1
|
Chen T, Liu J, Hang R, Chen Q, Wang D. Neutrophils: From Inflammatory Bowel Disease to Colitis-Associated Colorectal Cancer. J Inflamm Res 2025; 18:925-947. [PMID: 39871958 PMCID: PMC11770381 DOI: 10.2147/jir.s497701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a non-specific inflammatory disease of digestive tract, primarily manifesting as ulcerative colitis (UC) and Crohn's disease (CD). The precise etiology of IBD remains elusive. The interplay of genetic factors, environmental influences, and intestinal microbiota contributes to the establishment of an uncontrolled immune environment within the intestine, which can progressively lead to atypical hyperplasia and ultimately to malignancy over a long period. This colorectal malignant tumor that arises from chronic IBD is referred to as colitis-associated colorectal cancer (CAC). Dysregulation in the quantity and functionality of neutrophils plays a significant role in the onset, progression, and recurrence of IBD, as well as in the transition from IBD to CAC. Neutrophils affect the pathophysiology of IBD through various mechanisms, including the production of reactive oxygen species (ROS), degranulation, the release of inflammatory mediators and chemokines, and the formation of neutrophil extracellular traps (NETs). These processes can induce DNA mutations, thereby facilitating the development of colon cancer. Given the incomplete understanding of the disease mechanisms underlying IBD and CAC, effective treatment and prevention strategies remain challenging. Consequently, a comprehensive review of the functional roles of neutrophils in IBD and CAC is essential for advancing our understanding of IBD pathogenesis and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Tianyi Chen
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Jiachen Liu
- Radiology Department, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Ruyi Hang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Qian Chen
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Dong Wang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
- Oncology Department of Qianjiang Center Hospital, Chongqing University, Chongqing, People’s Republic of China
| |
Collapse
|
2
|
Li DF, Tang Q, Yang MF, Xu HM, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Wang JY, Liang YJ, Wang LS, Yao J. Plant-derived exosomal nanoparticles: potential therapeutic for inflammatory bowel disease. NANOSCALE ADVANCES 2023; 5:3575-3588. [PMID: 37441251 PMCID: PMC10334410 DOI: 10.1039/d3na00093a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn's disease and ulcerative colitis, is a chronic autoimmune disorder characterized by inflammation. However, currently available disease-modifying anti-IBD drugs exhibit limited efficacy in IBD therapy. Furthermore, existing therapeutic approaches provide only partial relief from IBD symptoms and are associated with certain side effects. In recent years, a novel category of nanoscale membrane vesicles, known as plant-derived exosome-like nanoparticles (PDENs), has been identified in edible plants. These PDENs are abundant in bioactive lipids, proteins, microRNAs, and other pharmacologically active compounds. Notably, PDENs possess immunomodulatory, antitumor, regenerative, and anti-inflammatory properties, making them particularly promising for the treatment of intestinal diseases. Moreover, PDENs can be engineered as targeted delivery systems for the efficient transport of chemical or nucleic acid drugs to the site of intestinal inflammation. In the present study, we provided an overview of PDENs, including their biogenesis, extraction, purification, and construction strategies, and elucidated their physiological functions and therapeutic effects on IBD. Additionally, we summarized the applications and potential of PDENs in IBD treatment while highlighting the future directions and challenges in the field of emerging nanotherapeutics for IBD therapy.
Collapse
Affiliation(s)
- De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology) Shenzhen 518020 Guangdong China
| | - Qi Tang
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology) Shenzhen 518020 Guangdong China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital Shenzhen 518020 Guangdong China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology Guangzhou 510030 China
| | - Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology Guangzhou 510030 China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention Huizhou 516000 Guangdong China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology) Shenzhen 518020 Guangdong China
| | - Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology Guangzhou 510030 China
| | - Jian-Yao Wang
- Department of General Surgery, Shenzhen Children's Hospital Shenzhen 518026 Guangdong China
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital Shenzhen 518020 Guangdong China
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology) Shenzhen 518020 Guangdong China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology) Shenzhen 518020 Guangdong China
| |
Collapse
|
3
|
Long D, Alghoul Z, Sung J, Yang C, Merlin D. Oral administration of M13-loaded nanoliposomes is safe and effective to treat colitis-associated cancer in mice. Expert Opin Drug Deliv 2023; 20:1443-1462. [PMID: 37379034 PMCID: PMC10810011 DOI: 10.1080/17425247.2023.2231345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVE Colitis-associated cancer (CAC) treatment lacks effective small-molecule drugs and efficient targeted delivery systems. Here, we loaded M13 (an anti-cancer drug candidate) to colon-targeting ginger-derived nanoliposomes (NL) and investigated if orally administered M13-NL could enhance the anticancer effects of M13 in CAC mouse models. METHODS The biopharmaceutical properties of M13 were assessed by physicochemical characterizations. The in vitro immunotoxicity of M13 was assessed against PBMCs using FACS and the mutagenic potential of M13 was evaluated by the Ames assay. The in vitro efficacy of M13 was tested in 2D- and 3D-cultured cancerous intestinal cells. AOM/DSS-induced CAC mice were used to evaluate the therapeutic effects of free M13 or M13-NL on CAC in vivo. RESULTS M13 has beneficial physiochemical properties, including high stability, and no apparent immunotoxicity or mutagenic potential in vitro. M13 is effective against the growth of 2D- and 3D-cultured cancerous intestinal cells in vitro. The in vivo safety and efficacy of M13 were significantly improved by using NL for drug delivery (p < 0.001). Oral administration of M13-NL exhibited excellent therapeutic effects in AOM/DSS-induced CAC mice. CONCLUSION M13-NL is a promising oral drug formulation for CAC treatment.
Collapse
Affiliation(s)
- Dingpei Long
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA
| | - Zahra Alghoul
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Junsik Sung
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA
| | - Chunhua Yang
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| |
Collapse
|
4
|
Zhang C, Li Q, Shan J, Xing J, Liu X, Ma Y, Qian H, Chen X, Wang X, Wu LM, Yu Y. Multifunctional two-dimensional Bi 2Se 3 nanodiscs for anti-inflammatory therapy of inflammatory bowel diseases. Acta Biomater 2023; 160:252-264. [PMID: 36805534 DOI: 10.1016/j.actbio.2023.02.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023]
Abstract
The overexpression of reactive oxygen and nitrogen species (RONS) in the colonic mucosa destroys the mucosa and its barrier, accelerating the occurrence of inflammatory bowel disease (IBD). The elimination of RONS from the inflammatory colon has proven effective in alleviating IBD. Although many nanoantioxidants have been developed, preparing robust and efficient nano-antioxidants remains challenging. Herein, by modifying bismuth selenide (Bi2Se3) nanodiscs with polyvinylpyrrolidone (PVP), a multifunctional nanozyme based on 2D nanomaterials was developed for the treatment of IBD. By eliminating multiple RONS, such as hydroxyl radicals (•OH), superoxide anions (O2-•), nitric oxide (NO), and Bi2Se3 nanodiscs enhanced cellular survival after H2O2 stimulation. As evidenced by colonic injury, reduced body weight, spleen index, and proinflammatory cytokine levels in mice, RONS clearance alleviated intestinal inflammation in a prevention and delay model of acute colitis. 16S rDNA amplicon sequencing reveals that Bi2Se3 nanodiscs had the potential to regulate intestinal flora, increase the proportion of Firmicutes to Bacteroidetes, inhibit Proteobacteria bacteria, and restore intestinal homeostasis. This study highlights the use of Bi2Se3 nanodiscs with excellent biocompatibility, multienzyme functionality, and RONS scavenging ability as treatments for IBD without apparent adverse effects. STATEMENT OF SIGNIFICANCE: RONS were efficiently scavenged by Bi2Se3 nanodiscs. Bi2Se3 nanodiscs could be as a promising and potentially safe theraeputic agent for IBD. The gut microbiota could be modulated by Bi2Se3 nanodiscs.
