1
|
Yaparla A, Reeves P, Grayfer L. Myelopoiesis of the Amphibian Xenopus laevis Is Segregated to the Bone Marrow, Away From Their Hematopoietic Peripheral Liver. Front Immunol 2020; 10:3015. [PMID: 32038608 PMCID: PMC6987381 DOI: 10.3389/fimmu.2019.03015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/09/2019] [Indexed: 01/21/2023] Open
Abstract
Across vertebrates, hematopoiesis takes place within designated tissues, wherein committed myeloid progenitors further differentiate toward cells with megakaryocyte/erythroid potential (MEP) or those with granulocyte/macrophage potential (GMP). While the liver periphery (LP) of the Xenopus laevis amphibian functions as a principal site of hematopoiesis and contains MEPs, cells with GMP potential are instead segregated to the bone marrow (BM) of this animal. Presently, using gene expression and western blot analyses of blood cell lineage-specific transcription factors, we confirmed that while the X. laevis LP hosts hematopoietic stem cells and MEPs, their BM contains GMPs. In support of our hypothesis that cells bearing GMP potential originate from the frog LP and migrate through blood circulation to the BM in response to chemical cues; we demonstrated that medium conditioned by the X. laevis BM chemoattracts LP and peripheral blood cells. Compared to LP and by examining a comprehensive panel of chemokine genes, we showed that the X. laevis BM possessed greater expression of a single chemokine, CXCL12, the recombinant form of which was chemotactic to LP and peripheral blood cells and appeared to be a major chemotactic component within BM-conditioned medium. In confirmation of the hepatic origin of the cells that give rise to these frogs' GMPs, we also demonstrated that the X. laevis BM supported the growth of their LP-derived cells.
Collapse
Affiliation(s)
- Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Phillip Reeves
- School Without Walls High School, Washington, DC, United States
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
2
|
Koubourli DV, Wendel ES, Yaparla A, Ghaul JR, Grayfer L. Immune roles of amphibian (Xenopus laevis) tadpole granulocytes during Frog Virus 3 ranavirus infections. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 72:112-118. [PMID: 28238879 DOI: 10.1016/j.dci.2017.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
Infections by Frog Virus 3 (FV3) and other ranaviruses (RVs) are contributing to the amphibian declines, while the mechanisms controlling anuran tadpole susceptibility and adult frog resistance to RVs, including the roles of polymorphonuclear granulocytes (PMNs) during anti-FV3 responses, remain largely unknown. Since amphibian kidneys represent an important FV3 target, the inability of amphibian (Xenopus laevis) tadpoles to mount effective kidney inflammatory responses to FV3 is thought to contribute to their susceptibility. Here we demonstrate that a recombinant X. laevis granulocyte colony-stimulating factor (G-CSF) generates PMNs with hallmark granulocyte morphology. Tadpole pretreatment with G-CSF prior to FV3 infection reduces animal kidney FV3 loads and extends their survival. Moreover, G-CSF-derived PMNs are resistant to FV3 infection and express high levels of TNFα in response to this virus. Notably, FV3-infected tadpoles fail to recruit G-CSFR expressing granulocytes into their kidneys, suggesting that they lack an integral inflammatory effector population at this site.
Collapse
Affiliation(s)
- Daphne V Koubourli
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Emily S Wendel
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Jonathan R Ghaul
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, USA.
| |
Collapse
|
3
|
Yaparla A, Wendel ES, Grayfer L. The unique myelopoiesis strategy of the amphibian Xenopus laevis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 63:136-143. [PMID: 27234705 DOI: 10.1016/j.dci.2016.05.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/18/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
Myeloid progenitors reside within specific hematopoietic organs and commit to progenitor lineages bearing megakaryocyte/erythrocyte (MEP) or granulocyte/macrophage potentials (GMP) within these sites. Unlike other vertebrates, the amphibian Xenopus laevis committed macrophage precursors are absent from the hematopoietic subcapsular liver and instead reside within their bone marrow. Presently, we demonstrate that while these frogs' liver-derived cells are unresponsive to recombinant forms of principal X. laevis macrophage (colony-stimulating factor-1; CSF-1) and granulocyte (CSF-3) growth factors, bone marrow cells cultured with CSF-1 and CSF-3 exhibit respectively archetypal macrophage and granulocyte morphology, gene expression and functionalities. Moreover, we demonstrate that liver, but not bone marrow cells possess erythropoietic capacities when stimulated with a X. laevis erythropoietin. Together, our findings indicate that X. laevis retain their MEP within the hematopoietic liver while sequestering their GMP to the bone marrow, thus marking a very novel myelopoietic strategy as compared to those seen in other jawed vertebrate species.
