1
|
Buglak DB, Bougaran P, Kulikauskas MR, Liu Z, Monaghan-Benson E, Gold AL, Marvin AP, Burciu A, Tanke NT, Oatley M, Ricketts SN, Kinghorn K, Johnson BN, Shiau CE, Rogers S, Guilluy C, Bautch VL. Nuclear SUN1 stabilizes endothelial cell junctions via microtubules to regulate blood vessel formation. eLife 2023; 12:83652. [PMID: 36989130 PMCID: PMC10059686 DOI: 10.7554/elife.83652] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Endothelial cells line all blood vessels, where they coordinate blood vessel formation and the blood-tissue barrier via regulation of cell-cell junctions. The nucleus also regulates endothelial cell behaviors, but it is unclear how the nucleus contributes to endothelial cell activities at the cell periphery. Here, we show that the nuclear-localized linker of the nucleoskeleton and cytoskeleton (LINC) complex protein SUN1 regulates vascular sprouting and endothelial cell-cell junction morphology and function. Loss of murine endothelial Sun1 impaired blood vessel formation and destabilized junctions, angiogenic sprouts formed but retracted in SUN1-depleted sprouts, and zebrafish vessels lacking Sun1b had aberrant junctions and defective cell-cell connections. At the cellular level, SUN1 stabilized endothelial cell-cell junctions, promoted junction function, and regulated contractility. Mechanistically, SUN1 depletion altered cell behaviors via the cytoskeleton without changing transcriptional profiles. Reduced peripheral microtubule density, fewer junction contacts, and increased catastrophes accompanied SUN1 loss, and microtubule depolymerization phenocopied effects on junctions. Depletion of GEF-H1, a microtubule-regulated Rho activator, or the LINC complex protein nesprin-1 rescued defective junctions of SUN1-depleted endothelial cells. Thus, endothelial SUN1 regulates peripheral cell-cell junctions from the nucleus via LINC complex-based microtubule interactions that affect peripheral microtubule dynamics and Rho-regulated contractility, and this long-range regulation is important for proper blood vessel sprouting and junction integrity.
Collapse
Affiliation(s)
- Danielle B Buglak
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Pauline Bougaran
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Molly R Kulikauskas
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Ziqing Liu
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Elizabeth Monaghan-Benson
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State UniversityRaleighUnited States
| | - Ariel L Gold
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Allison P Marvin
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Andrew Burciu
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Natalie T Tanke
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Morgan Oatley
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Shea N Ricketts
- Department of Pathology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Karina Kinghorn
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Bryan N Johnson
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Celia E Shiau
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Stephen Rogers
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Christophe Guilluy
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State UniversityRaleighUnited States
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel HillUnited States
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
- McAllister Heart Institute, The University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|
2
|
Francis CR, Kincross H, Kushner EJ. Rab35 governs apicobasal polarity through regulation of actin dynamics during sprouting angiogenesis. Nat Commun 2022; 13:5276. [PMID: 36075898 PMCID: PMC9458672 DOI: 10.1038/s41467-022-32853-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022] Open
Abstract
In early blood vessel development, trafficking programs, such as those using Rab GTPases, are tasked with delivering vesicular cargo with high spatiotemporal accuracy. However, the function of many Rab trafficking proteins remain ill-defined in endothelial tissue; therefore, their relevance to blood vessel development is unknown. Rab35 has been shown to play an enigmatic role in cellular behaviors which differs greatly between tissue-type and organism. Importantly, Rab35 has never been characterized for its potential contribution in sprouting angiogenesis; thus, our goal was to map Rab35’s primary function in angiogenesis. Our results demonstrate that Rab35 is critical for sprout formation; in its absence, apicobasal polarity is entirely lost in vitro and in vivo. To determine mechanism, we systematically explored established Rab35 effectors and show that none are operative in endothelial cells. However, we find that Rab35 partners with DENNd1c, an evolutionarily divergent guanine exchange factor, to localize to actin. Here, Rab35 regulates actin polymerization through limiting Rac1 and RhoA activity, which is required to set up proper apicobasal polarity during sprout formation. Our findings establish that Rab35 is a potent brake of actin remodeling during blood vessel development. The promiscuous GTPase Rab35 has been shown to be involved in many important cellular functions. In this article, Francis et al. illustrate how Rab35 acts as a critical brake to actin remodeling during sprouting angiogenesis and how it is necessary for proper blood vessel development.
Collapse
Affiliation(s)
- Caitlin R Francis
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Hayle Kincross
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Erich J Kushner
- Department of Biological Sciences, University of Denver, Denver, CO, USA.
| |
Collapse
|
3
|
Gross SJ, Webb AM, Peterlin AD, Durrant JR, Judson RJ, Raza Q, Kitajewski JK, Kushner EJ. Notch regulates vascular collagen IV basement membrane through modulation of lysyl hydroxylase 3 trafficking. Angiogenesis 2021; 24:789-805. [PMID: 33956260 PMCID: PMC8487879 DOI: 10.1007/s10456-021-09791-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/19/2021] [Indexed: 11/26/2022]
Abstract
Collagen type IV (Col IV) is a basement membrane protein associated with early blood vessel morphogenesis and is essential for blood vessel stability. Defects in vascular Col IV deposition are the basis of heritable disorders, such as small vessel disease, marked by cerebral hemorrhage and drastically shorten lifespan. To date, little is known about how endothelial cells regulate the intracellular transport and selective secretion of Col IV in response to angiogenic cues, leaving a void in our understanding of this critical process. Our aim was to identify trafficking pathways that regulate Col IV deposition during angiogenic blood vessel development. We have identified the GTPase Rab10 as a major regulator of Col IV vesicular trafficking during vascular development using both in vitro imaging and biochemistry as well as in vivo models. Knockdown of Rab10 reduced de novo Col IV secretion in vivo and in vitro. Mechanistically, we determined that Rab10 is an indirect mediator of Col IV secretion, partnering with atypical Rab25 to deliver the enzyme lysyl hydroxylase 3 (LH3) to Col IV-containing vesicles staged for secretion. Loss of Rab10 or Rab25 results in depletion of LH3 from Col IV-containing vesicles and rapid lysosomal degradation of Col IV. Furthermore, we demonstrate that Rab10 is Notch responsive, indicating a novel connection between permissive Notch-based vessel maturation programs and vesicle trafficking. Our results illustrate both a new trafficking-based component in the regulated secretion of Col IV and how this vesicle trafficking program interfaces with Notch signaling to fine-tune basement membrane secretion during blood vessel development.
Collapse
Affiliation(s)
- Stephen J Gross
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Amelia M Webb
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Alek D Peterlin
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | | | - Rachel J Judson
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Qanber Raza
- Department of Physiology and Biophysics, University of Illinois, Chicago, IL, USA
| | - Jan K Kitajewski
- Department of Physiology and Biophysics, University of Illinois, Chicago, IL, USA
| | - Erich J Kushner
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA.
| |
Collapse
|
4
|
Nardini JT, Stolz BJ, Flores KB, Harrington HA, Byrne HM. Topological data analysis distinguishes parameter regimes in the Anderson-Chaplain model of angiogenesis. PLoS Comput Biol 2021; 17:e1009094. [PMID: 34181657 PMCID: PMC8270459 DOI: 10.1371/journal.pcbi.1009094] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/09/2021] [Accepted: 05/18/2021] [Indexed: 12/27/2022] Open
Abstract
Angiogenesis is the process by which blood vessels form from pre-existing vessels. It plays a key role in many biological processes, including embryonic development and wound healing, and contributes to many diseases including cancer and rheumatoid arthritis. The structure of the resulting vessel networks determines their ability to deliver nutrients and remove waste products from biological tissues. Here we simulate the Anderson-Chaplain model of angiogenesis at different parameter values and quantify the vessel architectures of the resulting synthetic data. Specifically, we propose a topological data analysis (TDA) pipeline for systematic analysis of the model. TDA is a vibrant and relatively new field of computational mathematics for studying the shape of data. We compute topological and standard descriptors of model simulations generated by different parameter values. We show that TDA of model simulation data stratifies parameter space into regions with similar vessel morphology. The methodologies proposed here are widely applicable to other synthetic and experimental data including wound healing, development, and plant biology.
