1
|
Yamamoto K, Scilabra SD, Bonelli S, Jensen A, Scavenius C, Enghild JJ, Strickland DK. Novel insights into the multifaceted and tissue-specific roles of the endocytic receptor LRP1. J Biol Chem 2024; 300:107521. [PMID: 38950861 PMCID: PMC11325810 DOI: 10.1016/j.jbc.2024.107521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Receptor-mediated endocytosis provides a mechanism for the selective uptake of specific molecules thereby controlling the composition of the extracellular environment and biological processes. The low-density lipoprotein receptor-related protein 1 (LRP1) is a widely expressed endocytic receptor that regulates cellular events by modulating the levels of numerous extracellular molecules via rapid endocytic removal. LRP1 also participates in signalling pathways through this modulation as well as in the interaction with membrane receptors and cytoplasmic adaptor proteins. LRP1 SNPs are associated with several diseases and conditions such as migraines, aortic aneurysms, cardiopulmonary dysfunction, corneal clouding, and bone dysmorphology and mineral density. Studies using Lrp1 KO mice revealed a critical, nonredundant and tissue-specific role of LRP1 in regulating various physiological events. However, exactly how LRP1 functions to regulate so many distinct and specific processes is still not fully clear. Our recent proteomics studies have identified more than 300 secreted proteins that either directly interact with LRP1 or are modulated by LRP1 in various tissues. This review will highlight the remarkable ability of this receptor to regulate secreted molecules in a tissue-specific manner and discuss potential mechanisms underpinning such specificity. Uncovering the depth of these "hidden" specific interactions modulated by LRP1 will provide novel insights into a dynamic and complex extracellular environment that is involved in diverse biological and pathological processes.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.
| | - Simone D Scilabra
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT, Palermo, Italy
| | - Simone Bonelli
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT, Palermo, Italy; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Anders Jensen
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Ozdilek B, Agirbasli M. Soluble LRP-1 in Parkinson's disease: clues for paradoxical effects. Int J Neurosci 2024; 134:620-627. [PMID: 36184975 DOI: 10.1080/00207454.2022.2131552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/29/2021] [Accepted: 09/21/2022] [Indexed: 10/17/2022]
Abstract
Background: Low density lipoprotein receptor-related protein-1 (LRP-1) is highly expressed in the central nervous system and plays a role in neurodegenerative disorders. The available data on this subject-matter seem to support the presence of a correlation between LRP-1 levels and abnormal aggregation of a plurality of proteins, including tau, amyloid, and α‑synuclein. Understanding the molecular mechanisms underlying Parkinson's disease (PD) is critical for development of new therapies. Aim: To investigate serum soluble LRP-1 (sLRP-1) concentrations in patients with PD and explored their potential role as a biomarker in diagnosis and prognosis of disease. Methods: Based on well-defined inclusion and exclusion criteria, we have included 133 PD patients and 45 healthy controls. The clinical severity was assessed using Hoehn Yahr and Unified PD Rating Scale (UPDRS). Following a fasting period, venous blood samples were taken, and centrifuged. Serum samples were stored until analysis. sLRP-1 was measured by ELISA assay. Results: The median of serum sLRP-1 levels was higher in PD patients compared to that in healthy controls, but without reaching a statistical significance. There was a positive, but statistically insignificant, correlation between sLRP-1 levels and duration of disease. sLRP-1 levels had a significant correlation with UPDRS Parts I and IV. Patients with hypertension showed lower levels of sLRP-1. Conclusion: The present study suggests that serum sLRP-1 concentrations are associated with the factors influencing prognosis of PD and disease severity. Further studies are needed to definitively determine whether or not sLRP-1 can be utilized as a diagnostic and prognostic biomarker for PD.
Collapse
Affiliation(s)
- Betul Ozdilek
- Department of Neurology, Istanbul Medeniyet University Faculty of Medicine, Istanbul, Turkey
- Clinic of Neurology, Ministry of Health Goztepe Training and Research Hospital, Istanbul, Turkey
| | - Mehmet Agirbasli
- Department of Cardiology, Istanbul Medeniyet University Faculty of Medicine, Istanbul, Turkey
- Clinic of Cardiology, Ministry of Health Goztepe Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
3
|
López-Landavery EA, Urquizo-Rosado Á, Saavedra-Flores A, Tapia-Morales S, Fernandino JI, Zelada-Mázmela E. Cellular and transcriptomic response to pathogenic and non-pathogenic Vibrio parahaemolyticus strains causing acute hepatopancreatic necrosis disease (AHPND) in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109472. [PMID: 38438059 DOI: 10.1016/j.fsi.2024.109472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The shrimp industry has historically been affected by viral and bacterial diseases. One of the most recent emerging diseases is Acute Hepatopancreatic Necrosis Disease (AHPND), which causes severe mortality. Despite its significance to sanitation and economics, little is known about the molecular response of shrimp to this disease. Here, we present the cellular and transcriptomic responses of Litopenaeus vannamei exposed to two Vibrio parahaemolyticus strains for 98 h, wherein one is non-pathogenic (VpN) and the other causes AHPND (VpP). Exposure to the VpN strain resulted in minor alterations in hepatopancreas morphology, including reductions in the size of R and B cells and detachments of small epithelial cells from 72 h onwards. On the other hand, exposure to the VpP strain is characterized by acute detachment of epithelial cells from the hepatopancreatic tubules and infiltration of hemocytes in the inter-tubular spaces. At the end of exposure, RNA-Seq analysis revealed functional enrichment in biological processes, such as the toll3 receptor signaling pathway, apoptotic processes, and production of molecular mediators involved in the inflammatory response of shrimp exposed to VpN treatment. The biological processes identified in the VpP treatment include superoxide anion metabolism, innate immune response, antimicrobial humoral response, and toll3 receptor signaling pathway. Furthermore, KEGG enrichment analysis revealed metabolic pathways associated with survival, cell adhesion, and reactive oxygen species, among others, for shrimp exposed to VpP. Our study proves the differential immune responses to two strains of V. parahaemolyticus, one pathogenic and the other nonpathogenic, enlarges our knowledge on the evolution of AHPND in L. vannamei, and uncovers unique perspectives on establishing genomic resources that may function as a groundwork for detecting probable molecular markers linked to the immune system in shrimp.
Collapse
Affiliation(s)
- Edgar A López-Landavery
- Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Nuevo Chimbote, Ancash, Peru.
| | - Ángela Urquizo-Rosado
- Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Nuevo Chimbote, Ancash, Peru
| | - Anaid Saavedra-Flores
- Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Nuevo Chimbote, Ancash, Peru
| | - Sandra Tapia-Morales
- Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Nuevo Chimbote, Ancash, Peru
| | - Juan I Fernandino
- Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Nuevo Chimbote, Ancash, Peru; Laboratorio de Biología del Desarrollo - Instituto Tecnológico de Chascomús. INTECH (CONICET-UNSAM), Argentina; Escuela de Bio y Nanotecnologías (UNSAM). Chascomús, Argentina.
| | - Eliana Zelada-Mázmela
- Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Nuevo Chimbote, Ancash, Peru.
| |
Collapse
|
4
|
Faissner A. Low-density lipoprotein receptor-related protein-1 (LRP1) in the glial lineage modulates neuronal excitability. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1190240. [PMID: 37383546 PMCID: PMC10293750 DOI: 10.3389/fnetp.2023.1190240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023]
Abstract
The low-density lipoprotein related protein receptor 1 (LRP1), also known as CD91 or α-Macroglobulin-receptor, is a transmembrane receptor that interacts with more than 40 known ligands. It plays an important biological role as receptor of morphogens, extracellular matrix molecules, cytokines, proteases, protease inhibitors and pathogens. In the CNS, it has primarily been studied as a receptor and clearance agent of pathogenic factors such as Aβ-peptide and, lately, Tau protein that is relevant for tissue homeostasis and protection against neurodegenerative processes. Recently, it was found that LRP1 expresses the Lewis-X (Lex) carbohydrate motif and is expressed in the neural stem cell compartment. The removal of Lrp1 from the cortical radial glia compartment generates a strong phenotype with severe motor deficits, seizures and a reduced life span. The present review discusses approaches that have been taken to address the neurodevelopmental significance of LRP1 by creating novel, lineage-specific constitutive or conditional knockout mouse lines. Deficits in the stem cell compartment may be at the root of severe CNS pathologies.
Collapse
|
5
|
Sizova O, John LS, Ma Q, Molldrem JJ. Multi-faceted role of LRP1 in the immune system. Front Immunol 2023; 14:1166189. [PMID: 37020553 PMCID: PMC10069629 DOI: 10.3389/fimmu.2023.1166189] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Graft versus host disease (GVHD) represents the major complication after allogeneic hematopoietic stem cell transplantation (Allo-SCT). GVHD-prone patients rely on GVHD prophylaxis (e.g. methotrexate) and generalized anti-GVHD medical regimen (glucocorticoids). New anti-GVHD therapy strategies are being constantly explored, however there is an urgent need to improve current treatment, since GVHD-related mortality reaches 22% within 5 years in patients with chronic GVHD. This review is an attempt to describe a very well-known receptor in lipoprotein studies - the low-density lipoprotein receptor related protein 1 (LRP1) - in a new light, as a potential therapeutic target for GVHD prevention and treatment. Our preliminary studies demonstrated that LRP1 deletion in donor murine T cells results in significantly lower GVHD-related mortality in recipient mice with MHC (major histocompatibility complex) -mismatched HSCT. Given the importance of T cells in the development of GVHD, there is a significant gap in scientific literature regarding LRP1's role in T cell biology. Furthermore, there is limited research interest and publications on this classical receptor molecule in other immune cell types. Herein, we endeavor to summarize existing knowledge about LRP1's role in various immune cells to demonstrate the possibility of this receptor to serve as a novel target for anti-GVHD treatment.
Collapse
Affiliation(s)
- Olga Sizova
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lisa St. John
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qing Ma
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jeffrey J. Molldrem
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- ECLIPSE, Therapeutic Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Jeffrey J. Molldrem,
| |
Collapse
|
6
|
WÅHLÉN KARIN, YAN HONG, WELINDER CHARLOTTE, ERNBERG MALIN, KOSEK EVA, MANNERKORPI KAISA, GERDLE BJÖRN, GHAFOURI BIJAR. Proteomic Investigation in Plasma from Women with Fibromyalgia in Response to a 15-wk Resistance Exercise Intervention. Med Sci Sports Exerc 2022; 54:232-246. [PMID: 35029590 PMCID: PMC8754090 DOI: 10.1249/mss.0000000000002790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE Fibromyalgia (FM) is a complex pain condition, and exercise is considered the first option of treatment. Few studies have examined the effect of exercise on molecular mechanisms in FM. The aim of this study was to analyze the plasma proteome in women with FM and healthy controls (CON) before and after 15 wk of resistance exercise. This study further investigated whether clinical and exercises-related outcomes correlated with identified plasma proteins in FM. METHODS Plasma samples from 40 FM/25 CON (baseline) and 21 FM/24 CON (postexercise) were analyzed using shotgun proteomics. Clinical/background data were retrieved through questionnaires. Exercise-related variables and pressure pain thresholds were assessed using standardized instruments. Multivariate statistics were applied to analyze the proteomic profile at baseline and postexercise, and correlation with clinical/exercise-related data. RESULTS Fifteen weeks of resistance exercises improved clinical symptoms and muscle strength, and affected circulating proteins related to immunity, stress, mRNA stability, metabolic processes, and muscle structure development in FM. Pressure pain threshold was related to a specific protein profile, with proteins involved in metabolic and immune response. Subgroups of FM based on plasma proteins, FM duration, and improved muscle strength were identified. CONCLUSIONS Exercise seems to affect circulating proteins, clinical characteristics, and muscle strength in FM. This study contributes to better understanding of systemic protein changes in FM compared with CON and how resistance exercise affects such changes.
