampullary carcinomas, 6 with chronic pancreatitis and 8 healthy participants. The clinicopathologic data were also collected, and PC patients were classified according to the presence of metastasis, tumor differentiation and advanced stage. RESULTS There were low expressions of exosomal miR-155 and miR-196a in serum samples of PC patients when U-6 was used as a control. Serum exosomal miR-17-5p was higher in PC patients than in non-PC patients and healthy participants. High levels of miR-17-5p were significantly correlated with metastasis and advanced stage of PC. The serum exosomal miR-21 level in PC was higher than that in the normal and chronic pancreatitis groups, but was not significantly correlated with PC differentiation and tumor stage. CONCLUSIONS There were high expressions of serum exosomal miR-17-5p and miR-21 in PC patients. Examination of serum exosomal microRNA is a useful serum biomarker for PC diagnosis other than serum-free microRNA. It is postulated that exosomal miR-17-5p participates in the progression of PC.
Collapse
Affiliation(s)
- Risheng Que
- Department of General Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Guoping Ding
- Department of General Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jionghuang Chen
- Department of General Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Liping Cao
- Department of General Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
8
|
Merchant JL, Saqui-Salces M. Inhibition of Hedgehog signaling in the gastrointestinal tract: targeting the cancer microenvironment. Cancer Treat Rev 2013; 40:12-21. [PMID: 24007940 DOI: 10.1016/j.ctrv.2013.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/02/2013] [Accepted: 08/06/2013] [Indexed: 02/08/2023]
Abstract
This review summarizes emerging information regarding the Hedgehog (Hh) signaling pathway during neoplastic transformation in the gastrointestinal tract. Although there is a role for the well-established canonical pathway in which Hedgehog ligands interact with their receptor Patched, there is sufficient evidence that downstream components of the Hh pathway, e.g., Gli1, are hijacked by non-Hh signaling pathways to promote the conversion of the epithelium to dysplasia and carcinoma. We review the canonical pathway and involvement of primary cilia, and then focus on current evidence for Hh signaling in luminal bowel cancers as well as accessory organs, i.e., liver, pancreas and biliary ducts. We conclude that targeting the Hh pathway with small molecules, nutriceuticals and other mechanisms will likely require a combination of inhibitors that target Gli transcription factors in addition to canonical modulators such as Smoothened.
Collapse
Affiliation(s)
- Juanita L Merchant
- Departments of Internal Medicine and Molecular and Integrative Physiology, Division of Gastroenterology, University of Michigan, United States.
| | | |
Collapse
|
9
|
Roshani R, McCarthy F, Hagemann T. Inflammatory cytokines in human pancreatic cancer. Cancer Lett 2013; 345:157-63. [PMID: 23879960 DOI: 10.1016/j.canlet.2013.07.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal types of cancer with poor prognosis. Despite extensive efforts, the current treatment methods have limited success. Therefore, novel therapeutic approaches are required. The pancreatic tumor microenvironment is rich in growth factors and inflammatory cytokines that support tumor growth, and it is highly immunosuppressive. Up-regulation of cytokine pathways has been shown to modulate PDAC progression and immune evasion; therefore targeting cytokines may have therapeutic benefits. In this review we provide an overview of current understanding of pro- and anti-inflammatory cytokines in pancreatic cancer and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Rozita Roshani
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| | - Fiona McCarthy
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| | - Thorsten Hagemann
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
10
|
Pelizzaro-Rocha KJ, de Jesus MB, Ruela-de-Sousa RR, Nakamura CV, Reis FS, de Fátima A, Ferreira-Halder CV. Calix[6]arene bypasses human pancreatic cancer aggressiveness: downregulation of receptor tyrosine kinases and induction of cell death by reticulum stress and autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2856-2865. [PMID: 23872419 DOI: 10.1016/j.bbamcr.2013.07.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 12/27/2022]
Abstract
