1
|
Ogneva A, Rodina Y, Pershin D, Voronin K, Prozvetkina A, Maschan A, Novichkova G, Grachev N, Shcherbina A. Efficacy and safety of romiplostim and eltrombopag in management of thrombocytopenia in Wiskott-Aldrich syndrome patients. Br J Haematol 2025. [PMID: 40400288 DOI: 10.1111/bjh.20182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 05/14/2025] [Indexed: 05/23/2025]
Abstract
Wiskott-Aldrich syndrome (WAS) is a life-threatening inborn error of immunity associated with bleeding risk due to profound thrombocytopenia. We previously demonstrated that romiplostim is effective for thrombocytopenia treatment in 60% of WAS patients. In this prospective trial, 28 WAS patients (aged 0-17 years) were treated with thrombopoietin receptor agonists (TPO-RAs) to evaluate the comparative efficacy and safety of romiplostim versus eltrombopag and to assess the benefit of switching these molecules in individual subjects. We demonstrate that both drugs are effective, with the probability of achieving an overall platelet response (complete response-platelet count of 100 × 109/L or more and partial response-platelet count increase of 30 × 109/L or higher above baseline) of 73% for romiplostim and 43% for eltrombopag. Switching to an alternative TPO-RA allowed the achievement of a complete platelet response in 33% of patients after switching to eltrombopag and in 43% after romiplostim initiation. The cumulative efficacy of TPO-RAs, taking into account alternative therapy, was 87%. There was a grade 2 adverse event (AE) and a severe grade 4 AE related to eltrombopag-reversible acute liver failure associated with metabolic acidosis and encephalopathy. TPO-RAs proved to be an effective treatment for WAS patients waiting for stem cell transplantation or opting for a conservative treatment.
Collapse
Affiliation(s)
- Anna Ogneva
- Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Yulia Rodina
- Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Dmitry Pershin
- Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Kirill Voronin
- Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anastasia Prozvetkina
- Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Alexey Maschan
- Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Galina Novichkova
- Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Nikolay Grachev
- Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna Shcherbina
- Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
2
|
Vallée TC, Glasmacher JS, Buchner H, Arkwright PD, Behrends U, Bondarenko A, Browning MJ, Buchbinder D, Cattoni A, Chernyshova L, Ciznar P, Cole T, Czogała W, Dueckers G, Edgar JDM, Erbey F, Fasth A, Ferrua F, Formankova R, Gambineri E, Gennery AR, Goldman FD, Gonzalez-Granado LI, Heilmann C, Heiskanen-Kosma T, Juntti H, Kainulainen L, Kanegane H, Karaca NE, Kilic SS, Klein C, Kołtan S, Kondratenko I, Meyts I, Nasrullayeva GM, Notarangelo LD, Pasic S, Pellier I, Pignata C, Misbah S, Schulz A, Segundo GR, Shcherbina A, Slatter M, Sokolic R, Soler-Palacin P, Stepensky P, van Montfrans JM, Ryhänen S, Wolska-Kuśnierz B, Ziegler JB, Zhao X, Aiuti A, Ochs HD, Albert MH. Wiskott-Aldrich syndrome: a study of 577 patients defines the genotype as a biomarker for disease severity and survival. Blood 2024; 143:2504-2516. [PMID: 38579284 DOI: 10.1182/blood.2023021411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 04/07/2024] Open
Abstract
ABSTRACT Wiskott-Aldrich syndrome (WAS) is a multifaceted monogenic disorder with a broad disease spectrum and variable disease severity and a variety of treatment options including allogeneic hematopoietic stem cell transplantation (HSCT) and gene therapy (GT). No reliable biomarker exists to predict disease course and outcome for individual patients. A total of 577 patients with a WAS variant from 26 countries and a median follow-up of 8.9 years (range, 0.3-71.1), totaling 6118 patient-years, were included in this international retrospective study. Overall survival (OS) of the cohort (censored at HSCT or GT) was 82% (95% confidence interval, 78-87) at age 15 years and 70% (61-80) at 30 years. The type of variant was predictive of outcome: patients with a missense variant in exons 1 or 2 or with the intronic hot spot variant c.559+5G>A (class I variants) had a 15-year OS of 93% (89-98) and a 30-year OS of 91% (86-97), compared with 71% (62-81) and 48% (34-68) in patients with any other variant (class II; P < .0001). The cumulative incidence rates of disease-related complications such as severe bleeding (P = .007), life-threatening infection (P < .0001), and autoimmunity (P = .004) occurred significantly later in patients with a class I variant. The cumulative incidence of malignancy (P = .6) was not different between classes I and II. It confirms the spectrum of disease severity and quantifies the risk for specific disease-related complications. The class of the variant is a biomarker to predict the outcome for patients with WAS.
Collapse
Affiliation(s)
- Tanja C Vallée
- Pediatric Hematology/Oncology, Dr von Hauner University Children's Hospital, Munich, Germany
| | - Jannik S Glasmacher
- Pediatric Hematology/Oncology, Dr von Hauner University Children's Hospital, Munich, Germany
| | | | - Peter D Arkwright
- Lydia Becker Institute of Immunology and Inflammation, The University of Manchester & Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Uta Behrends
- Children's Hospital, School of Medicine, Technical University Munich, Munich, Germany
| | - Anastasia Bondarenko
- Department of Pediatrics, Immunology, Infectious and Rare Diseases and Allergology, European Medical School, International European University, Kyiv, Ukraine
| | - Michael J Browning
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - David Buchbinder
- Department of Hematology, Children's Hospital of Orange County, Orange, CA
| | - Alessandro Cattoni
- Department of Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Liudmyla Chernyshova
- Department of Pediatrics, Pediatric Infectious Diseases, Immunology and Allergology, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| | - Peter Ciznar
- Department of Pediatrics, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Theresa Cole
- Department of Allergy and Immunology, The Royal Children's Hospital, Melbourne, Australia
| | - Wojciech Czogała
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Gregor Dueckers
- Helios Kliniken Krefeld, Children's Hospital, Krefeld, Germany
| | - John David M Edgar
- St James's Hospital & School of Medicine, Trinity College, Dublin, Ireland
| | - Fatih Erbey
- Department of Pediatric Hematology/Oncology, Koç University School of Medicine, İstanbul, Turkey
| | - Anders Fasth
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Francesca Ferrua
- Pediatric Immunohematology and Stem Cell Program, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Renata Formankova
- Department of Pediatric Hematology and Oncology, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Eleonora Gambineri
- Department of NEUROFARBA, Section of Child's Health, University of Florence, Florence, Italy
- Department of Haematology-Oncology, Anna Meyer University Children's Hospital (AOU Meyer IRCCS), Florence, Italy
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University, and Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Frederick D Goldman
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL
| | - Luis I Gonzalez-Granado
- Department of Pediatrics, Primary Immunodeficiencies Unit, Research Institute, Hospital 12 Octubre, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Carsten Heilmann
- Department for Children and Adolescents, Pediatric Hematopoietic Stem Cell Transplantation and Immunodeficiency, Copenhagen University Hospital Rigshospitalet, København, Denmark
| | | | - Hanna Juntti
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital and Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
| | - Leena Kainulainen
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Neslihan E Karaca
- Division of Pediatric Immunology, Department of Pediatrics, Ege University, The Medical School, Izmir, Turkey
| | - Sara S Kilic
- Pediatric Immunology and Rheumatology, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - Christoph Klein
- Pediatric Hematology/Oncology, Dr von Hauner University Children's Hospital, Munich, Germany
| | - Sylwia Kołtan
- Department of Paediatrics, Haematology and Oncology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Irina Kondratenko
- Russian Children's Clinical Hospital, Pirogov National Research Medical University, Moscow, Russia
| | - Isabelle Meyts
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | | | | | - Srdjan Pasic
- Department of Immunology, Mother and Child Health Care Institute of Serbia, Belgrade, Serbia
| | - Isabelle Pellier
- Centre de référence des déficits immunitaires primitifs CEREDIH, CHU d'Angers, Angers, France
| | - Claudio Pignata
- Department of Translational Medical Science, Section of Pediatrics, Federico II University, Napoli, Italy
| | - Siraj Misbah
- Clinical Immunology, John Radcliffe Hospital, Oxford, United Kingdom
| | - Ansgar Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Gesmar R Segundo
- Allergy and Immunology Division, Pediatrics Department, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Anna Shcherbina
- Dmitry Rogachev National Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Mary Slatter
- Translational and Clinical Research Institute, Newcastle University, and Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Robert Sokolic
- Hematologic Malignancies Branch, Office of Therapeutic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Children's Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Polina Stepensky
- Bone Marrow Transplantation Department, Hadassah-Hebrew, University Medical Center, Jerusalem, Israel
| | - Joris M van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Samppa Ryhänen
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Pediatric Research Center, Helsinki, Finland
| | | | - John B Ziegler
- School of Women's & Children's Health, University of New South Wales, Sydney, Australia
| | - Xiaodong Zhao
- Department of Rheumatism and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Aiuti
- Pediatric Immunohematology and Stem Cell Program, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Hans D Ochs
- University of Washington School of Medicine, Seattle, WA
| | - Michael H Albert
- Pediatric Hematology/Oncology, Dr von Hauner University Children's Hospital, Munich, Germany
| |
Collapse
|
3
|
Anantharachagan A, Loh SY, Burns SO, Laurence A, Tadros S, Tholouli E, Lwin Y, Martinez-Calle N, Vaitla P, Morris EC. Allogeneic hematopoietic stem cell transplantation outcome in oldest known surviving patients with Wiskott-Aldrich syndrome. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100191. [PMID: 38187865 PMCID: PMC10770606 DOI: 10.1016/j.jacig.2023.100191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 01/09/2024]
Abstract
Regardless of their age, adult patients with Wiskott-Aldrich syndrome should be considered for hematopoietic stem cell transplantation if clinically indicated.