Collapse
Affiliation(s)
- KARIN WÅHLÉN
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, SWEDEN
| | - HONG YAN
- BioMS, Lund University, Lund, SWEDEN
| | - CHARLOTTE WELINDER
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Lund, SWEDEN
| | - MALIN ERNBERG
- Department of Dental Medicine, Karolinska Institutet, and Scandinavian Centre for Orofacial Neurosciences (SCON), Huddinge, SWEDEN
| | - EVA KOSEK
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, SWEDEN
- Department of Surgical Sciences, Uppsala University, Uppsala, SWEDEN
| | - KAISA MANNERKORPI
- Department of Neuroscience and Physiology, Section of Health and Rehabilitation, Physiotherapy, Sahlgrenska Academy, University of Gothenburg, Gothenburg, SWEDEN
| | - BJÖRN GERDLE
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, SWEDEN
| | - BIJAR GHAFOURI
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, SWEDEN
| |
Collapse
|
7
|
Labarrere CA, Kassab GS. Pattern Recognition Proteins: First Line of Defense Against Coronaviruses. Front Immunol 2021; 12:652252. [PMID: 34630377 PMCID: PMC8494786 DOI: 10.3389/fimmu.2021.652252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023] Open
Abstract
The rapid outbreak of COVID-19 caused by the novel coronavirus SARS-CoV-2 in Wuhan, China, has become a worldwide pandemic affecting almost 204 million people and causing more than 4.3 million deaths as of August 11 2021. This pandemic has placed a substantial burden on the global healthcare system and the global economy. Availability of novel prophylactic and therapeutic approaches are crucially needed to prevent development of severe disease leading to major complications both acutely and chronically. The success in fighting this virus results from three main achievements: (a) Direct killing of the SARS-CoV-2 virus; (b) Development of a specific vaccine, and (c) Enhancement of the host's immune system. A fundamental necessity to win the battle against the virus involves a better understanding of the host's innate and adaptive immune response to the virus. Although the role of the adaptive immune response is directly involved in the generation of a vaccine, the role of innate immunity on RNA viruses in general, and coronaviruses in particular, is mostly unknown. In this review, we will consider the structure of RNA viruses, mainly coronaviruses, and their capacity to affect the lungs and the cardiovascular system. We will also consider the effects of the pattern recognition protein (PRP) trident composed by (a) Surfactant proteins A and D, mannose-binding lectin (MBL) and complement component 1q (C1q), (b) C-reactive protein, and (c) Innate and adaptive IgM antibodies, upon clearance of viral particles and apoptotic cells in lungs and atherosclerotic lesions. We emphasize on the role of pattern recognition protein immune therapies as a combination treatment to prevent development of severe respiratory syndrome and to reduce pulmonary and cardiovascular complications in patients with SARS-CoV-2 and summarize the need of a combined therapeutic approach that takes into account all aspects of immunity against SARS-CoV-2 virus and COVID-19 disease to allow mankind to beat this pandemic killer.
Collapse
Affiliation(s)
| | - Ghassan S Kassab
- California Medical Innovations Institute, San Diego, CA, United States
| |
Collapse
|
8
|
Hasan MM, Gazi MA, Das S, Fahim SM, Hossaini F, Alam MA, Mahfuz M, Ahmed T. Association of lipocalin-2 and low-density lipoprotein receptor-related protein-1 (LRP1) with biomarkers of environmental enteric dysfunction (EED) among under 2 children in Bangladesh: results from a community-based intervention study. BMJ Paediatr Open 2021; 5:e001138. [PMID: 34423140 PMCID: PMC8340289 DOI: 10.1136/bmjpo-2021-001138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/17/2021] [Indexed: 11/03/2022] Open
Abstract
Background Environmental enteric dysfunction (EED) is thought to occur from persistent intestinal inflammation. Studies also revealed the association of lipocalin-2 (LCN2) and low-density lipoprotein receptor-related protein-1 (LRP1) with intestinal inflammation. Therefore, we intended to explore the relationship of LCN2 and LRP1 with gut inflammation and biomarkers of EED in Bangladeshi malnourished children. Methods A total of 222 children (length-for-age z-score (LAZ) <-1) aged 12-18 months were enrolled in this study in a cross-sectional manner. Among the participants, 115 were stunted (LAZ <-2) and 107 were at risk of being stunted (LAZ -1 to -2) children. Plasma and faecal biomarkers were measured using ELISA. Spearman's rank correlation was done to see the correlation among LCN2, LRP1 and biological biomarkers. Results LCN2 correlates positively with myeloperoxidase (r=0.19, p=0.005), neopterin (r=0.20, p=0.004), calprotectin (r=0.3, p=0.0001), Reg1B (r=0.20, p=0.003) and EED score (r=0.20, p=0.003). Whereas, LRP1 correlates negatively with myeloperoxidase (r = -0.18, p=0.006), neopterin (r = -0.30, p=0.0001), alpha-1-antitrypsin (r = -0.18, p=0.006), Reg1B (r=-0.2, p=0.003) and EED score (r = -0.29, p=0.0001). Conclusions Our findings imply that LCN2 might be a promising biomarker to predict gut inflammation and EED. Whereas, increased level of LRP1 may contribute to alleviating intestinal inflammation.
Collapse
Affiliation(s)
- Md. Mehedi Hasan
- Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Md. Amran Gazi
- Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Subhasish Das
- Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Shah Mohammad Fahim
- Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Farzana Hossaini
- Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Md. Ashraful Alam
- Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Mustafa Mahfuz
- Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research Bangladesh (icddr, b), Dhaka, Bangladesh
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
Wohlford GF, Buckley LF, Kadariya D, Park T, Chiabrando JG, Carbone S, Mihalick V, Halquist MS, Pearcy A, Austin D, Gelber C, Abbate A, Van Tassell B. A phase 1 clinical trial of SP16, a first-in-class anti-inflammatory LRP1 agonist, in healthy volunteers. PLoS One 2021; 16:e0247357. [PMID: 33956804 PMCID: PMC8101931 DOI: 10.1371/journal.pone.0247357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/02/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Endogenous serine protease inhibitors are associated with anti-inflammatory and pro-survival signaling mediated via Low-density lipoprotein receptor-related protein 1 (LRP1) signaling. SP16 is a short polypeptide that mimics the LRP1 binding portion of alpha-1 antitrypsin. METHODS A pilot phase I, first-in-man, randomized, double blind, placebo-controlled safety study was conducted to evaluate a subcutaneous injection at three dose levels of SP16 (0.0125, 0.05, and 0.2 mg/kg [up to 12 mg]) or matching placebo in 3:1 ratio in healthy individuals. Safety monitoring included vital signs, laboratory examinations (including hematology, coagulation, platelet function, chemistry, myocardial toxicity) and electrocardiography (to measure effect on PR, QRS, and QTc). RESULTS Treatment with SP16 was not associated with treatment related serious adverse events. SP16 was associated with mild-moderate pain at the time of injection that was significantly higher than placebo on a 0-10 pain scale (6.0+/-1.4 [0.2 mg/kg] versus 1.5+/-2.1 [placebo], P = 0.0088). No differences in vital signs, laboratory examinations and electrocardiography were found in those treated with SP16 versus placebo. CONCLUSION A one-time treatment with SP16 for doses up to 0.2 mg/kg or 12 mg was safe in healthy volunteers.
Collapse
Affiliation(s)
- George F. Wohlford
- Virginia Commonwealth University School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Leo F. Buckley
- Virginia Commonwealth University School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Dinesh Kadariya
- Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Taeshik Park
- Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Juan Guido Chiabrando
- Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Salvatore Carbone
- Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Virginia Mihalick
- Virginia Commonwealth University School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Matthew S. Halquist
- Virginia Commonwealth University School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Adam Pearcy
- Virginia Commonwealth University School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Dana Austin
- Serpin Pharma LLC, Manassas, Virginia, United States of America
| | - Cohava Gelber
- Serpin Pharma LLC, Manassas, Virginia, United States of America
| | - Antonio Abbate
- Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Benjamin Van Tassell
- Virginia Commonwealth University School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
10
|
From the low-density lipoprotein receptor-related protein 1 to neuropathic pain: a potentially novel target. Pain Rep 2021; 6:e898. [PMID: 33981930 PMCID: PMC8108589 DOI: 10.1097/pr9.0000000000000898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022] Open
Abstract
The low-density lipoprotein receptor–related protein 1 plays a major role in the regulation of neuroinflammation, neurodegeneration, neuroregeneration, neuropathic pain, and deficient cognitive functions. This review describes the roles of the low-density lipoprotein receptor–related protein 1 (LRP-1) in inflammatory pathways, nerve nerve degeneration and -regeneration and in neuropathic pain. Induction of LRP-1 is able to reduce the activation of the proinflammatory NFκB-mediated pathway and the mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase and p38 signaling pathways, in turn decreasing the production of inflammatory mediators. Low-density lipoprotein receptor-related protein 1 activation also decreases reactive astrogliosis and polarizes microglial cells and macrophages from a proinflammatory phenotype (M1) to an anti-inflammatory phenotype (M2), attenuating the neuroinflammatory environment. Low-density lipoprotein receptor-related protein 1 can also modulate the permeability of the blood–brain barrier and the blood–nerve barrier, thus regulating the infiltration of systemic insults and cells into the central and the peripheral nervous system, respectively. Furthermore, LRP-1 is involved in the maturation of oligodendrocytes and in the activation, migration, and repair phenotype of Schwann cells, therefore suggesting a major role in restoring the myelin sheaths upon injury. Low-density lipoprotein receptor-related protein 1 activation can indirectly decrease neurodegeneration and neuropathic pain by attenuation of the inflammatory environment. Moreover, LRP-1 agonists can directly promote neural cell survival and neurite sprouting, decrease cell death, and attenuate pain and neurological disorders by the inhibition of MAPK c-Jun N-terminal kinase and p38-pathway and activation of MAPK extracellular signal–regulated kinase pathway. In addition, activation of LRP-1 resulted in better outcomes for neuropathies such as Alzheimer disease, nerve injury, or diabetic peripheral neuropathy, attenuating neuropathic pain and improving cognitive functions. To summarize, LRP-1 plays an important role in the development of different experimental diseases of the nervous system, and it is emerging as a very interesting therapeutic target.