Pancreatic cancer ranks fourth among cancer-related causes of death in North America. Minimal progress has been made in the diagnosis and treatment of patients with late-stage tumors. Moreover, pancreatic cancer aggressiveness is closely related to high levels of pro-survival mediators, which can ultimately lead to rapid disease progression, resistance and metastasis. The main goal of this study was to define the mechanisms by which calix[6]arene, but not other calixarenes, efficiently decreases the aggressiveness of a drug resistant human pancreas carcinoma cell line (Panc-1). Calix[6]arene was more potent in reducing Panc-1 cell viability than gemcitabine and 5-fluorouracil. In relation to the underlying mechanisms of cytotoxic effects, it led to cell cycle arrest in the G0/G1 phase through downregulation of PIM1, CDK2, CDK4 and retinoblastoma proteins. Importantly, calix[6]arene abolished signal transduction of Mer and AXL tyrosine kinase receptors, both of which are usually overexpressed in pancreatic cancer. Accordingly, inhibition of PI3K and mTOR was also observed, and these proteins are positively modulated by Mer and AXL. Despite decreasing the phosphorylation of AKT at Thr308, calix[6]arene caused an increase in phosphorylation at Ser473. These findings in conjunction with increased BiP and IRE1-α provide a molecular basis explaining the capacity of calix[6]arene to trigger endoplasmic reticulum stress and autophagic cell death. Our findings highlight calix[6]arene as a potential candidate for overcoming pancreatic cancer aggressiveness. Importantly, we provide evidence that calix[6]arene affects a broad array of key targets that are usually dysfunctional in pancreatic cancer, a highly desirable characteristic for chemotherapeutics.
Collapse
Affiliation(s)
| | - Marcelo Bispo de Jesus
- Department of Biochemistry, Biology Institute, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Celso Vataru Nakamura
- Department of Basic Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Fabiano Souza Reis
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Angelo de Fátima
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
11
|
Sanford DE, Belt BA, Panni RZ, Mayer A, Deshpande AD, Carpenter D, Mitchem JB, Plambeck-Suess SM, Worley LA, Goetz BD, Wang-Gillam A, Eberlein TJ, Denardo DG, Goedegebuure SP, Linehan DC. Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis. Clin Cancer Res 2013; 19:3404-15. [PMID: 23653148 DOI: 10.1158/1078-0432.ccr-13-0525] [Citation(s) in RCA: 469] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE To determine the role of the CCL2/CCR2 axis and inflammatory monocytes (CCR2(+)/CD14(+)) as immunotherapeutic targets in the treatment of pancreatic cancer. EXPERIMENTAL DESIGN Survival analysis was conducted to determine if the prevalence of preoperative blood monocytes correlates with survival in patients with pancreatic cancer following tumor resection. Inflammatory monocyte prevalence in the blood and bone marrow of patients with pancreatic cancer and controls was compared. The immunosuppressive properties of inflammatory monocytes and macrophages in the blood and tumors, respectively, of patients with pancreatic cancer were assessed. CCL2 expression by human pancreatic cancer tumors was compared with normal pancreas. A novel CCR2 inhibitor (PF-04136309) was tested in an orthotopic model of murine pancreatic cancer. RESULTS Monocyte prevalence in the peripheral blood correlates inversely with survival, and low monocyte prevalence is an independent predictor of increased survival in patients with pancreatic cancer with resected tumors. Inflammatory monocytes are increased in the blood and decreased in the bone marrow of patients with pancreatic cancer compared with controls. An increased ratio of inflammatory monocytes in the blood versus the bone marrow is a novel predictor of decreased patient survival following tumor resection. Human pancreatic cancer produces CCL2, and immunosuppressive CCR2(+) macrophages infiltrate these tumors. Patients with tumors that exhibit high CCL2 expression/low CD8 T-cell infiltrate have significantly decreased survival. In mice, CCR2 blockade depletes inflammatory monocytes and macrophages from the primary tumor and premetastatic liver resulting in enhanced antitumor immunity, decreased tumor growth, and reduced metastasis. CONCLUSIONS Inflammatory monocyte recruitment is critical to pancreatic cancer progression, and targeting CCR2 may be an effective immunotherapeutic strategy in this disease.