Collapse
Affiliation(s)
- Ariharan Anantharachagan
- Department of Allergy and Clinical Immunology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, United Kingdom
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, United Kingdom
| | - Sook Yin Loh
- Department of Allergy and Clinical Immunology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, United Kingdom
| | - Siobhan O. Burns
- University College London Institute of Immunity and Transplantation, London, United Kingdom
- Department of Immunology, The Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Arian Laurence
- University College London Institute of Immunity and Transplantation, London, United Kingdom
- Department of Immunology, The Royal Free London NHS Foundation Trust, London, United Kingdom
- Department of Clinical Haematology, University College London NHS Foundation Trust, London, United Kingdom
| | - Susan Tadros
- Department of Immunology, The Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Eleni Tholouli
- Manchester University NHS Foundation Trust, Department of Haematology, Manchester, United Kingdom
| | - Yadanar Lwin
- Department of Haematology, Nottingham, United Kingdom
| | | | - P. Vaitla
- Department of Immunology Nottingham University Hospitals, NHS Trust, Nottingham, United Kingdom
| | - Emma C. Morris
- University College London Institute of Immunity and Transplantation, London, United Kingdom
- Department of Immunology, The Royal Free London NHS Foundation Trust, London, United Kingdom
- Department of Clinical Haematology, University College London NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
4
|
Ji X, Hou X, Guo X, Sun Y, Ma F, Hao J. Identification of a novel WAS mutation and the non-splicing effect of a second-site mutation in a Chinese pedigree with Wiskott-Aldrich syndrome. Orphanet J Rare Dis 2022; 17:447. [PMID: 36550574 PMCID: PMC9783790 DOI: 10.1186/s13023-022-02589-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Wiskott-Aldrich syndrome (WAS) is a rare X-linked immunodeficiency disorder caused by abnormal expression of the WAS protein (WASp) due to mutations in the WAS gene, and is generally characterized by microthrombocytopenia, eczema, recurrent infections, and high susceptibility to autoimmune complications and hematological malignancies. RESULTS Herein, we identified a novel WAS mutation (c.158 T > C) using next-generation sequencing in a Chinese pedigree with WAS. The expression of WASp in the patients and their families was detected by flow cytometry and western blot analysis. To explore the exon-splicing effect of intron mutations and the correlation between the genotype and clinical phenotype, four groups of wild-type (WT), exon mutant, intron mutant, and combined mutant recombinant plasmids were transfected into COS-7 cells in vitro. The proband showed dramatically decreased WASp expression, while the female carriers showed a slightly lower level of WASp. The expression of products in the mutant and WT recombinant plasmids was detected by real-time fluorescence quantitative polymerase chain reaction (PCR), which showed a significant reduction in the combined mutant group than in the WT, exon mutant, and intron mutant groups. The length of the expression products in the four groups showed no differences, each containing 360 base pairs. Sequence analysis confirmed that the c.158 T > C mutation appeared in the exon mutant and combined mutant groups, whereas the intron variant c.273 + 14C > T caused no other sequence changes. CONCLUSION This study confirmed that the intron mutation did not affect the splicing of exons and excluded the influence of the double mutations at the transcription level on the severe clinical manifestations in the cousin. This in vitro study provided new insights into the pathogenesis of intronic mutations in WAS.
Collapse
Affiliation(s)
- Xin Ji
- grid.452702.60000 0004 1804 3009Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, 215#, Heping West Road, Shijiazhuang, Hebei Province, 050000 China
| | - Xuening Hou
- grid.452702.60000 0004 1804 3009Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, 215#, Heping West Road, Shijiazhuang, Hebei Province, 050000 China
| | - Xin Guo
- grid.452702.60000 0004 1804 3009Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, 215#, Heping West Road, Shijiazhuang, Hebei Province, 050000 China
| | - Yifeng Sun
- grid.452702.60000 0004 1804 3009Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, 215#, Heping West Road, Shijiazhuang, Hebei Province, 050000 China
| | - Futian Ma
- grid.470210.0Department of Hematology and Oncology, Children’s Hospital of Hebei Province, 133#, Jianhua South Street, Shijiazhuang, Hebei Province, 050031 China
| | - Jihong Hao
- grid.452702.60000 0004 1804 3009Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, 215#, Heping West Road, Shijiazhuang, Hebei Province, 050000 China
| |
Collapse
|
5
|
Molon B, Liboni C, Viola A. CD28 and chemokine receptors: Signalling amplifiers at the immunological synapse. Front Immunol 2022; 13:938004. [PMID: 35983040 PMCID: PMC9379342 DOI: 10.3389/fimmu.2022.938004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/08/2022] [Indexed: 01/14/2023] Open
Abstract
T cells are master regulators of the immune response tuning, among others, B cells, macrophages and NK cells. To exert their functions requiring high sensibility and specificity, T cells need to integrate different stimuli from the surrounding microenvironment. A finely tuned signalling compartmentalization orchestrated in dynamic platforms is an essential requirement for the proper and efficient response of these cells to distinct triggers. During years, several studies have depicted the pivotal role of the cytoskeleton and lipid microdomains in controlling signalling compartmentalization during T cell activation and functions. Here, we discuss mechanisms responsible for signalling amplification and compartmentalization in T cell activation, focusing on the role of CD28, chemokine receptors and the actin cytoskeleton. We also take into account the detrimental effect of mutations carried by distinct signalling proteins giving rise to syndromes characterized by defects in T cell functionality.
Collapse
Affiliation(s)
- Barbara Molon
- Pediatric Research Institute “Città della Speranza”, Corso Stati Uniti, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- *Correspondence: Barbara Molon,
| | - Cristina Liboni
- Pediatric Research Institute “Città della Speranza”, Corso Stati Uniti, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Antonella Viola
- Pediatric Research Institute “Città della Speranza”, Corso Stati Uniti, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Khan YW, Williams KW. Inborn Errors of Immunity Associated with Elevated IgE. Ann Allergy Asthma Immunol 2022; 129:552-561. [PMID: 35872242 DOI: 10.1016/j.anai.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
OBJECTIVE To review the characteristic clinical and laboratory features of inborn errors of immunity that are associated with elevated IgE levels DATA SOURCE: Primary peer-reviewed literature. STUDY SELECTION Original research articles reviewed include interventional studies, retrospective studies, case-control studies, cohort studies and review articles related to the subject matter. RESULTS An extensive literature review was completed to allow for comprehensive evaluation of several monogenic inborn errors of immunity. This review includes a description of the classic clinical features, common infections, characteristic laboratory findings, specific diagnostic methods (when applicable), and genetic basis of disease of each syndrome. A comprehensive flow diagram was created to assist them in the diagnosis and evaluation of patients with elevated IgE levels who may require evaluation for an IEI. CONCLUSION IEI should be considered in patients with elevated IgE levels, especially if they have recurrent infections, eczematous dermatitis, malignancy, lymphoproliferation, autoimmunity, and/or connective tissue abnormalities.
Collapse
Affiliation(s)
- Yasmin W Khan
- Division of Pediatric Allergy, Immunology and Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kelli W Williams
- Division of Pediatric Pulmonology, Allergy and Immunology, Department of Pediatrics, Medical University of South Carolina, South Carolina, USA.
| |
Collapse
|
7
|
Padron GT, Hernandez-Trujillo VP. Autoimmunity in Primary Immunodeficiencies (PID). Clin Rev Allergy Immunol 2022:10.1007/s12016-022-08942-0. [PMID: 35648371 DOI: 10.1007/s12016-022-08942-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 11/25/2022]
Abstract
Primary immunodeficiency (PID) may impact any component of the immune system. The number of PID and immune dysregulation disorders is growing steadily with advancing genetic detection methods. These expansive recognition methods have changed the way we characterize PID. While PID were once characterized by their susceptibility to infection, the increase in genetic analysis has elucidated the intertwined relationship between PID and non-infectious manifestations including autoimmunity. The defects permitting opportunistic infections to take hold may also lead the way to the development of autoimmune disease. In some cases, it is the non-infectious complications that may be the presenting sign of PID autoimmune diseases, such as autoimmune cytopenia, enteropathy, endocrinopathies, and arthritis among others, have been reported in PID. While autoimmunity may occur with any PID, this review will look at certain immunodeficiencies most often associated with autoimmunity, as well as their diagnosis and management strategies.
Collapse
Affiliation(s)
- Grace T Padron
- Nicklaus Children's Hospital, Miami, FL, USA.
- Allergy and Immunology Care Center of South Florida, Miami Lakes, FL, USA.
| | - Vivian P Hernandez-Trujillo
- Nicklaus Children's Hospital, Miami, FL, USA
- Allergy and Immunology Care Center of South Florida, Miami Lakes, FL, USA
| |
Collapse
|
8
|
Abstract
The new techniques of genetic analysis have made it possible to identify many new forms of inherited thrombocytopenias (IT) and study large series of patients. In recent years, this has changed the view of IT, highlighting the fact that, in contrast to previous belief, most patients have a modest bleeding diathesis. On the other hand, it has become evident that some of the mutations responsible for platelet deficiency predispose the patient to serious, potentially life-threatening diseases. Today's vision of IT is, therefore, very different from that of the past and the therapeutic approach must take these changes into account while also making use of the new therapies that have become available in the meantime. This review, the first devoted entirely to IT therapy, discusses how to prevent bleeding in those patients who are exposed to this risk, how to treat it if it occurs, and how to manage the serious illnesses to which patients with IT may be predisposed.
Collapse
|
9
|
Hematopoietic stem cell transplantation for Wiskott-Aldrich syndrome: an EBMT inborn errors working party analysis. Blood 2022; 139:2066-2079. [PMID: 35100336 DOI: 10.1182/blood.2021014687] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/17/2022] [Indexed: 11/20/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative treatment for patients affected by Wiskott-Aldrich syndrome (WAS). Reported HSCT outcomes have improved over time with respect to overall survival, but some studies have identified older age and HSCT from alternative donors as risk factors predicting poorer outcome. We analyzed 197 patients transplanted at EBMT centers between 2006 and 2017, who received conditioning as recommended by the inborn errors working party (IEWP): either busulfan (n=103) or treosulfan (n=94) combined with fludarabine ± thiotepa. After a median follow-up after HSCT of 44.9 months, 176 patients were alive, resulting in a 3-year overall survival of 88.7%, and chronic GVHD-free survival (CRFS; events: death, graft failure, severe chronic GVHD) of 81.7%. Overall survival and CRFS were not significantly impacted by conditioning regimen (busulfan- versus treosulfan-based), donor type (MSD/MFD vs MUD/MMUD vs. MMFD), and period of HSCT (2006-2013 vs. 2014-2017). Patients younger than 5 years at HSCT had a significantly better overall survival. The overall cumulative incidences of grade III-IV acute GVHD and extensive/moderate/severe chronic GVHD were 6.6% and 2.1%, respectively. Patients receiving treosulfan-based conditioning had a higher incidence of graft failure, mixed donor chimerism and more frequently received secondary procedures (2nd HSCT, unconditioned stem cell boost, donor lymphocyte infusion, or splenectomy). In summary, HSCT for WAS with conditioning regimens currently recommended by IEWP results in excellent survival and low rates of GVHD, regardless of donor or stem cell source, but age ≥5 years remains a risk factor for overall survival.
Collapse
|
10
|
Long-term safety and efficacy of lentiviral hematopoietic stem/progenitor cell gene therapy for Wiskott-Aldrich syndrome. Nat Med 2022; 28:71-80. [PMID: 35075289 PMCID: PMC8799465 DOI: 10.1038/s41591-021-01641-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022]
Abstract
Patients with Wiskott–Aldrich syndrome (WAS) lacking a human leukocyte antigen-matched donor may benefit from gene therapy through the provision of gene-corrected, autologous hematopoietic stem/progenitor cells. Here, we present comprehensive, long-term follow-up results (median follow-up, 7.6 years) (phase I/II trial no. NCT02333760) for eight patients with WAS having undergone phase I/II lentiviral vector-based gene therapy trials (nos. NCT01347346 and NCT01347242), with a focus on thrombocytopenia and autoimmunity. Primary outcomes of the long-term study were to establish clinical and biological safety, efficacy and tolerability by evaluating the incidence and type of serious adverse events and clinical status and biological parameters including lentiviral genomic integration sites in different cell subpopulations from 3 years to 15 years after gene therapy. Secondary outcomes included monitoring the need for additional treatment and T cell repertoire diversity. An interim analysis shows that the study meets the primary outcome criteria tested given that the gene-corrected cells engrafted stably, and no serious treatment-associated adverse events occurred. Overall, severe infections and eczema resolved. Autoimmune disorders and bleeding episodes were significantly less frequent, despite only partial correction of the platelet compartment. The results suggest that lentiviral gene therapy provides sustained clinical benefits for patients with WAS. Long-term monitoring of patients with Wiskott–Aldrich syndrome following lentiviral gene therapy shows a safe profile and a reduction in the frequency of autoimmune manifestations and bleeding events, despite incomplete platelet reconstitution.