Collapse
Affiliation(s)
- Cong Zhang
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230026, China; School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, China
| | - Qingrong Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jie Shan
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Jianghao Xing
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Xiaoyan Liu
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yan Ma
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, China
| | - Xulin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, China.
| | - Lian-Ming Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Yue Yu
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
5
|
Zhang H, Guo Z, Wang X, Xian J, Zou L, Zheng C, Zhang J. Protective mechanisms of Zanthoxylum bungeanum essential oil on DSS-induced ulcerative colitis in mice based on a colonic mucosal transcriptomic approach. Food Funct 2022; 13:9324-9339. [PMID: 36069282 DOI: 10.1039/d1fo04323d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The ameliorative effects on ulcerative colitis (UC) as well as the related mechanisms of the essential oil derived from the edible herb Zanthoxylum bungeanum Maxim (ZBEO) have been demonstrated herein. Based on GC-MS analysis, 45 volatile compounds in ZBEO were determined for its quality control. In vitro studies showed that after pretreatment with ZBEO, the disordered expression levels of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) and an anti-inflammatory cytokine (IL-10) on colon epithelial NCM460 cells induced by lipopolysaccharide (LPS) could be reversed. Additionally, oral administration of ZBEO significantly alleviated colitis in dextran sulfate sodium (DSS)-induced UC mice, including body weight loss, colon length shortening, disease activity index and colonic pathological damage. Furthermore, to uncover the anti-UC mechanisms of ZBEO, analysis of transcriptomes by next-generation sequencing technology was performed to explore the RNA genetic variation on colon tissues. Based on GO analysis and KEGG pathway analysis, a series of genetic pathways involved in the protective role of ZBEO against UC were determined. As a result, ZBEO treatment could decrease the expression of VCAM-1, TLR8, IL-1β and IL-11 mRNA as verified by qRT-PCR, which are involved in these potential genetic pathways. In conclusion, ZBEO administration would be a medicinal or dietary supplementation strategy for ulcerative colitis treatment.
Collapse
Affiliation(s)
- Huan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| | - Zhiqing Guo
- Oncology Teaching and Research Department, Hospital of Chengdu University of Traditional of Chinese Medicine, Chengdu 610072, China.
| | - Xiao Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| | - Jing Xian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, 610106, China
| | - Chuan Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China. .,Oncology Teaching and Research Department, Hospital of Chengdu University of Traditional of Chinese Medicine, Chengdu 610072, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| |
Collapse
|
6
|
Keshavarz Shahbaz S, Koushki K, Ayati SH, Bland AR, Bezsonov EE, Sahebkar A. Inflammasomes and Colorectal Cancer. Cells 2021; 10:2172. [PMID: 34571825 PMCID: PMC8467678 DOI: 10.3390/cells10092172] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/22/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammasomes are important intracellular multiprotein signaling complexes that modulate the activation of caspase-1 and induce levels of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18 in response to pathogenic microorganisms and molecules that originated from host proteins. Inflammasomes play contradictory roles in the development of inflammation-induced cancers. Based on several findings, inflammasomes can initiate and promote carcinogenesis. On the contrary, inflammasomes also exhibit anticancer effects by triggering pyroptosis and immunoregulatory functions. Herein, we review extant studies delving into different functions of inflammasomes in colorectal cancer development.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Science, Qazvin 3419759811, Iran;
| | - Khadijeh Koushki
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
| | - Seyed Hassan Ayati
- Immunobiochemistry Lab, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
| | - Abigail R. Bland
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand;
| | - Evgeny E. Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia;
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 1313199137, Iran
- School of Medicine, The University of Western Australia, Perth 6009, Australia
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| |
Collapse
|
7
|
Long D, Merlin D. Micro- and nanotechnological delivery platforms for treatment of dysbiosis-related inflammatory bowel disease. Nanomedicine (Lond) 2021; 16:1741-1745. [PMID: 34196224 DOI: 10.2217/nnm-2021-0167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Dingpei Long
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA 30302, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA 30302, USA.,Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| |
Collapse
|
8
|
NK cell and ILC heterogeneity in colorectal cancer. New perspectives from high dimensional data. Mol Aspects Med 2021; 80:100967. [PMID: 33941383 DOI: 10.1016/j.mam.2021.100967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022]
Abstract
Innate lymphoid cells (ILCs) and tissue-resident natural killer (NK) cells ensure immunity at environmental interfaces and help maintain barrier integrity of the intestinal tract. This wide range of innate lymphocytes is able to provide fast and potent inflammatory responses that, when deregulated, have been associated with pathogenesis of inflammatory bowel disease (IBD) and colorectal cancer (CRC). While the presence of tumor-infiltrating NK cells is generally associated with a favorable outcome in CRC patients, emerging evidence reveals distinct roles for ILCs in regulating CRC pathogenesis and progression. Advances in next generation sequencing technology, and in particular of single-cell RNA-seq approaches, along with multidimensional flow cytometry analysis, have helped to deconvolute the complexity and heterogeneity of the ILC system both in homeostatic and pathological contexts. In this review, we discuss the protective and detrimental roles of NK cells and ILCs in the pathogenesis of CRC, focusing on the phenotypic and transcriptional modifications these cells undergo during CRC development and progression.
Collapse
|
9
|
Manicassamy S, Prasad PD, Swafford D. Mouse Models of Colitis-Associated Colon Cancer. Methods Mol Biol 2021; 2224:133-146. [PMID: 33606212 DOI: 10.1007/978-1-0716-1008-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Crohn's disease (CD) and ulcerative colitis are two main clinically defined forms of chronic inflammatory bowel disease (IBD). Chronic intestinal inflammation is inextricably linked to colitis-associated colon carcinogenesis (CAC). Patients with ulcerative colitis (UC) and Crohn's disease (CD) have an increased risk of colon cancer. Our understanding of IBD and IBD-associated colon carcinogenesis depends largely on rodent models. AOM-DSS-induced colitis-associated colon cancer in mice is the most widely used and accepted model that can recapitulate the human IBD-associated colon cancer. Here, we have provided detailed protocols of this mouse model of experimentally induced chronic intestinal inflammation-associated colon cancer. We will also discuss the protocols for the isolation and analysis of inflammatory immune cells from the colon.
Collapse
Affiliation(s)
- Santhakumar Manicassamy
- Georgia Cancer Center, Augusta University, Augusta, GA, USA. .,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA. .,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Puttur D Prasad
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | | |
Collapse
|
10
|
Bürtin F, Mullins CS, Linnebacher M. Mouse models of colorectal cancer: Past, present and future perspectives. World J Gastroenterol 2020; 26:1394-1426. [PMID: 32308343 PMCID: PMC7152519 DOI: 10.3748/wjg.v26.i13.1394] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common diagnosed malignancy among both sexes in the United States as well as in the European Union. While the incidence and mortality rates in western, high developed countries are declining, reflecting the success of screening programs and improved treatment regimen, a rise of the overall global CRC burden can be observed due to lifestyle changes paralleling an increasing human development index. Despite a growing insight into the biology of CRC and many therapeutic improvements in the recent decades, preclinical in vivo models are still indispensable for the development of new treatment approaches. Since the development of carcinogen-induced rodent models for CRC more than 80 years ago, a plethora of animal models has been established to study colon cancer biology. Despite tenuous invasiveness and metastatic behavior, these models are useful for chemoprevention studies and to evaluate colitis-related carcinogenesis. Genetically engineered mouse models (GEMM) mirror the pathogenesis of sporadic as well as inherited CRC depending on the specific molecular pathways activated or inhibited. Although the vast majority of CRC GEMM lack invasiveness, metastasis and tumor heterogeneity, they still have proven useful for examination of the tumor microenvironment as well as systemic immune responses; thus, supporting development of new therapeutic avenues. Induction of metastatic disease by orthotopic injection of CRC cell lines is possible, but the so generated models lack genetic diversity and the number of suited cell lines is very limited. Patient-derived xenografts, in contrast, maintain the pathological and molecular characteristics of the individual patient's CRC after subcutaneous implantation into immunodeficient mice and are therefore most reliable for preclinical drug development - even in comparison to GEMM or cell line-based analyses. However, subcutaneous patient-derived xenograft models are less suitable for studying most aspects of the tumor microenvironment and anti-tumoral immune responses. The authors review the distinct mouse models of CRC with an emphasis on their clinical relevance and shed light on the latest developments in the field of preclinical CRC models.