Collapse
|
11
|
Chen Q, Zhang Y, Zhao Q. Expression analysis of immune-associated genes in hemocytes of mud crab Scylla paramamosain under low salinity challenge. FISH & SHELLFISH IMMUNOLOGY 2020; 107:16-25. [PMID: 32947031 DOI: 10.1016/j.fsi.2020.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
To gain knowledge on the immune response in Scylla paramamosain under low salinity challenge, S. paramamosain we investigated digital gene expression (DEG) in S. paramamosain hemocytes using the deep-sequencing platform Illumina Hiseq XTen. A total of 97,257 high quality unigenes with mean length 786.59 bp were found to be regulated by low salinity challenge, among which 93 unigenes were significantly up regulated, and 71 were significantly down regulated. Functional categorization and pathways analysis of differentially expressed genes revealed that immune signaling pathway including cAMP and cGMP signaling pathway were affected in low salinity stress. Cellular immunity-related genes including low-density lipoprotein receptor-related protein 6 (LRP6) and xanthine dehydrogenase (XDH) were down-regulated, indicating phagocytosis and oxygen dependent mechanism of phagocyte were suppressed in low salinity stress; Humoral immunity-related genes serine proteases and serpins 3 were up- and down-regulated, respectively, suggest that the proPO system was influenced by low salinity significantly; Moreover, processes related to immune response including carbohydrate metabolism, protein synthesis and lipid transport were found differentially regulated, implying the integrity of the immune response in low salinity stress. This study gained comprehensive insights on the immune mechanism of S. paramamosain at low salinity stress at the molecular level. The findings provide a theoretical basis for understanding immune mechanisms of S. paramamosain under low salinity stress, and technical reference for evaluating physiological adaptation in fresh water environment.
Collapse
Affiliation(s)
- Qinsheng Chen
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Yan Zhang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Qun Zhao
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|
12
|
Rezaei E, Newkirk MM, Li Z, Gordon JR, Oen KG, Benseler SM, Boire G, Cabral DA, Campillo S, Chédeville G, Chetaille AL, Dancey P, Duffy C, Duffy KW, Houghton K, Huber AM, Jurencak R, Lang B, Morishita KA, Petty RE, Ramsey SE, Roth J, Schneider R, Scuccimarri R, Spiegel L, Stringer E, Tse SML, Tucker LB, Turvey SE, Yeung RSM, Rosenberg AM. Soluble Low-density Lipoprotein Receptor-related Protein 1 in Juvenile Idiopathic Arthritis. J Rheumatol 2020; 48:760-766. [PMID: 33060303 DOI: 10.3899/jrheum.200391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVES This study aimed to expand knowledge about soluble low-density lipoprotein receptor-related protein 1 (sLRP1) in juvenile idiopathic arthritis (JIA) by determining associations of sLRP1 levels in nonsystemic JIA patients with clinical and inflammatory biomarker indicators of disease activity. METHODS Plasma sLRP1 and 44 inflammation-related biomarkers were measured at enrollment and 6 months later in a cohort of 96 newly diagnosed Canadian patients with nonsystemic JIA. Relationships between sLRP1 levels and indicators of disease activity and biomarker levels were analyzed at both visits. RESULTS At enrollment, sLRP1 levels correlated negatively with age and active joint counts. Children showed significantly higher levels of sLRP1 than adolescents (mean ranks: 55.4 and 41.9, respectively; P = 0.02). Participants with 4 or fewer active joints, compared to those with 5 or more active joints, had significantly higher sLRP1 levels (mean ranks: 56.2 and 40.7, respectively; P = 0.006). At enrollment, considering the entire cohort, sLRP1 correlated negatively with the number of active joints (r = -0.235, P = 0.017). In the entire cohort, sLRP1 levels at enrollment and 6 months later correlated with 13 and 6 pro- and antiinflammatory biomarkers, respectively. In JIA categories, sLRP1 correlations with inflammatory markers were significant in rheumatoid factor-negative polyarticular JIA, oligoarticular JIA, enthesitis-related arthritis, and psoriatic arthritis at enrollment. Higher sLRP1 levels at enrollment increased the likelihood of absence of active joints 6 months later. CONCLUSION Plasma sLRP1 levels correlate with clinical and biomarker indicators of short-term improvement in JIA disease activity, supporting sLRP1 as an upstream biomarker of potential utility for assessing JIA disease activity and outcome prediction.
Collapse
Affiliation(s)
- Elham Rezaei
- E. Rezaei, MD, PhD, A.M. Rosenberg, MD, Departments of Pediatrics, University of Saskatchewan, Saskatoon, Saskatchewan
| | - Marianna M Newkirk
- M.M. Newkirk, PhD, Department of Medicine, McGill University Health Center, Montreal, Quebec
| | - Zhenhong Li
- Z. Li, MSc, RC-CHUM, University of Montreal, Montreal, Quebec
| | - John R Gordon
- J.R. Gordon, PhD, Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan
| | - Kiem G Oen
- K.G. Oen, MD, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba
| | - Susanne M Benseler
- S.M. Benseler, MD, PhD, Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta
| | - Gilles Boire
- G. Boire, MD, Département de Médecine, Université de Sherbrooke, Sherbrooke, Quebec
| | - David A Cabral
- D.A. Cabral, MD, K. Houghton, MD, K.A. Morishita, MD, R.E. Petty, MD, PhD, L.B. Tucker, MD, S.E. Turvey, MD, Department of Pediatrics, British Columbia Children's Hospital, Vancouver, British Columbia
| | - Sarah Campillo
- S. Campillo, MD, G. Chédeville, MD, R. Scuccimarri, MD, Department of Pediatrics, McGill University Health Center, Montreal, Quebec
| | - Gaëlle Chédeville
- S. Campillo, MD, G. Chédeville, MD, R. Scuccimarri, MD, Department of Pediatrics, McGill University Health Center, Montreal, Quebec
| | - Anne-Laure Chetaille
- A.L. Chetaille, MD, Département de Médecine le Centre Hospitalier Universitaire de Quebec, Quebec City, Quebec
| | - Paul Dancey
- P. Dancey, MD, Department of Pediatrics, Janeway Children's Health and Rehabilitation Centre, St. John's, Newfoundland
| | - Ciaran Duffy
- C. Duffy, MD, R. Jurencak, MD, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario
| | - Karen Watanabe Duffy
- K. Watanabe Duffy, MD, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario
| | - Kristin Houghton
- D.A. Cabral, MD, K. Houghton, MD, K.A. Morishita, MD, R.E. Petty, MD, PhD, L.B. Tucker, MD, S.E. Turvey, MD, Department of Pediatrics, British Columbia Children's Hospital, Vancouver, British Columbia
| | - Adam M Huber
- A.M. Huber, MD, B. Lang, MD, S.E. Ramsey, MD, E. Stringer, MD, Department of Pediatrics, IWK Health Centre and Dalhousie University, Halifax, Nova Scotia
| | - Roman Jurencak
- C. Duffy, MD, R. Jurencak, MD, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario
| | - Bianca Lang
- A.M. Huber, MD, B. Lang, MD, S.E. Ramsey, MD, E. Stringer, MD, Department of Pediatrics, IWK Health Centre and Dalhousie University, Halifax, Nova Scotia
| | - Kimberly A Morishita
- D.A. Cabral, MD, K. Houghton, MD, K.A. Morishita, MD, R.E. Petty, MD, PhD, L.B. Tucker, MD, S.E. Turvey, MD, Department of Pediatrics, British Columbia Children's Hospital, Vancouver, British Columbia
| | - Ross E Petty
- D.A. Cabral, MD, K. Houghton, MD, K.A. Morishita, MD, R.E. Petty, MD, PhD, L.B. Tucker, MD, S.E. Turvey, MD, Department of Pediatrics, British Columbia Children's Hospital, Vancouver, British Columbia
| | - Suzanne E Ramsey
- A.M. Huber, MD, B. Lang, MD, S.E. Ramsey, MD, E. Stringer, MD, Department of Pediatrics, IWK Health Centre and Dalhousie University, Halifax, Nova Scotia
| | - Johannes Roth
- J. Roth, MD, Department of Pediatrics, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario
| | - Rayfel Schneider
- R. Schneider, MD, L. Spiegel, MD, S.M. Tse, MD, R.S. Yeung, MD, PhD, Department of Paediatrics, University of Toronto and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rosie Scuccimarri
- S. Campillo, MD, G. Chédeville, MD, R. Scuccimarri, MD, Department of Pediatrics, McGill University Health Center, Montreal, Quebec
| | - Lynn Spiegel
- R. Schneider, MD, L. Spiegel, MD, S.M. Tse, MD, R.S. Yeung, MD, PhD, Department of Paediatrics, University of Toronto and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elizabeth Stringer
- A.M. Huber, MD, B. Lang, MD, S.E. Ramsey, MD, E. Stringer, MD, Department of Pediatrics, IWK Health Centre and Dalhousie University, Halifax, Nova Scotia
| | - Shirley M L Tse
- R. Schneider, MD, L. Spiegel, MD, S.M. Tse, MD, R.S. Yeung, MD, PhD, Department of Paediatrics, University of Toronto and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lori B Tucker
- D.A. Cabral, MD, K. Houghton, MD, K.A. Morishita, MD, R.E. Petty, MD, PhD, L.B. Tucker, MD, S.E. Turvey, MD, Department of Pediatrics, British Columbia Children's Hospital, Vancouver, British Columbia
| | - Stuart E Turvey
- D.A. Cabral, MD, K. Houghton, MD, K.A. Morishita, MD, R.E. Petty, MD, PhD, L.B. Tucker, MD, S.E. Turvey, MD, Department of Pediatrics, British Columbia Children's Hospital, Vancouver, British Columbia
| | - Rae S M Yeung
- R. Schneider, MD, L. Spiegel, MD, S.M. Tse, MD, R.S. Yeung, MD, PhD, Department of Paediatrics, University of Toronto and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alan M Rosenberg
- E. Rezaei, MD, PhD, A.M. Rosenberg, MD, Departments of Pediatrics, University of Saskatchewan, Saskatoon, Saskatchewan;
| | | |
Collapse
|
13
|
Conditional Deletion of LRP1 Leads to Progressive Loss of Recombined NG2-Expressing Oligodendrocyte Precursor Cells in a Novel Mouse Model. Cells 2019; 8:cells8121550. [PMID: 31801252 PMCID: PMC6953036 DOI: 10.3390/cells8121550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 02/08/2023] Open
Abstract
The low-density lipoprotein receptor-related protein 1 (LRP1) is a transmembrane receptor, mediating endocytosis and activating intracellular signaling cascades. LRP1 is highly expressed in the central nervous system (CNS), especially in oligodendrocyte precursor cells (OPCs). Previous studies have suggested LRP1 as a regulator in early oligodendrocyte development, repair of chemically induced white matter lesions, and cholesterol homeostasis. To circumvent embryonic lethality observed in the case of global LRP1 deletion, we generated a new inducible conditional knockout (KO) mouse model, which enabled an NG2-restricted LRP1 deficiency (NG2-CreERT2ct2/wtxR26eGFPflox/floxxLRP1flox/flox). When characterizing our triple transgenic mouse model, we noticed a substantial and progressive loss of recombined LRP1-deficient cells in the oligodendrocyte lineage. On the other hand, we found comparable distributions and fractions of oligodendroglia within the Corpus callosum of the KO and control animals, indicating a compensation of these deficits. An initial study on experimental autoimmune encephalomyelitis (EAE) was performed in triple transgenic and control mice and the cell biology of oligodendrocytes obtained from the animals was studied in an in vitro myelination assay. Differences could be observed in these assays, which, however, did not achieve statistical significance, presumably because the majority of recombined LRP1-deficient cells has been replaced by non-recombined cells. Thus, the analysis of the role of LRP1 in EAE will require the induction of acute recombination in the context of the disease process. As LRP1 is necessary for the survival of OPCs in vivo, we assume that it will play an important role in myelin repair.