Collapse
Affiliation(s)
- Dominic E Sanford
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Iovanna JL, Marks DL, Fernandez-Zapico ME, Urrutia R. Mechanistic insights into self-reinforcing processes driving abnormal histogenesis during the development of pancreatic cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1078-86. [PMID: 23375449 DOI: 10.1016/j.ajpath.2012.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/16/2012] [Accepted: 12/24/2012] [Indexed: 12/28/2022]
Abstract
Pancreatic ductal adenocarcinoma, one of the most feared lethal and painful diseases, is increasing in incidence. The poor prognosis of pancreatic ductal adenocarcinoma-affected patients primarily is owing to our inability to develop effective therapies. Mechanistic studies of genetic, epigenetic, and cell-to-cell signaling events are providing clues to molecular pathways that can be targeted in an attempt to cure this disease. The current review article seeks to draw inferences from available mechanistic knowledge to build a theoretical framework that can facilitate these approaches. This conceptual model considers pancreatic cancer as a tissue disease rather than an isolated epithelial cell problem, which develops and progresses in large part as a result of three positive feedback loops: i) genetic and epigenetic changes in epithelial cells modulate their interaction with mesenchymal cells to generate a dynamically changing process of abnormal histogenesis, which drives more changes; ii) the faulty tissue architecture of neoplastic lesions results in unsynchronized secretion of signaling molecules by cells, which generates an environment that is poor in oxygen and nutrients; and iii) the increased metabolic needs of rapidly dividing cells serve as an evolutionary pressure for them to adapt to this adverse microenvironment, leading to the emergence of resistant clones. We discuss how these concepts can guide mechanistic studies, as well as aid in the design of novel experimental therapeutics.
Collapse
Affiliation(s)
- Juan L Iovanna
- Cancer Research Center of Marseille, Inserm U1068, CNRS, UMR7258, Institute Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | | | | | | |
Collapse
|
13
|
Xu M, Li L, Liu Z, Jiao Z, Xu P, Kong X, Huang H, Zhang Y. ABCB2 (TAP1) as the downstream target of SHH signaling enhances pancreatic ductal adenocarcinoma drug resistance. Cancer Lett 2013; 333:152-8. [PMID: 23340176 DOI: 10.1016/j.canlet.2013.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/31/2012] [Accepted: 01/03/2013] [Indexed: 01/21/2023]
Abstract
Hedgehog signaling plays critical roles in drug resistance of PDAC. We demonstrate that SHH is highly expressed in PDAC patients and cell lines. SHH signaling protects PDAC cells against gemcitabine induced apoptosis, because either over-expression or knockdown of SHH in PDAC cells affects the sensitivity to gemcitabine. Mechanistic studies show that ABCB2 serves as the downstream target of SHH signaling, leading to the drug resistance of PDAC cells. Combinational treatments with gemcitabine and cyclopamine yield synergistic antitumor effects in vitro and in vivo. Our study suggests that inhibiting SHH signaling or targeting ABCB2 gene improves the efficacy of chemotherapy in patients with PDAC.