Collapse
|
11
|
Biffi A. Gene therapy goes the distance in Wiskott-Aldrich syndrome. Nat Med 2022; 28:24-25. [PMID: 35075290 DOI: 10.1038/s41591-021-01653-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alessandra Biffi
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy. .,Gene Therapy Program, Dana Farber-Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
| |
Collapse
|
12
|
Hosahalli Vasanna S, Pereda MA, Dalal J. Clinical Features, Cancer Biology, Transplant Approach and Other Integrated Management Strategies for Wiskott-Aldrich Syndrome. J Multidiscip Healthc 2022; 14:3497-3512. [PMID: 34992377 PMCID: PMC8711845 DOI: 10.2147/jmdh.s295386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022] Open
Abstract
Wiskott–Aldrich syndrome (WAS) is a rare X-linked recessive inborn error of immunity (IEI) first described in 1937. Classic WAS is characterized by the triad of thrombocytopenia with small platelets, recurrent infections due to combined immunodeficiency, and eczema. Hematopoietic stem cell transplantation (HSCT) was the only curative option available for five decades, with excellent outcomes reported for matched sibling donors (MSD) and matched unrelated donors (MUD). More recently, alternative donor transplants such as umbilical cord blood (UCB) and haploidentical transplant have emerged as viable options due to improvements in better graft selection, cell dosing, and effective allograft manipulation measures. Gene therapy is another potential curative option with promising results, yet currently is offered only as part of a clinical trial.
Collapse
Affiliation(s)
- Smitha Hosahalli Vasanna
- Department of Pediatrics, Division of Pediatric Hematology Oncology, Rainbow Babies and Children's Hospital, University Hospitals, Cleveland, OH, USA
| | - Maria A Pereda
- Department of Pediatrics, Division of Pediatric Hematology Oncology, Rainbow Babies and Children's Hospital, University Hospitals, Cleveland, OH, USA
| | - Jignesh Dalal
- Department of Pediatrics, Division of Pediatric Hematology Oncology, Rainbow Babies and Children's Hospital, University Hospitals, Cleveland, OH, USA
| |
Collapse
|
13
|
The Immune Deficiency and Dysregulation Activity (IDDA2.1 'Kaleidoscope') Score and Other Clinical Measures in Inborn Errors of Immunity. J Clin Immunol 2021; 42:484-498. [PMID: 34797428 PMCID: PMC9016022 DOI: 10.1007/s10875-021-01177-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/25/2021] [Indexed: 11/06/2022]
Abstract
Quantifying the phenotypic features of rare diseases such as inborn errors of immunity (IEI) helps clinicians make diagnoses, classify disorders, and objectify the disease severity at its first presentation as well as during therapy and follow-up. Furthermore, it may allow cross-sectional and cohort comparisons and support treatment decisions such as an evaluation for transplantation. On the basis of a literature review, we provide a descriptive comparison of ten selected scores and measures frequently used in IEI and divide these into three categories: (1) diagnostic tools (for Hyper-IgE syndrome, hemophagocytic lymphohistiocytosis, and Wiskott-Aldrich syndrome), (2) morbidity and disease activity measures (for common variable immune deficiency [CVID], profound combined immune deficiency, CTLA-4 haploinsufficiency, immune deficiency and dysregulation activity [IDDA], IPEX organ impairment, and the autoinflammatory disease activity index), and (3) treatment stratification scores (shown for hypogammaglobulinemia). The depth of preclinical and statistical validations varies among the presented tools, and disease-inherent and user-dependent factors complicate their broader application. To support a comparable, standardized evaluation for prospective monitoring of diseases with immune dysregulation, we propose the IDDA2.1 score (comprising 22 parameters on a 2–5-step scale) as a simple yet comprehensive and powerful tool. Originally developed for use in a retrospective study in LRBA deficiency, this new version may be applied to all IEI with immune dysregulation. Reviewing published aggregate cohort data from hundreds of patients, the IDDA kaleidoscope function is presented for 18 exemplary IEI as an instructive phenotype–pattern visualization tool, and an unsupervised, hierarchically clustered heatmap mathematically confirms similarities and differences in their phenotype expression profiles.
Collapse
|
14
|
Udomkittivorakul N, Wattanasirichaigoon D, Manuyakorn W, Pongphitcha P, Khongkraparn A, Tunlayadechanont P, Sirachainan N. Report of clinical presentations and two novel mutations in patients with Wiskott-Aldrich syndrome/X-linked Thrombocytopenia. Platelets 2021; 33:792-796. [PMID: 34705590 DOI: 10.1080/09537104.2021.1988549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Wiskott-Aldrich syndrome (WAS)/X-linked thrombocytopenia (XLT) is a rare X-linked disease characterized by thrombocytopenia, eczema, and recurrent infection. In addition, WAS/XLT increases incidence of autoimmune diseases and malignancies. We reported 7 male patients, 2 with WAS and 5 with XLT, from 6 different families. Two novel mutations, p.Gly387GlufsTer58 and p.Ala134Asp, were identified in patients with WAS. Both patients had severe clinical phenotypes compatible with classic WAS and developed lethal outcomes with intracranial hemorrhage. Other than that, one patient with XLT developed pineoblastoma.
Collapse
Affiliation(s)
- Natsumon Udomkittivorakul
- Department of Pediatrics, Faculty of Medicine Ramathibodhi Hospital, Mahidol University, Bangkok, Thailand
| | - Duangrurdee Wattanasirichaigoon
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wiparat Manuyakorn
- Division of Allergy and Immunology, Department of Pediatrics, Faculty of Medicine Ramathibodhi Hospital, Mahidol University, Bangkok, Thailand
| | - Pongpak Pongphitcha
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodhi Hospital, Mahidol University, Bangkok, Thailand
| | - Arthaporn Khongkraparn
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Padcha Tunlayadechanont
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodhi Hospital, Mahidol University, Bangkok, Thailand
| | - Nongnuch Sirachainan
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodhi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
15
|
Primary immunodeficiency diseases in the newborn. North Clin Istanb 2021; 8:405-413. [PMID: 34585079 PMCID: PMC8430363 DOI: 10.14744/nci.2020.43420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/11/2020] [Indexed: 11/20/2022] Open
Abstract
The normal neonate’s immune system is anatomically completed but antigenically inexperienced and shows somewhat decreased role of a number of immunological pathways. Aside from anatomic characteristics (e.g., thin skin and mucosal barriers) of newborn, weakened pro-inflammatory and T-helper cell type 1 cytokine release and lessened cell-mediated immunity predispose the neonate more susceptible to all types of infections. Furthermore, many types of primary immunodeficiency diseases (PIDs) that present in neonatal period are potentially life threatening. However, most of the newborns stand this period without sickness due to complete innate immunity with other adaptive immune system mechanisms and transferred maternal immunoglobulin G. Besides unique immunity of the preterm and normal newborns; risk factors, clinical features, and laboratory evaluation of most common PIDs in newborn are told in this article. The range of PIDs is growing, and the diagnosis and management of these disorders continues to increase in complexity. The most common PID types of the newborn including antibody deficiencies, cellular/combined immunodeficiencies, phagocytic diseases, complement deficiencies, and innate immune system and other disorders are briefly mentioned here as well.
Collapse
|
16
|
Mallhi KK, Petrovic A, Ochs HD. Hematopoietic Stem Cell Therapy for Wiskott-Aldrich Syndrome: Improved Outcome and Quality of Life. J Blood Med 2021; 12:435-447. [PMID: 34149291 PMCID: PMC8206065 DOI: 10.2147/jbm.s232650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
The Wiskott-Aldrich syndrome (WAS) is an X-linked disorder caused by mutations in the WAS gene resulting in congenital thrombocytopenia, eczema, recurrent infections and an increased incidence of autoimmune diseases and malignancies. Without curative therapies, affected patients have diminished life expectancy and reduced quality of life. Since WAS protein (WASP) is constitutively expressed only in hematopoietic stem cell-derived lineages, hematopoietic stem cell transplantation (HSCT) and gene therapy (GT) are well suited to correct the hematologic and immunologic defects. Advances in high-resolution HLA typing, new techniques to prevent GvHD allowing the use of haploidentical donors, and the introduction of reduced intensity conditioning regimens with myeloablative features have increased overall survival (OS) to over 90%. The development of GT for WAS has provided basic knowledge into vector selection and random integration of various viral vectors into the genome, with the possibility of inducing leukemogenesis. After trials and errors, inactivating lentiviral vectors carrying the WAS gene were successfully evaluated in clinical trials, demonstrating cure of the disease except for insufficient resolution of the platelet defect. Thus, 50 years of clinical evaluation, genetic exploration and extensive clinical trials, a lethal syndrome has turned into a curable disorder.
Collapse
Affiliation(s)
- Kanwaldeep K Mallhi
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Division of Hematology and Oncology, Seattle Children’s Hospital, Seattle, WA, USA
| | - Aleksandra Petrovic
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Division of Immunology and Division of Hematology and Oncology, Seattle Children’s Hospital, Seattle, WA, USA
| | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Seattle Children’s Research Institute, Seattle, WA, USA
| |
Collapse
|
17
|
Abstract
Gene therapy is an innovative treatment for Primary Immune Deficiencies (PIDs) that uses autologous hematopoietic stem cell transplantation to deliver stem cells with added or edited versions of the missing or malfunctioning gene that causes the PID. Initial studies of gene therapy for PIDs in the 1990-2000's used integrating murine gamma-retroviral vectors. While these studies showed clinical efficacy in many cases, especially with the administration of marrow cytoreductive conditioning before cell re-infusion, these vectors caused genotoxicity and development of leukoproliferative disorders in several patients. More recent studies used lentiviral vectors in which the enhancer elements of the long terminal repeats self-inactivate during reverse transcription ("SIN" vectors). These SIN vectors have excellent safety profiles and have not been reported to cause any clinically significant genotoxicity. Gene therapy has successfully treated several PIDs including Adenosine Deaminase Severe Combined Immunodeficiency (SCID), X-linked SCID, Artemis SCID, Wiskott-Aldrich Syndrome, X-linked Chronic Granulomatous Disease and Leukocyte Adhesion Deficiency-I. In all, gene therapy for PIDs has progressed over the recent decades to be equal or better than allogeneic HSCT in terms of efficacy and safety. Further improvements in methods should lead to more consistent and reliable efficacy from gene therapy for a growing list of PIDs.