Collapse
Affiliation(s)
- Florian Bürtin
- Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Christina S Mullins
- Department of Thoracic Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, Rostock 18057, Germany
| |
Collapse
|
11
|
Cooperative and Escaping Mechanisms between Circulating Tumor Cells and Blood Constituents. Cells 2019; 8:cells8111382. [PMID: 31684193 PMCID: PMC6912439 DOI: 10.3390/cells8111382] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 12/21/2022] Open
Abstract
Metastasis is the leading cause of cancer-related deaths and despite measurable progress in the field, underlying mechanisms are still not fully understood. Circulating tumor cells (CTCs) disseminate within the bloodstream, where most of them die due to the attack of the immune system. On the other hand, recent evidence shows active interactions between CTCs and platelets, myeloid cells, macrophages, neutrophils, and other hematopoietic cells that secrete immunosuppressive cytokines, which aid CTCs to evade the immune system and enable metastasis. Platelets, for instance, regulate inflammation, recruit neutrophils, and cause fibrin clots, which may protect CTCs from the attack of Natural Killer cells or macrophages and facilitate extravasation. Recently, a correlation between the commensal microbiota and the inflammatory/immune tone of the organism has been stablished. Thus, the microbiota may affect the development of cancer-promoting conditions. Furthermore, CTCs may suffer phenotypic changes, as those caused by the epithelial–mesenchymal transition, that also contribute to the immune escape and resistance to immunotherapy. In this review, we discuss the findings regarding the collaborative biological events among CTCs, immune cells, and microbiome associated to immune escape and metastatic progression.
Collapse
|
12
|
Nie Y, Yu S, Li Q, Nirala NK, Amcheslavsky A, Edwards YJK, Shum PW, Jiang Z, Wang W, Zhang B, Gao N, Ip YT. Oncogenic Pathways and Loss of the Rab11 GTPase Synergize To Alter Metabolism in Drosophila. Genetics 2019; 212:1227-1239. [PMID: 31213502 PMCID: PMC6707446 DOI: 10.1534/genetics.119.302137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/10/2019] [Indexed: 01/06/2023] Open
Abstract
Colorectal cancer is a complex disease driven by well-established mutations such as APC and other yet to be identified pathways. The GTPase Rab11 regulates endosomal protein trafficking, and previously we showed that loss of Rab11 caused intestinal inflammation and hyperplasia in mice and flies. To test the idea that loss of Rab11 may promote cancer progression, we have analyzed archival human patient tissues and observed that 51 out of 70 colon cancer tissues had lower Rab11 protein staining. By using the Drosophila midgut model, we have found that loss of Rab11 can lead to three changes that may relate to cancer progression. First is the disruption of enterocyte polarity based on staining of the FERM domain protein Coracle. Second is an increased proliferation due to an increased expression of the JAK-STAT pathway ligand Upd3. Third is an increased expression of ImpL2, which is an IGFBP7 homolog and can suppress metabolism. Furthermore, loss of Rab11 can act synergistically with the oncoprotein RasV12 to regulate these cancer-related phenotypes.
Collapse
Affiliation(s)
- Yingchao Nie
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Shiyan Yu
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Qi Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Niraj K Nirala
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Alla Amcheslavsky
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Yvonne J K Edwards
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Patrick W Shum
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Zhong Jiang
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Wei Wang
- Guangzhou RiboBio Co., Ltd., Guangzhou 510663, China
| | - Biliang Zhang
- Guangzhou RiboBio Co., Ltd., Guangzhou 510663, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
13
|
Al Bakir I, Curtius K, Graham TA. From Colitis to Cancer: An Evolutionary Trajectory That Merges Maths and Biology. Front Immunol 2018; 9:2368. [PMID: 30386335 PMCID: PMC6198656 DOI: 10.3389/fimmu.2018.02368] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/24/2018] [Indexed: 12/25/2022] Open
Abstract
Patients with inflammatory bowel disease have an increased risk of developing colorectal cancer, and this risk is related to disease duration, extent, and cumulative inflammation burden. Carcinogenesis follows the principles of Darwinian evolution, whereby somatic cells acquire genomic alterations that provide them with a survival and/or growth advantage. Colitis represents a unique situation whereby routine surveillance endoscopy provides a serendipitous opportunity to observe somatic evolution over space and time in vivo in a human organ. Moreover, somatic evolution in colitis is evolution in the ‘fast lane': the repeated rounds of inflammation and mucosal healing that are characteristic of the disease accelerate the evolutionary process and likely provide a strong selective pressure for inflammation-adapted phenotypic traits. In this review, we discuss the evolutionary dynamics of pre-neoplastic clones in colitis with a focus on how measuring their evolutionary trajectories could deliver a powerful way to predict future cancer occurrence. Measurements of somatic evolution require an interdisciplinary approach that combines quantitative measurement of the genotype, phenotype and the microenvironment of somatic cells–paying particular attention to spatial heterogeneity across the colon–together with mathematical modeling to interpret these data within an evolutionary framework. Here we take a practical approach in discussing how and why the different “evolutionary ingredients” can and should be measured, together with our viewpoint on subsequent translation into clinical practice. We highlight the open questions in the evolution of colitis-associated cancer as a stimulus for future work.
Collapse
Affiliation(s)
- Ibrahim Al Bakir
- Evolution and Cancer Laboratory, Centre for Tumour Biology, Barts Cancer Institute, London, United Kingdom.,Inflammatory Bowel Disease Unit, St Mark's Hospital, Harrow, United Kingdom
| | - Kit Curtius
- Evolution and Cancer Laboratory, Centre for Tumour Biology, Barts Cancer Institute, London, United Kingdom
| | - Trevor A Graham
- Evolution and Cancer Laboratory, Centre for Tumour Biology, Barts Cancer Institute, London, United Kingdom
| |
Collapse
|
14
|
The Complex Interplay between Chronic Inflammation, the Microbiome, and Cancer: Understanding Disease Progression and What We Can Do to Prevent It. Cancers (Basel) 2018; 10:cancers10030083. [PMID: 29558443 PMCID: PMC5876658 DOI: 10.3390/cancers10030083] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multifaceted condition, in which a senescent cell begins dividing in an irregular manner due to various factors such as DNA damage, growth factors and inflammation. Inflammation is not typically discussed as carcinogenic; however, a significant percentage of cancers arise from chronic microbial infections and damage brought on by chronic inflammation. A hallmark cancer-inducing microbe is Helicobacter pylori and its causation of peptic ulcers and potentially gastric cancer. This review discusses the recent developments in understanding microbes in health and disease and their potential role in the progression of cancer. To date, microbes can be linked to almost every cancer, including colon, pancreatic, gastric, and even prostate. We discuss the known mechanisms by which these microbes can induce cancer growth and development and how inflammatory cells may contribute to cancer progression. We also discuss new treatments that target the chronic inflammatory conditions and their associated cancers, and the impact microbes have on treatment success. Finally, we examine common dietary misconceptions in relation to microbes and cancer and how to avoid getting caught up in the misinterpretation and over inflation of the results.