Collapse
Affiliation(s)
- John T. Nardini
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina, United States of America
| | | | - Kevin B. Flores
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Heather A. Harrington
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Helen M. Byrne
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Francis CR, Claflin S, Kushner EJ. Synaptotagmin-Like Protein 2a Regulates Angiogenic Lumen Formation via Weibel-Palade Body Apical Secretion of Angiopoietin-2. Arterioscler Thromb Vasc Biol 2021; 41:1972-1986. [PMID: 33853352 DOI: 10.1161/atvbaha.121.316113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
| | - Shea Claflin
- Department of Biological Sciences, University of Denver, CO
| | | |
Collapse
|
6
|
Buglak DB, Kushner EJ, Marvin AP, Davis KL, Bautch VL. Excess centrosomes disrupt vascular lumenization and endothelial cell adherens junctions. Angiogenesis 2020; 23:567-575. [PMID: 32699963 PMCID: PMC7524686 DOI: 10.1007/s10456-020-09737-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 07/08/2020] [Indexed: 12/12/2022]
Abstract
Proper blood vessel formation requires coordinated changes in endothelial cell polarity and rearrangement of cell-cell junctions to form a functional lumen. One important regulator of cell polarity is the centrosome, which acts as a microtubule organizing center. Excess centrosomes perturb aspects of endothelial cell polarity linked to migration, but whether centrosome number influences apical-basal polarity and cell-cell junctions is unknown. Here, we show that excess centrosomes alter the apical-basal polarity of endothelial cells in angiogenic sprouts and disrupt endothelial cell-cell adherens junctions. Endothelial cells with excess centrosomes had narrower lumens in a 3D sprouting angiogenesis model, and zebrafish intersegmental vessels had reduced perfusion following centrosome overduplication. These results indicate that endothelial cell centrosome number regulates proper lumenization downstream of effects on apical-basal polarity and cell-cell junctions. Endothelial cells with excess centrosomes are prevalent in tumor vessels, suggesting how centrosomes may contribute to tumor vessel dysfunction.
Collapse
Affiliation(s)
- Danielle B Buglak
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Erich J Kushner
- Department of Biology, The University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC, 27599, USA
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Allison P Marvin
- Department of Biology, The University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC, 27599, USA
| | - Katy L Davis
- Department of Biology, The University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC, 27599, USA
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biology, The University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC, 27599, USA.
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
7
|
Liu F, Wen T, Tang Q, Chen F, Liao D. Impact of Vascular Endothelial Growth Factor Gene Polymorphisms and Their Interactions with Environmental Factors on Susceptibility to Renal Cell Carcinoma. Nephron Clin Pract 2020; 144:255-260. [PMID: 32182617 DOI: 10.1159/000505817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/07/2020] [Indexed: 11/19/2022] Open
Abstract
AIMS This study aimed to investigate the association of single nucleotide polymorphisms (SNPs) within vascular endothelial growth factor (VEGF) gene and additional gene-environment interaction with renal cell carcinoma (RCC) risk. METHODS PCR-restriction fragment length polymorphism was performed to detect SNPs. Hardy-Weinberg equilibrium and allele frequencies in cases and controls were calculated using SNPStats (http://bioinfo.iconcologia.net/SNPstats). Generalized multifactor dimensionality reduction (GMDR) was used to screen the best interaction combination among 4 SNPs, smoking, and alcohol drinking. Logistic regression was performed to investigate the association between 4 SNPs within VEGF gene, additional gene-smoking interaction, and RCC risk. RESULTS RCC risk was significantly higher in carriers with the T allele of rs833061 within VEGF gene than those with CC genotype (CT+TT vs. CC) {adjusted odds ratio (OR) (95% confidence interval [CI]) = 1.71 (1.17-2.32), p = 0.002} and higher in carriers with the A allele of rs699947 within VEGF gene than those with GG genotype (GA+AA vs. GG) (adjusted OR [95% CI] = 1.64 [1.27-2.10], p < 0.001). GMDR analysis indicated a significant 2-locus model (p = 0.0010) involving rs833061 and smoking. The cross-validation consistency of the 2-locus model was 10/10, and the testing accuracy was 60.72%. Current smokers with rs833061-CT+TT genotype had the highest RCC risk, compared to never smokers with rs833061-CC genotype within VEGF gene (OR [95% CI] = 3.02 [1.84-4.23], p < 0.001). CONCLUSIONS We found that the T allele of rs833061 and the A allele of rs699947 within VEGF gene, and the interaction between rs833061 and smoking were all associated with increased RCC risk.
Collapse
Affiliation(s)
- Furong Liu
- Department of Oncology and Hematology, Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, China
| | - Ting Wen
- Department of Oncology and Hematology, Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, China
| | - Qian Tang
- Department of Oncology and Hematology, Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, China
| | - Fangshan Chen
- Department of Oncology and Hematology, Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, China
| | - Dazhong Liao
- Department of Oncology and Hematology, Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, China,
| |
Collapse
|
8
|
Association between three VEGF polymorphisms and renal cell carcinoma susceptibility: a meta-analysis. Oncotarget 2018; 8:50061-50070. [PMID: 28562357 PMCID: PMC5564828 DOI: 10.18632/oncotarget.17833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/11/2017] [Indexed: 12/14/2022] Open
Abstract
Several studies have reported an association between vascular endothelial growth factor (VEGF) gene polymorphisms rs2010963, rs3025039 and rs699947 and renal cell carcinoma (RCC). However, the results remain inconclusive and controversial. We therefore conducted a meta-analysis to evaluate this association. Electronic databases were searched for relevant case-control studies up to November 2016. RevMan 5.2 software and STATA version 12.0 were used for statistical analysis in our meta-analysis. Heterogeneity was assessed using the I2 value. Nine eligible studies were retrieved for detailed evaluation. The pooled estimates indicated that the GG genotype of VEGF rs2010963 polymorphism significantly decreased RCC risk [GG vs. GC+CC; GG vs. GC]. There was also a significant association between VEGF rs3025039 polymorphism and RCC susceptibility [CC+CT vs. TT; CC vs. TT]. Furthermore, a significant association between VEGF rs699947 polymorphism and RCC susceptibility was detected [A vs. C; AA+AC vs. CC; AA vs. AC+CC; AA vs. CC; AA vs. AC; AC vs. CC]. Subgroup analysis revealed that these associations held true especially for Asians. Our meta-analysis suggested that there may be a relationship between the VEGF rs2010963, rs3025039 and rs699947 polymorphisms and RCC susceptibility.