Collapse
Affiliation(s)
- Lisa A. Kohn
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Donald B. Kohn
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
18
|
Khan AO, Stapley RJ, Pike JA, Wijesinghe SN, Reyat JS, Almazni I, Machlus KR, Morgan NV. Novel gene variants in patients with platelet-based bleeding using combined exome sequencing and RNAseq murine expression data. J Thromb Haemost 2021; 19:262-268. [PMID: 33021027 DOI: 10.1111/jth.15119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 01/12/2023]
Abstract
Essentials Identifying genetic variants in platelet disorders is challenging due to its heterogenous nature. We combine WES, RNAseq, and python-based bioinformatics to identify novel gene variants. We find novel candidates in patient data by cross-referencing against a murine RNAseq model of thrombopoiesis. This innovative combined bioinformatic approach provides novel data for future research in the field. ABSTRACT: Background The UK Genotyping and Phenotyping of Platelets study has recruited and analyzed 129 patients with suspected heritable bleeding. Previously, 55 individuals had a definitive genetic diagnosis based on whole exome sequencing (WES) and platelet morphological and functional testing. A significant challenge in this field is defining filtering criteria to identify the most likely candidate mutations for diagnosis and further study. Objective Identify candidate gene mutations for the remaining 74 patients with platelet-based bleeding with unknown genetic cause, forming the basis of future re-recruitment and further functional testing and assessment. Methods Using python-based data frame indexing, we first identify and filter all novel and rare variants using a panel of 116 genes known to cause bleeding across the full cohort of WES data. This identified new variants not previously reported in this cohort. We then index the remaining patients, with rare or novel variants in known bleeding genes against a murine RNA sequencing dataset that models proplatelet-forming megakaryocytes. Results Filtering against known genes identified candidate variants in 59 individuals, including novel variants in several known genes. In the remaining cohort of "unknown" patients, indexing against differentially expressed genes revealed candidate gene variants in several novel unreported genes, focusing on 14 patients with a severe clinical presentation. Conclusions We identified candidate mutations in a cohort of patients with no previous genetic diagnosis. This work involves innovative coupling of RNA sequencing and WES to identify candidate variants forming the basis of future study in a significant number of undiagnosed patients.
Collapse
Affiliation(s)
- Abdullah O Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rachel J Stapley
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jeremy A Pike
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Susanne N Wijesinghe
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jasmeet S Reyat
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ibrahim Almazni
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Kellie R Machlus
- Hematology Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
19
|
Pecci A, Balduini CL. Inherited thrombocytopenias: an updated guide for clinicians. Blood Rev 2020; 48:100784. [PMID: 33317862 DOI: 10.1016/j.blre.2020.100784] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
The great advances in the knowledge of inherited thrombocytopenias (ITs) made since the turn of the century have significantly changed our view of these conditions. To date, ITs encompass 45 disorders with different degrees of complexity of the clinical picture and very wide variability in the prognosis. They include forms characterized by thrombocytopenia alone, forms that present with other congenital defects, and conditions that predispose to acquire additional diseases over the course of life. In this review, we recapitulate the clinical features of ITs with emphasis on the forms predisposing to additional diseases. We then discuss the key issues for a rational approach to the diagnosis of ITs in clinical practice. Finally, we aim to provide an updated and comprehensive guide to the treatment of ITs, including the management of hemostatic challenges, the treatment of severe forms, and the approach to the manifestations that add to thrombocytopenia.
Collapse
Affiliation(s)
- Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy.
| | | |
Collapse
|
20
|
Zhou J, Yan Q, Tang C, Liao Y, Zhang Q, Wang X, Zhou X, Lai L, Zou Q. Development of a rabbit model of Wiskott-Aldrich syndrome. FASEB J 2020; 35:e21226. [PMID: 33236397 DOI: 10.1096/fj.202002118rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 11/11/2022]
Abstract
The Wiskott-Aldrich syndrome (WAS) is a severe recessive X-linked immunodeficiency resulting from loss-of-function mutations in the WAS gene. Mouse is the only mammalian model used for investigation of WAS pathogenesis. However, the mouse model does not accurately recapitulate WAS clinical phenotypes, thus, limiting its application in WAS clinical research. Herein, we report the generation of WAS knockout (KO) rabbits via embryo co-injection of Cas9 mRNA and a pair of sgRNAs targeting exons 2 and 7. WAS KO rabbits exhibited many symptoms similar to those of WAS patients, including thrombocytopenia, bleeding tendency, infections, and reduced numbers of T cell in the spleen and peripheral blood. The WAS KO rabbit model provides a new valuable tool for preclinical trials of WAS treatment.
Collapse
Affiliation(s)
- Juanjuan Zhou
- School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Quanmei Yan
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Chengcheng Tang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Yuan Liao
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Quanjun Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China
| | - Xiaomin Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoqing Zhou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China
| | - Qingjian Zou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| |
Collapse
|
21
|
Fourzali K, Yosipovitch G. Genodermatoses with itch as a prominent feature. J Eur Acad Dermatol Venereol 2020; 35:807-814. [PMID: 32977353 DOI: 10.1111/jdv.16963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022]
Abstract
A number of inherited conditions cause chronic itch as a part of the recognized phenotype. Advances in the understanding of the genetic factors that cause these diseases elucidate the molecular underpinning of itch as a symptom. Our knowledge of the causes of chronic itch has also advanced, providing an opportunity to integrate the genetic pathophysiology with the molecular landscape of chronic itch mediators. This article reviews select genodermatoses that have itch as a predominant feature with a focus on the pathophysiology of the disease, how it may lead to itch and potential therapeutic targets.
Collapse
Affiliation(s)
- K Fourzali
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - G Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
22
|
Burroughs LM, Petrovic A, Brazauskas R, Liu X, Griffith LM, Ochs HD, Bleesing JJ, Edwards S, Dvorak CC, Chaudhury S, Prockop SE, Quinones R, Goldman FD, Quigg TC, Chandrakasan S, Smith AR, Parikh S, Dávila Saldaña BJ, Thakar MS, Phelan R, Shenoy S, Forbes LR, Martinez C, Chellapandian D, Shereck E, Miller HK, Kapoor N, Barnum JL, Chong H, Shyr DC, Chen K, Abu-Arja R, Shah AJ, Weinacht KG, Moore TB, Joshi A, DeSantes KB, Gillio AP, Cuvelier GDE, Keller MD, Rozmus J, Torgerson T, Pulsipher MA, Haddad E, Sullivan KE, Logan BR, Kohn DB, Puck JM, Notarangelo LD, Pai SY, Rawlings DJ, Cowan MJ. Excellent outcomes following hematopoietic cell transplantation for Wiskott-Aldrich syndrome: a PIDTC report. Blood 2020; 135:2094-2105. [PMID: 32268350 PMCID: PMC7273831 DOI: 10.1182/blood.2019002939] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/20/2020] [Indexed: 01/14/2023] Open
Abstract
Wiskott-Aldrich syndrome (WAS) is an X-linked disease caused by mutations in the WAS gene, leading to thrombocytopenia, eczema, recurrent infections, autoimmune disease, and malignancy. Hematopoietic cell transplantation (HCT) is the primary curative approach, with the goal of correcting the underlying immunodeficiency and thrombocytopenia. HCT outcomes have improved over time, particularly for patients with HLA-matched sibling and unrelated donors. We report the outcomes of 129 patients with WAS who underwent HCT at 29 Primary Immune Deficiency Treatment Consortium centers from 2005 through 2015. Median age at HCT was 1.2 years. Most patients (65%) received myeloablative busulfan-based conditioning. With a median follow-up of 4.5 years, the 5-year overall survival (OS) was 91%. Superior 5-year OS was observed in patients <5 vs ≥5 years of age at the time of HCT (94% vs 66%; overall P = .0008). OS was excellent regardless of donor type, even in cord blood recipients (90%). Conditioning intensity did not affect OS, but was associated with donor T-cell and myeloid engraftment after HCT. Specifically, patients who received fludarabine/melphalan-based reduced-intensity regimens were more likely to have donor myeloid chimerism <50% early after HCT. In addition, higher platelet counts were observed among recipients who achieved full (>95%) vs low-level (5%-49%) donor myeloid engraftment. In summary, HCT outcomes for WAS have improved since 2005, compared with prior reports. HCT at a younger age continues to be associated with superior outcomes supporting the recommendation for early HCT. High-level donor myeloid engraftment is important for platelet reconstitution after either myeloablative or busulfan-containing reduced intensity conditioning. (This trial was registered at www.clinicaltrials.gov as #NCT02064933.).
Collapse
Affiliation(s)
- Lauri M Burroughs
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Pediatrics, University of Washington-Seattle Children's Hospital, Seattle, WA
| | - Aleksandra Petrovic
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Pediatrics, University of Washington-Seattle Children's Hospital, Seattle, WA
| | - Ruta Brazauskas
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI
| | - Xuerong Liu
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI
| | - Linda M Griffith
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hans D Ochs
- Department of Pediatrics, University of Washington-Seattle Children's Hospital, Seattle, WA
| | - Jack J Bleesing
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH
| | - Stephanie Edwards
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH
| | - Christopher C Dvorak
- Pediatric Allergy, Immunology, and Blood and Marrow Transplant Division, University of California, San Francisco Benioff Children's Hospital, San Francisco, CA
| | - Sonali Chaudhury
- Division of Hematology, Oncology, and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago-Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Susan E Prockop
- Bone Marrow Transplant Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ralph Quinones
- Pediatric Bone Marrow Transplant (BMT) and Cellular Therapy Section, Department of Pediatrics, The University of Colorado School of Medicine, Aurora, CO
| | - Frederick D Goldman
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL
| | - Troy C Quigg
- Texas Transplant Institute, Methodist Children's Hospital, San Antonio, TX
| | | | - Angela R Smith
- Division of Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN
| | | | - Blachy J Dávila Saldaña
- Division of Blood and Marrow Transplantation, Children's National Hospital-George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Monica S Thakar
- Center for Blood and Marrow Transplant Research-Division of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI
| | - Rachel Phelan
- Center for Blood and Marrow Transplant Research-Division of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI
| | - Shalini Shenoy
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Lisa R Forbes
- Department of Pediatrics, Baylor College of Medicine Section of Immunology, Allergy, and Retrovirology, Texas Children's Hospital, Baylor, TX
| | - Caridad Martinez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital Cancer Center, Baylor, TX
| | - Deepak Chellapandian
- Blood and Marrow Transplant, Johns Hopkins All Children's Hospital, St. Petersburg, FL
| | - Evan Shereck
- Division of Pediatric Hematology/Oncology, Oregon Health and Science University, Portland, OR
| | | | - Neena Kapoor
- Transplantation and Cellular Therapy Program, Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | - Hey Chong
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - David C Shyr
- Division of Pediatric Hematology/Oncology, Primary Children's Hospital, University of Utah School of Medicine, Salt Lake City, UT
| | - Karin Chen
- Division of Allergy and Immunology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT
| | | | - Ami J Shah
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine Pediatric Stem Cell Transplantation, Stanford University, Stanford, CA
| | - Katja G Weinacht
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine Pediatric Stem Cell Transplantation, Stanford University, Stanford, CA
| | - Theodore B Moore
- Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA
| | - Avni Joshi
- Mayo Clinic Children's Center, Rochester, MN
| | - Kenneth B DeSantes
- American Family Children's Hospital, University of Wisconsin, Madison, WI
| | - Alfred P Gillio
- Institute for Pediatric Cancer and Blood Disorders, Hackensack University Medical Center, Hackensack, NJ
| | | | - Michael D Keller
- Division of Allergy & Immunology, Children's National Hospital, Washington, DC
- GW Cancer Center, George Washington University, Washington, DC
| | - Jacob Rozmus
- Children's & Women's Health Centre of British Columbia, Vancouver, BC, Canada
| | - Troy Torgerson
- Department of Pediatrics, University of Washington-Seattle Children's Hospital, Seattle, WA
| | - Michael A Pulsipher
- Transplantation and Cellular Therapy Program, Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Elie Haddad
- Pediatric Immunology and Rheumatology Division, CHU Sainte-Justine, Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Kathleen E Sullivan
- Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Brent R Logan
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI
| | - Donald B Kohn
- Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA
| | - Jennifer M Puck
- Pediatric Allergy, Immunology, and Blood and Marrow Transplant Division, University of California, San Francisco Benioff Children's Hospital, San Francisco, CA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Sung-Yun Pai
- Division of Hematology-Oncology, Boston Children's Hospital, Boston, MA; and
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - David J Rawlings
- Department of Pediatrics, University of Washington-Seattle Children's Hospital, Seattle, WA
| | - Morton J Cowan
- Pediatric Allergy, Immunology, and Blood and Marrow Transplant Division, University of California, San Francisco Benioff Children's Hospital, San Francisco, CA
| |
Collapse
|
23
|
Determinants of neurological syndromes caused by varicella zoster virus (VZV). J Neurovirol 2020; 26:482-495. [PMID: 32495195 PMCID: PMC7438298 DOI: 10.1007/s13365-020-00857-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/24/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022]
Abstract
Varicella zoster virus (VZV) is a pathogenic human herpes virus which causes varicella as a primary infection, following which it becomes latent in peripheral autonomic, sensory, and cranial nerve ganglionic neurons from where it may reactivate after decades to cause herpes zoster. VZV reactivation may also cause a wide spectrum of neurological syndromes, in particular, acute encephalitis and vasculopathy. While there is potentially a large number of coding viral mutations that might predispose certain individuals to VZV infections, in practice, a variety of host factors are the main determinants of VZV infection, both disseminated and specifically affecting the nervous system. Host factors include increasing age with diminished cell-mediated immunity to VZV, several primary immunodeficiency syndromes, secondary immunodeficiency syndromes, and drug-induced immunosuppression. In some cases, the molecular immunological basis underlying the increased risk of VZV infections has been defined, in particular, the role of POL III mutations, but in other cases, the mechanisms have yet to be determined. The role of immunization in immunosuppressed individuals as well as its possible efficacy in preventing both generalized and CNS-specific infections will require further investigation to clarify in such patients.