Collapse
|
14
|
Nuzziello N, Liguori M. The MicroRNA Centrism in the Orchestration of Neuroinflammation in Neurodegenerative Diseases. Cells 2019; 8:cells8101193. [PMID: 31581723 PMCID: PMC6829202 DOI: 10.3390/cells8101193] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with a unique ability to regulate the transcriptomic profile by binding to complementary regulatory RNA sequences. The ability of miRNAs to enhance (proinflammatory miRNAs) or restrict (anti-inflammatory miRNAs) inflammatory signalling within the central nervous system is an area of ongoing research, particularly in the context of disorders that feature neuroinflammation, including neurodegenerative diseases (NDDs). Furthermore, the discovery of competing endogenous RNAs (ceRNAs) has led to an increase in the complexity of miRNA-mediated gene regulation, with a paradigm shift from a unidirectional to a bidirectional regulation, where miRNA acts as both a regulator and is regulated by ceRNAs. Increasing evidence has revealed that ceRNAs, including long non-coding RNAs, circular RNAs, and pseudogenes, can act as miRNA sponges to regulate neuroinflammation in NDDs within complex cross-talk regulatory machinery, which is referred to as ceRNA network (ceRNET). In this review, we discuss the role of miRNAs in neuroinflammatory regulation and the manner in which cellular and vesicular ceRNETs could influence neuroinflammatory dynamics in complex multifactorial diseases, such as NDDs.
Collapse
Affiliation(s)
- Nicoletta Nuzziello
- National Research Council, Institute of Biomedical Technologies, Bari Unit, 70126 Bari, Italy.
| | - Maria Liguori
- National Research Council, Institute of Biomedical Technologies, Bari Unit, 70126 Bari, Italy.
| |
Collapse
|
15
|
Allen SD, Liu YG, Kim T, Bobbala S, Yi S, Zhang X, Choi J, Scott EA. Celastrol-loaded PEG-b-PPS nanocarriers as an anti-inflammatory treatment for atherosclerosis. Biomater Sci 2019; 7:657-668. [PMID: 30601470 DOI: 10.1039/c8bm01224e] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this work, the hydrophobic small molecule NF-κB inhibitor celastrol was loaded into poly(ethylene glycol)-b-poly(propylene sulfide) (PEG-b-PPS) micelles. PEG-b-PPS micelles demonstrated high loading efficiency, low polydispersity, and no morphological changes upon loading with celastrol. Encapsulation of celastrol within these nanocarriers significantly reduced cytotoxicity compared to free celastrol, while simultaneously expanding the lower concentration range for effective inhibition of NF-κB signaling by nearly 50 000-fold. Furthermore, celastrol-loaded micelles successfully reduced TNF-α secretion after LPS stimulation of RAW 264.7 cells and reduced the number of neutrophils and inflammatory monocytes within atherosclerotic plaques of ldlr-/- mice. This reduction in inflammatory cells was matched by a reduction in plaque area, suggesting that celastrol-loaded nanocarriers may serve as an anti-inflammatory treatment for atherosclerosis.
Collapse
Affiliation(s)
- Sean D Allen
- Interdepartmental Biological Sciences Program, Northwestern University, Evanston, IL 60628, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Potere N, Del Buono MG, Mauro AG, Abbate A, Toldo S. Low Density Lipoprotein Receptor-Related Protein-1 in Cardiac Inflammation and Infarct Healing. Front Cardiovasc Med 2019; 6:51. [PMID: 31080804 PMCID: PMC6497734 DOI: 10.3389/fcvm.2019.00051] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/09/2019] [Indexed: 01/07/2023] Open
Abstract
Acute myocardial infarction (AMI) leads to myocardial cell death and ensuing sterile inflammatory response, which represents an attempt to clear cellular debris and promote cardiac repair. However, an overwhelming, unopposed or unresolved inflammatory response following AMI leads to further injury, worse remodeling and heart failure (HF). Additional therapies are therefore warranted to blunt the inflammatory response associated with ischemia and reperfusion and prevent long-term adverse events. Low-density lipoprotein receptor-related protein 1 (LRP1) is a ubiquitous endocytic cell surface receptor with the ability to recognize a wide range of structurally and functionally diverse ligands. LRP1 transduces multiple intracellular signal pathways regulating the inflammatory reaction, tissue remodeling and cell survival after organ injury. In preclinical studies, activation of LRP1-mediated signaling in the heart with non-selective and selective LRP1 agonists is linked with a powerful cardioprotective effect, reducing infarct size and cardiac dysfunction after AMI. The data from early phase clinical studies with plasma-derived α1-antitrypsin (AAT), an endogenous LRP1 agonist, and SP16 peptide, a synthetic LRP1 agonist, support the translational value of LRP1 as a novel therapeutic target in AMI. In this review, we will summarize the cellular and molecular bases of LRP1 functions in modulating the inflammatory reaction and the reparative process after injury in various peripheral tissues, and discuss recent evidences implicating LRP1 in myocardial inflammation and infarct healing.
Collapse
Affiliation(s)
- Nicola Potere
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Marco Giuseppe Del Buono
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Adolfo Gabriele Mauro
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Antonio Abbate
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Stefano Toldo
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
17
|
Lu D, Li J, Liu H, Foxa GE, Weaver K, Li J, Williams BO, Yang T. LRP1 Suppresses Bone Resorption in Mice by Inhibiting the RANKL-Stimulated NF-κB and p38 Pathways During Osteoclastogenesis. J Bone Miner Res 2018; 33:1773-1784. [PMID: 29750835 DOI: 10.1002/jbmr.3469] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/18/2018] [Accepted: 05/04/2018] [Indexed: 02/06/2023]
Abstract
Single-nucleotide polymorphisms in the LRP1 gene coding sequence are associated with low bone mass, and cell culture studies suggest that LRP1 plays a role in osteoblast proliferation and osteoblast-mediated osteoclastogenesis. However, the in vivo function of LRP1 in bone homeostasis has not been explored. In this work, we studied the osteoclast-specific role of LRP1 in bone homeostasis using a Ctsk-Cre;Lrp1f/f mouse model on the C57BL/6J background. These mice had a dramatically decreased trabecular bone mass with markedly more osteoclasts, while the osteoblast activity was unaffected or slightly increased. The cortical bone parameters were largely unaltered. Upon RANKL treatment, Lrp1-deficient bone marrow monocytes more efficiently differentiated into osteoclasts and showed elevated p65 NFκB and p38 signaling. Consistently, Lrp1-overexpressing Raw264.7 cells were desensitized to RANKL-induced p38 and p65 activation and osteoclastogenesis. Moreover, RANKL treatment led to a sharp decrease of LRP1 protein and RNA in BMMs. Overall, our data suggest that osteoclast-expressed LRP1 is a crucial regulator of bone mass. It inhibits the NFκB and p38 pathways and lessens the efficiency of RANKL-induced osteoclastogenesis. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Di Lu
- Program of Skeletal Disease and Tumor Metastasis, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Jianshuang Li
- Program of Skeletal Disease and Tumor Metastasis, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Huadie Liu
- Program of Skeletal Disease and Tumor Metastasis, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA.,State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Gabrielle E Foxa
- Program of Skeletal Disease and Tumor Metastasis, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Kevin Weaver
- Program of Skeletal Disease and Tumor Metastasis, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Jie Li
- Program of Skeletal Disease and Tumor Metastasis, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA.,State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Bart O Williams
- Program of Skeletal Disease and Tumor Metastasis, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Tao Yang
- Program of Skeletal Disease and Tumor Metastasis, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| |
Collapse
|
18
|
POLTEP K, TESENA P, YINGCHUTRAKUL Y, TAYLOR J, WONGTAWAN T. Optimisation of a serum albumin removal protocol for use in a proteomic study to identify the protein biomarkers for silent gastric ulceration in horses. J Equine Sci 2018; 29:53-60. [PMID: 30250392 PMCID: PMC6145863 DOI: 10.1294/jes.29.53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/24/2018] [Indexed: 11/29/2022] Open
Abstract
Silent gastric ulceration occurs without evidence of clinical signs and is common in horses. There is currently no a simple and effective method to diagnose this disease. Proteomics can be used to identify serum biomarkers, but the most abundant serum protein, albumin, could conceal candidate biomarkers. Therefore, it is recommended to remove albumin before a proteomic study; however, there is no specific albumin depletion kit or standard protocol available for horse samples. The objectives of this study were to optimise a protocol to remove equine serum albumin and to use albumin-depleted serum to identify the protein biomarkers for silent gastric ulceration. Gastroscopy was used to identify gastric ulceration, and serum was obtained from horses with either a healthy gastric mucosa or gastric ulceration. Serum albumin was removed using the trichloroacetic acid (TCA) protein precipitation method, and this protocol was optimised by varying the concentration of TCA, type of organic solvents, ratio of serum to protein precipitation solution, and incubation times. Electrophoresis and image analysis were used to compare the amounts of albumin, immunoglobulins G (IgG), and protein degradation before and after TCA precipitation. The best protocol was chosen to remove albumin for a proteomic study (electrophoresis and mass spectrometry). The results revealed that protocol 2 (ratio of serum to solution 1:5, 10% TCA in acetone, and 90 min incubation) was the most efficient protocol to remove albumin (98%) and IgG heavy (80%) and light (98%) chains without degrading other proteins. After electrophoresis and mass spectrometry analysis, KRT1, KRT6A and KRT18 were identified as potential markers for silent gastric ulceration.
Collapse
Affiliation(s)
- Kanaporn POLTEP
- The Monitoring and Surveillance Centre for
Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol
University, Nakhon Pathom 73170, Thailand
- Laboratory of Cellular Biomedicine and
Veterinary Medicine, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom
73170, Thailand
| | - Parichart TESENA
- Department of Clinical Science and Public
Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170,
Thailand
| | - Yodying YINGCHUTRAKUL
- Proteomics Research Laboratory, Genome
Technology Research Unit, National Centre for Genetics Engineering and Biotechnology,
Pathum Thani 12120, Thailand
| | - Jane TAYLOR
- Biomedical Teaching Organisation, Biomedical
Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9AG,
U.K.