Collapse
|
15
|
Eichele DD, Kharbanda KK. Dextran sodium sulfate colitis murine model: An indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J Gastroenterol 2017; 23:6016-6029. [PMID: 28970718 PMCID: PMC5597494 DOI: 10.3748/wjg.v23.i33.6016] [Citation(s) in RCA: 565] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/07/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn's disease and ulcerative colitis, are complex diseases that result from the chronic dysregulated immune response in the gastrointestinal tract. The exact etiology is not fully understood, but it is accepted that it occurs when an inappropriate aggressive inflammatory response in a genetically susceptible host due to inciting environmental factors occurs. To investigate the pathogenesis and etiology of human IBD, various animal models of IBD have been developed that provided indispensable insights into the histopathological and morphological changes as well as factors associated with the pathogenesis of IBD and evaluation of therapeutic options in the last few decades. The most widely used experimental model employs dextran sodium sulfate (DSS) to induce epithelial damage. The DSS colitis model in IBD research has advantages over other various chemically induced experimental models due to its rapidity, simplicity, reproducibility and controllability. In this manuscript, we review the newer publicized advances of research in murine colitis models that focus upon the disruption of the barrier function of the intestine, effects of mucin on the development of colitis, alterations found in microbial balance and resultant changes in the metabolome specifically in the DSS colitis murine model and its relation to the pathogenesis of IBD.
Collapse
Affiliation(s)
- Derrick D Eichele
- Department of Internal Medicine, Nebraska Medical Center, Omaha, NE 68198, United States
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, United States
- Department of Internal Medicine, Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Biochemistry and Molecular Biology, Nebraska Medical Center, Omaha, NE 68198, United States
| |
Collapse
|
16
|
McDonough EM, Barrett CW, Parang B, Mittal MK, Smith JJ, Bradley AM, Choksi YA, Coburn LA, Short SP, Thompson JJ, Zhang B, Poindexter SV, Fischer MA, Chen X, Li J, Revetta FL, Naik R, Washington MK, Rosen MJ, Hiebert SW, Wilson KT, Williams CS. MTG16 is a tumor suppressor in colitis-associated carcinoma. JCI Insight 2017; 2:78210. [PMID: 28814670 DOI: 10.1172/jci.insight.78210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/14/2017] [Indexed: 12/27/2022] Open
Abstract
MTG16 is a member of the myeloid translocation gene (MTG) family of transcriptional corepressors. While MTGs were originally identified in chromosomal translocations in acute myeloid leukemia, recent studies have uncovered a role in intestinal biology. For example, Mtg16-/- mice have increased intestinal proliferation and are more sensitive to intestinal injury in colitis models. MTG16 is also underexpressed in patients with moderate/severe ulcerative colitis. Based on these findings, we postulated that MTG16 might protect against colitis-associated carcinogenesis. MTG16 was downregulated at the protein and RNA levels in patients with inflammatory bowel disease and in those with colitis-associated carcinoma. Mtg16-/- mice subjected to inflammatory carcinogenesis modeling exhibited worse colitis and increased tumor multiplicity and size. Loss of MTG16 also increased severity of dysplasia, apoptosis, proliferation, DNA damage, and WNT signaling. Moreover, transplantation of WT marrow into Mtg16-/- mice failed to rescue the Mtg16-/- protumorigenic phenotypes, indicating an epithelium-specific role for MTG16. While MTG dysfunction is widely appreciated in hematopoietic malignancies, the role of this gene family in epithelial homeostasis, and in colon cancer, was unrealized. This report identifies MTG16 as an important modulator of colitis and tumor development in inflammatory carcinogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yash A Choksi
- Department of Medicine, Division of Gastroenterology
| | - Lori A Coburn
- Department of Medicine, Division of Gastroenterology.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | | | | | | | | | - Melissa A Fischer
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xi Chen
- Department of Public Health Sciences and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jiang Li
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Frank L Revetta
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rishi Naik
- Department of Cancer Biology.,Department of Medicine, Division of Gastroenterology
| | - M Kay Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael J Rosen
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Keith T Wilson
- Department of Cancer Biology.,Department of Medicine, Division of Gastroenterology.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA.,Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - Christopher S Williams
- Department of Cancer Biology.,Department of Medicine, Division of Gastroenterology.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA.,Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| |
Collapse
|
17
|
Zhang M, Wang X, Han MK, Collins JF, Merlin D. Oral administration of ginger-derived nanolipids loaded with siRNA as a novel approach for efficient siRNA drug delivery to treat ulcerative colitis. Nanomedicine (Lond) 2017; 12:1927-1943. [PMID: 28665164 PMCID: PMC5827822 DOI: 10.2217/nnm-2017-0196] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022] Open
Abstract
AIM To develop novel siRNA delivery system overcoming the limitations of synthetic nanoparticles, such as potential side effects, nonspecificity and economic production for ulcerative colitis therapy. MATERIALS & METHODS Nanoparticles composed of edible ginger-derived lipid, termed ginger-derived lipid vehicles (GDLVs) were generated from ginger lipids through hydration of a lipid film, a commonly used method for a liposome fabrication. The morphology, biocompatibility and transfection efficiency of GDLVs loaded with siRNA-CD98 (siRNA-CD98/GDLVs) were characterized by standard methods. RESULTS Orally administered siRNA-CD98/GDLVs were effectively targeted specifically to colon tissues, resulting in reduced expression of CD98. CONCLUSION These GDLVs have great promise as efficient siRNA-delivery vehicles while potentially obviating issues related to the traditional synthetic nanoparticles. As such, they help shift the current paradigm of siRNA delivery away from artificially synthesized nanoparticles toward the use of naturally derived nanovehicles from edible plants.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Institute for Biomedical Sciences, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - Xiaoyu Wang
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Moon Kwon Han
- Institute for Biomedical Sciences, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - James F Collins
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302, USA
- Alanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| |
Collapse
|
18
|
Lopetuso LR, Petito V, Zinicola T, Graziani C, Gerardi V, Arena V, Caristo ME, Poscia A, Cammarota G, Papa A, Cufino V, Sgambato A, Gasbarrini A, Scaldaferri F. Infliximab does not increase colonic cancer risk associated to murine chronic colitis. World J Gastroenterol 2016; 22:9727-9733. [PMID: 27956796 PMCID: PMC5124977 DOI: 10.3748/wjg.v22.i44.9727] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/23/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the influence of Infliximab (IFX) on cancer progression in a murine model of colonic cancer associated to chronic colitis.
METHODS AOM/DSS model was induced in C57BL/6 mice. Mice were injected with IFX (5 mg/kg) during each DSS cycle while control mice received saline. Body weight, occult blood test and stool consistency were measured to calculate the disease activity index (DAI). Mice were sacrificed at week 10 and colons were analyzed macroscopically and microscopically for number of cancers and degree of inflammation. MTT assay was performed on CT26 to evaluate the potential IFX role on metabolic activity and proliferation. Cells were incubated with TNF-α or IFX or TNF-α plus IFX, and cell vitality was evaluated after 6, 24 and 48 h. The same setting was used after pre-incubation with TNF-α for 24 h.
RESULTS IFX significantly reduced DAI and body weight loss in mice compared with controls, preserving also colon length at sacrifice. Histological score was also reduced in treated mice. At macroscopic analysis, IFX treated mice showed a lower number of tumor lesions compared to controls. This was confirmed at microscopic analysis, although differences were not statistically significant. In vitro, IFX treated CT26 maintained similar proliferation ability at MTT test, both when exposed to IFX alone and when associated to TNF-α.
CONCLUSION IFX did not increase colonic cancer risk in AOM-DSS model of cancer on chronic colitis nor influence directly the proliferation of murine colon cancer epithelial cells.
Collapse
|
19
|
Wroblewski LE, Peek RM, Coburn LA. The Role of the Microbiome in Gastrointestinal Cancer. Gastroenterol Clin North Am 2016; 45:543-56. [PMID: 27546848 PMCID: PMC4994977 DOI: 10.1016/j.gtc.2016.04.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Humans are host to complex microbial communities previously termed normal flora and largely overlooked. However, resident microbes contribute to both health and disease. Investigators are beginning to define microbes that contribute to the development of gastrointestinal malignancies and the mechanisms by which this occurs. Resident microbes can induce inflammation, leading to cell proliferation and altered stem cell dynamics, which can lead to alterations in DNA integrity and immune regulation and promote carcinogenesis. Studies in human patients and rodent models of cancer have identified alterations in the microbiota of the stomach, esophagus, and colon that increase the risk for malignancy.