Collapse
Affiliation(s)
- Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Emily S Wendel
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, USA.
| |
Collapse
|
4
|
Gasiorek JJ, Mikhael M, Garcia-Santos D, Hui ST, Ponka P, Blank V. Thioredoxin-interacting protein regulates the differentiation of murine erythroid precursors. Exp Hematol 2015; 43:393-403.e2. [PMID: 25600403 DOI: 10.1016/j.exphem.2015.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/24/2014] [Accepted: 01/08/2015] [Indexed: 11/27/2022]
Abstract
Thioredoxin-interacting protein (TXNIP) is involved in various cellular processes including redox control, metabolism, differentiation, growth, and apoptosis. With respect to hematopoiesis, TXNIP has been shown to play roles in natural killer cells, dendritic cells, and hematopoietic stem cells. Our study investigates the role of TXNIP in erythropoiesis. We observed a rapid and significant increase of TXNIP transcript and protein levels in mouse erythroleukemia cells treated with dimethyl sulfoxide or hexamethylene bisacetamide, inducers of erythroid differentiation. The upregulation of TXNIP was not abrogated by addition of the antioxidant N-acetylcysteine. The increase of TXNIP expression was confirmed in another model of erythroid differentiation, G1E-ER cells, which undergo differentiation upon activation of the GATA1 transcription factor. In addition, we showed that TXNIP levels are induced following inhibition of p38 or c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases. We also observed an increase in iron uptake and a decrease in transferrin receptor protein upon TXNIP overexpression, suggesting a role in iron homeostasis. In vivo, flow cytometry analysis of cells from Txnip(-/-) mice revealed a new phenotype of impaired terminal erythropoiesis in the spleen, characterized by a partial block between basophilic and late basophilic/polychromatic erythroblasts. Based on our data, TXNIP emerges as a novel regulator of terminal erythroid differentiation.
Collapse
Affiliation(s)
- Jadwiga J Gasiorek
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Marc Mikhael
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Daniel Garcia-Santos
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Simon T Hui
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Prem Ponka
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Volker Blank
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 2013; 31:563-604. [PMID: 23516985 DOI: 10.1146/annurev-immunol-020711-074950] [Citation(s) in RCA: 1755] [Impact Index Per Article: 146.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) form a remarkable cellular network that shapes adaptive immune responses according to peripheral cues. After four decades of research, we now know that DCs arise from a hematopoietic lineage distinct from other leukocytes, establishing the DC system as a unique hematopoietic branch. Recent work has also established that tissue DCs consist of developmentally and functionally distinct subsets that differentially regulate T lymphocyte function. This review discusses major advances in our understanding of the regulation of DC lineage commitment, differentiation, diversification, and function in situ.
Collapse
Affiliation(s)
- Miriam Merad
- Department of Oncological Sciences, Mount Sinai Medical School, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
6
|
Abstract
Through their oxygen delivery function, red blood cells are pivotal to the healthy existence of all vertebrate organisms. These cells are required during all stages of life--embryonic, fetal, neonatal, adolescent, and adult. In the adult, red blood cells are the terminally differentiated end-product cells of a complex hierarchy of hematopoietic progenitors that become progressively restricted to the erythroid lineage. During this stepwise differentiation process, erythroid progenitors undergo enormous expansion, so as to fulfill the daily requirement of ~2 × 10(11) new erythrocytes. How the erythroid lineage is made has been a topic of intense research over the last decades. Developmental studies show that there are two types of red blood cells--embryonic and adult. They develop from distinct hemogenic/hematopoietic progenitors in different anatomical sites and show distinct genetic programs. This article highlights the developmental and differentiation events necessary in the production of hemoglobin-producing red blood cells.