| | - Tuempong WONGTAWAN
- Department of Preclinic and Applied Animal
Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170,
Thailand
- Laboratory of Cellular Biomedicine and
Veterinary Medicine, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom
73170, Thailand
| |
Collapse
|
19
|
Ravichandran S, Michelucci A, Del Sol A. Integrative Computational Network Analysis Reveals Site-Specific Mediators of Inflammation in Alzheimer's Disease. Front Physiol 2018; 9:154. [PMID: 29551980 PMCID: PMC5840953 DOI: 10.3389/fphys.2018.00154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/14/2018] [Indexed: 12/02/2022] Open
Abstract
Alzheimer's disease (AD) is a major neurodegenerative disease and is one of the most common cause of dementia in older adults. Among several factors, neuroinflammation is known to play a critical role in the pathogenesis of chronic neurodegenerative diseases. In particular, studies of brains affected by AD show a clear involvement of several inflammatory pathways. Furthermore, depending on the brain regions affected by the disease, the nature and the effect of inflammation can vary. Here, in order to shed more light on distinct and common features of inflammation in different brain regions affected by AD, we employed a computational approach to analyze gene expression data of six site-specific neuronal populations from AD patients. Our network based computational approach is driven by the concept that a sustained inflammatory environment could result in neurotoxicity leading to the disease. Thus, our method aims to infer intracellular signaling pathways/networks that are likely to be constantly activated or inhibited due to persistent inflammatory conditions. The computational analysis identified several inflammatory mediators, such as tumor necrosis factor alpha (TNF-a)-associated pathway, as key upstream receptors/ligands that are likely to transmit sustained inflammatory signals. Further, the analysis revealed that several inflammatory mediators were mainly region specific with few commonalities across different brain regions. Taken together, our results show that our integrative approach aids identification of inflammation-related signaling pathways that could be responsible for the onset or the progression of AD and can be applied to study other neurodegenerative diseases. Furthermore, such computational approaches can enable the translation of clinical omics data toward the development of novel therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Srikanth Ravichandran
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
| | - Alessandro Michelucci
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
| | - Antonio Del Sol
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
20
|
Praetner M, Zuchtriegel G, Holzer M, Uhl B, Schaubächer J, Mittmann L, Fabritius M, Fürst R, Zahler S, Funken D, Lerchenberger M, Khandoga A, Kanse S, Lauber K, Krombach F, Reichel CA. Plasminogen Activator Inhibitor-1 Promotes Neutrophil Infiltration and Tissue Injury on Ischemia-Reperfusion. Arterioscler Thromb Vasc Biol 2018; 38:829-842. [PMID: 29371242 DOI: 10.1161/atvbaha.117.309760] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/15/2018] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Ischemia-reperfusion (I/R) injury significantly contributes to organ dysfunction and failure after myocardial infarction, stroke, and transplantation. In addition to its established role in the fibrinolytic system, plasminogen activator inhibitor-1 has recently been implicated in the pathogenesis of I/R injury. The underlying mechanisms remain largely obscure. APPROACH AND RESULTS Using different in vivo microscopy techniques as well as ex vivo analyses and in vitro assays, we identified that plasminogen activator inhibitor-1 rapidly accumulates on microvascular endothelial cells on I/R enabling this protease inhibitor to exhibit previously unrecognized functional properties by inducing an increase in the affinity of β2 integrins in intravascularly rolling neutrophils. These events are mediated through low-density lipoprotein receptor-related protein-1 and mitogen-activated protein kinase-dependent signaling pathways that initiate intravascular adherence of these immune cells to the microvascular endothelium. Subsequent to this process, extravasating neutrophils disrupt endothelial junctions and promote the postischemic microvascular leakage. Conversely, deficiency of plasminogen activator inhibitor-1 effectively reversed leukocyte infiltration, microvascular dysfunction, and tissue injury on experimental I/R without exhibiting side effects on microvascular hemostasis. CONCLUSIONS Our experimental data provide novel insights into the nonfibrinolytic properties of the fibrinolytic system and emphasize plasminogen activator inhibitor-1 as a promising target for the prevention and treatment of I/R injury.
Collapse
Affiliation(s)
- Marc Praetner
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Gabriele Zuchtriegel
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Martin Holzer
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Bernd Uhl
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Johanna Schaubächer
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Laura Mittmann
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Matthias Fabritius
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Robert Fürst
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Stefan Zahler
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Dominik Funken
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Maximilian Lerchenberger
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Andrej Khandoga
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Sandip Kanse
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Kirsten Lauber
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Fritz Krombach
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Christoph A Reichel
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.).
| |
Collapse
|
21
|
Soluble LRP1 is an independent biomarker of epicardial fat volume in patients with type 1 diabetes mellitus. Sci Rep 2018; 8:1054. [PMID: 29348672 PMCID: PMC5773567 DOI: 10.1038/s41598-018-19230-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/28/2017] [Indexed: 12/17/2022] Open
Abstract
Epicardial adipose tissue (EAT) is a metabolically active tissue intimately associated with metabolic syndrome and cardiovascular disease. Quantification of EAT volume is an interesting clinical tool for the evaluation of cardiometabolic disease. Nevertheless, current methodology presents serious disadvantages. The soluble form of the receptor LRP1 (sLRP1) is a non-invasive biomarker of EAT in general population. Here, we analysed the potential of circulating sLRP1 as biomarker of EAT volume in patients with type 1 diabetes mellitus (T1DM). The study included a well-characterized cohort of T1DM patients without clinical cardiovascular disease (N = 73). EAT volume was assessed by a multidetector computed tomography (MDCT). sLRP1 and panel of inflammatory and endocrine mediators were measured using commercially available ELISA. EAT volume showed a direct association with circulating sLRP1 (β = 0.398, P = 0.001) in univariate linear regression analysis. This association was higher than that observed for other potential inflammatory and endocrine biomarkers. Using multivariate linear regression analyses, we demonstrated that the association between EAT volume and circulating sLRP1 was independent of potential confounding factors, including age, sex, body mass index, CRP, HbA1c and LDL-C (P < 0.050 for all multivariate linear regression models). In conclusion, sLRP1 is an independent biomarker of EAT in T1DM patients.
Collapse
|
22
|
Mishra A, Yao X, Saxena A, Gordon EM, Kaler M, Cuento RA, Barochia AV, Dagur PK, McCoy JP, Keeran KJ, Jeffries KR, Qu X, Yu ZX, Levine SJ. Low-density lipoprotein receptor-related protein 1 attenuates house dust mite-induced eosinophilic airway inflammation by suppressing dendritic cell-mediated adaptive immune responses. J Allergy Clin Immunol 2017; 142:1066-1079.e6. [PMID: 29274414 DOI: 10.1016/j.jaci.2017.10.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/20/2017] [Accepted: 10/19/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Low-density lipoprotein receptor-related protein 1 (LRP-1) is a scavenger receptor that regulates adaptive immunity and inflammation. LRP-1 is not known to modulate the pathogenesis of allergic asthma. OBJECTIVE We sought to assess whether LRP-1 expression by dendritic cells (DCs) modulates adaptive immune responses in patients with house dust mite (HDM)-induced airways disease. METHODS LRP-1 expression on peripheral blood DCs was quantified by using flow cytometry. The role of LRP-1 in modulating HDM-induced airways disease was assessed in mice with deletion of LRP-1 in CD11c+ cells (Lrp1fl/fl; CD11c-Cre) and by adoptive transfer of HDM-pulsed CD11b+ DCs from Lrp1fl/fl; CD11c-Cre mice to wild-type (WT) mice. RESULTS Human peripheral blood myeloid DC subsets from patients with eosinophilic asthma have lower LRP-1 expression than cells from healthy nonasthmatic subjects. Similarly, LRP-1 expression by CD11b+ lung DCs was significantly reduced in HDM-challenged WT mice. HDM-challenged Lrp1fl/fl; CD11c-Cre mice have a phenotype of increased eosinophilic airway inflammation, allergic sensitization, TH2 cytokine production, and mucous cell metaplasia. The adoptive transfer of HDM-pulsed LRP-1-deficient CD11b+ DCs into WT mice generated a similar phenotype of enhanced eosinophilic inflammation and allergic sensitization. Furthermore, CD11b+ DCs in the lungs of Lrp1fl/fl; CD11c-Cre mice have an increased ability to take up HDM antigen, whereas bone marrow-derived DCs display enhanced antigen presentation capabilities. CONCLUSION This identifies a novel role for LRP-1 as a negative regulator of DC-mediated adaptive immune responses in the setting of HDM-induced eosinophilic airway inflammation. Furthermore, the reduced LRP-1 expression by circulating myeloid DCs in patients with eosinophilic asthma suggests a possible role for LRP-1 in modulating type 2-high asthma.
Collapse
Affiliation(s)
- Amarjit Mishra
- Laboratory of Asthma and Lung Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Xianglan Yao
- Laboratory of Asthma and Lung Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Ankit Saxena
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Elizabeth M Gordon
- Laboratory of Asthma and Lung Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Maryann Kaler
- Laboratory of Asthma and Lung Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Rosemarie A Cuento
- Laboratory of Asthma and Lung Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Amisha V Barochia
- Laboratory of Asthma and Lung Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Pradeep K Dagur
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - J Philip McCoy
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Karen J Keeran
- Animal Surgery and Resources Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Kenneth R Jeffries
- Animal Surgery and Resources Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Xuan Qu
- Pathology Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Zu-Xi Yu
- Pathology Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Stewart J Levine
- Laboratory of Asthma and Lung Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
23
|
Wujak L, Schnieder J, Schaefer L, Wygrecka M. LRP1: A chameleon receptor of lung inflammation and repair. Matrix Biol 2017; 68-69:366-381. [PMID: 29262309 DOI: 10.1016/j.matbio.2017.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 12/17/2022]
Abstract
The lung displays a remarkable capability to regenerate following injury. Considerable effort has been made thus far to understand the cardinal processes underpinning inflammation and reconstruction of lung tissue. However, the factors determining the resolution or persistence of inflammation and efficient wound healing or aberrant remodeling remain largely unknown. Low density lipoprotein receptor-related protein 1 (LRP1) is an endocytic/signaling cell surface receptor which controls cellular and molecular mechanisms driving the physiological and pathological inflammatory reactions and tissue remodeling in several organs. In this review, we will discuss the impact of LRP1 on the consecutive steps of the inflammatory response and its role in the balanced tissue repair and aberrant remodeling in the lung.
Collapse
Affiliation(s)
- Lukasz Wujak
- Department of Biochemistry, Justus Liebig University, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Jennifer Schnieder
- Department of Biochemistry, Justus Liebig University, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Liliana Schaefer
- Goethe University School of Medicine, University Hospital, Theodor-Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Justus Liebig University, Friedrichstrasse 24, 35392 Giessen, Germany; Member of the German Center for Lung Research (DZL), Germany.
| |
Collapse
|
24
|
Niño SA, Martel-Gallegos G, Castro-Zavala A, Ortega-Berlanga B, Delgado JM, Hernández-Mendoza H, Romero-Guzmán E, Ríos-Lugo J, Rosales-Mendoza S, Jiménez-Capdeville ME, Zarazúa S. Chronic Arsenic Exposure Increases Aβ (1-42) Production and Receptor for Advanced Glycation End Products Expression in Rat Brain. Chem Res Toxicol 2017; 31:13-21. [PMID: 29155576 DOI: 10.1021/acs.chemrestox.7b00215] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chronic arsenic exposure during development is associated with alterations of chemical transmission and demyelination, which result in cognitive deficits and peripheral neuropathies. At the cellular level, arsenic toxicity involves increased generation of reactive species that induce severe cellular alterations such as DNA fragmentation, apoptosis, and lipid peroxidation. It has been proposed that arsenic-associated neurodegeneration could evolve to Alzheimer disease in later life.1,2 In this study, the effects of chronic exposure to inorganic arsenic (3 ppm by drinking water) in Wistar rats on the production and elimination of Amyloid-β (Aβ) were evaluated. Male Wistar rats were exposed to 3 ppm of arsenic in drinking water from fetal development until 4 months of age. After behavioral deficits induced by arsenic exposure through contextual fear conditioning were verified, the brains were collected for the determination of total arsenic by inductively coupled plasma-mass spectrometry, the levels of amyloid precursor protein and receptor for advanced glycation end products (RAGE) by Western blot analysis as well as their transcript levels by RT-qPCR, Aβ(1-42) estimation by ELISA assay and the enzymatic activity of β-secretase (BACE1). Our results demonstrate that chronic arsenic exposure induces behavioral deficits accompanied of higher levels of soluble and membranal RAGE and the increase of Aβ(1-42) cleaved. In addition, BACE1 enzymatic activity was increased, while immunoblot assays showed no differences in the low-density lipoprotein receptor-related protein 1 (LRP1) receptor among groups. These results provide evidence of the effects of arsenic exposure on the production of Aβ(1-42) and cerebral amyloid clearance through RAGE in an in vivo model that displays behavioral alterations. This work supports the hypothesis that early exposure to metals may contribute to neurodegeneration associated with amyloid accumulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Héctor Hernández-Mendoza
- Laboratorio Nacional Forense Nuclear, Instituto Nacional de Investigaciones Nucleares , Carretera México-Toluca s/n, CP 52750 La Marquesa Ocoyoacac, México.,Centro de Biociencias, Universidad Autónoma de San Luis Potosí , Km. 14.5 carretera San Luis Potosí - Matehuala, Ejido "Palma de la Cruz", CP 78321 Soledad de Graciano Sánchez, San Luis Potosí, México
| | - Elizabeth Romero-Guzmán
- Laboratorio Nacional Forense Nuclear, Instituto Nacional de Investigaciones Nucleares , Carretera México-Toluca s/n, CP 52750 La Marquesa Ocoyoacac, México
| | | | | | | | | |
Collapse
|
25
|
Toldo S, Austin D, Mauro AG, Mezzaroma E, Van Tassell BW, Marchetti C, Carbone S, Mogelsvang S, Gelber C, Abbate A. Low-Density Lipoprotein Receptor-Related Protein-1 Is a Therapeutic Target in Acute Myocardial Infarction. JACC Basic Transl Sci 2017; 2:561-574. [PMID: 30062170 PMCID: PMC6058925 DOI: 10.1016/j.jacbts.2017.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 01/29/2023]
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) is a ubiquitous membrane receptor functioning as a scavenger and regulatory receptor, inducing anti-inflammatory and prosurvival signals. Based on the known structure-activity of the LRP1 receptor binding site, the authors synthesized a small peptide (SP16). SP16 induced a >50% reduction in infarct size (p < 0.001) and preservation of left ventricular systolic function (p < 0.001), and treatment with an LRP1 blocking antibody eliminated the protective effects of SP16. In conclusion, LRP1 activation with SP16 given within 30 min of reperfusion during experimental acute myocardial infarction leads to a cardioprotective signal reducing infarct size and preservation of cardiac systolic function.
