1
|
Zhang Y, Chen Y, Ji H, Niu Y, He L, Wang W, Yu T, Han R, Tian Y, Liu X, Kang X, Cai H, Li Z. Dynamic m 6A Modification Landscape During the Egg Laying Process of Chickens. Int J Mol Sci 2025; 26:1677. [PMID: 40004144 PMCID: PMC11855680 DOI: 10.3390/ijms26041677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
RNA N6-methyladenosine (m6A) is one of the most common and widespread reversible epigenetic modifications of mRNAs, and m6A has been shown to play a positive role in regulating follicular development. However, the role of RNA m6A methylation in chicken ovaries and egg production has not been fully studied. In this study, we comprehensively analyzed the m6A transcriptome profiles of high- and low-yield Gushi chickens at 43 weeks of age (43 w). We found that m6A modification differed between the two groups. The m6A peak was positively correlated with the gene expression level, indicating that m6A may play an important role in regulating chicken egg production. In total, 9008 and 15,415 m6A peaks were separately identified in the two groups, including 2241 differential m6A peaks. In addition, seven candidate genes related to egg laying that were significantly enriched in the KEGG pathway related to ovary development and egg laying were identified. In summary, we constructed the first m6A modification map of ovarian tissue of Gushi chickens, and the differences in egg laying in 43 w Gushi chickens may originate from the effect of RNA methylation on the expression of egg-related genes. These findings provide new insights into the regulatory mechanisms of m6A methylation during egg production in Gushi chickens.
Collapse
Affiliation(s)
- Yushi Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Y.C.); (H.J.); (Y.N.); (L.H.); (W.W.); (T.Y.); (R.H.); (Y.T.); (X.L.); (X.K.)
| | - Yida Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Y.C.); (H.J.); (Y.N.); (L.H.); (W.W.); (T.Y.); (R.H.); (Y.T.); (X.L.); (X.K.)
| | - Haigang Ji
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Y.C.); (H.J.); (Y.N.); (L.H.); (W.W.); (T.Y.); (R.H.); (Y.T.); (X.L.); (X.K.)
| | - Yufang Niu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Y.C.); (H.J.); (Y.N.); (L.H.); (W.W.); (T.Y.); (R.H.); (Y.T.); (X.L.); (X.K.)
| | - Liyang He
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Y.C.); (H.J.); (Y.N.); (L.H.); (W.W.); (T.Y.); (R.H.); (Y.T.); (X.L.); (X.K.)
| | - Wentao Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Y.C.); (H.J.); (Y.N.); (L.H.); (W.W.); (T.Y.); (R.H.); (Y.T.); (X.L.); (X.K.)
| | - Tong Yu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Y.C.); (H.J.); (Y.N.); (L.H.); (W.W.); (T.Y.); (R.H.); (Y.T.); (X.L.); (X.K.)
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Y.C.); (H.J.); (Y.N.); (L.H.); (W.W.); (T.Y.); (R.H.); (Y.T.); (X.L.); (X.K.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Y.C.); (H.J.); (Y.N.); (L.H.); (W.W.); (T.Y.); (R.H.); (Y.T.); (X.L.); (X.K.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Y.C.); (H.J.); (Y.N.); (L.H.); (W.W.); (T.Y.); (R.H.); (Y.T.); (X.L.); (X.K.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Y.C.); (H.J.); (Y.N.); (L.H.); (W.W.); (T.Y.); (R.H.); (Y.T.); (X.L.); (X.K.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| | - Hanfang Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Y.C.); (H.J.); (Y.N.); (L.H.); (W.W.); (T.Y.); (R.H.); (Y.T.); (X.L.); (X.K.)
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Y.C.); (H.J.); (Y.N.); (L.H.); (W.W.); (T.Y.); (R.H.); (Y.T.); (X.L.); (X.K.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
2
|
Menon V, Slavinsky M, Hermine O, Ghaffari S. Mitochondrial regulation of erythropoiesis in homeostasis and disease. Br J Haematol 2024; 205:429-439. [PMID: 38946206 PMCID: PMC11619715 DOI: 10.1111/bjh.19600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
Erythroid cells undergo a highly complex maturation process, resulting in dynamic changes that generate red blood cells (RBCs) highly rich in haemoglobin. The end stages of the erythroid cell maturation process primarily include chromatin condensation and nuclear polarization, followed by nuclear expulsion called enucleation and clearance of mitochondria and other organelles to finally generate mature RBCs. While healthy RBCs are devoid of mitochondria, recent evidence suggests that mitochondria are actively implicated in the processes of erythroid cell maturation, erythroblast enucleation and RBC production. However, the extent of mitochondrial participation that occurs during these ultimate steps is not completely understood. This is specifically important since abnormal RBC retention of mitochondria or mitochondrial DNA contributes to the pathophysiology of sickle cell and other disorders. Here we review some of the key findings so far that elucidate the importance of this process in various aspects of erythroid maturation and RBC production under homeostasis and disease conditions.
Collapse
Affiliation(s)
- Vijay Menon
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Mary Slavinsky
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Olivier Hermine
- Department Hematology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, University Paris Descartes
- INSERM U1163 and CNRS 8254, Imagine Institute, Université Sorbonne Paris Cité, Paris, France
| | - Saghi Ghaffari
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
3
|
Jing Q, Zhou C, Zhang J, Zhang P, Wu Y, Zhou J, Tong X, Li Y, Du J, Wang Y. Role of reactive oxygen species in myelodysplastic syndromes. Cell Mol Biol Lett 2024; 29:53. [PMID: 38616283 PMCID: PMC11017617 DOI: 10.1186/s11658-024-00570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
Reactive oxygen species (ROS) serve as typical metabolic byproducts of aerobic life and play a pivotal role in redox reactions and signal transduction pathways. Contingent upon their concentration, ROS production not only initiates or stimulates tumorigenesis but also causes oxidative stress (OS) and triggers cellular apoptosis. Mounting literature supports the view that ROS are closely interwoven with the pathogenesis of a cluster of diseases, particularly those involving cell proliferation and differentiation, such as myelodysplastic syndromes (MDS) and chronic/acute myeloid leukemia (CML/AML). OS caused by excessive ROS at physiological levels is likely to affect the functions of hematopoietic stem cells, such as cell growth and self-renewal, which may contribute to defective hematopoiesis. We review herein the eminent role of ROS in the hematological niche and their profound influence on the progress of MDS. We also highlight that targeting ROS is a practical and reliable tactic for MDS therapy.