Collapse
Affiliation(s)
- Elaine Dzierzak
- Erasmus MC, Erasmus Stem Cell Institute, Department of Cell Biology, 3000 CA Rotterdam, The Netherlands.
| | | |
Collapse
|
7
|
Sarrazin S, Sieweke M. Integration of cytokine and transcription factor signals in hematopoietic stem cell commitment. Semin Immunol 2011; 23:326-34. [DOI: 10.1016/j.smim.2011.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 08/19/2011] [Indexed: 02/03/2023]
|
8
|
Mercer EM, Lin YC, Murre C. Factors and networks that underpin early hematopoiesis. Semin Immunol 2011; 23:317-25. [PMID: 21930392 DOI: 10.1016/j.smim.2011.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 08/19/2011] [Indexed: 01/08/2023]
Abstract
Multiple trajectories have recently been described through which hematopoietic progenitor cells travel prior to becoming lineage-committed effectors. A wide spectrum of transcription factors has recently been identified that modulate developmental progression along such trajectories. Here we describe how distinct families of transcription factors act and are linked together to orchestrate early hematopoiesis.
Collapse
Affiliation(s)
- Elinore M Mercer
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, United States.
| | | | | |
Collapse
|
9
|
Lopez-Granados E. Epigenetic Control of Lymphocyte Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 711:26-35. [DOI: 10.1007/978-1-4419-8216-2_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
10
|
Inducible Fli-1 gene deletion in adult mice modifies several myeloid lineage commitment decisions and accelerates proliferation arrest and terminal erythrocytic differentiation. Blood 2010; 116:4795-805. [PMID: 20733157 DOI: 10.1182/blood-2010-02-270405] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study investigated the role of the ETS transcription factor Fli-1 in adult myelopoiesis using new transgenic mice allowing inducible Fli-1 gene deletion. Fli-1 deletion in adult induced mild thrombocytopenia associated with a drastic decrease in large mature megakaryocytes number. Bone marrow bipotent megakaryocytic-erythrocytic progenitors (MEPs) increased by 50% without increase in erythrocytic and megakaryocytic common myeloid progenitor progeny, suggesting increased production from upstream stem cells. These MEPs were almost unable to generate pure colonies containing large mature megakaryocytes, but generated the same total number of colonies mainly identifiable as erythroid colonies containing a reduced number of more differentiated cells. Cytological and fluorescence-activated cell sorting analyses of MEP progeny in semisolid and liquid cultures confirmed the drastic decrease in large mature megakaryocytes but revealed a surprisingly modest (50%) reduction of CD41-positive cells indicating the persistence of a megakaryocytic commitment potential. Symmetrical increase and decrease of monocytic and granulocytic progenitors were also observed in the progeny of purified granulocytic-monocytic progenitors and common myeloid progenitors. In summary, this study indicates that Fli-1 controls several lineages commitment decisions at the stem cell, MEP, and granulocytic-monocytic progenitor levels, stimulates the proliferation of committed erythrocytic progenitors at the expense of their differentiation, and is a major regulator of late stages of megakaryocytic differentiation.
Collapse
|
11
|
Helft J, Ginhoux F, Bogunovic M, Merad M. Origin and functional heterogeneity of non-lymphoid tissue dendritic cells in mice. Immunol Rev 2010; 234:55-75. [PMID: 20193012 DOI: 10.1111/j.0105-2896.2009.00885.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) have been extensively studied in mice lymphoid organs, but less is known about the origin and the mechanisms that regulate DC development and function in non-lymphoid tissues. Here, we discuss recent evidence establishing the contribution of the DC-restricted lineage to the non-lymphoid tissue DC pool and discuss the mechanisms that control the homeostasis of non-lymphoid tissue DCs. We also review recent results underlining the functional specialization of tissue DCs and discuss the potential implications of these findings in tissue immunity and in the development of novel vaccine strategies.