Collapse
Affiliation(s)
- Lydia E. Wroblewski
- Division of Gastroenterology, Department of Medicine; Vanderbilt University School of Medicine; Nashville, TN USA, T: 615-322-4215
| | - Richard M. Peek
- Division of Gastroenterology, Department of Medicine; Vanderbilt University School of Medicine; Nashville, TN USA, T: 615-343-1596
| | - Lori A. Coburn
- Veterans Affairs Tennessee Valley Healthcare System; Division of Gastroenterology, Department of Medicine; Vanderbilt University School of Medicine; Nashville, TN USA, T: 615-875-4222, F: 615-343-4229
| |
Collapse
|
20
|
Zhang M, Viennois E, Prasad M, Zhang Y, Wang L, Zhang Z, Han MK, Xiao B, Xu C, Srinivasan S, Merlin D. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials 2016; 101:321-40. [PMID: 27318094 PMCID: PMC4921206 DOI: 10.1016/j.biomaterials.2016.06.018] [Citation(s) in RCA: 542] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022]
Abstract
There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. In this study, we characterized a specific population of nanoparticles derived from edible ginger (GDNPs 2) and demonstrated their efficient colon targeting following oral administration. GDNPs 2 had an average size of ∼230 nm and exhibited a negative zeta potential. These nanoparticles contained high levels of lipids, a few proteins, ∼125 microRNAs (miRNAs), and large amounts of ginger bioactive constituents (6-gingerol and 6-shogaol). We also demonstrated that GDNPs 2 were mainly taken up by intestinal epithelial cells (IECs) and macrophages, and were nontoxic. Using different mouse colitis models, we showed that GDNPs 2 reduced acute colitis, enhanced intestinal repair, and prevented chronic colitis and colitis-associated cancer (CAC). 2D-DIGE/MS analyses further identified molecular target candidates of GDNPs 2 involved in these mouse models. Oral administration of GDNPs 2 increased the survival and proliferation of IECs and reduced the pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), and increased the anti-inflammatory cytokines (IL-10 and IL-22) in colitis models, suggesting that GDNPs 2 has the potential to attenuate damaging factors while promoting the healing effect. In conclusion, GDNPs 2, nanoparticles derived from edible ginger, represent a novel, natural delivery mechanism for improving IBD prevention and treatment with an added benefit of overcoming limitations such as potential toxicity and limited production scale that are common with synthetic nanoparticles.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Emilie Viennois
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Meena Prasad
- Veterans Affairs Medical Center, Decatur, GA, USA; Emory University, Department of Medicine, USA
| | - Yunchen Zhang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Lixin Wang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA; Veterans Affairs Medical Center, Decatur, GA, USA
| | - Zhan Zhang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Moon Kwon Han
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Bo Xiao
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA; Institute for Clean Energy and Advanced Materials, Faculty for Materials and Energy, Southwest University, Chongqing, 400715, PR China
| | - Changlong Xu
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA; The 2nd Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, PR China
| | - Shanthi Srinivasan
- Veterans Affairs Medical Center, Decatur, GA, USA; Emory University, Department of Medicine, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA; Veterans Affairs Medical Center, Decatur, GA, USA
| |
Collapse
|
21
|
Tan J, Yang S, Shen P, Sun H, Xiao J, Wang Y, Wu B, Ji F, Yan J, Xue H, Zhou D. C-kit signaling promotes proliferation and invasion of colorectal mucinous adenocarcinoma in a murine model. Oncotarget 2016; 6:27037-48. [PMID: 26356816 PMCID: PMC4694972 DOI: 10.18632/oncotarget.4815] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/20/2015] [Indexed: 01/07/2023] Open
Abstract
It was reported that the receptor tyrosine kinase (RTK) family often highly expressed in several mucinous carcinomas. In the present study, we established a murine model of colorectal mucinous adenocardinoma (CRMAC) by treating C57 mice [both wild type (WT) and loss-of-function c-kit mutant type (Wads-/-)] with AOM+DSS for 37 weeks and found that c-kit, a member of RTK family, clearly enhanced the tumor cell proliferation by decreasing p53 and increasing cyclin D1 through AKT pathway. Significantly, c-kit strongly promoted tumor cell invasiveness by increasing ETV4, which induced MMP7 expression and epithelial-mesenchymal transition (EMT) via ERK pathway. In vitro up- or down-regulating c-kit activation in human colorectal cancer HCT-116 cells further consolidated these results. In conclusion, our data suggested that the c-kit signaling obviously promoted proliferation and invasion of CRMAC. Therefore, targeting the c-kit signaling and its downstream molecules might provide the potential strategies for treatment of patients suffering from CRMAC in the future.
Collapse
Affiliation(s)
- Jun Tan
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, P. R. China
| | - Shu Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, P. R. China.,Cancer Institute of Capital Medical University, Beijing 100069, P. R. China
| | - Ping Shen
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China.,Cancer Institute of Capital Medical University, Beijing 100069, P. R. China
| | - Haimei Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, P. R. China.,Cancer Institute of Capital Medical University, Beijing 100069, P. R. China
| | - Jie Xiao
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China.,Cancer Institute of Capital Medical University, Beijing 100069, P. R. China
| | - Yaxi Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, P. R. China
| | - Bo Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, P. R. China.,Cancer Institute of Capital Medical University, Beijing 100069, P. R. China
| | - Fengqing Ji
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, P. R. China.,Cancer Institute of Capital Medical University, Beijing 100069, P. R. China
| | - Jihong Yan
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Hong Xue
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Deshan Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, P. R. China.,Cancer Institute of Capital Medical University, Beijing 100069, P. R. China
| |
Collapse
|
22
|
Kuo WT, Lee TC, Yu LCH. Eritoran Suppresses Colon Cancer by Altering a Functional Balance in Toll-like Receptors That Bind Lipopolysaccharide. Cancer Res 2016; 76:4684-95. [PMID: 27328732 DOI: 10.1158/0008-5472.can-16-0172] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/05/2016] [Indexed: 11/16/2022]
Abstract
Colorectal carcinogenesis is affected by overexpression of the lipopolysaccharide (LPS) receptors CD14 and TLR4, which antagonize each other by affecting epithelial cell proliferation and apoptosis. Eritoran is an investigational drug for sepsis treatment that resembles the lipid A moiety of LPS and therefore acts as a TLR4 inhibitor. In the present study, we explored the potential therapeutic uses and mechanisms of action of eritoran in reducing colon cancer progression. Eritoran administration via intracolonic, intragastric, or intravenous routes significantly reduced tumor burden in a chemically induced mouse model of colorectal carcinoma. Decreased proliferation and increased apoptosis were observed in mouse tumor cells after eritoran treatment. In vitro cultures of mouse primary tumor spheroids and human cancer cell lines displayed increased cell proliferation and cell-cycle progression following LPS challenge. This effect was inhibited by eritoran and by silencing CD14 or TLR4. In contrast, apoptosis induced by eritoran was eliminated by silencing CD14 or protein kinase Cζ (PKCζ) but not TLR4. Lastly, LPS and eritoran caused hyperphosphorylation of PKCζ in a CD14-dependent and TLR4-independent manner. Blocking PKCζ activation by a Src kinase inhibitor and a PKCζ-pseudosubstrate prevented eritoran-induced apoptosis. In summary, our work offers a preclinical proof of concept for the exploration of eritoran as a clinical treatment, with a mechanistic rationale to reposition this drug to improve the management of colorectal cancer. Cancer Res; 76(16); 4684-95. ©2016 AACR.