Collapse
Affiliation(s)
- Qiangan Jing
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- HEALTH BioMed Research & Development Center, Health BioMed Co., Ltd, Ningbo, 315803, Zhejiang, China
| | - Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Junyu Zhang
- Department of Hematology, Lishui Central Hospital, Lishui, 323000, Zhejiang, China
| | - Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Junyu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Xiangmin Tong
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
4
|
Pratt HG, Ma L, Dziadowicz SA, Ott S, Whalley T, Szomolay B, Eubank TD, Hu G, Boone BA. Analysis of single nuclear chromatin accessibility reveals unique myeloid populations in human pancreatic ductal adenocarcinoma. Clin Transl Med 2024; 14:e1595. [PMID: 38426634 PMCID: PMC10905544 DOI: 10.1002/ctm2.1595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND A better understanding of the pancreatic ductal adenocarcinoma (PDAC) immune microenvironment is critical to developing new treatments and improving outcomes. Myeloid cells are of particular importance for PDAC progression; however, the presence of heterogenous subsets with different ontogeny and impact, along with some fluidity between them, (infiltrating monocytes vs. tissue-resident macrophages; M1 vs. M2) makes characterisation of myeloid populations challenging. Recent advances in single cell sequencing technology provide tools for characterisation of immune cell infiltrates, and open chromatin provides source and function data for myeloid cells to assist in more comprehensive characterisation. Thus, we explore single nuclear assay for transposase accessible chromatin (ATAC) sequencing (snATAC-Seq), a method to analyse open gene promoters and transcription factor binding, as an important means for discerning the myeloid composition in human PDAC tumours. METHODS Frozen pancreatic tissues (benign or PDAC) were prepared for snATAC-Seq using 10× Chromium technology. Signac was used for preliminary analysis, clustering and differentially accessible chromatin region identification. The genes annotated in promoter regions were used for Gene Ontology (GO) enrichment and cell type annotation. Gene signatures were used for survival analysis with The Cancer Genome Atlas (TCGA)-pancreatic adenocarcinoma (PAAD) dataset. RESULTS Myeloid cell transcription factor activities were higher in tumour than benign pancreatic samples, enabling us to further stratify tumour myeloid populations. Subcluster analysis revealed eight distinct myeloid populations. GO enrichment demonstrated unique functions for myeloid populations, including interleukin-1b signalling (recruited monocytes) and intracellular protein transport (dendritic cells). The identified gene signature for dendritic cells influenced survival (hazard ratio = .63, p = .03) in the TCGA-PAAD dataset, which was unique to PDAC. CONCLUSIONS These data suggest snATAC-Seq as a method for analysis of frozen human pancreatic tissues to distinguish myeloid populations. An improved understanding of myeloid cell heterogeneity and function is important for developing new treatment targets in PDAC.
Collapse
Affiliation(s)
- Hillary G. Pratt
- Cancer Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
- WVU Cancer InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Li Ma
- Department of MicrobiologyImmunology and Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Sebastian A. Dziadowicz
- Department of MicrobiologyImmunology and Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Sascha Ott
- Warwick Medical SchoolUniversity of WarwickCoventryUK
| | | | - Barbara Szomolay
- Division of Infection and Immunity & Systems Immunity Research InstituteCardiff UniversityCardiffUK
| | - Timothy D. Eubank
- Cancer Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
- WVU Cancer InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
- Department of MicrobiologyImmunology and Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
- In Vivo Multifunctional Magnetic Resonance CenterWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Gangqing Hu
- WVU Cancer InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
- Department of MicrobiologyImmunology and Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Brian A. Boone
- Cancer Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
- WVU Cancer InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
- Department of MicrobiologyImmunology and Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
- Department of SurgeryWest Virginia UniversityMorgantownWest VirginiaUSA
| |
Collapse
|
5
|
Liang R, Lin M, Menon V, Qiu J, Menon A, Breda L, Arif T, Rivella S, Ghaffari S. Elevated CDKN1A (P21) mediates β-thalassemia erythroid apoptosis, but its loss does not improve β-thalassemic erythropoiesis. Blood Adv 2023; 7:6873-6885. [PMID: 37672319 PMCID: PMC10685172 DOI: 10.1182/bloodadvances.2022007655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
β-thalassemias are common hemoglobinopathies due to mutations in the β-globin gene that lead to hemolytic anemias. Premature death of β-thalassemic erythroid precursors results in ineffective erythroid maturation, increased production of erythropoietin (EPO), expansion of erythroid progenitor compartment, extramedullary erythropoiesis, and splenomegaly. However, the molecular mechanism of erythroid apoptosis in β-thalassemia is not well understood. Using a mouse model of β-thalassemia (Hbbth3/+), we show that dysregulated expression of the FOXO3 transcription factor is implicated in β-thalassemia erythroid apoptosis. In Foxo3-/-/Hbbth3/+ mice, erythroid apoptosis is significantly reduced, whereas erythroid cell maturation, and red blood cell and hemoglobin production are substantially improved even with elevated reactive oxygen species in double-mutant erythroblasts. However, persistence of elevated reticulocytes and splenomegaly suggests that ineffective erythropoiesis is not resolved in Foxo3-/-/Hbbth3/+. We found the cell cycle inhibitor Cdkn1a (cyclin-dependent kinase inhibitor p21), a FOXO3 target gene, is markedly upregulated in both mouse and patient-derived β-thalassemic erythroid precursors. Double-mutant p21/Hbbth3/+ mice exhibited embryonic lethality with only a fraction of mice surviving to weaning. Notably, studies in adult mice displayed greatly reduced apoptosis and circulating Epo in erythroid compartments of surviving p21-/-/Hbbth3/+ mice relative to Hbbth3/+ mice, whereas ineffective erythroid cell maturation, extramedullary erythropoiesis, and splenomegaly were not modified. These combined results suggest that mechanisms that control β-thalassemic erythroid cell survival and differentiation are uncoupled from ineffective erythropoiesis and involve a molecular network including FOXO3 and P21. Overall, these studies provide a new framework for investigating ineffective erythropoiesis in β-thalassemia.