Collapse
|
9
|
Hedhli J, Slania SLL, Płoska A, Czerwinski A, Konopka CJ, Wozniak M, Banach M, Dobrucki IT, Kalinowski L, Dobrucki LW. Evaluation of a dimeric-cRGD peptide for targeted PET-CT imaging of peripheral angiogenesis in diabetic mice. Sci Rep 2018; 8:5401. [PMID: 29599497 PMCID: PMC5876368 DOI: 10.1038/s41598-018-23372-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 03/06/2018] [Indexed: 11/09/2022] Open
Abstract
The α V β3 integrin plays an important role in many physiological functions and pathological disorders. α V β3 is minimally expressed in normal quiescent endothelial cells, but significantly upregulated during neovascularization. In this study, we evaluated a 64Cu-labeled dimeric cRGD tracer targeted at α V β3 integrin and report its applicability to assess peripheral angiogenesis in diabetes mellitus (DM). We established a murine model of type-1 DM characterized by elevated glucose, glycated serum protein (GSP), and glycated hemoglobin A1c (HbA1c). We demonstrated that our imaging probe is specific to α V β3 integrin under both normo- and hyperglycemic conditions. We found that the analysis of in vivo PET-CT images correlated well with gamma well counting (GWC). Both GWC and PET-CT imaging demonstrated increased uptake of 64Cu-NOTA-PEG4-cRGD2 in the ischemic hindlimb in contrast to non-ischemic control. GWC of the distal ischemic tissue from DM mice showed significantly lower probe accumulation than in non-DM mice. The immunofluorescence staining of the ischemic tissues showed a 3-fold reduction in CD31 and 4-fold reduction in the α V β3 expression in DM vs. non-DM animals. In conclusion, we successfully demonstrated that diabetes-associated reductions in peripheral angiogenesis can be non-invasively detected with PET-CT imaging using targeted dimeric-cRGD probe.
Collapse
Affiliation(s)
- Jamila Hedhli
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Stephanie L L Slania
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Agata Płoska
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
- Department of Medical Laboratory Diagnostics and Central Bank of Frozen Tissues & Genetic Specimens, Medical University of Gdansk, Gdansk, Poland
| | | | - Christian J Konopka
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Marcin Wozniak
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
- Department of Medical Laboratory Diagnostics and Central Bank of Frozen Tissues & Genetic Specimens, Medical University of Gdansk, Gdansk, Poland
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz, Lodz, Poland
| | - Iwona T Dobrucki
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics and Central Bank of Frozen Tissues & Genetic Specimens, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland
| | - Lawrence W Dobrucki
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Medical Laboratory Diagnostics and Central Bank of Frozen Tissues & Genetic Specimens, Medical University of Gdansk, Gdansk, Poland.
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland.
| |
Collapse
|
10
|
Vascular endothelial growth factor gene polymorphisms and the risk of renal cell carcinoma: Evidence from eight case-control studies. Oncotarget 2018; 8:8447-8458. [PMID: 28039484 PMCID: PMC5352413 DOI: 10.18632/oncotarget.14263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/01/2016] [Indexed: 12/22/2022] Open
Abstract
Background Vascular endothelial growth factor (VEGF) protein plays important role in renal cell carcinoma (RCC) development and progression. VEGF gene polymorphisms can alter the protein concentrations and might be associated with renal cell carcinoma risk. However, the results of studies investigating the association between VEGF polymorphisms and renal cell carcinoma risk are inconsistent. Thus, a meta-analysis was performed. Methods We selected eligible studies via electronic searches. Only high-quality studies were included based on specific inclusion criteria and the Newcastle-Ottawa Scale (NOS). Results Eight studies primarily focusing on seven polymorphisms were included in our meta-analysis. Our results showed dramatically high risks for renal cell carcinoma were found regarding most genetic models and alleles of the +936C/T polymorphism (except CT vs. CC). In addition, significant increased renal cell carcinoma risks were found regarding all genetic models and alleles of the -2578C/A polymorphism. However, no significant associations were found between renal cell carcinoma risk and the +1612G/A, -460T/C, -634G/C, -405G/C or -1154G/A polymorphisms. Conclusions Our meta-analysis indicates that the +936C/T and -2578C/A polymorphisms of VEGF are associated with an increased risk for renal cell carcinoma. Additional rigorous analytical studies are needed to confirm our results.
Collapse
|
11
|
Li B, Nie Z, Zhang D, Wu J, Peng B, Guo X, Shi Y, Cai X, Xu L, Cao F. Roles of circulating endothelial progenitor cells and endothelial cells in gastric carcinoma. Oncol Lett 2018; 15:324-330. [PMID: 29391882 PMCID: PMC5769379 DOI: 10.3892/ol.2017.7272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 09/07/2017] [Indexed: 01/17/2023] Open
Abstract
The present study aimed to investigate the role of endothelial progenitor cells (EPCs) and endothelial cells (ECs) in the peripheral blood of patients with gastric cancer (GC), and to investigate vascular endothelial growth factor (VEGF) expression and microvessel density (MVD) in GC tissues. First, 6 ml peripheral blood with added anticoagulant was collected from each of the 42 patients with GC, followed by determination of the number of EPCs and ECs by flow cytometry using the surface markers cluster of differentiation (CD)34brightCD133+CD31+CD45dim and CD34dimCD133−CD31brightCD45−, respectively. VEGF expression in patients with GC was detected by the streptomycin avidin-peroxidase immunohistochemical method, and MVD was calculated using the marker CD34. EPC and EC levels were positively associated with VEGF expression level, as well as with MVD. VEGF expression was positive in 66.67% GC cases, and its level was significantly associated with tumor-node-metastasis (TNM) stage, invasion depth and lymph-node metastasis (P<0.05). VEGF expression level was also positively associated with MVD. MVD in GC was significantly larger than that in normal tissue (P<0.01), and it was significantly associated with TNM stage (P<0.05), invasion depth (P<0.01) and lymph-node metastasis (P<0.01). EPCs in the peripheral blood have an important role in GC development, and may be a promising indicator of GC diagnosis and prognosis.