Collapse
Key Words
- A2MG, alpha-2 macroglobulin
- AAT, alpha-1 antitrypsin
- AMI, acute myocardial infarction
- ATIII, antithrombin III
- HRP, horseradish peroxidase
- IL, interleukin
- IV, intravenous
- LPS, lipopolysaccharide
- LRP1, low-density lipoprotein receptor–related protein-1
- LV, left ventricular
- LVFS, left ventricular fractional shortening
- PBS, phosphate-buffered saline
- SEC, serine protease inhibitor–enzyme complex
- SERPIN, serine protease inhibitor
- SERPINs
- TBS, tris-buffered saline
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling
- ischemia reperfusion
- low-density lipoprotein receptor-related protein-1
- serine protease inhibitor
Collapse
Affiliation(s)
- Stefano Toldo
- Division of Cardiology, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
- Johnson Research Center for Critical Care, Virginia Commonwealth University, Richmond, Virginia
| | | | - Adolfo G. Mauro
- Division of Cardiology, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
- Johnson Research Center for Critical Care, Virginia Commonwealth University, Richmond, Virginia
| | - Eleonora Mezzaroma
- Johnson Research Center for Critical Care, Virginia Commonwealth University, Richmond, Virginia
- Department of Pharmacotherapy and Outcome Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Benjamin W. Van Tassell
- Johnson Research Center for Critical Care, Virginia Commonwealth University, Richmond, Virginia
- Department of Pharmacotherapy and Outcome Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Carlo Marchetti
- Division of Cardiology, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
- Johnson Research Center for Critical Care, Virginia Commonwealth University, Richmond, Virginia
| | - Salvatore Carbone
- Division of Cardiology, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
- Johnson Research Center for Critical Care, Virginia Commonwealth University, Richmond, Virginia
| | | | | | - Antonio Abbate
- Division of Cardiology, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
- Johnson Research Center for Critical Care, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
26
|
Wei J, Fan S, Liu B, Zhang B, Su J, Yu D. Transcriptome analysis of the immune reaction of the pearl oyster Pinctada fucata to xenograft from Pinctada maxima. FISH & SHELLFISH IMMUNOLOGY 2017; 67:331-345. [PMID: 28606863 DOI: 10.1016/j.fsi.2017.06.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/13/2017] [Accepted: 06/08/2017] [Indexed: 06/07/2023]
Abstract
The pearl oyster Pinctada maxima exhibits great difficulty to culture pearls through nuclear insertion with an allograft, but it is easy for P. fucata to culture pearls after allografting. If P. fucata could be used as a surrogate mother to culture P. maxima pearls, it would benefit the pearl culture industry of P. maxima. However, this is blocked by the immune rejection of P. fucata against P. maxima mantle grafts. In this study, the immune responses of P. fucata hemocyte to allograft and xenograft were investigated after transplantation by transcriptome analysis. In total, 107.93 Gb clean reads were produced and assembled using the reference genome of P. fucata. Gene Ontology Term enrichment and KEGG enrichment analyses indicated that apoptosis, hippo signaling pathway, oxidation-reduction, MAPK signaling pathway, ribosome, protein processing in endoplasmic reticulum, purine metabolism, NF-kappa B signaling pathway, oxidative phosphorylation, Ras signaling pathway, and ubiquitin mediated proteolysis were involved in response to transplantation. Many genes related to oxidation-reduction reactions, the MAPK signaling pathway, and apoptosis were identified by comparison of the allograft group and the xenograft group at 0 h, 6 h, 12 h, 24 h, 48 h, 72 h, and 96 h post-transplantation. Among them, the expression levels of NADH dehydrogenase, succinate dehydrogenase and other dehydrogenases were increased significantly in the xenograft groups compared with allograft groups at 0 h post transplantation, indicating that a respiratory burst of neutrophils occurred immediately after xenograft transplantation. Additionally, HSP70 was highly expressed from 0 h to 96 h in the xenograft groups, indicating an oyster immune response to the xenograft. The genes enriched in the ribosome and hippo-signaling pathways were also identified, and expression patterns of these DEGs were different as compared between transplantation and control groups. Finally, altered expression levels of 10 randomly selected immune-related DEGs were confirmed by quantitative real-time PCR. These results indicated that oxidation-reduction is likely the key factor responsible for immune rejection to transplantation. The findings should provide some new insight into the molecular mechanism of immune rejection of the host against xenograft, and thus benefit to development of immunosuppressive reagents to facilitate effective xenograft pearling.
Collapse
Affiliation(s)
- Jinfen Wei
- Qinzhou University, Qinzhou 535011, Guangxi, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Sigang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Baosuo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Jiaqi Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Dahui Yu
- Qinzhou University, Qinzhou 535011, Guangxi, China.
| |
Collapse
|
27
|
Gao Z, Qu B, Ma Z, Jiao D, Ji G, Zhang S. Identification and functional characterization of a novel member of low-density lipoprotein receptor-related protein (LRP)-like family in amphioxus. Gene 2017; 618:42-48. [PMID: 28400271 DOI: 10.1016/j.gene.2017.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/27/2017] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
Abstract
Low-density lipoprotein receptor-related protein (LRP) is a group of important endocytic receptors contributing to binding ligands and maintaining internal environment. In this study, we identified a soluble LRP-like molecule in the amphioxus B. japonicum, BjLRP, with an uncharacterized domain structure combination of LY-EGF-CRD-EGF-CRD. It was mainly expressed in the gill, muscle, notochord and testis, and was significantly up-regulated following the challenge with bacteria. Recombinant BjLRP was capable of interacting with both Gram-negative and positive bacteria as well as PAMPs including lipopolysaccharide (LPS), lipoteichoic acid (LTA) and peptidoglycan (PGN). Interestingly, recombinant LY peptide was also able to bind to the Gram-negative and positive bacteria as well as the PAMPs LPS, LTA and PGN. By contrast, none of recombinant EGF1, EGF2, CRD1 and CRD2 had affinity to the bacteria and the PAMPs. In addition, BjLRPΔLY had no affinity to the PAMPs, although BjLRPΔLY showed slight affinity to the bacteria. These suggest that the interaction of BjLRP with the bacteria and PAMPs was primarily attributable to the LY domain. It is clear that BjLRP is a novel pattern recognition protein capable of identifying and interacting with invading bacteria in amphioxus.
Collapse
Affiliation(s)
- Zhan Gao
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Baozhen Qu
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Zengyu Ma
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Deyan Jiao
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Guangdong Ji
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
28
|
Physiological and therapeutic regulation of PCSK9 activity in cardiovascular disease. Basic Res Cardiol 2017; 112:32. [PMID: 28439730 PMCID: PMC5403857 DOI: 10.1007/s00395-017-0619-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/07/2017] [Indexed: 12/14/2022]
Abstract
Ischemic heart disease is the main cause of death worldwide and is accelerated by increased levels of low-density lipoprotein cholesterol (LDL-C). Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a potent circulating regulator of LDL-C through its ability to induce degradation of the LDL receptor (LDLR) in the lysosome of hepatocytes. Only in the last few years, a number of breakthroughs in the understanding of PCSK9 biology have been reported illustrating how PCSK9 activity is tightly regulated at several levels by factors influencing its transcription, secretion, or by extracellular inactivation and clearance. Two humanized antibodies directed against the LDLR-binding site in PCSK9 received approval by the European and US authorities and additional PCSK9 directed therapeutics are climbing up the phases of clinical trials. The first outcome data of the PCSK9 inhibitor evolocumab reported a significant reduction in the composite endpoint (cardiovascular death, myocardial infarction, or stroke) and further outcome data are awaited. Meanwhile, it became evident that PCSK9 has (patho)physiological roles in several cardiovascular cells. In this review, we summarize and discuss the recent biological and clinical data on PCSK9, the regulation of PCSK9, its extra-hepatic activities focusing on cardiovascular cells, molecular concepts to target PCSK9, and finally briefly summarize the data of recent clinical studies.
Collapse
|
29
|
Scott Kiss R, Sniderman A. Shunts, channels and lipoprotein endosomal traffic: a new model of cholesterol homeostasis in the hepatocyte. J Biomed Res 2017; 31:95-107. [PMID: 28808191 PMCID: PMC5445212 DOI: 10.7555/jbr.31.20160139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The liver directs cholesterol metabolism in the organism. All the major fluxes of cholesterol within the body involve the liver: dietary cholesterol is directed to the liver; cholesterol from peripheral cells goes to the liver; the liver is a major site of cholesterol synthesis for the organism; cholesterol is secreted from the liver within the bile, within apoB lipoproteins and translocated to nascent HDL. The conventional model of cholesterol homeostasis posits that cholesterol from any source enters a common, rapidly exchangeable pool within the cell, which is in equilibrium with a regulatory pool. Increased influx of cholesterol leads rapidly to decreased synthesis of cholesterol. This model was developed based on in vitro studies in the fibroblast and validated only for LDL particles. The challenges the liver must meet in vivo to achieve cholesterol homeostasis are far more complex. Our model posits that the cholesterol derived from three different lipoproteins endosomes has three different fates: LDL-derived cholesterol is largely recycled within VLDL with most of the cholesterol shunted through the hepatocyte without entering the exchangeable pool of cholesterol; high density lipoprotein-derived CE is transcytosed into bile; and chylomicron remnant-derived cholesterol primarily enters the regulatory pool within the hepatocyte. These endosomal channels represent distinct physiological pathways and hepatic homeostasis represents the net result of the outcomes of these distinct channels. Our model takes into account the distinct physiological challenges the hepatocyte must meet, underlie the pathophysiology of many of the apoB dyslipoproteinemias and account for the sustained effectiveness of therapeutic agents such as statins.