Collapse
Affiliation(s)
- Julie Helft
- Department of Gene and Cell Medicine and Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | |
Collapse
|
12
|
Kawamoto H, Wada H, Katsura Y. A revised scheme for developmental pathways of hematopoietic cells: the myeloid-based model. Int Immunol 2010; 22:65-70. [PMID: 20053701 DOI: 10.1093/intimm/dxp125] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Blood cells comprise very diverse cell types with a wide range of crucial functions; however, they share a common progenitor cell type-the hematopoietic stem cell (HSC). Clarifying how HSCs differentiate into these diverse cell types is important for understanding how they attain their various functions and offers the potential for therapeutic manipulation. Various theories exist about how HSCs diversify; in particular, one model (the 'classical' model) proposes that lymphocytes and myelo-erythroid lineages branch separately at an early stage of hematopoiesis, whereas another model (the 'myeloid-based' model) proposes that the myeloid potential is retained for much longer among cells that can become lymphocytes. This article describes and compares these models and outlines recent evidence supporting the myeloid-based model.
Collapse
Affiliation(s)
- Hiroshi Kawamoto
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Tsurumi-ku, Yokohama 230-0045, Japan.
| | | | | |
Collapse
|
13
|
Liuba K, Pronk CJH, Stott SRW, Jacobsen SEW. Polyclonal T-cell reconstitution of X-SCID recipients after in utero transplantation of lymphoid-primed multipotent progenitors. Blood 2009; 113:4790-8. [PMID: 19074736 DOI: 10.1182/blood-2007-12-129056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although successful in utero hematopoietic cell transplantation (IUHCT) of X-linked severe combined immune deficiency (X-SCID) with enriched stem and progenitor cells was achieved more than a decade ago, it remains applied only in rare cases. Although this in part reflects that postnatal transplantations have overall given good results, there are no direct comparisons between IUHCT and postnatal transplantations of X-SCID. The proposed tolerance of the fetal immune system to foreign human leukocyte antigen early in gestation, a main rationale behind IUHCT, has recently been challenged by evidence for a considerable immune barrier against in utero transplanted allogeneic bone marrow cells. Consequently, there is need for further exploring the application of purified stem and progenitor cells to overcome this barrier also in IUHCT. Herein, we demonstrate in a congenic setting that recently identified lymphoid-primed multipotent progenitors are superior to hematopoietic stem cells in providing rapid lymphoid reconstitution after IUHCT of X-SCID recipients, and sustain in the long-term B cells, polyclonal T cells, as well as short-lived B-cell progenitors and thymic T-cell precursors. We further provide evidence for IUHCT of hematopoietic stem cells giving superior B- and T-cell reconstitution in fetal X-SCID recipients compared with neonatal and adolescent recipients.
Collapse
Affiliation(s)
- Karina Liuba
- Hematopoietic Stem Cell Laboratory, Lund Strategic Research Center for Stem Cell, Biology and Cell Therapy, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
14
|
Kawamoto H, Katsura Y. A new paradigm for hematopoietic cell lineages: revision of the classical concept of the myeloid-lymphoid dichotomy. Trends Immunol 2009; 30:193-200. [PMID: 19356980 DOI: 10.1016/j.it.2009.03.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/02/2009] [Accepted: 03/02/2009] [Indexed: 12/11/2022]
Abstract
The concept that blood cells arising from hematopoietic stem cells (HSC) can be subdivided into two major lineages, a myelo-erythroid and a lymphoid lineage, has long persisted. Indeed, it has become almost axiomatic that the first branch point from the HSC produces two progenitors, one for myelo-erythroid cells and the other for lymphoid cells. However, recent studies have provided a battery of findings that cannot be explained by this classical model. We will outline how this classical model arose before describing how we came to propose an alternative 'myeloid-based model', in which myeloid potential is retained in erythroid, T, and B cell branches even after these lineages have segregated from each other.