Collapse
Affiliation(s)
- Raymond Liang
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
- Developmental and Stem Cell Biology Multidisciplinary Training, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Miao Lin
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vijay Menon
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jiajing Qiu
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anagha Menon
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
- Developmental and Stem Cell Biology Multidisciplinary Training, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Laura Breda
- Division of Hematology, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Tasleem Arif
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Stefano Rivella
- Division of Hematology, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Saghi Ghaffari
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
- Developmental and Stem Cell Biology Multidisciplinary Training, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
6
|
de Paula CP, de Oliveira da Silva JPM, Romanello KS, Bernardo VS, Torres FF, da Silva DGH, da Cunha AF. Peroxiredoxins in erythrocytes: far beyond the antioxidant role. J Mol Med (Berl) 2023; 101:1335-1353. [PMID: 37728644 DOI: 10.1007/s00109-023-02368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
The red blood cells (RBCs) are essential to transport oxygen (O2) and nutrients throughout the human body. Changes in the structure or functioning of the erythrocytes can lead to several deficiencies, such as hemolytic anemias, in which an increase in reactive oxidative species generation is involved in the pathophysiological process, playing a significant role in the severity of several clinical manifestations. There are important lines of defense against the damage caused by oxidizing molecules. Among the antioxidant molecules, the enzyme peroxiredoxin (Prx) has the higher decomposition power of hydrogen peroxide, especially in RBCs, standing out because of its abundance. This review aimed to present the recent findings that broke some paradigms regarding the three isoforms of Prxs found in RBC (Prx1, Prx2, and Prx6), showing that in addition to their antioxidant activity, these enzymes may have supplementary roles in transducing peroxide signals, as molecular chaperones, protecting from membrane damage, and maintenance of iron homeostasis, thus contributing to the overall survival of human RBCs, roles that seen to be disrupted in hemolytic anemia conditions.
Collapse
Affiliation(s)
- Carla Peres de Paula
- Genetics and Evolution Department, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil.
- Biotechnology Graduate Program, Exact and Technology Sciences Center, Federal University of São Carlos, São Carlos, Brazil.
| | - João Pedro Maia de Oliveira da Silva
- Genetics and Evolution Department, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil
- Evolutionary Genetics and Molecular Biology Graduate Program, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil
| | - Karen Simone Romanello
- Genetics and Evolution Department, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil
- Evolutionary Genetics and Molecular Biology Graduate Program, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil
| | | | | | - Danilo Grünig Humberto da Silva
- Department of Biology, Paulista State University, São Paulo, Brazil
- Federal University of Mato Grosso do Sul, Campus de Três Lagoas, Três Lagoas, Mato Grosso do Sul, Brazil
| | - Anderson Ferreira da Cunha
- Genetics and Evolution Department, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil.
| |
Collapse
|
7
|
Yang H, Chen Y, Zeng M, Wu H, Zou X, Fang T, Zhai L, Liang H, Luo H, Tian G, Liu Q, Tang H. Long non-coding RNA LINC01480 is activated by Foxo3a and promotes hydroquinone-induced TK6 cell apoptosis by inhibiting the PI3K/AKT pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114786. [PMID: 36934544 DOI: 10.1016/j.ecoenv.2023.114786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been shown to play a critical role in the damage caused to the body by environmental exogenous chemicals; however, few studies have explored their effects during exposure to benzene and its metabolite, hydroquinone (HQ). An emerging lncRNA, LINC01480, was found to be associated with the immune microenvironment of some cancers, but its specific function remains unknown. Therefore, this study aimed to investigate the role of LINC01480 in HQ-induced apoptosis. The biological function of LINC01480 was investigated through gain-of-function and loss-of-function experiments. Mechanically, nuclear-cytoplasmic fractionation experiment, chromatin immunoprecipitation (ChIP), dual-luciferase reporter assay, and rescue experiments were performed. In this study, when TK6 cells were treated with HQ (0, 5, 10, and 20 μM) for 12, 24, 48, and 72 h, the expression of LINC01480 was increased in a dose-dependent manner. Meanwhile, the phosphorylation levels of PI3K and AKT decreased, and apoptosis increased. As compared to the control group, HQ-induced apoptosis was significantly reduced, and the relative survival rate of TK6 cells increased after silencing LINC01480, while overexpression of LINC01480 further sensitized TK6 cells to HQ-induced apoptotic cell death. LINC01480 negatively regulated the PI3K/AKT pathway in TK6 cells, and the apoptosis-inhibiting effect of LINC01480 silencing was reversed after inhibition of the PI3K/AKT pathway. In addition, ChIP and the dual-luciferase reporter assays showed that the transcription factor Foxo3a promoted LINC01480 transcription by directly binding to the promoter regions - 149 to - 138 of LINC01480. Moreover, short-term HQ exposure promoted the expression of Foxo3a. From these findings, we can conclude that LINC01480 is activated by Foxo3a, and promotes HQ-induced apoptosis by inhibiting the PI3K/AKT pathway, suggesting that LINC01480 might become a possible target for therapeutic intervention of HQ-induced toxicity.
Collapse
Affiliation(s)
- Hui Yang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, Guangdong, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong, China
| | - Yuting Chen
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, Guangdong, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong, China
| | - Minjuan Zeng
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong, China
| | - Haipeng Wu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong, China
| | - Xiangli Zou
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong, China
| | - Tiantian Fang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong, China
| | - Lu Zhai
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong, China
| | - Hairong Liang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong, China
| | - Hao Luo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong, China
| | - Gaiqin Tian
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong, China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Huanwen Tang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, Guangdong, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong, China.
| |
Collapse
|
8
|
Bernardo VS, Torres FF, da Silva DGH. FoxO3 and oxidative stress: a multifaceted role in cellular adaptation. J Mol Med (Berl) 2023; 101:83-99. [PMID: 36598531 DOI: 10.1007/s00109-022-02281-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
Oxidative stress is a major cause of morbidity and mortality in human health and disease. In this review, we focus on the Forkhead Box (Fox) subclass O3 (FoxO3), an extensively studied transcription factor that plays a pleiotropic role in a wide range of physiological and pathological processes by regulating multiple gene regulatory networks involved in the modulation of numerous aspects of cellular metabolism, including fuel metabolism, cell death, and stress resistance. This review will also focus on regulatory mechanisms of FoxO3 expression and activity, such as crucial post-translational modifications and non-coding RNAs. Moreover, this work discusses and evidences some pathways to how this transcription factor and reactive oxygen species regulate each other, which may lead to the pathogenesis of various types of diseases. Therefore, in addition to being a promising therapeutic target, the FoxO3-regulated signaling pathways can also be used as reliable diagnostic and prognostic biomarkers and indicators for drug responsiveness.