Collapse
Affiliation(s)
- Bojing Li
- Department of Gastroenterology, Shanghai Gongli Hospital, Secondary Military Medical University, Shanghai 200135, P.R. China
| | - Zhihong Nie
- Department of Gastroenterology, Shanghai Gongli Hospital, Secondary Military Medical University, Shanghai 200135, P.R. China
| | - Denghai Zhang
- Sino-French Cooperative Central Laboratory, Shanghai Gongli Hospital, Secondary Military Medical University, Shanghai 200135, P.R. China
| | - Jian Wu
- Department of Pathobiology, Shanghai Gongli Hospital, Secondary Military Medical University, Shanghai 200135, P.R. China
| | - Bin Peng
- Sino-French Cooperative Central Laboratory, Shanghai Gongli Hospital, Secondary Military Medical University, Shanghai 200135, P.R. China
| | - Xiaoyan Guo
- Department of Gastroenterology, Shanghai Gongli Hospital, Secondary Military Medical University, Shanghai 200135, P.R. China
| | - Yihai Shi
- Department of Gastroenterology, Shanghai Gongli Hospital, Secondary Military Medical University, Shanghai 200135, P.R. China
| | - Xiaoyan Cai
- Department of General Surgery, Shanghai Gongli Hospital, Secondary Military Medical University, Shanghai 200135, P.R. China
| | - Limin Xu
- Department of Laboratory Medicine, Shanghai Gongli Hospital, Secondary Military Medical University, Shanghai 200135, P.R. China
| | - Fanfan Cao
- Sino-French Cooperative Central Laboratory, Shanghai Gongli Hospital, Secondary Military Medical University, Shanghai 200135, P.R. China
| |
Collapse
|
12
|
Rojas JD, Lin F, Chiang YC, Chytil A, Chong DC, Bautch VL, Rathmell WK, Dayton PA. Ultrasound Molecular Imaging of VEGFR-2 in Clear-Cell Renal Cell Carcinoma Tracks Disease Response to Antiangiogenic and Notch-Inhibition Therapy. Theranostics 2018; 8:141-155. [PMID: 29290798 PMCID: PMC5743465 DOI: 10.7150/thno.19658] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 09/14/2017] [Indexed: 12/22/2022] Open
Abstract
Metastatic clear-cell renal cell carcinoma (ccRCC) affects thousands of patients worldwide each year. Antiangiogenic therapy has been shown to have beneficial effects initially, but resistance is eventually developed. Therefore, it is important to accurately track the response of cancer to different therapeutics in order to appropriately adjust the therapy to maximize efficacy. Change in tumor volume is the current gold standard for determining efficacy of treatment. However, functional variations can occur much earlier than measurable volume changes. Contrast-enhanced ultrasound (CEUS) is an important tool for assessing tumor progression and response to therapy, since it can monitor functional changes in the physiology. In this study, we demonstrate how ultrasound molecular imaging (USMI) can accurately track the evolution of the disease and molecular response to treatment. Methods A cohort of NSG (NOD/scid/gamma) mice was injected with ccRCC cells and treated with either the VEGF inhibitor SU (Sunitinib malate, Selleckchem, TX, USA) or the Notch pathway inhibitor GSI (Gamma secretase inhibitor, PF-03084014, Pfizer, New York, NY, USA), or started on SU and later switched to GSI (Switch group). The therapies used in the study focus on disrupting angiogenesis and proper vessel development. SU inhibits signaling of vascular endothelial growth factor (VEGF), which is responsible for the sprouting of new vasculature, and GSI inhibits the Notch pathway, which is a key factor in the correct maturation of newly formed vasculature. Microbubble contrast agents targeted to VEGFR-2 (VEGF Receptor) were delivered as a bolus, and the bound agents were imaged in 3D after the free-flowing contrast was cleared from the body. Additionally, the tumors were harvested at the end of the study and stained for CD31. Results The results show that MI can detect changes in VEGFR-2 expression in the group treated with SU within a week of the start of treatment, while differences in volume only become apparent after the mice have been treated for three weeks. Furthermore, USMI can detect response to therapy in 92% of cases after 1 week of treatment, while the detection rate is only 40% for volume measurements. The amount of targeting for the GSI and Control groups was high throughout the duration of the study, while that of the SU and Switch groups remained low. However, the amount of targeting in the Switch group increased to levels similar to those of the Control group after the treatment was switched to GSI. CD31 staining indicates significantly lower levels of patent vasculature for the SU group compared to the Control and GSI groups. Therefore, the results parallel the expected physiological changes in the tumor, since GSI promotes angiogenesis through the VEGF pathway, while SU inhibits it. Conclusion This study demonstrates that MI can track disease progression and assess functional changes in tumors before changes in volume are apparent, and thus, CEUS can be a valuable tool for assessing response to therapy in disease. Future work is required to determine whether levels of VEGFR-2 targeting correlate with eventual survival outcomes.
Collapse
Affiliation(s)
- Juan D Rojas
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Fanglue Lin
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Yun-Chen Chiang
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina
| | - Anna Chytil
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Diana C Chong
- Curriculum in Genetics and Molecular Biology, The University of North Carolina, Chapel Hill, North Carolina
| | - Victoria L Bautch
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina
- Curriculum in Genetics and Molecular Biology, The University of North Carolina, Chapel Hill, North Carolina
- Department of Biology, The University of North Carolina, Chapel Hill, North Carolina
| | - W Kimryn Rathmell
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
13
|
Boopathy GTK, Kulkarni M, Ho SY, Boey A, Chua EWM, Barathi VA, Carney TJ, Wang X, Hong W. Cavin-2 regulates the activity and stability of endothelial nitric-oxide synthase (eNOS) in angiogenesis. J Biol Chem 2017; 292:17760-17776. [PMID: 28912276 PMCID: PMC5663877 DOI: 10.1074/jbc.m117.794743] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/04/2017] [Indexed: 01/26/2023] Open
Abstract
Angiogenesis is a highly regulated process for formation of new blood vessels from pre-existing ones. Angiogenesis is dysregulated in various pathologies, including age-related macular degeneration, arthritis, and cancer. Inhibiting pathological angiogenesis therefore represents a promising therapeutic strategy for treating these disorders, highlighting the need to study angiogenesis in more detail. To this end, identifying the genes essential for blood vessel formation and elucidating their function are crucial for a complete understanding of angiogenesis. Here, focusing on potential candidate genes for angiogenesis, we performed a morpholino-based genetic screen in zebrafish and identified Cavin-2, a membrane-bound phosphatidylserine-binding protein and critical organizer of caveolae (small microdomains in the plasma membrane), as a regulator of angiogenesis. Using endothelial cells, we show that Cavin-2 is required for in vitro angiogenesis and also for endothelial cell proliferation, migration, and invasion. We noted a high level of Cavin-2 expression in the neovascular tufts in the mouse model of oxygen-induced retinopathy, suggesting a role for Cavin-2 in pathogenic angiogenesis. Interestingly, we also found that Cavin-2 regulates the production of nitric oxide (NO) in endothelial cells by controlling the stability and activity of the endothelial nitric-oxide synthase (eNOS) and that Cavin-2 knockdown cells produce much less NO than WT cells. Also, mass spectrometry, flow cytometry, and electron microscopy analyses indicated that Cavin-2 is secreted in endothelial microparticles (EMPs) and is required for EMP biogenesis. Taken together, our results indicate that in addition to its function in caveolae biogenesis, Cavin-2 plays a critical role in endothelial cell maintenance and function by regulating eNOS activity.
Collapse
Affiliation(s)
- Gandhi T K Boopathy
- From the Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, .,the SERI-IMCB Programme in Retinal Angiogenic Diseases (SIPRAD), SERI-IMCB, Singapore
| | - Madhura Kulkarni
- the Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Sze Yuan Ho
- the Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Adrian Boey
- From the Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore
| | - Edmond Wei Min Chua
- From the Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore
| | - Veluchamy A Barathi
- the SERI-IMCB Programme in Retinal Angiogenic Diseases (SIPRAD), SERI-IMCB, Singapore.,the Singapore Eye Research Institute (SERI), 20 College Road, 169856 Singapore.,the Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, 8 College Rd., 169857 Singapore.,the Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, and
| | - Tom J Carney
- From the Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore.,the SERI-IMCB Programme in Retinal Angiogenic Diseases (SIPRAD), SERI-IMCB, Singapore.,the Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Xiaomeng Wang
- From the Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore.,the SERI-IMCB Programme in Retinal Angiogenic Diseases (SIPRAD), SERI-IMCB, Singapore.,the Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,the Singapore Eye Research Institute (SERI), 20 College Road, 169856 Singapore
| | - Wanjin Hong
- From the Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, .,the SERI-IMCB Programme in Retinal Angiogenic Diseases (SIPRAD), SERI-IMCB, Singapore
| |
Collapse
|
14
|
Chong DC, Yu Z, Brighton HE, Bear JE, Bautch VL. Tortuous Microvessels Contribute to Wound Healing via Sprouting Angiogenesis. Arterioscler Thromb Vasc Biol 2017; 37:1903-1912. [PMID: 28838921 PMCID: PMC5627535 DOI: 10.1161/atvbaha.117.309993] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— Wound healing is accompanied by neoangiogenesis, and new vessels are thought to originate primarily from the microcirculation; however, how these vessels form and resolve during wound healing is poorly understood. Here, we investigated properties of the smallest capillaries during wound healing to determine their spatial organization and the kinetics of formation and resolution. Approach and Results— We used intravital imaging and high-resolution microscopy to identify a new type of vessel in wounds, called tortuous microvessels. Longitudinal studies showed that tortuous microvessels increased in frequency after injury, normalized as the wound healed, and were closely associated with the wound site. Tortuous microvessels had aberrant cell shapes, increased permeability, and distinct interactions with circulating microspheres, suggesting altered flow dynamics. Moreover, tortuous microvessels disproportionately contributed to wound angiogenesis by sprouting exuberantly and significantly more frequently than nearby normal capillaries. Conclusions— A new type of transient wound vessel, tortuous microvessels, sprout dynamically and disproportionately contribute to wound-healing neoangiogenesis, likely as a result of altered properties downstream of flow disturbances. These new findings suggest entry points for therapeutic intervention.