Collapse
|
24
|
Eczematous dermatitis in primary immunodeficiencies: A review of cutaneous clues to diagnosis. Clin Immunol 2020; 211:108330. [DOI: 10.1016/j.clim.2019.108330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 11/23/2022]
|
25
|
Human inborn errors of immunity to herpes viruses. Curr Opin Immunol 2020; 62:106-122. [PMID: 32014647 DOI: 10.1016/j.coi.2020.01.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022]
Abstract
Infections with any of the nine human herpes viruses (HHV) can be asymptomatic or life-threatening. The study of patients with severe diseases caused by HHVs, in the absence of overt acquired immunodeficiency, has led to the discovery or diagnosis of various inborn errors of immunity. The related inborn errors of adaptive immunity disrupt α/β T-cell rather than B-cell immunity. Affected patients typically develop HHV infections in the context of other infectious diseases. However, this is not always the case, as illustrated by inborn errors of SAP-dependent T-cell immunity to EBV-infected B cells. The related inborn errors of innate immunity disrupt leukocytes other than T and B cells, non-hematopoietic cells, or both. Patients typically develop only a single type of infection due to HHV, although, again, this is not always the case, as illustrated by inborn errors of TLR3 immunity resulting in HSV1 encephalitis in some patients and influenza pneumonitis in others. Most severe HHV infections in otherwise healthy patients remains unexplained. The forward human genetic dissection of isolated and syndromic HHV-driven illnesses will establish the molecular and cellular basis of protective immunity to HHVs, paving the way for novel diagnosis and management strategies.
Collapse
|
26
|
Albert MH, Freeman AF. Wiskott-Aldrich Syndrome (WAS) and Dedicator of Cytokinesis 8- (DOCK8) Deficiency. Front Pediatr 2019; 7:451. [PMID: 31750279 PMCID: PMC6848221 DOI: 10.3389/fped.2019.00451] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/17/2019] [Indexed: 01/04/2023] Open
Abstract
Both Wiskott-Aldrich syndrome (WAS) and dedicator of cytokinesis 8 (DOCK8) deficiency are primary immunodeficiency diseases caused by mutations in genes that result in defective organization of the cytoskeleton in hematopoietic tissues. They share some overlapping features such as a combined immunodeficiency, eczema and a predisposition to autoimmunity and malignancy, but also have some unique features that make them relatively easy to diagnose by clinical means. Both diseases can be cured by HSCT in a large proportion of patients. In WAS it is sometimes difficult to establish an indication for HSCT due to the large variability of disease severity, while HSCT is probably indicated in all patients affected by DOCK8 deficiency. There is considerably more published HSCT experience for WAS than for DOCK8 deficiency, but many open questions remain, which will be discussed in this review.
Collapse
Affiliation(s)
- Michael H Albert
- Dr. von Hauner University Children's Hospital, Ludwig-Maximilians Universität, Munich, Germany
| | - Alexandra F Freeman
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| |
Collapse
|
27
|
Martire B, Azzari C, Badolato R, Canessa C, Cirillo E, Gallo V, Graziani S, Lorenzini T, Milito C, Panza R, Moschese V. Vaccination in immunocompromised host: Recommendations of Italian Primary Immunodeficiency Network Centers (IPINET). Vaccine 2018; 36:3541-3554. [PMID: 29426658 DOI: 10.1016/j.vaccine.2018.01.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/29/2017] [Accepted: 01/24/2018] [Indexed: 12/13/2022]
Abstract
Infectious complications are a major cause of morbidity and mortality in patients with primary or secondary immunodeficiency. Prevention of infectious diseases by vaccines is among the most effective healthcare measures mainly for these subjects. However immunocompromised people vary in their degree of immunosuppression and susceptibility to infection and, therefore, represent a heterogeneous population with regard to immunization. To date there is no well- established evidence for use of vaccines in immunodeficient patients, and indications are not clearly defined even in high-quality reviews and in most of the guidelines prepared to provide recommendations for the active vaccination of immunocompromised hosts. The aim of this document is to issue recommendations based on published literature and the collective experience of the Italian primary immunodeficiency centers, about how and when vaccines can be used in immunocompromised patients, in order to facilitate physician decisions and to ensure the best immune protection with the lowest risk to the health of the patient.
Collapse
Affiliation(s)
- Baldassarre Martire
- Paediatric Hematology Oncology Unit, "Policlinico-Giovanni XXII" Hospital, University of Bari, Italy.
| | - Chiara Azzari
- Pediatric Immunology Unit "Anna Meyer" Hospital University of Florence, Italy
| | - Raffaele Badolato
- Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Clementina Canessa
- Pediatric Immunology Unit "Anna Meyer" Hospital University of Florence, Italy
| | - Emilia Cirillo
- Department of Translational Medical Sciences, Pediatric section, Federico II University, Naples, Italy
| | - Vera Gallo
- Department of Translational Medical Sciences, Pediatric section, Federico II University, Naples, Italy
| | - Simona Graziani
- Paediatric Allergology and Immunology Unit, Policlinico Tor Vergata, University of Rome Tor, Vergata, Italy
| | - Tiziana Lorenzini
- Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - Raffaella Panza
- Paediatric Hematology Oncology Unit, "Policlinico-Giovanni XXII" Hospital, University of Bari, Italy
| | - Viviana Moschese
- Paediatric Allergology and Immunology Unit, Policlinico Tor Vergata, University of Rome Tor, Vergata, Italy
| | | |
Collapse
|
28
|
Pai SY, Notarangelo LD. Congenital Disorders of Lymphocyte Function. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00051-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
29
|
Ghraichy M, Galson JD, Kelly DF, Trück J. B-cell receptor repertoire sequencing in patients with primary immunodeficiency: a review. Immunology 2017; 153:145-160. [PMID: 29140551 DOI: 10.1111/imm.12865] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/25/2017] [Accepted: 11/07/2017] [Indexed: 12/17/2022] Open
Abstract
The advent of next-generation sequencing (NGS) now allows a detailed assessment of the adaptive immune system in health and disease. In particular, high-throughput B-cell receptor (BCR) repertoire sequencing provides detailed information about the functionality and abnormalities of the B-cell system. However, it is mostly unknown how the BCR repertoire is altered in the context of primary immunodeficiencies (PID) and whether findings are consistent throughout phenotypes and genotypes. We have performed an extensive literature search of the published work on BCR repertoire sequencing in PID patients, including several forms of predominantly antibody disorders and combined immunodeficiencies. It is somewhat surprising that BCR repertoires, even from severe clinical phenotypes, often show only mild abnormalities and that diversity or immunoglobulin gene segment usage is generally preserved to some extent. Despite the great variety of wet laboratory and analytical methods that were used in the different studies, several findings are common to most investigated PIDs, such as the increased usage of gene segments that are associated with self-reactivity. These findings suggest that BCR repertoire characteristics may be used to assess the functionality of the B-cell compartment irrespective of the underlying defect. With the use of NGS approaches, there is now the opportunity to apply BCR repertoire sequencing to multiple patients and explore the PID BCR repertoire in more detail. Ultimately, using BCR repertoire sequencing in translational research could aid the management of PID patients by improving diagnosis, estimating functionality of the immune system and improving assessment of prognosis.
Collapse
Affiliation(s)
- Marie Ghraichy
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Jacob D Galson
- Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Dominic F Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Johannes Trück
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
BCR-ABL1-induced downregulation of WASP in chronic myeloid leukemia involves epigenetic modification and contributes to malignancy. Cell Death Dis 2017; 8:e3114. [PMID: 29022901 PMCID: PMC5680580 DOI: 10.1038/cddis.2017.458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 01/26/2023]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disease caused by the BCR–ABL1 tyrosine kinase (TK). The development of TK inhibitors (TKIs) revolutionized the treatment of CML patients. However, TKIs are not effective to those at advanced phases when amplified BCR–ABL1 levels and increased genomic instability lead to secondary oncogenic modifications. Wiskott–Aldrich syndrome protein (WASP) is an important regulator of signaling transduction in hematopoietic cells and was shown to be an endogenous inhibitor of the c-ABL TK. Here, we show that the expression of WASP decreases with the progression of CML, inversely correlates with the expression of BCR–ABL1 and is particularly low in blast crisis. Enforced expression of BCR–ABL1 negatively regulates the expression of WASP. Decreased expression of WASP is partially due to DNA methylation of the proximal WASP promoter. Importantly, lower levels of WASP in CML advanced phase patients correlate with poorer overall survival (OS) and is associated with TKI response. Interestingly, enforced expression of WASP in BCR–ABL1-positive K562 cells increases the susceptibility to apoptosis induced by TRAIL or chemotherapeutic drugs and negatively modulates BCR–ABL1-induced tumorigenesis in vitro and in vivo. Taken together, our data reveal a novel molecular mechanism that operates in BCR–ABL1-induced tumorigenesis that can be used to develop new strategies to help TKI-resistant, CML patients in blast crisis (BC).