Collapse
Affiliation(s)
- Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Mimeault M, Batra SK. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells. J Cell Mol Med 2013; 17:30-54. [PMID: 23301832 PMCID: PMC3560853 DOI: 10.1111/jcmm.12004] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 11/20/2012] [Indexed: 12/12/2022] Open
Abstract
Accumulating lines of experimental evidence have revealed that hypoxia-inducible factors, HIF-1α and HIF-2α, are key regulators of the adaptation of cancer- and metastasis-initiating cells and their differentiated progenies to oxygen and nutrient deprivation during cancer progression under normoxic and hypoxic conditions. Particularly, the sustained stimulation of epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R), stem cell factor (SCF) receptor KIT, transforming growth factor-β receptors (TGF-βRs) and Notch and their downstream signalling elements such as phosphatidylinositol 3′-kinase (PI3K)/Akt/molecular target of rapamycin (mTOR) may lead to an enhanced activity of HIFs. Moreover, the up-regulation of HIFs in cancer cells may also occur in the hypoxic intratumoral regions formed within primary and secondary neoplasms as well as in leukaemic cells and metastatic prostate and breast cancer cells homing in the hypoxic endosteal niche of bone marrow. The activated HIFs may induce the expression of numerous gene products such as induced pluripotency-associated transcription factors (Oct-3/4, Nanog and Sox-2), glycolysis- and epithelial-mesenchymal transition (EMT) programme-associated molecules, including CXC chemokine receptor 4 (CXCR4), snail and twist, microRNAs and angiogenic factors such as vascular endothelial growth factor (VEGF). These gene products in turn can play critical roles for high self-renewal ability, survival, altered energy metabolism, invasion and metastases of cancer cells, angiogenic switch and treatment resistance. Consequently, the targeting of HIF signalling network and altered metabolic pathways represents new promising strategies to eradicate the total mass of cancer cells and improve the efficacy of current therapies against aggressive and metastatic cancers and prevent disease relapse.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, College of Medicine, Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | | |
Collapse
|
15
|
Flannery MT. A patient with profound weight loss after gastric bypass surgery: A case report. SAGE Open Med Case Rep 2013; 1:2050313X13496992. [PMID: 27489628 PMCID: PMC4857271 DOI: 10.1177/2050313x13496992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: A case of profound weight loss after gastric bypass surgery with multiple negative evaluations. Case presentation: A 41-year-old African-American female presented with greater-than-expected weight loss after gastric bypass and increasing abdominal pain over a 2-year period. An extensive workup was pursued for the patient with blood analysis, tumor markers, imaging studies both computed tomography and magnetic resonance imaging, arterial studies, and endoscopy from above and below, all of which demonstrated normal results. The patient was followed up without improvement, and repeated studies were also normal. The patient was labeled with a nonorganic etiology for her symptoms, which led to a psychiatry referral which was refused. Conclusion: The patient’s surgeon, who already had removed a normal appendix and gallbladder, repeated a laparoscopic exam. The exam was normal except for a small focus of pancreatic cancer in the celiac plexus. The patient died from perioperative sepsis from peritonitis 2 days after surgery. The case is discussed and findings reviewed.
Collapse
Affiliation(s)
- Michael T Flannery
- Department of Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
16
|
SOX4 transcriptionally regulates multiple SEMA3/plexin family members and promotes tumor growth in pancreatic cancer. PLoS One 2012; 7:e48637. [PMID: 23251334 PMCID: PMC3520963 DOI: 10.1371/journal.pone.0048637] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 10/01/2012] [Indexed: 01/13/2023] Open
Abstract
Semaphorin signaling through Plexin frequently participates in tumorigenesis and malignant progression in various types of cancer. In particular, the role of semaphorin signaling in pancreatic ductal adenocarcinoma (PDAC) remains unexplored, despite a high likelihood of metastasis and mortality. Unlike other epithelial malignancies that often express a small number of specific genes in the Semaphorin/Plexin family, five or more are often expressed in human PDAC. Such concomitant expression of these SEMA3/Plexin family members is not a result of gene amplification, but (at least partially) from increased gene transcription activated by SOX4 de novo expressed in PDAC. Via chromatin-immunoprecipitation, luciferase promoter activity assay and electrophoresis mobility shift assay, SOX4 is demonstrated to bind to the consensus site at the promoter of each SEMA3 and Plexin gene to enhance transcription activity. Conversely, RNAi-knockdown of SOX4 in PDAC cell lines results in decreased expression of SEMA3/Plexin family members and is associated with restricted tumor growth both in vitro and in SCID mice. We further demonstrate that SOX4 levels parallel with the summed expression of SEMA3/Plexin family members (P = 0.033, NPar Kruskal-Wallis one-way analysis), which also correlates with poor survival in human PDAC (P = 0.0409, Kaplan-Meier analysis). Intriguingly, miR-129-2 and miR-335, both of which target SOX4 for degradation, are co-repressed in human PDAC cases associated with up-regulated SOX4 in a statistically significant way. In conclusion, we disclose a miR-129-2(miR-335)/SOX4/Semaphorin-Plexin regulatory axis in the tumorigenesis of pancreatic cancer.