Collapse
Affiliation(s)
- Hiroshi Kawamoto
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
| | | |
Collapse
|
15
|
Abstract
Dendritic cells (DCs) are a heterogeneous fraction of rare hematopoietic cells that coevolved with the formation of the adaptive immune system. DCs efficiently process and present antigen, move from sites of antigen uptake to sites of cellular interactions, and are critical in the initiation of immune responses as well as in the maintenance of self-tolerance. DCs are distributed throughout the body and are enriched in lymphoid organs and environmental contact sites. Steady-state DC half-lives account for days to up to a few weeks, and they need to be replaced via proliferating hematopoietic progenitors, monocytes, or tissue resident cells. In this review, we integrate recent knowledge on DC progenitors, cytokines, and transcription factor usage to an emerging concept of in vivo DC homeostasis in steady-state and inflammatory conditions. We furthermore highlight how knowledge of these maintenance mechanisms might impact on understanding of DC malignancies as well as posttransplant immune reactions and their respective therapies.
Collapse
|
16
|
Abstract
Hematopoiesis consists of a series of lineage decisions controlled by specific gene expression that is regulated by transcription factors and intracellular signaling events in response to environmental cues. Here, we demonstrate that the balance between E-protein transcription factors and their inhibitors, Id proteins, is important for the myeloid-versus-lymphoid fate choice. Using Id1-GFP knockin mice, we show that transcription of the Id1 gene begins to be up-regulated at the granulocyte-macrophage progenitor stage and continues throughout myelopoiesis. Id1 expression is also stimulated by cytokines favoring myeloid differentiation. Forced expression of Id1 in multipotent progenitors promotes myeloid development and suppresses B-cell formation. Conversely, enhancing E-protein activity by expressing a variant of E47 resistant to Id-mediated inhibition prevents the myeloid cell fate while driving B-cell differentiation from lymphoid-primed multipotent progenitors. Together, these results suggest a crucial function for E proteins in the myeloid-versus-lymphoid lineage decision.
Collapse
|
17
|
Dias S, Xu W, McGregor S, Kee B. Transcriptional regulation of lymphocyte development. Curr Opin Genet Dev 2008; 18:441-8. [PMID: 18775782 PMCID: PMC2743889 DOI: 10.1016/j.gde.2008.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 07/31/2008] [Indexed: 01/01/2023]
Abstract
B lymphocytes and T lymphocytes develop from hematopoietic stem cells through a series of intermediates with progressively decreased lineage differentiation potential. Differentiation is preceded by increased accessibility of the chromatin at genes that are poised for expression in the progeny of a multipotent cell. During the process of differentiation there is increased expression of lineage-associated genes and repression of lineage-inappropriate genes resulting in commitment to differentiation through a specific lineage. These transcriptional events are coordinated by networks of transcription factors and their associated chromatin remodeling factors. The B lymphocyte lineage provides a paradigm for how these events unfold to promote specification and commitment to a single developmental pathway.
Collapse
Affiliation(s)
- Sheila Dias
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
18
|
Abstract
Hematopoietic stem cells have the potential to develop into multipotent and different lineage-restricted progenitor cells that subsequently generate all mature blood cell types. The classical model of hematopoietic lineage commitment proposes a first restriction point at which all multipotent hematopoietic progenitor cells become committed either to the lymphoid or to the myeloid development, respectively. Recently, this model has been challenged by the identification of murine as well as human hematopoietic progenitor cells with lymphoid differentiation capabilities that give rise to a restricted subset of the myeloid lineages. As the classical model does not include cells with such capacities, these findings suggest the existence of alternative developmental pathways that demand the existence of additional branches in the classical hematopoietic tree. Together with some phenotypic criteria that characterize different subsets of multipotent and lineage-restricted progenitor cells, we summarize these recent findings here.