Collapse
Affiliation(s)
| | | | - Danilo Grünig Humberto da Silva
- Department of Biology, Universidade Estadual Paulista (UNESP), São Paulo, Brazil.
- Campus de Três Lagoas, Universidade Federal de Mato Grosso Do Sul (CPTL/UFMS), Avenida Ranulpho Marques Leal, 3484, Três Lagoas, Mato Grosso Do Sul, Distrito Industrial-Post code 79613-000, Brazil.
| |
Collapse
|
9
|
Potential Cytoprotective and Regulatory Effects of Ergothioneine on Gene Expression of Proteins Involved in Erythroid Adaptation Mechanisms and Redox Pathways in K562 Cells. Genes (Basel) 2022; 13:genes13122368. [PMID: 36553634 PMCID: PMC9778224 DOI: 10.3390/genes13122368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
This study aimed to establish the importance of ergothioneine (ERT) in the erythroid adaptation mechanisms by appraising the expression levels of redox-related genes associated with the PI3K/AKT/FoxO3 and Nrf2-ARE pathways using K562 cells induced to erythroid differentiation and H2O2-oxidative stress. Cell viability and gene expression were evaluated. Two concentrations of ERT were assessed, 1 nM (C1) and 100 µM (C2), with and without stress induction (100 µM H2O2). Assessments were made in three periods of the cellular differentiation process (D0, D2, and D4). The C1 treatment promoted the induction of FOXO3 (D0 and 2), PSMB5, and 6 expressions (D4); C1 + H2O2 treatment showed the highest levels of NRF2 transcripts, KEAP1 (D0), YWHAQ (D2 and 4), PSMB5 (D2) and PSMB6 (D4); and C2 + H2O2 (D2) an increase in FOXO3 and MST1 expression, with a decrease of YWHAQ and NRF2 was observed. in C2 + H2O2 (D2) an increase in FOXO3 and MST1, with a decrease in YWHAQ and NRF2 was observed All ERT treatments increased gamma-globin expression. Statistical multivariate analyzes highlighted that the Nrf2-ARE pathway presented a greater contribution in the production of PRDX1, SOD1, CAT, and PSBM5 mRNAs, whereas the PI3K/AKT/FoxO3 pathway was associated with the PRDX2 and TRX transcripts. In conclusion, ERT presented a cytoprotective action through Nrf2 and FoxO3, with the latter seeming to contribute to erythroid proliferation/differentiation.
Collapse
|
10
|
Torres FF, Bernardo VS, de Paula CP, da Silva JPMDO, de Almeida EA, da Cunha AF, da Silva DGH. Influence of Melatonin Treatment on Cellular Mechanisms of Redox Adaptation in K562 Erythroleukemic Cells. Genes (Basel) 2022; 13:genes13122337. [PMID: 36553603 PMCID: PMC9778059 DOI: 10.3390/genes13122337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Melatonin (MEL) presents well-documented pleiotropic actions against oxidative stress (OS), acting indirectly through activation of transcription factors, e.g., FoxO3 and Nrf2. Thus, this study aimed to investigate the possible modulating effects of MEL on the redox signaling pathways PI3K/AKT/FoxO3 and Keap1/Nrf2/ARE in K562 erythroleukemic cells subjected to OS induction. For this, the viability, and transcript levels of genes involved in redox adaptation were evaluated in K562 cells in different periods of erythroid differentiation: under OS induction by hydrogen peroxide (100 µM H2O2); treated with 1 nM (C1) and 1 mM (C2) MEL; and associated or not with stress induction. We observed a restoration of physiological levels of Nrf2 in both MEL concentrations under OS. The C1 was related to enhanced expression of antioxidant and proteasome genes through the Nrf2-ARE pathway, while C2 to the induction of FOXO3 expression, suggesting an involvement with apoptotic pathway, according to BIM transcript levels. The effects of MEL administration in these cells showed a period and dose-dependent pattern against induced-OS, with direct and indirect actions through different pathways of cellular adaptation, reinforcing the importance of this indolamine in the regulation of cellular homeostasis, being a promising therapeutic alternative for diseases that present an exacerbated OS.
Collapse
Affiliation(s)
- Flaviene Felix Torres
- Department of Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Victoria Simões Bernardo
- Department of Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Carla Peres de Paula
- Department of Genetics and Evolution, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil
| | | | - Eduardo Alves de Almeida
- Department of Natural Sciences, Fundação Universidade Regional de Blumenau (FURB), Blumenau 89030-000, SC, Brazil
| | - Anderson Ferreira da Cunha
- Department of Genetics and Evolution, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil
| | - Danilo Grünig Humberto da Silva
- Campus de Três Lagoas, Universidade Federal de Mato Grosso do Sul (CPTL/UFMS), Três Lagoas 79613-000, MS, Brazil
- Correspondence:
| |
Collapse
|
11
|
Bhattacharjee R, Ghosh S, Nath A, Basu A, Biswas O, Patil CR, Kundu CN. Theragnostic strategies harnessing the self-renewal pathways of stem-like cells in the acute myeloid leukemia. Crit Rev Oncol Hematol 2022; 177:103753. [PMID: 35803452 DOI: 10.1016/j.critrevonc.2022.103753] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 06/21/2022] [Accepted: 07/02/2022] [Indexed: 02/07/2023] Open
Abstract
Acute myelogenous leukemia (AML) is a genetically heterogeneous and aggressive cancer of the Hematopoietic Stem/progenitor cells. It is distinguished by the uncontrollable clonal growth of malignant myeloid stem cells in the bone marrow, venous blood, and other body tissues. AML is the most predominant of leukemias occurring in adults (25%) and children (15-20%). The relapse after chemotherapy is a major concern in the treatment of AML. The overall 5-year survival rate in young AML patients is about 40-45% whereas in the elderly patients it is less than 10%. Leukemia stem-like cells (LSCs) having the ability to self-renew indefinitely, repopulate and persist longer in the G0/G1 phase play a crucial role in the AML relapse and refractoriness to chemotherapy. Hence, novel treatment strategies and diagnostic biomarkers targeting LSCs are being increasingly investigated. Through this review, we have explored the signaling modulations in the LSCs as the theragnostic targets. The significance of the self-renewal pathways in overcoming the treatment challenges in AML has been highlighted.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Sharad Ghosh
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Arijit Nath
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Asmita Basu
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Ojaswi Biswas
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Chandragauda R Patil
- Department of Pharmacology, DIPSAR, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Chanakya Nath Kundu
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India.