Collapse
Affiliation(s)
- Robert Scott Kiss
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Allan Sniderman
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
30
|
Abstract
Ischemic heart disease is the main cause of death worldwide and it is accelerated by increased low-density lipoprotein (LDL) cholesterol (LDL-C) and/or lipoprotein (a) (Lp(a)) concentrations. Proprotein convertase subtilisin/kexin type 9 (PCSK9) alters both LDL-C and in part Lp(a) concentrations through its ability to induce degradation of the LDL receptor (LDLR). PCSK9, however, has additional targets which are potentially involved in lipid metabolism regulation such as the very low density lipoprotein receptor (VLDL), CD36 (cluster of differentiation 36) and the epithelial cholesterol transporter (NPC1L1) and it affects expression of apolipoprotein B48. The PCSK9 activity is tightly regulated at several levels by factors influencing its transcription, secretion, or by extracellular inactivation and clearance. Many comorbidities (kidney insufficiency, hypothyreoidism, hyperinsulinemia, inflammation) modify PCSK9 expression and release. Two humanized antibodies directed against extracellular PCSK9 received approval by the European and US authorities and additional PCSK9 directed therapeutics (such as silencing RNA) are already in clinical trials. Their results demonstrate a significant reduction in both LDL-C and Lp(a) concentrations – independent of the concomitant medication – and one of them reduced plaque size in high risk cardiovascular patients; results of two ongoing large clinical endpoints studies are awaited. In this review, we summarize and discuss the recent biological data on PCSK9, the regulation of PCSK9, and finally briefly summarize the data of recent clinical studies in the context of lipid metabolism.
Collapse
Affiliation(s)
- Rainer Schulz
- Department of Physiology, Justus-Liebig-Universität, Aulweg 129, 35392, Giessen, Germany.
| | - Klaus-Dieter Schlüter
- Department of Physiology, Justus-Liebig-Universität, Aulweg 129, 35392, Giessen, Germany
| |
Collapse
|
31
|
Marzotto M, Bonafini C, Olioso D, Baruzzi A, Bettinetti L, Di Leva F, Galbiati E, Bellavite P. Arnica montana Stimulates Extracellular Matrix Gene Expression in a Macrophage Cell Line Differentiated to Wound-Healing Phenotype. PLoS One 2016; 11:e0166340. [PMID: 27832158 PMCID: PMC5104438 DOI: 10.1371/journal.pone.0166340] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/26/2016] [Indexed: 12/31/2022] Open
Abstract
Arnica montana (Arnica m.) is used for its purported anti-inflammatory and tissue healing actions after trauma, bruises, or tissue injuries, but its cellular and molecular mechanisms are largely unknown. This work tested Arnica m. effects on gene expression using an in vitro model of macrophages polarized towards a "wound-healing" phenotype. The monocyte-macrophage human THP-1 cell line was cultured and differentiated with phorbol-myristate acetate and Interleukin-4, then exposed for 24h to Arnica m. centesimal (c) dilutions 2c, 3c, 5c, 9c, 15c or Control. Total RNA was isolated and cDNA libraries were sequenced with a NextSeq500 sequencer. Genes with significantly positive (up-regulated) or negative (down-regulated) fold changes were defined as differentially expressed genes (DEGs). A total of 20 DEGs were identified in Arnica m. 2c treated cells. Of these, 7 genes were up-regulated and 13 were down-regulated. The most significantly up-regulated function concerned 4 genes with a conserved site of epidermal growth factor-like region (p<0.001) and three genes of proteinaceous extracellular matrix, including heparin sulphate proteoglycan 2 (HSPG2), fibrillin 2 (FBN2), and fibronectin (FN1) (p<0.01). Protein assay confirmed a statistically significant increase of fibronectin production (p<0.05). The down-regulated transcripts derived from mitochondrial genes coding for some components of electron transport chain. The same groups of genes were also regulated by increasing dilutions of Arnica m. (3c, 5c, 9c, 15c), although with a lower effect size. We further tested the healing potential of Arnica m. 2c in a scratch model of wound closure based on the motility of bone marrow-derived macrophages and found evidence of an accelerating effect on cell migration in this system. The results of this work, taken together, provide new insights into the action of Arnica m. in tissue healing and repair, and identify extracellular matrix regulation by macrophages as a therapeutic target.
Collapse
Affiliation(s)
- Marta Marzotto
- Department of Medicine, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Clara Bonafini
- Department of Medicine, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Debora Olioso
- Department of Medicine, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Anna Baruzzi
- Department of Medicine, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Laura Bettinetti
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Francesca Di Leva
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Elisabetta Galbiati
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy
| | - Paolo Bellavite
- Department of Medicine, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| |
Collapse
|
32
|
Roy A, Coum A, Marinescu VD, Põlajeva J, Smits A, Nelander S, Uhrbom L, Westermark B, Forsberg-Nilsson K, Pontén F, Tchougounova E. Glioma-derived plasminogen activator inhibitor-1 (PAI-1) regulates the recruitment of LRP1 positive mast cells. Oncotarget 2016; 6:23647-61. [PMID: 26164207 PMCID: PMC4695142 DOI: 10.18632/oncotarget.4640] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/12/2015] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is a high-grade glioma with a complex microenvironment, including various inflammatory cells and mast cells (MCs) as one of them. Previously we had identified glioma grade-dependent MC recruitment. In the present study we investigated the role of plasminogen activator inhibitor 1 (PAI-1) in MC recruitment. PAI-1, a primary regulator in the fibrinolytic cascade is capable of forming a complex with fibrinolytic system proteins together with low-density lipoprotein receptor-related protein 1 (LRP1). We found that neutralizing PAI-1 attenuated infiltration of MCs. To address the potential implication of LRP1 in this process, we used a LRP1 antagonist, receptor-associated protein (RAP), and demonstrated the attenuation of MC migration. Moreover, a positive correlation between the number of MCs and the level of PAI-1 in a large cohort of human glioma samples was observed. Our study demonstrated the expression of LRP1 in human MC line LAD2 and in MCs in human high-grade glioma. The activation of potential PAI-1/LRP1 axis with purified PAI-1 promoted increased phosphorylation of STAT3 and subsequently exocytosis in MCs. These findings indicate the influence of the PAI-1/LRP1 axis on the recruitment of MCs in glioma. The connection between high-grade glioma and MC infiltration could contribute to patient tailored therapy and improve patient stratification in future therapeutic trials.
Collapse
Affiliation(s)
- Ananya Roy
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Antoine Coum
- Department of Engineering, Nanoscience Centre, Cambridge University, Cambridge, UK
| | - Voichita D Marinescu
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Anja Smits
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden.,Present address: Danish Epilepsy Center, Dianalund, Denmark
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Lene Uhrbom
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Bengt Westermark
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Elena Tchougounova
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Circulating soluble low-density lipoprotein receptor-related protein 1 (sLRP1) concentration is associated with hypercholesterolemia: A new potential biomarker for atherosclerosis. Int J Cardiol 2015; 201:20-9. [DOI: 10.1016/j.ijcard.2015.07.085] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/22/2015] [Accepted: 07/29/2015] [Indexed: 11/22/2022]
|
34
|
Federici Canova D, Pavlov AM, Norling LV, Gobbetti T, Brunelleschi S, Le Fauder P, Cenac N, Sukhorukov GB, Perretti M. Alpha-2-macroglobulin loaded microcapsules enhance human leukocyte functions and innate immune response. J Control Release 2015; 217:284-92. [PMID: 26385167 PMCID: PMC4649706 DOI: 10.1016/j.jconrel.2015.09.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/03/2015] [Accepted: 09/12/2015] [Indexed: 12/31/2022]
Abstract
Synthetic microstructures can be engineered to deliver bioactive compounds impacting on their pharmacokinetics and pharmacodynamics. Herein, we applied dextran-based layer-by-layer (LbL) microcapsules to deliver alpha-2-macroglobulin (α2MG), a protein with modulatory properties in inflammation. Extending recent observations made with dextran-microcapsules loaded with α2MG in experimental sepsis, we focused on the physical and chemical characteristics of these microstructures and determined their biology on rodent and human cells. We report an efficient encapsulation of α2MG into microcapsules, which enhanced i) human leukocyte recruitment to inflamed endothelium and ii) human macrophage phagocytosis: in both settings microcapsules were more effective than soluble α2MG or empty microcapsules (devoid of active protein). Translation of these findings revealed that intravenous administration of α2MG-microcapsules (but not empty microcapsules) promoted neutrophil migration into peritoneal exudates and augmented macrophage phagocytic functions, the latter response being associated with alteration of bioactive lipid mediators as assessed by mass spectrometry. The present study indicates that microencapsulation can be an effective strategy to harness the complex biology of α2MG with enhancing outcomes on fundamental processes of the innate immune response paving the way to potential future development in the control of sepsis.
Collapse
Affiliation(s)
- Donata Federici Canova
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Anton M Pavlov
- School of Engineering & Materials Science, Queen Mary University of London, London, United Kingdom; Saratov State University, Saratov, Russia
| | - Lucy V Norling
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Thomas Gobbetti
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | | | | | - Nicolas Cenac
- INSERM UMR1043, Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Gleb B Sukhorukov
- School of Engineering & Materials Science, Queen Mary University of London, London, United Kingdom
| | - Mauro Perretti
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
35
|
Pike AF, Kramer NI, Blaauboer BJ, Seinen W, Brands R. An alkaline phosphatase transport mechanism in the pathogenesis of Alzheimer's disease and neurodegeneration. Chem Biol Interact 2014; 226:30-9. [PMID: 25500268 DOI: 10.1016/j.cbi.2014.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/23/2014] [Accepted: 12/03/2014] [Indexed: 12/19/2022]
Abstract
Systemic inflammation is associated with loss of blood-brain barrier integrity and neuroinflammation that lead to the exacerbation of neurodegenerative diseases. It is also associated specifically with the characteristic amyloid-β and tau pathologies of Alzheimer's disease. We have previously proposed an immunosurveillance mechanism for epithelial barriers involving negative feedback-regulated alkaline phosphatase transcytosis as an acute phase anti-inflammatory response that hangs in the balance between the resolution and the progression of inflammation. We now extend this model to endothelial barriers, particularly the blood-brain barrier, and present a literature-supported mechanistic explanation for Alzheimer's disease pathology with this system at its foundation. In this mechanism, a switch in the role of alkaline phosphatase from its baseline duties to a stopgap anti-inflammatory function results in the loss of alkaline phosphatase from cell membranes into circulation, thereby decreasing blood-brain barrier integrity and functionality. This occurs with impairment of both amyloid-β efflux and tau dephosphorylating activity in the brain as alkaline phosphatase is replenished at the barrier by receptor-mediated transport. We suggest systemic alkaline phosphatase administration as a potential therapy for the resolution of inflammation and the prevention of Alzheimer's disease pathology as well as that of other inflammation-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Adrianne F Pike
- AMRIF B.V., Agro Business Park 10, 6708PW Wageningen, The Netherlands.