Collapse
Affiliation(s)
- Bernd Giebel
- Institute for Transplantation Diagnostics and Cellular Therapeutics, Heinrich Heine University, Düsseldorf, Germany.
| | | |
Collapse
|
19
|
Luc S, Buza-Vidas N, Jacobsen SEW. Delineating the cellular pathways of hematopoietic lineage commitment. Semin Immunol 2008; 20:213-20. [PMID: 18752972 DOI: 10.1016/j.smim.2008.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/07/2008] [Accepted: 07/10/2008] [Indexed: 11/15/2022]
Abstract
The prevailing model for adult hematopoiesis postulates that the first lineage commitment step results in a strict separation of common myeloid and common lymphoid pathways. However, the recent identification of granulocyte/monocyte (GM)-lymphoid restricted lymphoid-primed multipotent progenitors (LMPPs) and primitive common myeloid progenitors (CMPs) within the "HSC" compartment provide compelling support for establishment of independent GM-megakaryocyte/erythroid (GM-MkE) and GM-lymphoid commitment pathways as decisive early lineage fate decisions. These changes in lineage potentials are corroborated by corresponding changes in multilineage transcriptional priming, as LMPPs down-regulate MkE priming but become GM-lymphoid transcriptionally primed, whereas CMPs are GM-MkE primed. These distinct biological and molecular relationships are established already in the fetal liver.
Collapse
Affiliation(s)
- Sidinh Luc
- Haematopoietic Stem Cell Laboratory, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | | | | |
Collapse
|
20
|
Affiliation(s)
- Laure Coulombel
- Médecine/Sciences et Inserm U602, Hôpital Paul Brousse, 94817 Villejuif Cedex, France.
| | | |
Collapse
|
21
|
Abstract
The transcription factor Pax5 is essential for the initial commitment of hematopoietic progenitors to the B cell lineage. Recently, our understanding of the lineage commitment process has been extended with the finding that Pax5 is also continuously required throughout B cell development to reinforce commitment, as inactivation of Pax5 in mature B cells results in their de-differentiation to a progenitor stage that is capable of multi-lineage potential. The reliance of B cell identity on a single gene is not without its problems as the loss of Pax5 results in B cell malignancies in mouse models and mutation in human PAX5 is the most-common genetic lesion in acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Sebastian Carotta
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | |
Collapse
|
22
|
Weischenfeldt J, Damgaard I, Bryder D, Theilgaard-Mönch K, Thoren LA, Nielsen FC, Jacobsen SEW, Nerlov C, Porse BT. NMD is essential for hematopoietic stem and progenitor cells and for eliminating by-products of programmed DNA rearrangements. Genes Dev 2008; 22:1381-96. [PMID: 18483223 PMCID: PMC2377192 DOI: 10.1101/gad.468808] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 03/20/2008] [Indexed: 11/25/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a post-transcriptional surveillance process that eliminates mRNAs containing premature termination codons (PTCs). NMD has been hypothesized to impact on several aspects of cellular function; however, its importance in the context of a mammalian organism has not been addressed in detail. Here we use mouse genetics to demonstrate that hematopoietic-specific deletion of Upf2, a core NMD factor, led to the rapid, complete, and lasting cell-autonomous extinction of all hematopoietic stem and progenitor populations. In contrast, more differentiated cells were only mildly affected in Upf2-null mice, suggesting that NMD is mainly essential for proliferating cells. Furthermore, we show that UPF2 loss resulted in the accumulation of nonproductive rearrangement by-products from the Tcrb locus and that this, as opposed to the general loss of NMD, was particularly detrimental to developing T-cells. At the molecular level, gene expression analysis showed that Upf2 deletion led to a profound skewing toward up-regulated mRNAs, highly enriched in transcripts derived from processed pseudogenes, and that NMD impacts on regulated alternative splicing events. Collectively, our data demonstrate a unique requirement of NMD for organismal survival.