| |
Collapse
|
12
|
Montazersaheb S, Ehsani A, Fathi E, Farahzadi R. Cellular and Molecular Mechanisms Involved in Hematopoietic Stem Cell Aging as a Clinical Prospect. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2713483. [PMID: 35401928 PMCID: PMC8993567 DOI: 10.1155/2022/2713483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
There is a hot topic in stem cell research to investigate the process of hematopoietic stem cell (HSC) aging characterized by decreased self-renewal ability, myeloid-biased differentiation, impaired homing, and other abnormalities related to hematopoietic repair function. It is of crucial importance that HSCs preserve self-renewal and differentiation ability to maintain hematopoiesis under homeostatic states over time. Although HSC numbers increase with age in both mice and humans, this cannot compensate for functional defects of aged HSCs. The underlying mechanisms regarding HSC aging have been studied from various perspectives, but the exact molecular events remain unclear. Several cell-intrinsic and cell-extrinsic factors contribute to HSC aging including DNA damage responses, reactive oxygen species (ROS), altered epigenetic profiling, polarity, metabolic alterations, impaired autophagy, Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, nuclear factor- (NF-) κB pathway, mTOR pathway, transforming growth factor-beta (TGF-β) pathway, and wingless-related integration site (Wnt) pathway. To determine how deficient HSCs develop during aging, we provide an overview of different hallmarks, age-related signaling pathways, and epigenetic modifications in young and aged HSCs. Knowing how such changes occur and progress will help researchers to develop medications and promote the quality of life for the elderly and possibly alleviate age-associated hematopoietic disorders. The present review is aimed at discussing the latest advancements of HSC aging and the role of HSC-intrinsic factors and related events of a bone marrow niche during HSC aging.
Collapse
Affiliation(s)
- Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ehsani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Identification of let-7f and miR-338 as plasma-based biomarkers for sporadic amyotrophic lateral sclerosis using meta-analysis and empirical validation. Sci Rep 2022; 12:1373. [PMID: 35082326 PMCID: PMC8791978 DOI: 10.1038/s41598-022-05067-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022] Open
Abstract
AbstractAmyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease that in most cases occurs sporadic (sALS). The disease is not curable, and its pathogenesis mechanisms are not well understood yet. Given the intricacy of underlying molecular interactions and heterogeneity of ALS, the discovery of molecules contributing to disease onset and progression will open a new avenue for advancement in early diagnosis and therapeutic intervention. Here we conducted a meta-analysis of 12 circulating miRNA profiling studies using the robust rank aggregation (RRA) method, followed by enrichment analysis and experimental verification. We identified miR-451a and let-7f-5p as meta-signature miRNAs whose targets are involved in critical pathogenic pathways underlying ALS, including ‘FoxO signaling pathway’, ‘MAPK signaling pathway’, and ‘apoptosis’. A systematic review of 7 circulating gene profiling studies elucidated that 241 genes up-regulated in sALS circulation with concomitant being targets of the meta-signature miRNAs. Protein–protein interaction (PPI) network analysis of the candidate targets using MCODE algorithm revealed the main subcluster is involved in multiple cascades eventually leads apoptosis, including ‘positive regulation of neuron apoptosis. Besides, we validated the meta-analysis results using RT-qPCR. Indeed, relative expression analysis verified let-7f-5p and miR-338-3p as significantly down-regulated and up-regulated biomarkers in the plasma of sALS patients, respectively. Receiver operating characteristic (ROC) analysis also highlighted the let-7f-5p and miR-338-3p potential as robustness plasma biomarkers for diagnosis and potential therapeutic targets of sALS disease.
Collapse
|
14
|
Uslu M, Kocabaş F. Development of a novel and synthetic HematoMiR technology that broadly modulates quiescence of stem cells and enhances HSC expansion. Cell Mol Life Sci 2021; 79:68. [PMID: 34971431 PMCID: PMC11072120 DOI: 10.1007/s00018-021-04031-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022]
Abstract
Hematopoietic stem cell (HSCs) transplantation is the primary therapeutic modality used to treat hematopoietic disorders. It centers on the capability of a small quantity of HSCs to repopulate whole blood lineages. Along with limited availability of suitable donors, the need for sufficient number of donor HSCs is still challenging in clinical relevance. This has been addressed by ex vivo HSC expansion albeit with partial success, and thus development of an alternative strategy that could improve HSC expansion is required. To that end, we aimed to build HematoMiR, an oligo-based technology that broadly targets HSC quiescence factors. Here, we show that HematoMiRs and their combinations targeting over 50 factors involved in HSC quiescence could induce robust ex vivo murine and human HSC expansion. In particular, HematoMiR-5 treatment enhanced cell cycle through down-regulation of negative cell cycle regulators in HSCs. HematoMiR-5 treated HSPCs had reduced DNA damage during the course of ex vivo expansion. Moreover, HematoMiR-5 treatment led to sustained HSC self-renewal ability and a low apoptosis rate. In addition, HematoMiR-5 expanded HSCs demonstrated successful engraftment and repopulation capacity in the recipient animals. Furthermore, combinatorial treatments of HematoMiR-2 and 5 allowed vigorous ex vivo HSC expansion. These findings demonstrate that novel and synthetic HematoMiR technology is feasible for HSC ex vivo expansion through the sequence-dependent modulation of numerous HSC quiescence modulators.