Collapse
Affiliation(s)
- Diana C Chong
- From the Curriculum in Genetics and Molecular Biology (D.C.C., Z.Y., V.L.B.), Department of Biology (V.L.B.), Lineberger Comprehensive Cancer Center (J.E.B., V.L.B.), McAllister Heart Institute (V.L.B.), and Department of Cell Biology and Physiology (H.E.B., J.E.B.), The University of North Carolina at Chapel Hill
| | - Zhixian Yu
- From the Curriculum in Genetics and Molecular Biology (D.C.C., Z.Y., V.L.B.), Department of Biology (V.L.B.), Lineberger Comprehensive Cancer Center (J.E.B., V.L.B.), McAllister Heart Institute (V.L.B.), and Department of Cell Biology and Physiology (H.E.B., J.E.B.), The University of North Carolina at Chapel Hill
| | - Hailey E Brighton
- From the Curriculum in Genetics and Molecular Biology (D.C.C., Z.Y., V.L.B.), Department of Biology (V.L.B.), Lineberger Comprehensive Cancer Center (J.E.B., V.L.B.), McAllister Heart Institute (V.L.B.), and Department of Cell Biology and Physiology (H.E.B., J.E.B.), The University of North Carolina at Chapel Hill
| | - James E Bear
- From the Curriculum in Genetics and Molecular Biology (D.C.C., Z.Y., V.L.B.), Department of Biology (V.L.B.), Lineberger Comprehensive Cancer Center (J.E.B., V.L.B.), McAllister Heart Institute (V.L.B.), and Department of Cell Biology and Physiology (H.E.B., J.E.B.), The University of North Carolina at Chapel Hill
| | - Victoria L Bautch
- From the Curriculum in Genetics and Molecular Biology (D.C.C., Z.Y., V.L.B.), Department of Biology (V.L.B.), Lineberger Comprehensive Cancer Center (J.E.B., V.L.B.), McAllister Heart Institute (V.L.B.), and Department of Cell Biology and Physiology (H.E.B., J.E.B.), The University of North Carolina at Chapel Hill.
| |
Collapse
|
15
|
Wang H, Hartnett ME. Roles of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase in Angiogenesis: Isoform-Specific Effects. Antioxidants (Basel) 2017; 6:antiox6020040. [PMID: 28587189 PMCID: PMC5488020 DOI: 10.3390/antiox6020040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is the formation of new blood vessels from preexisting ones and is implicated in physiologic vascular development, pathologic blood vessel growth, and vascular restoration. This is in contrast to vasculogenesis, which is de novo growth of vessels from vascular precursors, or from vascular repair that occurs when circulating endothelial progenitor cells home into an area and develop into blood vessels. The objective of this review is to discuss the isoform-specific role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) in physiologic and pathologic angiogenesis and vascular repair, but will not specifically address vasculogenesis. As the major source of reactive oxygen species (ROS) in vascular endothelial cells (ECs), NOX has gained increasing attention in angiogenesis. Activation of NOX leads to events necessary for physiologic and pathologic angiogenesis, including EC migration, proliferation and tube formation. However, activation of different NOX isoforms has different effects in angiogenesis. Activation of NOX2 promotes pathologic angiogenesis and vascular inflammation, but may be beneficial in revascularization in the hindlimb ischemic model. In contrast, activation of NOX4 appears to promote physiologic angiogenesis mainly by protecting the vasculature during ischemia, hypoxia and inflammation and by restoring vascularization, except in models of oxygen-induced retinopathy and diabetes where NOX4 activation leads to pathologic angiogenesis.
Collapse
Affiliation(s)
- Haibo Wang
- The John A. Moran Eye Center, University of Utah, 65 N. Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - M Elizabeth Hartnett
- The John A. Moran Eye Center, University of Utah, 65 N. Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|
16
|
Retta SF, Glading AJ. Oxidative stress and inflammation in cerebral cavernous malformation disease pathogenesis: Two sides of the same coin. Int J Biochem Cell Biol 2016; 81:254-270. [PMID: 27639680 PMCID: PMC5155701 DOI: 10.1016/j.biocel.2016.09.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022]
Abstract
CCM proteins play pleiotropic roles in various redox-sensitive signaling pathways. CCM proteins modulate the crosstalk between redox signaling and autophagy that govern cell homeostasis and stress responses. Oxidative stress and inflammation are emerging as key focal determinants of CCM lesion formation, progression and severity. The pleiotropic functions of CCM proteins may prevent vascular dysfunctions triggered by local oxidative stress and inflammatory events. The distinct therapeutic compounds proposed so far for CCM disease share the ability to modulate redox signaling and autophagy.
Cerebral Cavernous Malformation (CCM) is a vascular disease of proven genetic origin, which may arise sporadically or is inherited as an autosomal dominant condition with incomplete penetrance and highly variable expressivity. CCM lesions exhibit a range of different phenotypes, including wide inter-individual differences in lesion number, size, and susceptibility to intracerebral hemorrhage (ICH). Lesions may remain asymptomatic or result in pathological conditions of various type and severity at any age, with symptoms ranging from recurrent headaches to severe neurological deficits, seizures, and stroke. To date there are no direct therapeutic approaches for CCM disease besides the surgical removal of accessible lesions. Novel pharmacological strategies are particularly needed to limit disease progression and severity and prevent de novo formation of CCM lesions in susceptible individuals. Useful insights into innovative approaches for CCM disease prevention and treatment are emerging from a growing understanding of the biological functions of the three known CCM proteins, CCM1/KRIT1, CCM2 and CCM3/PDCD10. In particular, accumulating evidence indicates that these proteins play major roles in distinct signaling pathways, including those involved in cellular responses to oxidative stress, inflammation and angiogenesis, pointing to pathophysiological mechanisms whereby the function of CCM proteins may be relevant in preventing vascular dysfunctions triggered by these events. Indeed, emerging findings demonstrate that the pleiotropic roles of CCM proteins reflect their critical capacity to modulate the fine-tuned crosstalk between redox signaling and autophagy that govern cell homeostasis and stress responses, providing a novel mechanistic scenario that reconciles both the multiple signaling pathways linked to CCM proteins and the distinct therapeutic approaches proposed so far. In addition, recent studies in CCM patient cohorts suggest that genetic susceptibility factors related to differences in vascular sensitivity to oxidative stress and inflammation contribute to inter-individual differences in CCM disease susceptibility and severity. This review discusses recent progress into the understanding of the molecular basis and mechanisms of CCM disease pathogenesis, with specific emphasis on the potential contribution of altered cell responses to oxidative stress and inflammatory events occurring locally in the microvascular environment, and consequent implications for the development of novel, safe, and effective preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Saverio Francesco Retta
- Department of Clinical and Biological Sciences, School of Medicine and Surgery, University of Torino, Regione Gonzole 10, 10043 Orbassano, Torino, Italy; CCM Italia Research Network(1).