Collapse
Affiliation(s)
- Wei-Ting Kuo
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tsung-Chun Lee
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan. Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
23
|
An Inducible, Large-Intestine-Specific Transgenic Mouse Model for Colitis and Colitis-Induced Colon Cancer Research. Dig Dis Sci 2016; 61:1069-79. [PMID: 26631394 PMCID: PMC5476293 DOI: 10.1007/s10620-015-3971-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/08/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Animal models are an important tool to understand intestinal biology. Our laboratory previously generated C57BL/6-Tg(Car1-cre)5Flt transgenic mice (CAC) with large-intestine-specific Cre recombinase (Cre) expression as a model to study colon health. AIM To expand the utility of the CAC mouse model by determining the impact of chemically induced colitis on CAC transgene expression. METHODS CAC mice were crossed to Rosa reporter mice (Rosa26R (flox/flox) ) with a lox-STOP-lox signal controlling β-galactosidase (βgal) expression and then further crossed with Apc(CKO/CKO) mice in some experiments to delete Apc alleles (Apc (Δ580) ). Initially, 8-week-old CAC(Tg/WT);Rosa26R (flox/WT) ;Apc (Δ580/WT) mice were treated with dextran sulfate sodium (DSS) in drinking water (5 days, 0, 0.65, 1.35, or 2.0 %). Colon tissue damage and βgal labeling were analyzed 10 day after stopping DSS. Next, 8-week-old CAC(Tg/WT);Rosa26R(flox/flox) mice were treated with 0 or 1.35 % DSS, and colonic βgal labeling was assessed at 30 day post-DSS treatment. Finally, 10-week-old CAC(Tg/WT);Apc (Δ580/WT) mice were treated with DSS (0 or 2 %) for 5 days and colonic tumors were analyzed at 20 weeks. RESULTS CAC(Tg/WT);Rosa26R (flox/WT) ;Apc (Δ580/WT) mice had a DSS dose-dependent increase in colon epithelial damage that correlated with increased epithelial βgal labeling at 10 days (r (2) = 0.9, β = 0.75). The βgal labeling in CAC(Tg/WT);Rosa26R(flox/flox) mice colon remained high at 30 days, especially in the crypts of the healed ulcer. DSS also increased colon tumor incidence and multiplicity in CAC(Tg/WT);Apc (Δ580/WT) mice. CONCLUSIONS DSS-mediated epithelial damage induces a persistent, Cre-mediated recombination of floxed alleles in CAC mice. This enables the examination of gene function in colon epithelium during experimental colitis and colitis-induced colon cancer.
Collapse
|
24
|
Jiminez JA, Uwiera TC, Douglas Inglis G, Uwiera RRE. Animal models to study acute and chronic intestinal inflammation in mammals. Gut Pathog 2015; 7:29. [PMID: 26561503 PMCID: PMC4641401 DOI: 10.1186/s13099-015-0076-y] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/22/2015] [Indexed: 02/06/2023] Open
Abstract
Acute and chronic inflammatory diseases of the intestine impart a significant and negative impact on the health and well-being of human and non-human mammalian animals. Understanding the underlying mechanisms of inflammatory disease is mandatory to develop effective treatment and prevention strategies. As inflammatory disease etiologies are multifactorial, the use of appropriate animal models and associated metrics of disease are essential. In this regard, animal models used alone or in combination to study acute and chronic inflammatory disease of the mammalian intestine paired with commonly used inflammation-inducing agents are reviewed. This includes both chemical and biological incitants of inflammation, and both non-mammalian (i.e. nematodes, insects, and fish) and mammalian (i.e. rodents, rabbits, pigs, ruminants, dogs, and non-human primates) models of intestinal inflammation including germ-free, gnotobiotic, as well as surgical, and genetically modified animals. Importantly, chemical and biological incitants induce inflammation via a multitude of mechanisms, and intestinal inflammation and injury can vary greatly according to the incitant and animal model used, allowing studies to ascertain both long-term and short-term effects of inflammation. Thus, researchers and clinicians should be aware of the relative strengths and limitations of the various animal models used to study acute and chronic inflammatory diseases of the mammalian intestine, and the scope and relevance of outcomes achievable based on this knowledge. The ability to induce inflammation to mimic common human diseases is an important factor of a successful animal model, however other mechanisms of disease such as the amount of infective agent to induce disease, invasion mechanisms, and the effect various physiologic changes can have on inducing damage are also important features. In many cases, the use of multiple animal models in combination with both chemical and biological incitants is necessary to answer the specific question being addressed regarding intestinal disease. Some incitants can induce acute responses in certain animal models while others can be used to induce chronic responses; this review aims to illustrate the strengths and weaknesses in each animal model and to guide the choice of an appropriate acute or chronic incitant to facilitate intestinal disease.
Collapse
Affiliation(s)
- Janelle A. Jiminez
- />Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB Canada
- />Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| | - Trina C. Uwiera
- />Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB Canada
| | - G. Douglas Inglis
- />Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB Canada
| | - Richard R. E. Uwiera
- />Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
25
|
Dheer R, Davies JM, Abreu MT. Inflammation and Colorectal Cancer. INTESTINAL TUMORIGENESIS 2015:211-256. [DOI: 10.1007/978-3-319-19986-3_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
26
|
Fabbi M, Carbotti G, Ferrini S. Context-dependent role of IL-18 in cancer biology and counter-regulation by IL-18BP. J Leukoc Biol 2014; 97:665-75. [DOI: 10.1189/jlb.5ru0714-360rr] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
27
|
Zuo L, Yuan KT, Yu L, Meng QH, Chung PCK, Yang DH. Bifidobacterium infantis attenuates colitis by regulating T cell subset responses. World J Gastroenterol 2014; 20:18316-18329. [PMID: 25561798 PMCID: PMC4277968 DOI: 10.3748/wjg.v20.i48.18316] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/17/2014] [Accepted: 07/22/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: to investigate the effect of Bifidobacterium infantis (B. infantis) on the T cell subsets and in attenuating the severity of experimental colitis in mice.
METHODS: Normal BALB/c mice were fed different doses of B. infantis for 3 wk, and T cell subsets and related cytokine profiles in mesenteric lymph nodes (MLNs) were detected by flow cytometry and real-time RT-PCR. Colitis was induced by administration of trinitrobenzene sulfonic acid (TNBS) in mice. Before colitis induction, mice were fed high dose B. infantis for 3 wk. Cytokine profiles in MLNs and histological changes of colonic tissue were examined 6 d after colitis induction.
RESULTS: No significant change in cytokine profiles was observed in normal mice fed low dose B. infantis. However, Th1-related cytokines (IL-2, IFN-γ, IL-12p40), Th17-related transcription factor and cytokines (RORγt, IL-21, IL-23), regulatory T cell (Treg)-related transcription factor and cytokines (Foxp3, IL-10) were increased in normal mice fed high dose B. infantis. Furthermore, flow cytometry assay showed B. infantis increased the numbers of CD4+Foxp3+ Tregs and Th17 cells in MLNs. Colitis was successfully induced by TNBS in mice, characterized by colonic inflammation and aberrant Th1 and Th17 responses. Feeding high dose B. infantis for 3 wk before colitis induction decreased the inflammatory cell infiltration and goblet cell depletion and restored the intestinal epithelium. In addition, B. infantis feeding reduced Th1-related cytokines (T-bet, IL-2 and IFN-γ) and Th17-related cytokines (IL-12p40, RORγt, IL-17A, IL-21 and IL-23), and increased Treg-related molecules (Foxp3, IL-10 and TGF-β) in colitis mice.
CONCLUSION: B. infantis effectively attenuates TNBS-induced colitis by decreasing Th1 and Th17 responses and increasing Foxp3+ Treg response in the colonic mucosa.
Collapse
|
28
|
Neutrophil infiltration favors colitis-associated tumorigenesis by activating the interleukin-1 (IL-1)/IL-6 axis. Mucosal Immunol 2014; 7:1106-15. [PMID: 24424523 DOI: 10.1038/mi.2013.126] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 12/18/2013] [Indexed: 02/04/2023]
Abstract
Neutrophil infiltration is a key event in chronic intestinal inflammation and associated colorectal cancer, but how these cells support cancer development is poorly understood. In this study, using a mouse model of colitis-associated cancer (CAC), we have demonstrated that infiltrated neutrophils produce large amounts of interleukin-1 (IL)-1β that is critical for the development of CAC. Depletion of neutrophil or blockade of IL-1β activity significantly reduced mucosal damage and tumor formation. This protumorigenic function of IL-1β was mainly attributed to increased IL-6 secretion by intestine-resident mononuclear phagocytes (MPs). Furthermore, commensal flora-derived lipopolysaccharide (LPS) was identified to trigger IL-1β expression in neutrophils. Importantly, accumulation of IL-1β-expressing neutrophils was seen in lesions of patients suffering from ulceratic CAC and these infiltrated neutrophils induced IL-6 production by intestinal MPs in an IL-1β-dependent manner. Overall, these findings reveal that in CAC milieu, infiltrating neutrophils secrete IL-1β that promotes tumorigenesis by inducing IL-6 production by intestinal MPs.