Collapse
Affiliation(s)
- Merve Uslu
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
- Graduate School of Natural and Applied Sciences, Yeditepe University, Istanbul, Turkey
| | - Fatih Kocabaş
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
- Graduate School of Natural and Applied Sciences, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
15
|
Li Y, Ren L, Fu H, Yang B, Tian J, Li Q, Liu Z, Liu S. Crosstalk between dopamine and insulin signaling in growth control of the oyster. Gen Comp Endocrinol 2021; 313:113895. [PMID: 34480943 DOI: 10.1016/j.ygcen.2021.113895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/20/2021] [Accepted: 08/29/2021] [Indexed: 12/26/2022]
Abstract
Neuroendocrine hormones such as dopamine and insulin/insulin-like peptides play indispensable roles in growth regulation of animals, while the interplay between dopamine and insulin signaling pathways remains largely unknown in invertebrates. In the present study, we showed that tyrosine hydroxylase (TH), the rate-limiting enzyme of dopamine synthesis, was highly expressed in all tissues of the fast-growing oysters, and gradually increased with the development, which indicated the potential role of dopamine in growth regulation. Incubated with dopamine hydrochloride and insulin-like peptide recombinant proteins in vitro induced the expression of TH, suggesting a mutual regulatory relationship between insulin and dopamine signaling. Fasting and re-feeding experiments confirmed the role of TH in food intake regulation, also provide a clue about the potential regulatory relationship between the FoxO and TH. Further luciferase assay experiment confirmed that FoxO was involved in transcriptional regulation of TH gene through binding to its specific promoter region. This work provided insights into the crosstalk between dopamine and insulin signaling in growth control of mollusks.
Collapse
Affiliation(s)
- Yongjing Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Liting Ren
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Huiru Fu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Ben Yang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Jing Tian
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY 13244, USA
| | - Shikai Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
16
|
Li L, Shi X, Shi Y, Wang Z. The Signaling Pathways Involved in Ovarian Follicle Development. Front Physiol 2021; 12:730196. [PMID: 34646156 PMCID: PMC8504451 DOI: 10.3389/fphys.2021.730196] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/31/2021] [Indexed: 01/13/2023] Open
Abstract
The follicle is the functional unit of the ovary, which is composed of three types of cells: oocytes, granulosa cells, and theca cells. Ovarian follicle development and the subsequent ovulation process are coordinated by highly complex interplay between endocrine, paracrine, and autocrine signals, which coordinate steroidogenesis and gametogenesis. Follicle development is regulated mainly by three organs, the hypothalamus, anterior pituitary, and gonad, which make up the hypothalamic-pituitary-gonadal axis. Steroid hormones and their receptors play pivotal roles in follicle development and participate in a series of classical signaling pathways. In this review, we summarize and compare the role of classical signaling pathways, such as the WNT, insulin, Notch, and Hedgehog pathways, in ovarian follicle development and the underlying regulatory mechanism. We have also found that these four signaling pathways all interact with FOXO3, a transcription factor that is widely known to be under control of the PI3K/AKT signaling pathway and has been implicated as a major signaling pathway in the regulation of dormancy and initial follicular activation in the ovary. Although some of these interactions with FOXO3 have not been verified in ovarian follicle cells, there is a high possibility that FOXO3 plays a core role in follicular development and is regulated by classical signaling pathways. In this review, we present these signaling pathways from a comprehensive perspective to obtain a better understanding of the follicular development process.
Collapse
Affiliation(s)
- Liyuan Li
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xiaojin Shi
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yun Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhao Wang
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
17
|
Wu F, Chen Z, Liu J, Hou Y. The Akt-mTOR network at the interface of hematopoietic stem cell homeostasis. Exp Hematol 2021; 103:15-23. [PMID: 34464661 DOI: 10.1016/j.exphem.2021.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSCs) are immature blood cells that exhibit multilineage differentiation capacity. Homeostasis is critical for HSC potential and lifelong hematopoiesis, and HSC homeostasis is tightly governed by both intrinsic molecular networks and microenvironmental signals. The evolutionarily conserved serine/threonine protein kinase B (PKB, also referred to as Akt)-mammalian target of rapamycin (mTOR) pathway is universal to nearly all multicellular organisms and plays an integral role in most cellular processes. Emerging evidence has revealed a central role of the Akt-mTOR network in HSC homeostasis, because it responds to multiple intracellular and extracellular signals and regulates various downstream targets, eventually affecting several cellular processes, including the cell cycle, mitochondrial metabolism, and protein synthesis. Dysregulated Akt-mTOR signaling greatly affects HSC self-renewal, maintenance, differentiation, survival, autophagy, and aging, as well as transformation of HSCs to leukemia stem cells. Here, we review recent works and provide an advanced understanding of how the Akt-mTOR network regulates HSC homeostasis, thus offering insights into future clinical applications.
Collapse
Affiliation(s)
- Feng Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Zhe Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China.
| | - Yu Hou
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
18
|
Dias IB, Bouma HR, Henning RH. Unraveling the Big Sleep: Molecular Aspects of Stem Cell Dormancy and Hibernation. Front Physiol 2021; 12:624950. [PMID: 33867999 PMCID: PMC8047423 DOI: 10.3389/fphys.2021.624950] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Tissue-resident stem cells may enter a dormant state, also known as quiescence, which allows them to withstand metabolic stress and unfavorable conditions. Similarly, hibernating mammals can also enter a state of dormancy used to evade hostile circumstances, such as food shortage and low ambient temperatures. In hibernation, the dormant state of the individual and its cells is commonly known as torpor, and is characterized by metabolic suppression in individual cells. Given that both conditions represent cell survival strategies, we here compare the molecular aspects of cellular quiescence, particularly of well-studied hematopoietic stem cells, and torpor at the cellular level. Critical processes of dormancy are reviewed, including the suppression of the cell cycle, changes in metabolic characteristics, and cellular mechanisms of dealing with damage. Key factors shared by hematopoietic stem cell quiescence and torpor include a reversible activation of factors inhibiting the cell cycle, a shift in metabolism from glucose to fatty acid oxidation, downregulation of mitochondrial activity, key changes in hypoxia-inducible factor one alpha (HIF-1α), mTOR, reversible protein phosphorylation and autophagy, and increased radiation resistance. This similarity is remarkable in view of the difference in cell populations, as stem cell quiescence regards proliferating cells, while torpor mainly involves terminally differentiated cells. A future perspective is provided how to advance our understanding of the crucial pathways that allow stem cells and hibernating animals to engage in their 'great slumbers.'