Collapse
|
31
|
Role of granule proteases in the life and death of neutrophils. Biochem Biophys Res Commun 2017; 482:473-481. [PMID: 28212734 DOI: 10.1016/j.bbrc.2016.11.086] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 02/07/2023]
Abstract
Neutrophils constitute a crucial component of the innate immune defenses against microbes. Produced in the bone marrow and patrolling in blood vessels, neutrophils are recruited to injured tissues and are immediately active to contain pathogen invasion. Neutrophils undergo programmed cell death by multiple, context-specific pathways, which have consequences on immunopathology and disease outcome. Studies in the last decade indicate additional functions for neutrophils - or a subset of neutrophils - in modulating adaptive responses and tumor progression. Neutrophil granules contain abundant amounts of various proteases, which are directly implicated in protective and pathogenic functions of neutrophils. It now emerges that neutral serine proteases such as cathepsin G and proteinase-3 also contribute to the neutrophil life cycle, but do so via different pathways than that of the aspartate protease cathepsin D and that of mutants of the serine protease elastase. The aim of this review is to appraise the present knowledge of the function of neutrophil granule proteases and their inhibitors in neutrophil cell death, and to integrate these findings in the current understandings of neutrophil life cycle and programmed cell death pathways.
Collapse
|
32
|
He JX, Chen GR, Xu BP, Liu XY, Gui JG, Shen KL, Jiang ZF, Lau YL. [Wiskott-Aldrich syndrome with special phenotypes: report of 3 cases]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:250-253. [PMID: 28202128 PMCID: PMC7389471 DOI: 10.7499/j.issn.1008-8830.2017.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Jian-Xin He
- Department of Respiratory Disease, Beijing Children's Hospital, Capital Medical University, 100045 Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Bastida JM, Del Rey M, Revilla N, Benito R, Perez-Andrés M, González B, Riesco S, Janusz K, Padilla J, Hortal Benito-Sendin A, Bueno D, Blanco E, Hernández-Rivas M, Vicente V, Rivera J, González-Porras R, Lozano ML. Wiskott-Aldrich syndrome in a child presenting with macrothrombocytopenia. Platelets 2016; 28:417-420. [PMID: 27885891 DOI: 10.1080/09537104.2016.1246715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Wiskott-Aldrich syndrome (WAS) is a rare X-linked recessive disease resulting from variants in the WAS gene, characterized by a triad of immunodeficiency, eczema, and thrombocytopenia. Despite the fact that WAS is traditionally differentiated from immune thrombocytopenia (ITP) by small size of WAS platelets, in practice, microthrombocytopenia may occasionally not be present, and in certain cases, WAS patients exhibit some parallelism to ITP patients. We characterized one patient presenting with the classic form of the disease but increased mean platelet volume. Molecular studies revealed a novel hemizygous 1-bp deletion in WAS gene, c.802delC, leading to a frameshift and stop codon at amino acid 308 (p.Arg268Glyfs*40). Next-generation sequencing of a total of 70 additional genes known to harbor variants implicated in inherited platelet disorders did not identify additional defects. The pathogenesis of macrothrombocytopenia in this case is not known, but probably the coexistence of a still unidentified additional genetic variant might be involved.
Collapse
Affiliation(s)
- Jose Maria Bastida
- a Department of Hematology , H. Universitario de Salamanca-IBSAL , Salamanca , Spain
| | - Monica Del Rey
- b IBSAL, IBMCC, CIC , Universidad de Salamanca-CSIC , Salamanca , Spain
| | - Nuria Revilla
- c Centro Regional de Hemodonación , H. Universitario Morales Meseguer, IMIB-Arrixaca , Murcia , Spain
| | - Rocio Benito
- b IBSAL, IBMCC, CIC , Universidad de Salamanca-CSIC , Salamanca , Spain
| | - Martin Perez-Andrés
- d Cancer Research Centre (IBMCC, CSIC-USAL), Institute of Biomedical Research of Salamanca (IBSAL), and Cytometry Service (NUCLEUS) and Department of Medicine , University of Salamanca , Salamanca , Spain
| | - Berta González
- e Department of Pediatrics , H. Universitario La Paz , Madrid , Spain
| | - Susana Riesco
- f Department of Pediatrics , H. Universitario de Salamanca-IBSAL , Salamanca , Spain
| | - Kamila Janusz
- b IBSAL, IBMCC, CIC , Universidad de Salamanca-CSIC , Salamanca , Spain
| | - Jose Padilla
- c Centro Regional de Hemodonación , H. Universitario Morales Meseguer, IMIB-Arrixaca , Murcia , Spain
| | | | - David Bueno
- e Department of Pediatrics , H. Universitario La Paz , Madrid , Spain
| | - Elena Blanco
- c Centro Regional de Hemodonación , H. Universitario Morales Meseguer, IMIB-Arrixaca , Murcia , Spain
| | - Maria Hernández-Rivas
- a Department of Hematology , H. Universitario de Salamanca-IBSAL , Salamanca , Spain.,b IBSAL, IBMCC, CIC , Universidad de Salamanca-CSIC , Salamanca , Spain
| | - Vicente Vicente
- c Centro Regional de Hemodonación , H. Universitario Morales Meseguer, IMIB-Arrixaca , Murcia , Spain.,g Grupo de Investigación CB15/00055 del Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Instituto de Salud Carlos III (ISCIII) , Madrid , Spain
| | - Jose Rivera
- c Centro Regional de Hemodonación , H. Universitario Morales Meseguer, IMIB-Arrixaca , Murcia , Spain.,g Grupo de Investigación CB15/00055 del Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Instituto de Salud Carlos III (ISCIII) , Madrid , Spain
| | - Ramon González-Porras
- a Department of Hematology , H. Universitario de Salamanca-IBSAL , Salamanca , Spain
| | - Maria Luisa Lozano
- c Centro Regional de Hemodonación , H. Universitario Morales Meseguer, IMIB-Arrixaca , Murcia , Spain.,g Grupo de Investigación CB15/00055 del Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Instituto de Salud Carlos III (ISCIII) , Madrid , Spain
| |
Collapse
|
35
|
Lexmond WS, Goettel JA, Lyons JJ, Jacobse J, Deken MM, Lawrence MG, DiMaggio TH, Kotlarz D, Garabedian E, Sackstein P, Nelson CC, Jones N, Stone KD, Candotti F, Rings EH, Thrasher AJ, Milner JD, Snapper SB, Fiebiger E. FOXP3+ Tregs require WASP to restrain Th2-mediated food allergy. J Clin Invest 2016; 126:4030-4044. [PMID: 27643438 PMCID: PMC5096801 DOI: 10.1172/jci85129] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 08/16/2016] [Indexed: 12/26/2022] Open
Abstract
In addition to the infectious consequences of immunodeficiency, patients with Wiskott-Aldrich syndrome (WAS) often suffer from poorly understood exaggerated immune responses that result in autoimmunity and elevated levels of serum IgE. Here, we have shown that WAS patients and mice deficient in WAS protein (WASP) frequently develop IgE-mediated reactions to common food allergens. WASP-deficient animals displayed an adjuvant-free IgE-sensitization to chow antigens that was most pronounced for wheat and soy and occurred under specific pathogen-free as well as germ-free housing conditions. Conditional deletion of Was in FOXP3+ Tregs resulted in more severe Th2-type intestinal inflammation than that observed in mice with global WASP deficiency, indicating that allergic responses to food allergens are dependent upon loss of WASP expression in this immune compartment. While WASP-deficient Tregs efficiently contained Th1- and Th17-type effector differentiation in vivo, they failed to restrain Th2 effector responses that drive allergic intestinal inflammation. Loss of WASP was phenotypically associated with increased GATA3 expression in effector memory FOXP3+ Tregs, but not in naive-like FOXP3+ Tregs, an effect that occurred independently of increased IL-4 signaling. Our results reveal a Treg-specific role for WASP that is required for prevention of Th2 effector cell differentiation and allergic sensitization to dietary antigens.
Collapse
Affiliation(s)
- Willem S. Lexmond
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeremy A. Goettel
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan J. Lyons
- Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Justin Jacobse
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Marion M. Deken
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Monica G. Lawrence
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Thomas H. DiMaggio
- Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Daniel Kotlarz
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | | - Paul Sackstein
- Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Celeste C. Nelson
- Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Nina Jones
- Clinical Research Directorate/Clinical Monitoring Research Program (CMRP), Leidos Biomedical Research Inc., National Cancer Institute (NCI) Campus at Frederick, Frederick, Maryland, USA
| | - Kelly D. Stone
- Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Fabio Candotti
- Genetics and Molecular Biology Branch, National Human Genome Research Institute (NHGRI), NIH, Bethesda, Maryland, USA
| | - Edmond H.H.M. Rings
- Departments of Pediatrics, Erasmus University, Erasmus Medical Center, Rotterdam and Leiden University, University Medical Center Leiden, Leiden, Netherlands
| | - Adrian J. Thrasher
- Great Ormond Street Hospital NHS Trust, London and Institute of Child Health, University College London, London, United Kingdom
| | - Joshua D. Milner
- Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Scott B. Snapper
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Edda Fiebiger
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Arjona Aguilera C, Albarrán Planelles C, Tercedor Sánchez J. Trastornos genéticos con eccema moderado-grave refractario y elevación de inmunoglobulina E: diagnóstico diferencial. ACTAS DERMO-SIFILIOGRAFICAS 2016; 107:116-24. [DOI: 10.1016/j.ad.2015.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/12/2015] [Accepted: 09/19/2015] [Indexed: 02/06/2023] Open
|
37
|
Arjona Aguilera C, Albarrán Planelles C, Tercedor Sánchez J. Differential Diagnosis of Genetic Disorders Associated with Moderate to Severe Refractory Eczema and Elevated Immunoglobulin E. ACTAS DERMO-SIFILIOGRAFICAS 2016. [DOI: 10.1016/j.adengl.2016.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
38
|
Schmiegelow K. Treatment-related toxicities in children with acute lymphoblastic leukaemia predisposition syndromes. Eur J Med Genet 2016; 59:654-660. [PMID: 26876989 DOI: 10.1016/j.ejmg.2016.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 12/11/2022]
Abstract
Although most children with acute lymphoblastic leukaemia (ALL) do not harbor germline mutations that strongly predispose them to development of this malignancy, large syndrome registries and detailed mapping of exomes or whole genomes of familial leukaemia kindreds have revealed that 3-5% of all childhood ALL cases are due to such germline mutations, but the figure may be higher. Most of these syndromes are primarily characterized by their non-malignant phenotype, whereas ALL may be the dominating or even only striking manifestation of the syndrome in some families. Identification of such ALL patients is important in order to adjust therapy and offer genetic counseling and cancer surveillance to mutation carriers in the family. In the coming years large genomic screening projects are expected to reveal further hitherto unrecognised familial ALL syndromes. The treatment of ALL cases harboring cancer predisposing mutations can be challenging for both the physician and the patient due to their preexisting symptoms, their reduced tolerance to radio- and/or chemotherapy with enhanced risk of life-threatening organ toxicities, and the paucity of data from ALL patients with the same or similar syndromes being treated by contemporary protocols. Recent studies clearly indicate that many of these patients stand a good chance of cure, and that they should be offered chemotherapy with the intention to cure. Some of these syndromes are characterized by reduced tolerance to radiotherapy and/or specific anticancer agents, while others are not. This review summarises our current knowledge on the risk of acute toxicities for these ALL patients and provides guidance for treatment adjustments.