Collapse
|
29
|
Fleet JC. Animal models of gastrointestinal and liver diseases. New mouse models for studying dietary prevention of colorectal cancer. Am J Physiol Gastrointest Liver Physiol 2014; 307:G249-59. [PMID: 24875098 PMCID: PMC4121636 DOI: 10.1152/ajpgi.00019.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Colorectal cancer is a heterogeneous disease that is one of the major causes of cancer death in the U.S. There is evidence that lifestyle factors like diet can modulate the course of this disease. Demonstrating the benefit and mechanism of action of dietary interventions against colon cancer will require studies in preclinical models. Many mouse models have been developed to study colon cancer but no single model can reflect all types of colon cancer in terms of molecular etiology. In addition, many models develop only low-grade cancers and are confounded by development of the disease outside of the colon. This review will discuss how mice can be used to model human colon cancer and it will describe a variety of new mouse models that develop colon-restricted cancer as well as more advanced phenotypes for studies of late-state disease.
Collapse
Affiliation(s)
- James C. Fleet
- 1Department of Nutrition Science, Purdue University, West Lafayette, Indiana; and ,2Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana
| |
Collapse
|
30
|
Abreu MT, Peek RM. Gastrointestinal malignancy and the microbiome. Gastroenterology 2014; 146:1534-1546.e3. [PMID: 24406471 PMCID: PMC3995897 DOI: 10.1053/j.gastro.2014.01.001] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/18/2013] [Accepted: 01/03/2014] [Indexed: 12/13/2022]
Abstract
Microbial species participate in the genesis of a substantial number of malignancies-in conservative estimates, at least 15% of all cancer cases are attributable to infectious agents. Little is known about the contribution of the gastrointestinal microbiome to the development of malignancies. Resident microbes can promote carcinogenesis by inducing inflammation, increasing cell proliferation, altering stem cell dynamics, and producing metabolites such as butyrate, which affect DNA integrity and immune regulation. Studies in human beings and rodent models of cancer have identified effector species and relationships among members of the microbial community in the stomach and colon that increase the risk for malignancy. Strategies to manipulate the microbiome, or the immune response to such bacteria, could be developed to prevent or treat certain gastrointestinal cancers.
Collapse
Affiliation(s)
- Maria T Abreu
- Division of Gastroenterology, Departments of Medicine and Microbiology and Immunology, University of Miami, Miami, Florida
| | - Richard M Peek
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
31
|
The complex role of inflammasomes in the pathogenesis of Inflammatory Bowel Diseases - lessons learned from experimental models. Cytokine Growth Factor Rev 2014; 25:715-30. [PMID: 24803013 DOI: 10.1016/j.cytogfr.2014.04.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 04/04/2014] [Indexed: 02/08/2023]
Abstract
Inflammasomes are a large family of multiprotein complexes recognizing pathogen-associated molecular pattern molecules (PAMPs) and damage-associated molecular patterns (DAMPs). This leads to caspase-1 activation, promoting the secretion of mature IL-1β, IL-18 and under certain conditions even induce pyroptosis. Inflammatory Bowel Diseases (IBD) is associated with alterations in microbiota composition, inappropriate immune responses and genetic predisposition associated to bacterial sensing and autophagy. Besides their acknowledged role in mounting microbial induced host responses, a crucial role in maintenance of intestinal homeostasis was revealed in inflammasome deficient mice. Further, abnormal activation of these functions appears to contribute to the pathology of intestinal inflammation including IBD and colitis-associated cancer. Herein, the current literature implicating the inflammasomes, microbiota and IBD is comprehensively reviewed.
Collapse
|
32
|
Zhang J, Dou W, Zhang E, Sun A, Ding L, Wei X, Chou G, Mani S, Wang Z. Paeoniflorin abrogates DSS-induced colitis via a TLR4-dependent pathway. Am J Physiol Gastrointest Liver Physiol 2014; 306:G27-36. [PMID: 24232001 PMCID: PMC3920084 DOI: 10.1152/ajpgi.00465.2012] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Paeonia lactiflora Pall is one of the most well-known herbs in China, Korea, and Japan for more than 1,200 years. Paeoniflorin, the major bioactive component of peony root, has recently been reported to have anticolitic activity. However, the underlying molecular mechanism is unclear. The present study was to explore the possible mechanism of paeoniflorin in attenuating dextran sulfate sodium (DSS)-induced colitis. Pre- and coadministration of paeoniflorin significantly reduced the severity of colitis and resulted in downregulation of several inflammatory parameters in the colon, including the activity of myeloperoxidase (MPO), the levels of TNF-α and IL-6, and the mRNA expression of proinflammatory mediators (MCP-1, Cox2, IFN-γ, TNF-α, IL-6, and IL-17). The decline in the activation of NF-κB p65, ERK, JNK, and p38 MAPK correlated with a decrease in mucosal Toll-like receptor 4 (TLR4) but not TLR2 or TLR5 expression. In accordance with the in vivo results, paeoniflorin downregulated TLR4 expression, blocked nuclear translocation of NF-κB p65, and reduced the production of IL-6 in LPS-stimulated mouse macrophage RAW264.7 cells. Transient transfection assay performed in LPS-stimulated human colon cancer HT-29 cells indicated that paeoniflorin inhibits NF-κB transcriptional activity in a dose-dependent manner. TLR4 knockdown and overexpression experiments demonstrated a requirement for TLR4 in paeoniflorin-mediated downregulation of inflammatory cytokines. Thus, for the first time, the present study indicates that paeoniflorin abrogates DSS-induced colitis via decreasing the expression of TLR4 and suppressing the activation of NF-κB and MAPK pathways.
Collapse
Affiliation(s)
- Jingjing Zhang
- 1200 Cailun Rd., Rm. 5301, Shanghai Univ. of TCM, Shanghai 201203, China.
| | - Wei Dou
- 1Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; ,3Departments of Medicine and Genetics, Albert Einstein College of Medicine, New York, New York; and
| | - Eryun Zhang
- 1Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; ,2Department of Pharmacognosy, China Pharmaceutical University, Nanjing, China;
| | - Aning Sun
- 1Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; ,2Department of Pharmacognosy, China Pharmaceutical University, Nanjing, China;
| | - Lili Ding
- 1Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China;
| | - Xiaohui Wei
- 1Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China;
| | - Guixin Chou
- 4Shanghai R&D Center for Standardization of Traditional Chinese Medicine, Shanghai, China
| | - Sridhar Mani
- 3Departments of Medicine and Genetics, Albert Einstein College of Medicine, New York, New York; and
| | - Zhengtao Wang
- 1Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; ,2Department of Pharmacognosy, China Pharmaceutical University, Nanjing, China; ,4Shanghai R&D Center for Standardization of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
33
|
Abstract
Crohn's disease (CD) and ulcerative colitis are two main clinically defined forms of chronic inflammatory bowel disease (IBD). Our understanding of IBD depends largely on rodent models. DSS-induced intestinal inflammation in mice and T cell transfer colitis in SCID mice are most widely used and accepted models that can recapitulate the human diseases. Here, we provide detailed protocols of these two mouse models of experimentally induced intestinal inflammation. We also discuss the protocols for the isolation and analysis of inflammatory T cell from the colon.