| | - Angela J Glading
- University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave, 14642 Rochester, NY, USA.
| |
Collapse
|
17
|
Woliński K, Stangierski A, Szczepanek-Parulska E, Gurgul E, Budny B, Wrotkowska E, Biczysko M, Ruchala M. VEGF-C Is a Thyroid Marker of Malignancy Superior to VEGF-A in the Differential Diagnostics of Thyroid Lesions. PLoS One 2016; 11:e0150124. [PMID: 26900960 PMCID: PMC4762679 DOI: 10.1371/journal.pone.0150124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/09/2016] [Indexed: 12/26/2022] Open
Abstract
Introduction Thyroid nodular goiter is one of the most common medical conditions affecting even over a half of adult population. The risk of malignancy is rather small but noticeable–estimated by numerous studies to be about 3–10%. The definite differentiation between benign and malignant ones is a vital issue in endocrine practice. The aim of the current study was to assess the expression of vascular endothelial growth factor A (VEGF-A) and VEGF-C on the mRNA level in FNAB washouts in case of benign and malignant thyroid nodules and to evaluate the diagnostic value of these markers of malignancy. Materials and Methods Patients undergoing fine-needle aspiration biopsy (FNAB) in our department between January 2013 and May 2014 were included. In case of all patients who gave the written consent, after ultrasonography (US) and fine-needle aspiration biopsy (FNAB) performed as routine medical procedure the needle was flushed with RNA Later solution, the washouts were frozen in -80 Celsius degrees. Expression of VEGF-A and VEGF-C and GADPH (reference gene) was assessed in washouts on the mRNA level using the real-time PCR technique. Probes of patients who underwent subsequent thyroidectomy and were diagnosed with differentiated thyroid cancer (DTC; proved by post-surgical histopathology) were analyzed. Similar number of patients with benign cytology were randomly selected to be a control group. Results Thirty one DTCs and 28 benign thyroid lesions were analyzed. Expression of VEGF-A was insignificantly higher in patients with DTCs (p = 0.13). Expression of VEGF-C was significantly higher in patients with DTC. The relative expression of VEGF-C (in comparison with GAPDH) was 0.0049 for DTCs and 0.00070 for benign lesions, medians – 0.0036 and 0.000024 respectively (p<0.0001). Conclusions Measurement of expression VEGF-C on the mRNA level in washouts from FNAB is more useful than more commonly investigated VEGF-A. Measurement of VEGF-C in FNAB washouts do not allow for fully reliable differentiation of benign and malignant thyroid nodules and should be interpreted carefully. Further studies on larger groups are indicated. However, measurement of VEGF-C on mRNA level can bring important information without exposing patient for additional risk and invasive procedures.
Collapse
Affiliation(s)
- Kosma Woliński
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
- * E-mail:
| | - Adam Stangierski
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Ewelina Szczepanek-Parulska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Edyta Gurgul
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Bartłomiej Budny
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Elzbieta Wrotkowska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Maciej Biczysko
- Department of General, Gastroenterological and Endocrine Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Marek Ruchala
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
18
|
Chen S, Yang K, Tuguntaev RG, Mozhi A, Zhang J, Wang PC, Liang XJ. Targeting tumor microenvironment with PEG-based amphiphilic nanoparticles to overcome chemoresistance. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:269-86. [PMID: 26707818 DOI: 10.1016/j.nano.2015.10.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/24/2015] [Accepted: 10/30/2015] [Indexed: 12/15/2022]
Abstract
UNLABELLED Multidrug resistance is one of the biggest obstacles in the treatment of cancer. Recent research studies highlight that tumor microenvironment plays a predominant role in tumor cell proliferation, metastasis, and drug resistance. Hence, targeting the tumor microenvironment provides a novel strategy for the evolution of cancer nanomedicine. The blooming knowledge about the tumor microenvironment merging with the design of PEG-based amphiphilic nanoparticles can provide an effective and promising platform to address the multidrug resistant tumor cells. This review describes the characteristic features of tumor microenvironment and their targeting mechanisms with the aid of PEG-based amphiphilic nanoparticles for the development of newer drug delivery systems to overcome multidrug resistance in cancer cells. FROM THE CLINICAL EDITOR Cancer is a leading cause of death worldwide. Many cancers develop multidrug resistance towards chemotherapeutic agents with time and strategies are urgently needed to combat against this. In this review article, the authors discuss the current capabilities of using nanomedicine to target the tumor microenvironments, which would provide new insight to the development of novel delivery systems for the future.
Collapse
Affiliation(s)
- Shizhu Chen
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, PR China
| | - Keni Yang
- CAS Key Lab of Nanomaterials Bioeffects and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, PR China
| | - Ruslan G Tuguntaev
- CAS Key Lab of Nanomaterials Bioeffects and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, PR China
| | - Anbu Mozhi
- CAS Key Lab of Nanomaterials Bioeffects and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, PR China
| | - Jinchao Zhang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, PR China.
| | - Paul C Wang
- Fu Jen Catholic University, Taipei, Taiwan; Laboratory of Molecular Imaging, Department of Radiology, Howard University, WA, DC, USA
| | - Xing-Jie Liang
- CAS Key Lab of Nanomaterials Bioeffects and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, PR China.
| |
Collapse
|
19
|
Elshabrawy HA, Chen Z, Volin MV, Ravella S, Virupannavar S, Shahrara S. The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis 2015; 18:433-48. [PMID: 26198292 PMCID: PMC4879881 DOI: 10.1007/s10456-015-9477-2] [Citation(s) in RCA: 385] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/14/2015] [Indexed: 12/31/2022]
Abstract
Angiogenesis is the formation of new capillaries from pre-existing vasculature, which plays a critical role in the pathogenesis of several inflammatory autoimmune diseases such as rheumatoid arthritis (RA), spondyloarthropathies, psoriasis, systemic lupus erythematosus, systemic sclerosis, and atherosclerosis. In RA, excessive migration of circulating leukocytes into the inflamed joint necessitates formation of new blood vessels to provide nutrients and oxygen to the hypertrophic joint. The dominance of the pro-angiogenic factors over the endogenous angiostatic mediators triggers angiogenesis. In this review article, we highlight the underlying mechanisms by which cells present in the RA synovial tissue are modulated to secrete pro-angiogenic factors. We focus on the significance of pro-angiogenic factors such as growth factors, hypoxia-inducible factors, cytokines, chemokines, matrix metalloproteinases, and adhesion molecules on RA pathogenesis. As pro-angiogenic factors are primarily produced from RA synovial tissue macrophages and fibroblasts, we emphasize the key role of RA synovial tissue lining layer in maintaining synovitis through neovascularization. Lastly, we summarize the specific approaches utilized to target angiogenesis. We conclude that the formation of new blood vessels plays an indispensable role in RA progression. However, since the function of several pro-angiogenic mediators is cross regulated, discovering novel approaches to target multiple cascades or selecting an upstream cascade that impairs the activity of a number of pro-angiogenic factors may provide a promising strategy for RA therapy.