Collapse
Affiliation(s)
- Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark; Institute of Clinical Medicine, University of Copenhagen, Denmark; Division of Pediatric Hematology/Oncology, New York, USA; Perlmutter Cancer Center, NYU Langone Medical Center, New York, USA.
| |
Collapse
|
39
|
Walkovich K, Connelly JA. Primary immunodeficiency in the neonate: Early diagnosis and management. Semin Fetal Neonatal Med 2016; 21:35-43. [PMID: 26776073 DOI: 10.1016/j.siny.2015.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many primary immunodeficiencies (PIDs) manifest in the neonatal period but can be challenging to diagnose and manage optimally. In part, the difficulty stems from the natural immaturity of the neonatal immune system that may mask immune deficits and/or complicate interpretation of clinical findings and laboratory assays. The great diversity of PIDs--from innate immune system defects to those that impact the humoral and/or cellular components of the adaptive immune system--and the rapid rate at which new PIDs are being discovered makes it challenging for practitioners to stay current. Moreover, recent appreciation for immune deficiencies that lead to autoinflammation and autoimmunity have broadened the spectrum of neonatal PID, adding additional complexity to an already intricate field. This article serves to highlight the deficiencies in the neonatal immune system, while providing a review of the more common PIDs that present in the neonate and guidelines for diagnosis and supportive care.
Collapse
Affiliation(s)
- Kelly Walkovich
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical Center, Ann Arbor, MI, USA.
| | - James A Connelly
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
40
|
Galy A, Corre G, Cavazzana M, Hacein-Bey-Abina S. [Efficacy and safety of gene therapy for Wiskott-Aldrich syndrome]. Med Sci (Paris) 2015; 31:1066-9. [PMID: 26672655 DOI: 10.1051/medsci/20153112006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Anne Galy
- Généthon, unité mixte de recherche Integrare UMR S951, 1bis, rue de l'Internationale, F-91000 Évry, France - Inserm UMR S951 ; université d'Évry Val d'Essonne ; EPHE ; Généthon, 1bis, rue de l'Internationale, F-91000 Évry, France
| | - Guillaume Corre
- Généthon, unité mixte de recherche Integrare UMR S951, 1bis, rue de l'Internationale, F-91000 Évry, France - Inserm UMR S951 ; université d'Évry Val d'Essonne ; EPHE ; Généthon, 1bis, rue de l'Internationale, F-91000 Évry, France
| | - Marina Cavazzana
- Département de biothérapies, hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France - CIC biothérapies, groupe hospitalier universitaire Ouest, Assistance Publique-Hôpitaux de Paris, Inserm, Paris, France - Paris Descartes-Sorbonne Paris Cité Université, Institut Imagine, Paris, France
| | - Salima Hacein-Bey-Abina
- Département de biothérapies, hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France - CIC biothérapies, groupe hospitalier universitaire Ouest, Assistance Publique-Hôpitaux de Paris, Inserm, Paris, France - UTCBS CNRS 8258-Inserm U1022, Faculté des sciences pharmaceutiques et biologiques, université Paris Descartes, Paris, France - Service d'Immunologie Biologique, Groupe Hospitalier Universitaire Paris-Sud, Le-Kremlin-Bicêtre, France
| |
Collapse
|
41
|
Abstract
BACKGROUND Wiskott-Aldrich syndrome is a rare X-linked immunodeficiency disorder with a variable phenotype. CASE CHARACTERISTICS 3.5-year-old boy diagnosed with Wiskott-Aldrich syndrome. OBSERVATION Unusual and persistent thrombocytopenia with increased platelet volume (>10fL). He did not exhibit characteristic clinical and laboratory finding for the syndrome. OUTCOME Maternally inherited causative mutation in the exon 2 of the WAS gene was disclosed. MESSAGE This is a need for multidisciplinary assessment of patients with congenital or early infantile thrombocytopenia, including testing for mutations of the WAS gene in all unexplained cases even in the absence of characteristic microthrombocytopenia.
Collapse
|
42
|
Filteau M, Hamel V, Pouliot MC, Gagnon-Arsenault I, Dubé AK, Landry CR. Evolutionary rescue by compensatory mutations is constrained by genomic and environmental backgrounds. Mol Syst Biol 2015; 11:832. [PMID: 26459777 PMCID: PMC4631203 DOI: 10.15252/msb.20156444] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Since deleterious mutations may be rescued by secondary mutations during evolution, compensatory evolution could identify genetic solutions leading to therapeutic targets. Here, we tested this hypothesis and examined whether these solutions would be universal or would need to be adapted to one's genetic and environmental makeups. We performed experimental evolutionary rescue in a yeast disease model for the Wiskott–Aldrich syndrome in two genetic backgrounds and carbon sources. We found that multiple aspects of the evolutionary rescue outcome depend on the genotype, the environment, or a combination thereof. Specifically, the compensatory mutation rate and type, the molecular rescue mechanism, the genetic target, and the associated fitness cost varied across contexts. The course of compensatory evolution is therefore highly contingent on the initial conditions in which the deleterious mutation occurs. In addition, these results reveal biologically favored therapeutic targets for the Wiskott–Aldrich syndrome, including the target of an unrelated clinically approved drug. Our results experimentally illustrate the importance of epistasis and environmental evolutionary constraints that shape the adaptive landscape and evolutionary rate of molecular networks.
Collapse
Affiliation(s)
- Marie Filteau
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval, Québec, Qc, Canada
| | - Véronique Hamel
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval, Québec, Qc, Canada
| | - Marie-Christine Pouliot
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval, Québec, Qc, Canada
| | - Isabelle Gagnon-Arsenault
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval, Québec, Qc, Canada
| | - Alexandre K Dubé
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval, Québec, Qc, Canada
| | - Christian R Landry
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval, Québec, Qc, Canada
| |
Collapse
|
43
|
Bonilla FA, Khan DA, Ballas ZK, Chinen J, Frank MM, Hsu JT, Keller M, Kobrynski LJ, Komarow HD, Mazer B, Nelson RP, Orange JS, Routes JM, Shearer WT, Sorensen RU, Verbsky JW, Bernstein DI, Blessing-Moore J, Lang D, Nicklas RA, Oppenheimer J, Portnoy JM, Randolph CR, Schuller D, Spector SL, Tilles S, Wallace D. Practice parameter for the diagnosis and management of primary immunodeficiency. J Allergy Clin Immunol 2015; 136:1186-205.e1-78. [PMID: 26371839 DOI: 10.1016/j.jaci.2015.04.049] [Citation(s) in RCA: 452] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/18/2015] [Accepted: 04/23/2015] [Indexed: 02/07/2023]
Abstract
The American Academy of Allergy, Asthma & Immunology (AAAAI) and the American College of Allergy, Asthma & Immunology (ACAAI) have jointly accepted responsibility for establishing the "Practice parameter for the diagnosis and management of primary immunodeficiency." This is a complete and comprehensive document at the current time. The medical environment is a changing environment, and not all recommendations will be appropriate for all patients. Because this document incorporated the efforts of many participants, no single individual, including those who served on the Joint Task Force, is authorized to provide an official AAAAI or ACAAI interpretation of these practice parameters. Any request for information about or an interpretation of these practice parameters by the AAAAI or ACAAI should be directed to the Executive Offices of the AAAAI, the ACAAI, and the Joint Council of Allergy, Asthma & Immunology. These parameters are not designed for use by pharmaceutical companies in drug promotion.
Collapse
|
44
|
Kallikourdis M, Viola A, Benvenuti F. Human Immunodeficiencies Related to Defective APC/T Cell Interaction. Front Immunol 2015; 6:433. [PMID: 26379669 PMCID: PMC4551858 DOI: 10.3389/fimmu.2015.00433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/09/2015] [Indexed: 11/13/2022] Open
Abstract
The primary event for initiating adaptive immune responses is the encounter between T lymphocytes and antigen presenting cells (APCs) in the T cell area of secondary lymphoid organs and the formation of highly organized intercellular junctions referred to as immune synapses (IS). In vivo live-cell imaging of APC-T cell interactions combined to functional studies unveiled that T cell fate is dictated, in large part, by the stability of the initial contact. Immune cell interaction is equally important during delivery of T cell help to B cells and for the killing of target cells by cytotoxic T cells and NK cells. The critical role of contact dynamics and synapse stability on the immune response is well illustrated by human immune deficiencies in which disease pathogenesis is linked to altered adhesion or defective cross-talk between the synaptic partners. The Wiskott-Aldrich syndrome (WAS) is a severe primary immunodeficiency caused by mutations in the Wiskott-Aldrich syndrome protein (WASp), a scaffold that promotes actin polymerization and links TCR stimulation to T cell activation. Absence or mutations in WASp affects intercellular APC-T cell communications by interfering with multiple mechanisms on both sides of the IS. The warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is caused by mutations in CXCR4, a chemokine receptor that in mutant form leads to impairment of APC-T cell interactions. Present evidences suggest that other recently characterized primary immune deficiencies caused by mutation in genes linked to actin cytoskeletal reorganization, such as WIP and DOCK8, may also depend on altered synapse stability. Here, we will discuss in details the mechanisms of disturbed APC-T cell interactions in WAS and WHIM. Moreover, we will summarize the evidence pointing to a compromised conjugate formation in WIP, DOCK8, and X-linked lymphoproliferative syndrome.
Collapse
Affiliation(s)
- Marinos Kallikourdis
- Humanitas University , Rozzano , Italy ; Adaptive Immunity Laboratory, Humanitas Clinical and Research Center , Rozzano , Italy
| | | | - Federica Benvenuti
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology , Trieste , Italy
| |
Collapse
|
45
|
Geiger M, Wahlmüller F, Furtmüller M. Regulation of Neutrophil Serine Proteases by Intracellular Serpins. THE SERPIN FAMILY 2015. [PMCID: PMC7123840 DOI: 10.1007/978-3-319-22711-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neutrophil granules contain serine proteases that are central components of the antimicrobial weapons of the innate immune system. Neutrophil proteases also contribute to the amplification and resolution of inflammatory responses through defined proteolytic cleavage of mediators, cell surface receptors, and extracellular matrix proteins. In the blood and at mucosal surfaces, neutrophil serine proteases are regulated by serpins found in plasma and by non-serpin secreted inhibitors. Distinct mechanisms leading to neutrophil cell death have been described for the granule serine proteases, neutrophil elastase, cathepsin G, and proteinase-3. Granule leakage in neutrophils triggers death pathways mediated by cathepsin G and proteinase-3, and both proteases are tightly regulated by their inhibitor SERPINB1 in a cell intrinsic manner. Although stored in the same types of granules, neutrophil elastase does not significantly contribute to cell death following intracellular release from granules into the cytoplasm. However, heterozygous mutations in ELANE, the gene encoding elastase, are the cause of severe congenital neutropenia, a life-threatening condition characterized by the death of neutrophils at an early precursor stage in the bone marrow. This chapter focuses on recent work exploring the biology of clade B intracellular serpins that inhibit neutrophil serine proteases and their functions in neutrophil homeostasis and serine protease control at sites of inflammation.
Collapse
Affiliation(s)
- Margarethe Geiger
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Felix Wahlmüller
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Margareta Furtmüller
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
46
|
Recent advances in understanding the pathophysiology of primary T cell immunodeficiencies. Trends Mol Med 2015; 21:408-16. [DOI: 10.1016/j.molmed.2015.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 02/06/2023]
|
47
|
Pecci A. Diagnosis and treatment of inherited thrombocytopenias. Clin Genet 2015; 89:141-53. [PMID: 25920516 DOI: 10.1111/cge.12603] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 04/23/2015] [Accepted: 04/23/2015] [Indexed: 12/26/2022]
Abstract
Knowledge in the field of inherited thrombocytopenias (ITs) has greatly improved over the last 15 years. Several new genes responsible for thrombocytopenia have been identified leading to the definition of novel nosographic entities and to a much better characterization of the phenotypes of these diseases. To date, ITs encompass 22 disorders caused by mutations in 24 genes and characterized by different degrees of complexity and great variability in prognosis. Making a definite diagnosis is important for setting an appropriate follow-up, choosing the best treatments and providing proper counseling. Despite the abovementioned progress, diagnosis of ITs remains difficult and these disorders are still underdiagnosed. The purpose of this review is to provide an updated guide to the diagnosis of ITs based on simple procedures. Moreover, the currently available therapeutic options for these conditions are recapitulated and discussed.