Collapse
Affiliation(s)
- Itamar B. Dias
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hjalmar R. Bouma
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
19
|
Oxidative Stress and ROS-Mediated Signaling in Leukemia: Novel Promising Perspectives to Eradicate Chemoresistant Cells in Myeloid Leukemia. Int J Mol Sci 2021; 22:ijms22052470. [PMID: 33671113 PMCID: PMC7957553 DOI: 10.3390/ijms22052470] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/04/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Myeloid leukemic cells are intrinsically under oxidative stress due to impaired reactive oxygen species (ROS) homeostasis, a common signature of several hematological malignancies. The present review focuses on the molecular mechanisms of aberrant ROS production in myeloid leukemia cells as well as on the redox-dependent signaling pathways involved in the leukemogenic process. Finally, the relevance of new chemotherapy options that specifically exert their pharmacological activity by altering the cellular redox imbalance will be discussed as an effective strategy to eradicate chemoresistant cells.
Collapse
|
20
|
Network Pharmacology-Based Investigation of the System-Level Molecular Mechanisms of the Hematopoietic Activity of Samul-Tang, a Traditional Korean Herbal Formula. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9048089. [PMID: 32104198 PMCID: PMC7040423 DOI: 10.1155/2020/9048089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022]
Abstract
Hematopoiesis is a dynamic process of the continuous production of diverse blood cell types to meet the body's physiological demands and involves complex regulation of multiple cellular mechanisms in hematopoietic stem cells, including proliferation, self-renewal, differentiation, and apoptosis. Disruption of the hematopoietic system is known to cause various hematological disorders such as myelosuppression. There is growing evidence on the beneficial effects of herbal medicines on hematopoiesis; however, their mechanism of action remains unclear. In this study, we conducted a network pharmacological-based investigation of the system-level mechanisms underlying the hematopoietic activity of Samul-tang, which is an herbal formula consisting of four herbal medicines, including Angelicae Gigantis Radix, Rehmanniae Radix Preparata, Paeoniae Radix Alba, and Cnidii Rhizoma. In silico analysis of the absorption-distribution-metabolism-excretion model identified 16 active phytochemical compounds contained in Samul-tang that may target 158 genes/proteins associated with myelosuppression to exert pharmacological effects. Functional enrichment analysis suggested that the targets of Samul-tang were significantly enriched in multiple pathways closely related to the hematopoiesis and myelosuppression development, including the PI3K-Akt, MAPK, IL-17, TNF, FoxO, HIF-1, NF-kappa B, and p53 signaling pathways. Our study provides novel evidence regarding the system-level mechanisms underlying the hematopoiesis-promoting effect of herbal medicines for hematological disorder treatment.
Collapse
|
21
|
Transcriptomic and Epigenomic Profiling of Histone Deacetylase Inhibitor Treatment Reveals Distinct Gene Regulation Profiles Leading to Impaired Neutrophil Development. Hemasphere 2019; 3:e270. [PMID: 31723844 PMCID: PMC6745919 DOI: 10.1097/hs9.0000000000000270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 01/08/2023] Open
Abstract
Supplemental Digital Content is available in the text The clinical use of histone deacetylase inhibitors (HDACi) for the treatment of bone marrow failure and hematopoietic malignancies has increased dramatically over the last decades. Nonetheless, their effects on normal myelopoiesis remain poorly evaluated. Here, we treated cord blood derived CD34+ progenitor cells with two chemically distinct HDACi inhibitors MS-275 or SAHA and analyzed their effects on the transcriptome (RNA-seq), epigenome (H3K27ac ChIP-seq) and functional and morphological characteristics during neutrophil development. MS-275 (entinostat) selectively inhibits class I HDACs, with a preference for HDAC1, while SAHA (vorinostat) is a non-selective class I/II HDACi. Treatment with individual HDACi resulted in both overlapping and distinct effects on both transcriptome and epigenome, whereas functional effects were relatively similar. Both HDACi resulted in reduced expansion and increased apoptosis in neutrophil progenitor cells. Morphologically, HDACi disrupted normal neutrophil differentiation what was illustrated by decreased percentages of mature neutrophils. In addition, while SAHA treatment clearly showed a block at the promyelocytic stage, MS-275 treatment was characterized by dysplastic features and skewing towards the monocytic lineage. These effects could be mimicked using shRNA-mediated knockdown of HDAC1. Taken together, our data provide novel insights into the effects of HDAC inhibition on normal hematopoietic cells during neutrophil differentiation. These findings should be taken into account when considering the clinical use of MS-275 and SAHA, and can be potentially utilized to tailor more specific, hematopoietic-directed HDACi in the future.
Collapse
|
22
|
GCN2 suppression attenuates cerebral ischemia in mice by reducing apoptosis and endoplasmic reticulum (ER) stress through the blockage of FoxO3a-regulated ROS production. Biochem Biophys Res Commun 2019; 516:285-292. [PMID: 31255283 DOI: 10.1016/j.bbrc.2019.05.181] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 12/17/2022]
Abstract
Ischemic stroke is one of the leading causes of morbidity and mortality among human worldwide. Unfortunately, cerebral I/R still lacks effective therapeutic targets and strategies. In the study, we found that general control nonderepressible 2 (GCN2) expression was increased following ischemia in the ischemic penumbra in vivo and in vitro. GCN2 suppression using its significant inhibitor, GCN2iB, exhibited a protective role in cerebral I/R injury in mice, as evidenced by the improved neurological deficits and function. GCN2 inhibition with either GCN2iB or genetic knockdown led to significant reduction of pro-apoptotic protein expression, endoplasmic reticulum stress (ERS)-related protein and oxidative stress both in I/R-induced cerebral injury and oxygen-glucose deprivation and reoxygenation (OGD/R) stimulation in N2a cells. OGD/R-triggered apoptosis and ERS were significantly depended on oxidative stress in vitro. In addition, Forkhead box O 3a (FoxO3a), involved in the reactive oxygen species (ROS) production, was increased during OGD/R stimulation-regulated apoptosis and ERS, which could be abrogated by GCN2 suppression. Consistently, FoxO3a-regulated generation of ROS was markedly ameliorated upon GCN2 suppression with GCN2iB. Thereby, our findings indicated that GCN2 suppression alleviated apoptosis and ERS in cerebral ischemia through reducing FoxO3a-dependent ROS production, illustrating that GCN2 could be a promising target for the therapeutic interventions in cerebral ischemic stroke.