Collapse
Affiliation(s)
- Joachim Weischenfeldt
- Section for Gene Therapy Research, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Inge Damgaard
- Section for Gene Therapy Research, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
| | - David Bryder
- Institute for Experimental Medical Science, BMCI13, Lund University, 22184 Lund, Sweden
| | - Kim Theilgaard-Mönch
- Section for Gene Therapy Research, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lina A. Thoren
- Hematopoietic Stem Cell Laboratory, Lund Strategic Research Centre for Stem Cell Biology and Therapy, Lund University, 22184 Lund, Sweden
| | - Finn Cilius Nielsen
- Department of Clinical Biochemistry, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Sten Eirik W. Jacobsen
- Hematopoietic Stem Cell Laboratory, Lund Strategic Research Centre for Stem Cell Biology and Therapy, Lund University, 22184 Lund, Sweden
| | - Claus Nerlov
- Hematopoietic Stem Cell Laboratory, Lund Strategic Research Centre for Stem Cell Biology and Therapy, Lund University, 22184 Lund, Sweden
- European Molecular Biology Laboratory (EMBL) Mouse Biology Unit, 00015 Monterotondo, Italy
| | - Bo Torben Porse
- Section for Gene Therapy Research, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
23
|
Wada H, Masuda K, Satoh R, Kakugawa K, Ikawa T, Katsura Y, Kawamoto H. Adult T-cell progenitors retain myeloid potential. Nature 2008; 452:768-72. [PMID: 18401412 DOI: 10.1038/nature06839] [Citation(s) in RCA: 280] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Accepted: 02/15/2008] [Indexed: 11/09/2022]
Abstract
During haematopoiesis, pluripotent haematopoietic stem cells are sequentially restricted to give rise to a variety of lineage-committed progenitors. The classical model of haematopoiesis postulates that, in the first step of differentiation, the stem cell generates common myelo-erythroid progenitors and common lymphoid progenitors (CLPs). However, our previous studies in fetal mice showed that myeloid potential persists even as the lineage branches segregate towards T and B cells. We therefore proposed the 'myeloid-based' model of haematopoiesis, in which the stem cell initially generates common myelo-erythroid progenitors and common myelo-lymphoid progenitors. T-cell and B-cell progenitors subsequently arise from common myelo-lymphoid progenitors through myeloid-T and myeloid-B stages, respectively. However, it has been unclear whether this myeloid-based model is also valid for adult haematopoiesis. Here we provide clonal evidence that the early cell populations in the adult thymus contain progenitors that have lost the potential to generate B cells but retain substantial macrophage potential as well as T-cell, natural killer (NK)-cell and dendritic-cell potential. We also show that such T-cell progenitors can give rise to macrophages in the thymic environment in vivo. Our findings argue against the classical dichotomy model in which T cells are derived from CLPs; instead, they support the validity of the myeloid-based model for both adult and fetal haematopoiesis.
Collapse
Affiliation(s)
- Haruka Wada
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Luc S, Anderson K, Kharazi S, Buza-Vidas N, Böiers C, Jensen CT, Ma Z, Wittmann L, Jacobsen SEW. Down-regulation of Mpl marks the transition to lymphoid-primed multipotent progenitors with gradual loss of granulocyte-monocyte potential. Blood 2008; 111:3424-34. [PMID: 18218856 DOI: 10.1182/blood-2007-08-108324] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Evidence for a novel route of adult hematopoietic stem-cell lineage commitment through Lin-Sca-1+Kit+Flt3hi (LSKFlt3hi) lymphoid-primed multipotent progenitors (LMPPs) with granulocyte/monocyte (GM) and lymphoid but little or no megakaryocyte/erythroid (MkE) potential was recently challenged, as LSKFlt3hi cells were reported to possess MkE potential. Herein, residual (1%-2%) MkE potential segregated almost entirely with LSKFlt3hi cells expressing the thrombopoietin receptor (Mpl), whereas LSKFlt3hiMpl- LMPPs lacked significant MkE potential in vitro and in vivo, but sustained combined GM and lymphoid potentials, and coexpressed GM and lymphoid but not MkE transcriptional lineage programs. Gradually increased transcriptional lymphoid priming in single LMPPs from Rag1GFP mice was shown to occur in the presence of maintained GM lineage priming, but gradually reduced GM lineage potential. These functional and molecular findings reinforce the existence of GM/lymphoid-restricted progenitors with dramatically down-regulated probability for committing toward MkE fates, and support that lineage restriction occurs through gradual rather than abrupt changes in specific lineage potentials.
Collapse
Affiliation(s)
- Sidinh Luc
- Hematopoietic Stem Cell Laboratory, Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|