Collapse
Affiliation(s)
- Hatem A Elshabrawy
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, MSB 835 S Wolcott Ave., E807-E809, Chicago, IL, 60612, USA
| | - Zhenlong Chen
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, MSB 835 S Wolcott Ave., E807-E809, Chicago, IL, 60612, USA
| | - Michael V Volin
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, 60515, USA
| | - Shalini Ravella
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, MSB 835 S Wolcott Ave., E807-E809, Chicago, IL, 60612, USA
| | - Shanti Virupannavar
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, MSB 835 S Wolcott Ave., E807-E809, Chicago, IL, 60612, USA
| | - Shiva Shahrara
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, MSB 835 S Wolcott Ave., E807-E809, Chicago, IL, 60612, USA.
| |
Collapse
|
20
|
Liu JQ, Bai X, Duan DEC, Dou AX. Role of five small nucleotide polymorphisms in the VEGF gene on the susceptibility to osteosarcoma and overall survival of patients. Oncol Lett 2015; 10:1481-1486. [PMID: 26622695 DOI: 10.3892/ol.2015.3396] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 03/13/2015] [Indexed: 01/01/2023] Open
Abstract
The present study aimed to investigate the association between five common small nucleotide polymorphisms (SNPs) in the VEGF gene and the risk of osteosarcoma. An additional aim was to investigate the role of these five SNPs on the prognosis of osteosarcoma. A total of 186 patients with osteosarcoma and 186 age- and sex-matched healthy controls were enrolled into the present study. A polymerase chain reaction-restriction fragment length polymorphism assay was conducted to determine the incidence of the VEGF-2578 C/A, -1156 G/A, +1612 G/A, +936 C/T and -634 G/C polymorphisms. Conditional logistic regression analyses revealed that individuals carrying the -634 GG genotype possessed a significantly increased risk of osteosarcoma, with an adjusted odds ratio [(95% confidence interval (CI)] of 2.00 (1.07-3.75). In the Cox proportional hazards model, subsequent to adjusting for potential confounding factors, patients with osteosarcoma carrying the -634 GG genotype were found to demonstrate a shorter overall survival time (hazard ratio, 3.10; 95% CI, 1.17-8.38). The VEGF-634 G/C polymorphism may therefore be used as a genetic marker for the prediction of the risk and clinical outcome of osteosarcoma.
Collapse
Affiliation(s)
- Jian-Qiang Liu
- Department of Orthopaedics, Jinan No. 4 Hospital, Jinan, Shandong, P.R. China
| | - Xia Bai
- Department of Orthopaedics, Jinan No. 4 Hospital, Jinan, Shandong, P.R. China
| | - DE-Chen Duan
- Department of Orthopaedics, Jinan No. 4 Hospital, Jinan, Shandong, P.R. China
| | - Ai-Xia Dou
- Department of Hematology and Oncology, The Second Hospital of Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
21
|
Lu G, Dong Y, Zhang Q, Jiao L, Yang S, Shen B. Predictive value of vascular endothelial growth factor polymorphisms on the risk of renal cell carcinomas: a case-control study. Tumour Biol 2015; 36:8645-52. [PMID: 26044558 DOI: 10.1007/s13277-015-3431-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/07/2015] [Indexed: 12/30/2022] Open
Abstract
We conducted this case-control study to assess the role of vascular endothelial growth factor (VEGF) -2578C/A, +460T/C, +1612G/A, +936C/T, and -634G/C polymorphisms in the development of renal cell carcinoma (RCC), and analyzed the association of gene polymorphisms with demographic and clinical characteristics of RCC. This study included 412 consecutive primary RCC patients and 824 controls. The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to detect VEGF -2578C/A, +460T/C, +1612G/A, +936C/T, and -634G/C polymorphisms. Compared with the control subjects, the RCC cancer cases were more likely to have a habit of cigarette smoking, and suffered from hypertension and diabetes. Conditional logistic regression analysis showed that individuals carrying the AA genotype of -2578C/A were more likely to greatly increase risk of RCC, and the CC genotype of +460T/C revealed a significant association with increased risk of RCC. The CA + AA genotype of -2578C/A had a significantly increased risk of RCC in ever cigarette smokers, and individuals who suffered from hypertension and diabetes. TC + CC genotype of +460T/C was significantly associated with the elevated risk of RCC in those suffered from hypertension and diabetes. Our study suggests that -2578C/A and +460T/C polymorphisms of VEGF modulate the risk of developing RCC in Chinese population.
Collapse
Affiliation(s)
- Guangjian Lu
- Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China.
| | - Yuqian Dong
- Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China.
| | - Qunmei Zhang
- Blood Transfusion Room, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China.
| | - Luyang Jiao
- Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China.
| | - Shujuan Yang
- Department of Health and Social Behavior, West China School of Public Health, Sichuan University, Chengdu, China.
| | - Beili Shen
- Department of Renal Transplantation, Zhengzhou People's Hospital, Zhengzhou, China.
| |
Collapse
|
22
|
Kim JD, Lee HW, Jin SW. Diversity is in my veins: role of bone morphogenetic protein signaling during venous morphogenesis in zebrafish illustrates the heterogeneity within endothelial cells. Arterioscler Thromb Vasc Biol 2014; 34:1838-45. [PMID: 25060789 DOI: 10.1161/atvbaha.114.303219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endothelial cells are a highly diverse group of cells which display distinct cellular responses to exogenous stimuli. Although the aptly named vascular endothelial growth factor-A signaling pathway is hailed as the most important signaling input for endothelial cells, additional factors also participate in regulating diverse aspects of endothelial behaviors and functions. Given this heterogeneity, these additional factors seem to play a critical role in creating a custom-tailored environment to regulate behaviors and functions of distinct subgroups of endothelial cells. For instance, molecular cues that modulate morphogenesis of arterial vascular beds can be distinct from those that govern morphogenesis of venous vascular beds. Recently, we have found that bone morphogenetic protein signaling selectively promotes angiogenesis from venous vascular beds without eliciting similar responses from arterial vascular beds in zebrafish, indicating that bone morphogenetic protein signaling functions as a context-dependent regulator during vascular morphogenesis. In this review, we will provide an overview of the molecular mechanisms that underlie proangiogenic effects of bone morphogenetic protein signaling on venous vascular beds in the context of endothelial heterogeneity and suggest a more comprehensive picture of the molecular mechanisms of vascular morphogenesis during development.
Collapse
Affiliation(s)
- Jun-Dae Kim
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (J.-D.K., H.W.L., S.-W.J.) and Department of Internal Medicine (J.-D.K., H.W.L., S.-W.J.), Yale University School of Medicine, New Haven, CT; and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea (S.-W.J.)
| | - Heon-Woo Lee
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (J.-D.K., H.W.L., S.-W.J.) and Department of Internal Medicine (J.-D.K., H.W.L., S.-W.J.), Yale University School of Medicine, New Haven, CT; and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea (S.-W.J.)
| | - Suk-Won Jin
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (J.-D.K., H.W.L., S.-W.J.) and Department of Internal Medicine (J.-D.K., H.W.L., S.-W.J.), Yale University School of Medicine, New Haven, CT; and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea (S.-W.J.).