Collapse
|
17
|
Brentnall TA. Arousal of cancer-associated stromal fibroblasts: palladin-activated fibroblasts promote tumor invasion. Cell Adh Migr 2012; 6:488-94. [PMID: 23076142 PMCID: PMC3547892 DOI: 10.4161/cam.21453] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer-associated fibroblasts (CAF), comprised of activated fibroblasts or myofibroblasts, are found in stroma surrounding solid tumors; these myofibroblasts promote invasion and metastasis of cancer cells. Activation of stromal fibroblasts into myofibroblasts is induced by expression of cystoskeleton protein, palladin, at early stages in tumorigenesis and increases with neoplastic progression. Expression of palladin in fibroblasts is triggered by paracrine signaling from adjacent k-ras-expressing epithelial cells. Three-dimensional co-cultures of palladin-expressing fibroblasts and pancreatic cancer cells reveals that the activated fibroblasts lead the invasion by creating tunnels through the extracellular matrix through which the cancer cells follow. Invasive tunneling occurs as a result of the development of invadopodia-like cellular protrusions in the palladin-activated fibroblasts and the addition of a wounding/inflammatory trigger. Abrogation of palladin reduces the invasive capacity of these cells. CAF also play a role in cancer resistance and immuno-privilege, making the targeting of activators of these cells of interest for oncologists.
Collapse
Affiliation(s)
- Teresa A Brentnall
- Department of Medicine, University of Washington Medical Center, Seattle, WA USA.
| |
Collapse
|
18
|
Xia J, Chen C, Chen Z, Miele L, Sarkar FH, Wang Z. Targeting pancreatic cancer stem cells for cancer therapy. Biochim Biophys Acta Rev Cancer 2012; 1826:385-99. [PMID: 22728049 DOI: 10.1016/j.bbcan.2012.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/14/2012] [Accepted: 06/13/2012] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer (PC) is the fourth most frequent cause of cancer death in the United States. Emerging evidence suggests that pancreatic cancer stem cells (CSCs) play a crucial role in the development and progression of PC. Recently, there is increasing evidence showing that chemopreventive agents commonly known as nutraceuticals could target and eliminate CSCs that have been proposed as the root of the tumor progression, which could be partly due to attenuating cell signaling pathways involved in CSCs. Therefore, targeting pancreatic CSCs by nutraceuticals for the prevention of tumor progression and treatment of PC may lead to the development of novel strategy for achieving better treatment outcome of PC patients. In this review article, we will summarize the most recent advances in the pancreatic CSC field, with particular emphasis on nutraceuticals that target CSCs, for fighting this deadly disease.