Collapse
Affiliation(s)
- A Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| |
Collapse
|
48
|
Chovancova Z, Kuman M, Vlkova M, Litzman J. Successful renal transplantation in a patient with a Wiskott-Aldrich syndrome protein (WASP) gene mutation. Transpl Int 2015; 28:1005-9. [DOI: 10.1111/tri.12583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/26/2015] [Accepted: 04/07/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Zita Chovancova
- Department of Clinical Immunology and Allergy; St. Anne′s University Hospital; Brno Czech Republic
- Faculty of Medicine; Masaryk University; Brno Czech Republic
| | - Milan Kuman
- Cardiovascular and Transplant Surgery Centre; Brno Czech Republic
| | - Marcela Vlkova
- Department of Clinical Immunology and Allergy; St. Anne′s University Hospital; Brno Czech Republic
- Faculty of Medicine; Masaryk University; Brno Czech Republic
| | - Jiri Litzman
- Department of Clinical Immunology and Allergy; St. Anne′s University Hospital; Brno Czech Republic
- Faculty of Medicine; Masaryk University; Brno Czech Republic
| |
Collapse
|
49
|
Abina SHB, Gaspar HB, Blondeau J, Caccavelli L, Charrier S, Buckland K, Picard C, Six E, Himoudi N, Gilmour K, McNicol AM, Hara H, Xu-Bayford J, Rivat C, Touzot F, Mavilio F, Lim A, Treluyer JM, Héritier S, Lefrere F, Magalon J, Pengue-Koyi I, Honnet G, Blanche S, Sherman EA, Male F, Berry C, Malani N, Bushman FD, Fischer A, Thrasher AJ, Galy A, Cavazzana M. Outcomes following gene therapy in patients with severe Wiskott-Aldrich syndrome. JAMA 2015; 313:1550-63. [PMID: 25898053 PMCID: PMC4942841 DOI: 10.1001/jama.2015.3253] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IMPORTANCE Wiskott-Aldrich syndrome is a rare primary immunodeficiency associated with severe microthrombocytopenia. Partially HLA antigen-matched allogeneic hematopoietic stem cell (HSC) transplantation is often curative but is associated with significant comorbidity. OBJECTIVE To assess the outcomes and safety of autologous HSC gene therapy in Wiskott-Aldrich syndrome. DESIGN, SETTING, AND PARTICIPANTS Gene-corrected autologous HSCs were infused in 7 consecutive patients with severe Wiskott-Aldrich syndrome lacking HLA antigen-matched related or unrelated HSC donors (age range, 0.8-15.5 years; mean, 7 years) following myeloablative conditioning. Patients were enrolled in France and England and treated between December 2010 and January 2014. Follow-up of patients in this intermediate analysis ranged from 9 to 42 months. INTERVENTION A single infusion of gene-modified CD34+ cells with an advanced lentiviral vector. MAIN OUTCOMES AND MEASURES Primary outcomes were improvement at 24 months in eczema, frequency and severity of infections, bleeding tendency, and autoimmunity and reduction in disease-related days of hospitalization. Secondary outcomes were improvement in immunological and hematological characteristics and evidence of safety through vector integration analysis. RESULTS Six of the 7 patients were alive at the time of last follow-up (mean and median follow-up, 28 months and 27 months, respectively) and showed sustained clinical benefit. One patient died 7 months after treatment of preexisting drug-resistant herpes virus infection. Eczema and susceptibility to infections resolved in all 6 patients. Autoimmunity improved in 5 of 5 patients. No severe bleeding episodes were recorded after treatment, and at last follow-up, all 6 surviving patients were free of blood product support and thrombopoietic agonists. Hospitalization days were reduced from a median of 25 days during the 2 years before treatment to a median of 0 days during the 2 years after treatment. All 6 surviving patients exhibited high-level, stable engraftment of functionally corrected lymphoid cells. The degree of myeloid cell engraftment and of platelet reconstitution correlated with the dose of gene-corrected cells administered. No evidence of vector-related toxicity was observed clinically or by molecular analysis. CONCLUSIONS AND RELEVANCE This study demonstrated the feasibility of the use of gene therapy in patients with Wiskott-Aldrich syndrome. Controlled trials with larger numbers of patients are necessary to assess long-term outcomes and safety.
Collapse
Affiliation(s)
- Salima Hacein-Bey Abina
- Biotherapy Department, Necker Children’s Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
- UTCBS CNRS 8258- INSERM U1022, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
- Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, AP-HP, 78, rue du Général-Leclerc, 94270 Le-Kremlin-Bicêtre, France
| | - H. Bobby Gaspar
- Section of Molecular and Cellular Immunology, University College London Institute of Child Health, London, UK
- Dept of Clinical Immunology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Johanna Blondeau
- Biotherapy Department, Necker Children’s Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
| | - Laure Caccavelli
- Biotherapy Department, Necker Children’s Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
| | - Sabine Charrier
- INSERM, U951; University of Evry, UMR_S951; Molecular Immunology and Innovative Biotherapies, Genethon, Evry, F-91002 France
- Genethon, Evry, F-91002 France
| | - Karen Buckland
- Section of Molecular and Cellular Immunology, University College London Institute of Child Health, London, UK
- Dept of Clinical Immunology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Capucine Picard
- Centre d’Étude des Déficits Immunitaires, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
- Paris Descartes – Sorbonne Paris Cité University, Imagine Institute, Paris, France
- Immunology and Pediatric Hematology Department, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Emmanuelle Six
- Paris Descartes – Sorbonne Paris Cité University, Imagine Institute, Paris, France
- INSERM UMR 1163, Laboratory of human lymphohematopoiesis, Paris, France
| | - Nourredine Himoudi
- Section of Molecular and Cellular Immunology, University College London Institute of Child Health, London, UK
- Dept of Clinical Immunology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Kimberly Gilmour
- Section of Molecular and Cellular Immunology, University College London Institute of Child Health, London, UK
- Dept of Clinical Immunology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Anne-Marie McNicol
- Section of Molecular and Cellular Immunology, University College London Institute of Child Health, London, UK
- Dept of Clinical Immunology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Havinder Hara
- Section of Molecular and Cellular Immunology, University College London Institute of Child Health, London, UK
- Dept of Clinical Immunology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Jinhua Xu-Bayford
- Dept of Clinical Immunology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Christine Rivat
- Section of Molecular and Cellular Immunology, University College London Institute of Child Health, London, UK
- Dept of Clinical Immunology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Fabien Touzot
- Biotherapy Department, Necker Children’s Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
- Paris Descartes – Sorbonne Paris Cité University, Imagine Institute, Paris, France
- Immunology and Pediatric Hematology Department, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Annick Lim
- Groupe Immunoscope, Immunology Department, Institut Pasteur, Paris, France
| | - Jean-Marc Treluyer
- Clinical research Center Necker-Enfants Malades and Cochin Hospital Assistance Publique, Hôpitaux de Paris, Paris Descartes University
| | - Sébastien Héritier
- Paris Descartes – Sorbonne Paris Cité University, Imagine Institute, Paris, France
- Immunology and Pediatric Hematology Department, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Francois Lefrere
- Biotherapy Department, Necker Children’s Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jeremy Magalon
- Biotherapy Department, Necker Children’s Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
| | - Isabelle Pengue-Koyi
- Biotherapy Department, Necker Children’s Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
- Paris Descartes – Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | | | - Stéphane Blanche
- Paris Descartes – Sorbonne Paris Cité University, Imagine Institute, Paris, France
- Immunology and Pediatric Hematology Department, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Eric A. Sherman
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Frances Male
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Charles Berry
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Nirav Malani
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Frederic D. Bushman
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Alain Fischer
- Paris Descartes – Sorbonne Paris Cité University, Imagine Institute, Paris, France
- Immunology and Pediatric Hematology Department, Assistance Publique-Hôpitaux de Paris, Paris, France
- INSERM UMR 1163, Laboratory of human lymphohematopoiesis, Paris, France
- Collège de France, Paris, France
| | - Adrian J. Thrasher
- Section of Molecular and Cellular Immunology, University College London Institute of Child Health, London, UK
- Dept of Clinical Immunology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Anne Galy
- INSERM, U951; University of Evry, UMR_S951; Molecular Immunology and Innovative Biotherapies, Genethon, Evry, F-91002 France
- Genethon, Evry, F-91002 France
| | - Marina Cavazzana
- Biotherapy Department, Necker Children’s Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
- Paris Descartes – Sorbonne Paris Cité University, Imagine Institute, Paris, France
- Immunology and Pediatric Hematology Department, Assistance Publique-Hôpitaux de Paris, Paris, France
- INSERM UMR 1163, Laboratory of human lymphohematopoiesis, Paris, France
- To whom correspondence should be addressed: Marina Cavazzana, MD, PhD: Address: Biotherapy Department, Necker Children’s Hospital, 149 rue de Sèvres, 75015 Paris, France. Phone number: 00.33(1)44.49.50.68,
| |
Collapse
|
50
|
Cotta-de-Almeida V, Dupré L, Guipouy D, Vasconcelos Z. Signal Integration during T Lymphocyte Activation and Function: Lessons from the Wiskott-Aldrich Syndrome. Front Immunol 2015; 6:47. [PMID: 25709608 PMCID: PMC4321635 DOI: 10.3389/fimmu.2015.00047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
Over the last decades, research dedicated to the molecular and cellular mechanisms underlying primary immunodeficiencies (PID) has helped to understand the etiology of many of these diseases and to develop novel therapeutic approaches. Beyond these aspects, PID are also studied because they offer invaluable natural genetic tools to dissect the human immune system. In this review, we highlight the research that has focused over the last 20 years on T lymphocytes from Wiskott–Aldrich syndrome (WAS) patients. WAS T lymphocytes are defective for the WAS protein (WASP), a regulator of actin cytoskeleton remodeling. Therefore, study of WAS T lymphocytes has helped to grasp that many steps of T lymphocyte activation and function depend on the crosstalk between membrane receptors and the actin cytoskeleton. These steps include motility, immunological synapse assembly, and signaling, as well as the implementation of helper, regulatory, or cytotoxic effector functions. The recent concept that WASP also works as a regulator of transcription within the nucleus is an illustration of the complexity of signal integration in T lymphocytes. Finally, this review will discuss how further study of WAS may contribute to solve novel challenges of T lymphocyte biology.
Collapse
Affiliation(s)
| | - Loïc Dupré
- UMR 1043, Centre de Physiopathologie de Toulouse Purpan, INSERM , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; UMR 5282, CNRS , Toulouse , France
| | - Delphine Guipouy
- UMR 1043, Centre de Physiopathologie de Toulouse Purpan, INSERM , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; UMR 5282, CNRS , Toulouse , France
| | | |
Collapse
|