| |
Collapse
|
23
|
Weddell JC, Imoukhuede PI. Quantitative characterization of cellular membrane-receptor heterogeneity through statistical and computational modeling. PLoS One 2014; 9:e97271. [PMID: 24827582 PMCID: PMC4020774 DOI: 10.1371/journal.pone.0097271] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/16/2014] [Indexed: 12/20/2022] Open
Abstract
Cell population heterogeneity can affect cellular response and is a major factor in drug resistance. However, there are few techniques available to represent and explore how heterogeneity is linked to population response. Recent high-throughput genomic, proteomic, and cellomic approaches offer opportunities for profiling heterogeneity on several scales. We have recently examined heterogeneity in vascular endothelial growth factor receptor (VEGFR) membrane localization in endothelial cells. We and others processed the heterogeneous data through ensemble averaging and integrated the data into computational models of anti-angiogenic drug effects in breast cancer. Here we show that additional modeling insight can be gained when cellular heterogeneity is considered. We present comprehensive statistical and computational methods for analyzing cellomic data sets and integrating them into deterministic models. We present a novel method for optimizing the fit of statistical distributions to heterogeneous data sets to preserve important data and exclude outliers. We compare methods of representing heterogeneous data and show methodology can affect model predictions up to 3.9-fold. We find that VEGF levels, a target for tuning angiogenesis, are more sensitive to VEGFR1 cell surface levels than VEGFR2; updating VEGFR1 levels in the tumor model gave a 64% change in free VEGF levels in the blood compartment, whereas updating VEGFR2 levels gave a 17% change. Furthermore, we find that subpopulations of tumor cells and tumor endothelial cells (tEC) expressing high levels of VEGFR (>35,000 VEGFR/cell) negate anti-VEGF treatments. We show that lowering the VEGFR membrane insertion rate for these subpopulations recovers the anti-angiogenic effect of anti-VEGF treatment, revealing new treatment targets for specific tumor cell subpopulations. This novel method of characterizing heterogeneous distributions shows for the first time how different representations of the same data set lead to different predictions of drug efficacy.
Collapse
Affiliation(s)
- Jared C. Weddell
- Department of Bioengineering, University of Illinois Urbana Champaign, Urbana, Illinois, United States of America
| | - P. I. Imoukhuede
- Department of Bioengineering, University of Illinois Urbana Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
24
|
Gillette DD, Tridandapani S, Butchar JP. Monocyte/macrophage inflammatory response pathways to combat Francisella infection: possible therapeutic targets? Front Cell Infect Microbiol 2014; 4:18. [PMID: 24600590 PMCID: PMC3930869 DOI: 10.3389/fcimb.2014.00018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/02/2014] [Indexed: 01/05/2023] Open
Abstract
Francisella tularensis can bypass and suppress host immune responses, even to the point of manipulating immune cell phenotypes and intercellular inflammatory networks. Strengthening these responses such that immune cells more readily identify and destroy the bacteria is likely to become a viable (and perhaps necessary) strategy for combating infections with Francisella, especially given the likelihood of antibiotic resistance in the foreseeable future. Monocytes and macrophages offer a niche wherein Francisella can invade and replicate, resulting in substantially higher bacterial load that can overcome the host. As such, understanding their responses to Francisella may uncover potential avenues of therapy that could promote a lowering of bacterial burden and clearance of infection. These response pathways include Toll-like Receptor 2 (TLR2), the caspase-1 inflammasome, Interferons, NADPH oxidase, Phosphatidylinositide 3-kinase (PI3K), and the Ras pathway. In this review we summarize the literature pertaining to the roles of these pathways during Francisella infection, with an emphasis on monocyte/macrophage responses. The therapeutic targeting of one or more such pathways may ultimately become a valuable tool for the treatment of tularemia, and several possibilities are discussed.
Collapse
Affiliation(s)
- Devyn D Gillette
- Department of Internal Medicine, Wexner Medical Center, The Ohio State University Columbus, OH, USA
| | - Susheela Tridandapani
- Department of Internal Medicine, Wexner Medical Center, The Ohio State University Columbus, OH, USA
| | - Jonathan P Butchar
- Department of Internal Medicine, Wexner Medical Center, The Ohio State University Columbus, OH, USA
| |
Collapse
|
25
|
Wang Z, Wen P, Luo X, Fang X, Wang Q, Ma F, Lv J. Association of the vascular endothelial growth factor (VEGF) gene single-nucleotide polymorphisms with osteosarcoma susceptibility in a Chinese population. Tumour Biol 2013; 35:3605-10. [PMID: 24310504 DOI: 10.1007/s13277-013-1475-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/26/2013] [Indexed: 12/25/2022] Open
Abstract
Osteosarcoma (OS) is the most common bone malignancy worldwide. The vascular endothelial growth factor (VEGF) gene plays an important role in the pathogenesis of OS. The objective of this study aimed to detect the potential association between VEGF genetic polymorphisms and OS susceptibility in Chinese Han population. We recruited 330 OS patients and 342 cancer-free controls in this case-control study. Three single-nucleotide polymorphisms (SNPs) (-634 G > C, +936 C > T, and +1612 G > A) of the VEGF gene were investigated by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method and confirmed by direct DNA sequencing. Among these SNPs, we found that the genotypes/alleles of +936 C > T were statistically associated with the increased risk of OS (TT versus (vs.) CC: OR = 2.70, 95% CI 1.34-5.45, χ(2) = 8.2271, p = 0.0041; T vs. C: OR = 1.31, 95% CI 1.02-1.68, χ(2) = 4.3861, p = 0.0362). The T allele and TT genotype of +936 C > T could be factors that increase the risk for susceptibility to OS. The results from this study suggest that VEGF genetic variants are potentially related to OS susceptibility in Chinese Han population and might be used as molecular markers for assessing OS susceptibility.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Orthopedics, Ningxia People's Hospital, Yinchuan, Ningxia Province, 750021, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
26
|
Kawakami-Schulz SV, Sattler SG, Doebley AL, Ikeda A, Ikeda S. Genetic modification of corneal neovascularization in Dstn (corn1) mice. Mamm Genome 2013; 24:349-57. [PMID: 23929036 PMCID: PMC3802551 DOI: 10.1007/s00335-013-9468-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/05/2013] [Indexed: 10/26/2022]
Abstract
Mutations in the gene for destrin (Dstn), an actin depolymerizing factor, lead to corneal abnormalities in mice. A null mutation in Dstn, termed Dstn (corn1) , isolated and maintained in the A.BY background (A.BY Dstn (corn1) ), results in corneal epithelial hyperproliferation, inflammation, and neovascularization. We previously reported that neovascularization in the cornea of Dstn (corn1) mice on the C57BL/6 background (B6.A.BY-Dstn (corn1) ) is significantly reduced when compared to A.BY Dstn (corn1) mice, suggesting the existence of genetic modifier(s). The purpose of this study is to identify the genetic basis of the difference in corneal neovascularization between A.BY Dstn (corn1) and B6.A.BY-Dstn (corn1) mice. We generated N2 mice for a whole-genome scan by backcrossing F1 progeny (A.BY Dstn (corn1) × B6.A.BY-Dstn (corn1) ) to B6.A.BY-Dstn (corn1) mice. N2 progeny were quantitatively phenotyped for the extent of corneal neovascularization and genotyped for markers across the mouse genome. We identified significant association of variability in corneal neovascularization with a locus on chromosome 3 (Chr3). The validity of the identified quantitative trait locus (QTL) was tested using B6 consomic mice carrying Chr3 from A/J mice. Dstn (corn1) mice from F1 and F2 intercrosses (B6.A.BY-Dstn (corn1) × C57BL/6J-Chr3(A/J)/NaJ) were phenotyped for the extent of corneal neovascularization. This analysis showed that mice carrying the A/J allele at the QTL show significantly increased neovascularization. Our results indicate the existence of a modifier that genetically interacts with the Dstn gene. This modifier demonstrates allelic differences between C57BL6 and A.BY or A/J. The modifier is sufficient to increase neovascularization in Dstn (corn1) mice.
Collapse
Affiliation(s)
| | - Shannon G. Sattler
- Department of Medical Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Anna-Lisa Doebley
- Department of Medical Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA
| |
Collapse
|