| | - Nynke I Kramer
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508TD Utrecht, The Netherlands
| | - Bas J Blaauboer
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508TD Utrecht, The Netherlands
| | - Willem Seinen
- AMRIF B.V., Agro Business Park 10, 6708PW Wageningen, The Netherlands; Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508TD Utrecht, The Netherlands
| | - Ruud Brands
- AMRIF B.V., Agro Business Park 10, 6708PW Wageningen, The Netherlands; Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508TD Utrecht, The Netherlands
| |
Collapse
|
36
|
Tavori H, Fan D, Giunzioni I, Zhu L, Linton MF, Fogo AB, Fazio S. Macrophage-derived apoESendai suppresses atherosclerosis while causing lipoprotein glomerulopathy in hyperlipidemic mice. J Lipid Res 2014; 55:2073-81. [PMID: 25183802 DOI: 10.1194/jlr.m049874] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Lipoprotein glomerulopathy (LPG) is a renal disease often accompanied by dyslipidemia and increased serum apoE levels. apoESendai (Arg145Pro), a rare mutant based on the apoE3 sequence carrying an apoE2 charge, causes LPG in humans and transgenic mice, but its effects on the artery wall are unknown. Macrophage expression of apoESendai may also directly influence renal and arterial homeostasis. We investigated the effects of macrophage-expressed apoESendai in apoE(-/-) mice with or without LDL receptor (LDLR). Murine bone marrow transduced to express apoE2, apoE3, or apoESendai was transplanted into lethally irradiated mice. Macrophage apoESendai expression reduced aortic lesion size and inflammation by 32 and 28%, respectively, compared with apoE2 in apoE(-/-) recipients. No differences in lesion size or inflammation were found between apoESendai and apoE3 in apoE(-/-) recipients. Macrophage apoESendai expression also reduced aortic lesion size by 18% and inflammation by 29% compared with apoE2 in apoE(-/-)/LDLR(-/-) recipients. Glomerular lesions compatible with LPG with increased mesangial matrix, extracellular lipid accumulation, and focal mesangiolysis were only observed in apoE(-/-)/LDLR(-/-) mice expressing apoESendai. Thus, macrophage expression of apoESendai protects against atherosclerosis while causing lipoprotein glomerulopathy. This is the first demonstration of an apoprotein variant having opposing effects on vascular and renal homeostasis.
Collapse
Affiliation(s)
- Hagai Tavori
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, OR Section of Cardiovascular Disease Prevention, Division of Cardiovascular Medicine, Departments of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC
| | - Ilaria Giunzioni
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, OR
| | - Lin Zhu
- Section of Cardiovascular Disease Prevention, Division of Cardiovascular Medicine, Departments of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - MacRae F Linton
- Section of Cardiovascular Disease Prevention, Division of Cardiovascular Medicine, Departments of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Agnes B Fogo
- Pathology, Immunology, and Microbiology, Vanderbilt University Medical Center, Nashville, TN
| | - Sergio Fazio
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, OR Section of Cardiovascular Disease Prevention, Division of Cardiovascular Medicine, Departments of Medicine, Vanderbilt University Medical Center, Nashville, TN Pathology, Immunology, and Microbiology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
37
|
Meyer RC, Giddens MM, Coleman BM, Hall RA. The protective role of prosaposin and its receptors in the nervous system. Brain Res 2014; 1585:1-12. [PMID: 25130661 DOI: 10.1016/j.brainres.2014.08.022] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/18/2014] [Accepted: 08/10/2014] [Indexed: 12/12/2022]
Abstract
Prosaposin (also known as SGP-1) is an intriguing multifunctional protein that plays roles both intracellularly, as a regulator of lysosomal enzyme function, and extracellularly, as a secreted factor with neuroprotective and glioprotective effects. Following secretion, prosaposin can undergo endocytosis via an interaction with the low-density lipoprotein-related receptor 1 (LRP1). The ability of secreted prosaposin to promote protective effects in the nervous system is known to involve activation of G proteins, and the orphan G protein-coupled receptors GPR37 and GPR37L1 have recently been shown to mediate signaling induced by both prosaposin and a fragment of prosaposin known as prosaptide. In this review, we describe recent advances in our understanding of prosaposin, its receptors and their importance in the nervous system.
Collapse
Affiliation(s)
- Rebecca C Meyer
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Michelle M Giddens
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Brilee M Coleman
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Randy A Hall
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
38
|
Norata GD, Tibolla G, Catapano AL. PCSK9 inhibition for the treatment of hypercholesterolemia: promises and emerging challenges. Vascul Pharmacol 2014; 62:103-11. [PMID: 24924410 DOI: 10.1016/j.vph.2014.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 05/31/2014] [Indexed: 10/25/2022]
Abstract
Hypercholesterolemia, is a prominent risk factor for cardiovascular disease (CVD). Undestanding of the biochemical mechanisms that regulate the expression of the low density lipoproteins receptor (LDLR) and the hepatic clearance of LDL cholesterol (LDL-C) paved the way to the statin therapy as the gold standard for CVD prevention. The discovery of proteins that regulate - at a post-translational level - the activity of the LDLR has been a major breakthrough in developing new cholesterol-lowering drugs. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key modulator of the LDLR degradation in the liver. Genetic studies confirmed that in humans PCSK9 mutations associate with hypercholesterolemia and hypocholesterolemia (gain-of-function or loss-of-function variants respectively). Moreover, PCSK9 is up-regulated by statin treatment and limits the efficacy of these agents. These findings led to the development of PCSK9 inhibitors. Anti-PCSK9 monoclonal antibodies showed encouraging results and are currently being evaluated in phase III clinical trials. The aim of this short review is to describe the new frontier of PCSK9 inhibition in the treatment of hypercholesterolemia. Emphasis here is given to critical emerging issues linked to PCSK9 physiology and pharmacology, which will require future investigation to definitely address the potential of anti-PCSK9 drugs in clinical practice.
Collapse
Affiliation(s)
- Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy; Center for the Study of Atherosclerosis, Società Italiana Studio Aterosclerosi, Bassini Hospital, Cinisello Balsamo, Italy
| | - Gianpaolo Tibolla
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy; I.R.C.C.S. Multimedica, Milan, Italy
| | - Alberico Luigi Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy; I.R.C.C.S. Multimedica, Milan, Italy.
| |
Collapse
|
39
|
Llorente-Cortés V, de Gonzalo-Calvo D, Orbe J, Páramo JA, Badimon L. Signature of subclinical femoral artery atherosclerosis in peripheral blood mononuclear cells. Eur J Clin Invest 2014; 44:539-48. [PMID: 24716741 DOI: 10.1111/eci.12267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/07/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Peripheral arterial disease is a relevant public health problem associated with increased risk of morbimortality. Most of the patients with this condition are asymptomatic. Therefore, the development of accessible biochemical markers seems to be necessary to anticipate diagnosis. Our hypothesis is that asymptomatic subjects with objectively confirmed femoral artery atherosclerosis could be distinguished from control subjects by gene expression analysis in peripheral blood mononuclear cells (PBMC). MATERIALS AND METHODS A total of 37 asymptomatic males over 50 years old were recruited at the University Clinic of Navarra (Spain). Nineteen participants were free from atherosclerotic vascular disease and 18 participants presented subclinical femoral artery atherosclerosis defined by means of Doppler ultrasound. PBMC were isolated from blood and the RNA extracted. A panel of atherosclerotic-related genes were evaluated by Taqman low-density array. RESULTS In univariate logistic regression models, we found a direct relationship between IL4, ITGAM and TLR2 expression levels in PBMC and femoral atherosclerosis, even when the models were adjusted for age and hypertension prevalence. Multivariate logistic regression models showed that elevated IL4 expression levels were intimately associated with subclinical femoral atherosclerosis after adjusting for the same potential confounders. CONCLUSIONS Current data suggest that gene expression in PBMC, in particular IL4 expression, could be a useful tool in the diagnosis of femoral artery atherosclerosis in asymptomatic patients. Furthermore, in patients with no differences in cardiovascular risk factors except for hypertension, the results point to the immune and inflammatory deregulation as a feature of subclinical peripheral atherosclerosis.
Collapse
|
40
|
Liu R, Wang L, Sun Y, Wang L, Zhang H, Song L. A low-density lipoprotein receptor-related protein (LRP)-like molecule identified from Chlamys farreri participated in immune response against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2014; 36:336-343. [PMID: 24345370 DOI: 10.1016/j.fsi.2013.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 06/03/2023]
Abstract
Low-density lipoprotein receptor-related protein (LRP) is a group of important endocytic receptors contributing to binding ligands and maintaining internal environment. In the present study, an LRP-like molecule was identified from Zhikong scallop Chlamys farreri (CfLPR), and its mRNA expression profiles, tissue location, and immunology activities were analyzed to explore its possible function in the innate immune system. The ORF of CfLRP was of 1971 bp encoding a polypeptide of 656 amino acids with ten low-density lipoprotein-receptor YWTD (LY) domains and one scavenger receptor cysteine-rich (SRCR) domain. It shared similar structure with out-membrane domains of LRP family members in mammalian. The mRNA transcripts of CfLRP were dominantly expressed in hepatopancreas and mantle (P < 0.01), and its mRNA level in hemocytes was up-regulated (P < 0.01) significantly after the stimulations of lipopolysaccharides (LPS), peptidoglycan (PGN) and β-glucan. Western blotting assay using polyclonal antibody specific for CfLRP revealed that CfLRP was localized in the plasma. The recombinant protein of CfLRP (rCfLRP) could bind acetylated low density lipoprotein (Ac-LDL), metalloprotease SPF1 of Vibrio splendidus and mannan, but could not bind other typical PAMPs such as LPS, PGN, β-glucan and zymosan. Meanwhile, rCfLRP also exhibited strong bacteriostatic activity to Gram-negative bacteria Vibrio anguillarum and V. splendidus. These results indicated that CfLRP could serve as a receptor to recognize and eliminate the invading pathogens, which provided a new implication in the function of LRP-like molecules in invertebrate immunity.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Bacterial Physiological Phenomena
- Base Sequence
- Blotting, Western
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Gene Expression Regulation
- Immunity, Innate
- Molecular Sequence Data
- Pectinidae/classification
- Pectinidae/genetics
- Pectinidae/immunology
- Pectinidae/microbiology
- Phylogeny
- Protein Structure, Tertiary
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Random Allocation
- Real-Time Polymerase Chain Reaction
- Receptors, LDL/chemistry
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ying Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
41
|
Low density receptor-related protein 1 (LRP1) promotes anti-inflammatory phenotype in murine macrophages. Cell Tissue Res 2013; 354:887-9. [PMID: 23963646 DOI: 10.1007/s00441-013-1699-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/05/2013] [Indexed: 10/26/2022]
Abstract
We have previously reported that apolipoprotein E (apoE), a protein component of very-low-density lipoproteins (VLDL) and high-density lipoproteins and a potent plasma-borne atheroprotective factor, exerts anti-inflammatory activity in macrophages by switching the activation profile from M1 ("classic") to M2 ("alternative") in a process involving signaling via low-density lipoprotein receptor (LDLR) family members including the VLDL receptor (VLDLR) or apoE receptor-2 (apoER2). The present study was undertaken to investigate whether LDLR-related protein 1 (LRP-1), another member of the LDLR family and a ubiquitously expressed multifunctional cell surface receptor, modulates M1→M2 conversion in murine macrophages. We investigate bone marrow or peritoneal macrophages isolated from wild-type C57/Bl6 mice or mice with conditional inactivation of the LRP-1 gene in the myeloid lineage for the expression of polarization markers. Our results suggest that the deficiency of LRP-1 down-regulates M2 marker expression in macrophages, while enhancing the macrophage response to M1 stimuli. To our knowledge, this is the first demonstration that LRP-1 affects macrophage polarization and promotes the development of an anti-inflammatory M2 functional phenotype.
Collapse
|