Collapse
|
23
|
Mitochondria in the maintenance of hematopoietic stem cells: new perspectives and opportunities. Blood 2019; 133:1943-1952. [PMID: 30808633 DOI: 10.1182/blood-2018-10-808873] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/19/2019] [Indexed: 02/07/2023] Open
Abstract
The hematopoietic system produces new blood cells throughout life. Mature blood cells all derived from a pool of rare long-lived hematopoietic stem cells (HSCs) that are mostly quiescent but occasionally divide and self-renew to maintain the stem cell pool and to insure the continuous replenishment of blood cells. Mitochondria have recently emerged as critical not only for HSC differentiation and commitment but also for HSC homeostasis. Mitochondria are dynamic organelles that orchestrate a number of fundamental metabolic and signaling processes, producing most of the cellular energy via oxidative phosphorylation. HSCs have a relatively high amount of mitochondria that are mostly inactive. Here, we review recent advances in our understanding of the role of mitochondria in HSC homeostasis and discuss, among other topics, how mitochondrial dynamism and quality control might be implicated in HSC fate, self-renewal, and regenerative potential.
Collapse
|
24
|
Zhao K, Wang Z, Hackert T, Pitzer C, Zöller M. Tspan8 and Tspan8/CD151 knockout mice unravel the contribution of tumor and host exosomes to tumor progression. J Exp Clin Cancer Res 2018; 37:312. [PMID: 30541597 PMCID: PMC6292129 DOI: 10.1186/s13046-018-0961-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The tetraspanins Tspan8 and CD151 promote metastasis, exosomes (Exo) being suggested to be important in the crosstalk between tumor and host. The contribution of Tspan8 and CD151 to host versus tumor-derived exosome (TEX) activities being not defined, we approached the questions using 3-methylcholanthrene-induced (MCA) tumors from wt, Tspan8ko, CD151ko and Tspan8/CD151 (db)ko mice, implanted into tetraspanin-competent and deficient hosts. METHODS Tumor growth and dissemination, hematopoiesis and angiogenesis were surveyed in wild type (wt), Tspan8ko, CD151ko and dbko mice bearing tetraspanin-competent and -deficient MCA tumors. In vitro studies using tumor cells, bone marrow cells (BMC) and endothelial cells (EC) elaborated the mechanism of serum (s)Exo- and TEX-induced target modulation. RESULTS Tumors grew in autochthonous and syngeneic hosts differing in Tspan8- and/or CD151-competence. However, Tspan8ko- and/or CD151ko-tumor cell dissemination and settlement in metastatic organs was significantly reduced in the autochthonous host, and less severely in the wt-host. Impaired wt-MCA tumor dissemination in the ko-host confirmed a contribution of host- and tumor-Tspan8/-CD151 to tumor cell dissemination, delivery of sExo and TEX being severely impaired by a Tspan8ko/CD151ko. Coculturing tumor cells, BMC and EC with sExo and TEX revealed minor defects in epithelial mesenchymal transition and apoptosis resistance of ko tumors. Strongly reduced migratory and invasive capacity of Tspan8ko/CD151ko-MCA relies on distorted associations with integrins and CAM and missing Tspan8/CD151-promoted recruitment of proteases. The defects, differing between Tspan8ko- and CD151ko-MCA, were rescued by wt-TEX and, less efficiently Tspan8ko- and CD151ko-TEX. Minor defects in hematopoietic progenitor maturation were based on the missing association of hematopoietic growth factors /- receptors with CD151 and, less pronounced, Tspan8. Rescue of impaired angiogenesis in ko mice by wt-sExo and promotion of angiogenesis by TEX depended on the association of Tspan8 and CD151 with GPCR and RTK in EC and tumor cells. CONCLUSIONS Tspan8-/CD151-TEX play central roles in tumor progression. Tspan8-/CD151-sExo and TEX contribute by stimulating angiogenesis. Tspan8 and CD151 fulfill these tasks by associating with function-relevant proteins, the additive impact of Tspan8 and CD151 relying on differences in preferred associations. The distinct Tspan8 and CD151 contributions suggest a blockade of TEX-Tspan8 and -CD151 promising for therapeutic intervention.
Collapse
Affiliation(s)
- Kun Zhao
- Pancreas Section, University Hospital of Surgery, Ruprecht-Karls-University, Heidelberg, Germany
| | - Zhe Wang
- Pancreas Section, University Hospital of Surgery, Ruprecht-Karls-University, Heidelberg, Germany
- Present Address: Department of Oncology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong, China
| | - Thilo Hackert
- Pancreas Section, University Hospital of Surgery, Ruprecht-Karls-University, Heidelberg, Germany
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Institute of Pharmacology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Margot Zöller
- Pancreas Section, University Hospital of Surgery, Ruprecht-Karls-University, Heidelberg, Germany
| |
Collapse
|
25
|
Abstract
The forkhead box O3 (FOXO3, or FKHRL1) protein is a member of the FOXO subclass of transcription factors. FOXO proteins were originally identified as regulators of insulin-related genes; however, they are now established regulators of genes involved in vital biological processes, including substrate metabolism, protein turnover, cell survival, and cell death.
FOXO3 is one of the rare genes that have been consistently linked to longevity in
in vivo models. This review provides an update of the most recent research pertaining to the role of FOXO3 in (i) the regulation of protein turnover in skeletal muscle, the largest protein pool of the body, and (ii) the genetic basis of longevity. Finally, it examines (iii) the role of microRNAs in the regulation of FOXO3 and its impact on the regulation of the cell cycle.
Collapse
Affiliation(s)
- Renae J Stefanetti
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Sarah Voisin
- Institute for Health and Sport, Victoria University, Footscray, Australia
| | - Aaron Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|