Collapse
Affiliation(s)
- Santhakumar Manicassamy
- Department of Medicine and Cancer Center, CN-4153, Georgia Regents University, 1410 Laney-Walker Blvd, Augusta, GA, 30912, USA,
| | | |
Collapse
|
34
|
Wang Y, Han G, Wang K, Liu G, Wang R, Xiao H, Li X, Hou C, Shen B, Guo R, Li Y, Chen G. Tumor-Derived GM-CSF Promotes Inflammatory Colon Carcinogenesis via Stimulating Epithelial Release of VEGF. Cancer Res 2013; 74:716-26. [DOI: 10.1158/0008-5472.can-13-1459] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Toll-like receptor signaling regulates cisplatin-induced mechanical allodynia in mice. Cancer Chemother Pharmacol 2013; 73:25-34. [PMID: 24162377 DOI: 10.1007/s00280-013-2304-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 09/25/2013] [Indexed: 02/06/2023]
Abstract
PURPOSE Cisplatin-treated mice develop a persistent pain state and a condition wherein otherwise innocuous tactile stimuli evoke pain behavior, e.g., tactile allodynia. The allodynia is associated with an up-regulation of activation transcription factor 3 (ATF3) in the dorsal root ganglia (DRG), a factor, which is activated by Toll-like receptors (TLRs). Accordingly, we sought to examine the role of the TLR signaling cascade on allodynia, weight, and changes in DRG ATF3 in cisplatin-treated mice. METHODS Cisplatin (2.3 mg/kg/day × 6 injections every other day) or vehicle was administered to male wild-type (WT) C57BL/6, Tlr3 (-/-), Tlr4 (-/-), Myd88 (-/-), Trif (lps2) and Myd88/Trif (lps2) mice. We examined allodynia and body weight at intervals over 30 days, when we measured DRG ATF3 by immunostaining. RESULTS (1) WT cisplatin-treated mice showed tactile allodynia from day 3 through day 30. (2) The Myd88/Trif (lps2) mice did not show allodynia. (3) In Tlr3 (-/-), Tlr4 (-/-), and Myd88 (-/-) mice, withdrawal thresholds were elevated toward normal versus WT cisplatin-treated mice, but remained decreased as compared to vehicle mice. (4) In Trif (lps2) mice, cisplatin allodynia showed a delayed onset, but persisted. (5) In Tlr3 (-/-), Tlr4 (-/-), Myd88 (-/-), and Myd88/Trif (lps2) mice, the increase in DRG ATF3 was abolished. (6) Weight loss occurred during cisplatin administration, which was exacerbated in mutant as compared to WT mice. CONCLUSIONS Cisplatin evoked a persistent allodynia and DRG ATF3 expression in WT mice, but these effects were reduced in mice with TLR signaling deficiency. TLR signaling may thus be involved in the mechanisms leading to the cisplatin polyneuropathy.
Collapse
|
36
|
Lopetuso LR, Chowdhry S, Pizarro TT. Opposing Functions of Classic and Novel IL-1 Family Members in Gut Health and Disease. Front Immunol 2013; 4:181. [PMID: 23847622 PMCID: PMC3705591 DOI: 10.3389/fimmu.2013.00181] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 06/24/2013] [Indexed: 12/17/2022] Open
Abstract
In addition to their well-established role(s) in the pathogenesis of gastrointestinal (GI)-related inflammatory disorders, including inflammatory bowel disease (IBD) and inflammation-associated colorectal cancer (CRC), emerging evidence confirms the critical involvement of the interleukin-1 (IL-1) cytokine family and their ligands in the maintenance of normal gut homeostasis. In fact, the paradigm that IBD occurs in two distinct phases is substantiated by the observation that classic IL-1 family members, such as IL-1, the IL-1 receptor antagonist (IL-1Ra), and IL-18, possess dichotomous functions depending on the phase of disease, as well as on their role in initiating vs. sustaining chronic gut inflammation. Another recently characterized IL-1 family member, IL-33, also possesses dual functions in the gut. IL-33 is upregulated in IBD and potently induces Th2 immune responses, while also amplifying Th1-mediated inflammation. Neutralization studies in acute colitis models, however, have yielded controversial results and recent reports suggest a protective role of IL-33 in epithelial regeneration and mucosal wound healing. Finally, although little is currently known regarding the potential contribution of IL-36 family members in GI inflammation/homeostasis, another IL-1 family member, IL-37, is emerging as a potent anti-inflammatory cytokine with the ability to down-regulate colitis. This new body of information has important translational implications for both the prevention and treatment of patients suffering from IBD and inflammation-associated CRC.
Collapse
Affiliation(s)
- Loris R Lopetuso
- Department of Pathology, Case Western Reserve University School of Medicine , Cleveland, OH , USA ; Internal Medicine, Gastroenterology Division, Catholic University of Rome , Rome , Italy
| | | | | |
Collapse
|
37
|
Jiang B, Mason J, Jewett A, Qian J, Ding Y, Cho WCS, Zhang X, Man YG. Cell budding from normal appearing epithelia: a predictor of colorectal cancer metastasis? Int J Biol Sci 2013; 9:119-133. [PMID: 23355797 PMCID: PMC3555151 DOI: 10.7150/ijbs.5441] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/21/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Colorectal carcinogenesis is believed to be a multi-stage process that originates with a localized adenoma, which linearly progresses to an intra-mucosal carcinoma, to an invasive lesion, and finally to metastatic cancer. This progression model is supported by tissue culture and animal model studies, but it is difficult to reconcile with several well-established observations, principally among these are that up to 25% of early stage (Stage I/II), node-negative colorectal cancer (CRC) develop distant metastasis, and that circulating CRC cells are undetectable in peripheral blood samples of up to 50% of patients with confirmed metastasis, but more than 30% of patients with no detectable metastasis exhibit such cells. The mechanism responsible for this diverse behavior is unknown, and there are no effective means to identify patients with pending, or who are at high risk for, developing metastatic CRC. NOVEL FINDINGS Our previous studies of human breast and prostate cancer have shown that cancer invasion arises from the convergence of a tissue injury, the innate immune response to that injury, and the presence of tumor stem cells within tumor capsules at the site of the injury. Focal degeneration of a capsule due to age or disease attracts lymphocyte infiltration that degrades the degenerating capsules resulting in the formation of a focal disruption in the capsule, which selectively favors proliferating or "budding" of the underlying tumor stem cells. Our recent studies suggest that lymphocyte infiltration also triggers metastasis by disrupting the intercellular junctions and surface adhesion molecules within the proliferating cell buds causing their dissociation. Then, lymphocytes and tumor cells are conjoined through membrane fusion to form tumor-lymphocyte chimeras (TLCs) that allows the tumor stem cell to avail itself of the lymphocyte's natural ability to migrate and breach cell barriers in order to intravasate and to travel to distant organs. Our most recent studies of human CRC have detected nearly identical focal capsule disruptions, lymphocyte infiltration, budding cells, and the formation of TLCs. Our studies have further shown that age- and type-matched node-positive and -negative CRC have a significantly different morphological and immunohistochemical profile and that the majority of lymphatic ducts with disseminated cells are located within the mucosa adjacent to morphologically normal appearing epithelial structures that express a stem cell-related marker. NEW HYPOTHESIS Based on these findings and the growth patterns of budding cells revealed by double immunohistochemistry, we further hypothesize that metastatic spread is an early event of carcinogenesis and that budding cells overlying focal capsule disruptions represent invasion- and metastasis-initiating cells that follow one of four pathways to progress: (1) to undergo extensive in situ proliferation leading to the formation of tumor nests that subsequently invade the submucosa, (2) to migrate with associated lymphocytes functioning as "seeds" to grow in new sites, (3) to migrate and intravasate into pre-existing vascular structures by forming TLCs, or (4) to intravasate into vascular structures that are generated by the budding cells themselves. We also propose that only node-positive cases harbor stem cells with the potential for multi-lineage differentiation and unique surface markers that permit intravasation.
Collapse
Affiliation(s)
- Bin Jiang
- National Medical Centre of Colorectal Disease, The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, China.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
|