Collapse
Affiliation(s)
- Jun Xia
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui, People's Republic of China
| | | | | | | | | | | |
Collapse
|
19
|
Hedgehog signaling: from the cuirass to the heart of pancreatic cancer. Pancreatology 2012; 12:388-93. [PMID: 22898642 DOI: 10.1016/j.pan.2012.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/28/2012] [Accepted: 06/08/2012] [Indexed: 12/11/2022]
Abstract
Exocrine pancreatic cancer is the fifth cause of cancer-related death in Europe and carries a very poor prognosis for all disease stages. To date no medical treatment has significantly increased patients' survival. One of the reasons for pancreatic cancer's chemoresistence is the complex tumor architecture: cancer cells are surrounded by a dense desmoplastic stroma that blocks drug delivery. Moreover, pancreatic cancer is characterized by a marked heterogeneity of cells, including cancer stem cells (CSCs) that act as tumor-initiating cells and hierarchically control the differentiated cancer cells. In particular, this subpopulation is resistant to classic cytotoxic therapies, and seems to be responsible for disease renewal. Hedgehog signaling (HH) is implicated in pancreatic gland development during embryogenesis and is reactivated during tumorigenesis and the maintenance of pancreatic cancer. Some studies demonstrated that the Hedgehog-secreted signaling proteins are overexpressed in both the stromal and CSCs pools, implying an abnormal activation of HH in the main compartment of pancreatic cancer. For this reason, the Hedgehog pathway could be an interesting target for clinical trials to increase drug concentration in neoplastic cells and hence deplete the stroma and directly kill tumor-initiating cells.
Collapse
|
20
|
Qian JY, Mou SH, Liu CB. SELDI-TOF MS combined with magnetic beads for detecting serum protein biomarkers and establishment of a boosting decision tree model for diagnosis of pancreatic cancer. Asian Pac J Cancer Prev 2012; 13:1911-1915. [PMID: 22901146 DOI: 10.7314/apjcp.2012.13.5.1911] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AIM New technologies for the early detection of pancreatic cancer (PC) are urgently needed. The aim of the present study was to screen for the potential protein biomarkers in serum using proteomic fingerprint technology. METHODS Magnetic beads combined with surface-enhanced laser desorption/ionization (SELDI) TOF MS were used to profile and compare the protein spectra of serum samples from 85 patients with pancreatic cancer, 50 patients with acute-on-chronic pancreatitis and 98 healthy blood donors. Proteomic patterns associated with pancreatic cancer were identified with Biomarker Patterns Software. RESULTS A total of 37 differential m/z peaks were identified that were related to PC (P<0.01). A tree model of biomarkers was constructed with the software based on the three biomarkers (7762 Da, 8560 Da, 11654 Da), this showing excellent separation between pancreatic cancer and non-cancer., with a sensitivity of 93.3% and a specificity of 95.6%. Blind test data showed a sensitivity of 88% and a specificity of 91.4%. CONCLUSIONS The results suggested that serum biomarkers for pancreatic cancer can be detected using SELDI-TOF-MS combined with magnetic beads. Application of combined biomarkers may provide a powerful and reliable diagnostic method for pancreatic cancer with a high sensitivity and specificity.
Collapse
Affiliation(s)
- Jing-Yi Qian
- Medical Services Section, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | | | | |
Collapse
|
21
|
Ropolo A, Bagnes CI, Molejon MI, Lo Re A, Boggio V, Gonzalez CD, Vaccaro MI. Chemotherapy and autophagy-mediated cell death in pancreatic cancer cells. Pancreatology 2012; 12:1-7. [PMID: 22487466 DOI: 10.1016/j.pan.2011.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autophagy is an evolutionarily preserved degradation process of cytoplasmic cellular constituents and plays important physiological roles in human health and disease. It has been proposed that autophagy plays an important role both in tumor progression and in promotion of cancer cell death, although the molecular mechanisms responsible for this dual action of autophagy in cancer have not been elucidated. Pancreatic ductal adenocarcinoma is one of the most aggressive human malignancies with 2-3% five-year survival rate. Its poor prognosis has been attributed to the lack of specific symptoms and early detection tools, and its relatively refractory to traditional cytotoxic agents and radiotherapy. Experimental evidence pointed at autophagy as a pancreatic cancer cell mechanism to survive under adverse environmental conditions, or as a defective programmed cell death mechanism that favors pancreatic cancer cell resistance to treatment. Here, we consider several phenotypical alterations that have been related to increase or decrease the autophagic process in pancreatic tumor cells. We specially review autophagy as a cell death mechanism in response to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Alejandro Ropolo
- Department of Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, 956 Junin p5, C1113AAD Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|