1
|
Gioacchini FM, Di Stadio A, De Luca P, Camaioni A, Pace A, Iannella G, Rubini C, Santarelli M, Tomassetti M, Scarpa A, Olivieri F, Re M. A pilot study to evaluate the expression of microRNA‑let‑7a in patients with intestinal‑type sinonasal adenocarcinoma. Oncol Lett 2024; 27:69. [PMID: 38192674 PMCID: PMC10773186 DOI: 10.3892/ol.2023.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/25/2023] [Indexed: 01/10/2024] Open
Abstract
Despite its histological resemblance to colorectal adenocarcinoma, there is little information about the molecular events involved in the pathogenesis of intestinal-type sinonasal adenocarcinoma (ITAC). The present study investigated the possible role and clinical value of microRNA (miR)-let-7a, a head and neck squamous cell carcinoma-related miR, in a well-characterized and homogeneous cohort of patients with ethmoidal ITAC associated with occupational exposure, treated by primary surgery. miR-let-7a expression levels were analyzed in 23 pairs of ethmoidal ITAC and adjacent normal formalin-fixed paraffin-embedded tissues by reverse transcription-quantitative PCR. The expression was evaluated in tumor and healthy tissues according to: Tumor grade (G) of differentiation and extension, and pTNM stage, and presence/absence of recurrence. Comparisons within and between groups were performed using two-tailed Student's paired t-test and one-way ANOVA with Tukey's post hoc test. P<0.05 was considered to indicate a statistically significant difference. miR-let-7a expression in ethmoidal ITAC tissues was significantly lower than that in adjacent normal tissues (P<0.05; mean expression level ± SD, 1.452707±1.4367189 vs. 4.094017±2.7465375). miR expression varied with pT stage. miR-let-7a was downregulated (P<0.05) in advanced stages (pT3-pT4) compared with earlier stages (pT1-pT2). Furthermore, downregulation of miR-let-7a in ITAC was associated with poorly-differentiated (G3) cancer (P<0.05). No other associations were observed between miR-let-7a expression and the other clinicopathological parameters, including disease-free survival. In conclusion, downregulation of miR-let-7a in ITAC was associated with advanced-stage (pT3 and pT4) and poorly-differentiated (G3) disease, suggesting that the mutation of this gene, combined with additional genetic events, could serve a role in ITAC pathogenesis.
Collapse
Affiliation(s)
- Federico Maria Gioacchini
- Ear, Nose and Throat Unit, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona Joint Hospitals, I-60020 Ancona, Italy
| | - Arianna Di Stadio
- Gian Filippo Ingrassia Department, Otolaryngology Unit, University of Catania, I-95121 Catania, Italy
| | - Pietro De Luca
- Department of Otolaryngology, Fatebenefratelli Isola Tiberina-Gemelli Hospital, I-00100 Rome, Italy
| | - Angelo Camaioni
- Head and Neck Department, San Giovanni-Addolorata Hospital, I-00189 Rome, Italy
| | - Annalisa Pace
- Department of Sense Organs, University La Sapienza of Rome, I-00161 Rome, Italy
| | - Giannicola Iannella
- Department of Sense Organs, University La Sapienza of Rome, I-00161 Rome, Italy
| | - Corrado Rubini
- Pathology and Histopathology Division, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, I-60020 Ancona, Italy
| | - Marco Santarelli
- Pathology and Histopathology Division, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, I-60020 Ancona, Italy
| | - Marco Tomassetti
- Department of Clinical and Molecular Sciences, Section of Occupational Medicine, Polytechnic University of Marche, I-60020 Ancona, Italy
| | - Alfonso Scarpa
- Department of Medicine and Surgery, University of Salerno, I-84084 Fisciano, Italy
| | - Fabiola Olivieri
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, I-60121 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, I-60126 Ancona, Italy
| | - Massimo Re
- Ear, Nose and Throat Unit, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona Joint Hospitals, I-60020 Ancona, Italy
| |
Collapse
|
2
|
Di Vincenzo M, Diotallevi F, Piccirillo S, Carnevale G, Offidani A, Campanati A, Orciani M. miRNAs, Mesenchymal Stromal Cells and Major Neoplastic and Inflammatory Skin Diseases: A Page Being Written: A Systematic Review. Int J Mol Sci 2023; 24:ijms24108502. [PMID: 37239847 DOI: 10.3390/ijms24108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/28/2023] Open
Abstract
Micro RNAs (miRNAs) are a type of non-coding RNA (ncRNA) and typically interact with specific target mRNAs through complementary base pairing, affecting their translation and/or stability. MiRNAs regulate nearly all cellular functions, including the cell fate of mesenchymal stromal cells (MSCs). It is now accepted that various pathologies arise at the stem level, and, in this scenario, the role played by miRNAs in the fate of MSCs becomes of primary concern. Here we have considered the existing literature in the field of miRNAs, MSCs and skin diseases, classified as inflammatory (such as psoriasis and atopic dermatitis-AD) and neoplastic (melanoma and non-melanoma-skin-cancer including squamous cell and basal cell carcinoma) diseases. In this scoping review article, the evidence recovered indicates that this topic has attracted attention, but it is still a matter of opinion. A protocol for this review was registered in PROSPERO with the registration number "CRD42023420245". According to the different skin disorders and to the specific cellular mechanisms considered (cancer stem cells, extracellular vesicles, inflammation), miRNAs may play a pro- or anti-inflammatory, as well as a tumor suppressive, or supporting, role, indicating a complex regulation of their function. It is evident that the mode of action of miRNAs is more than a switch on-off, and all the observed effects of their dysregulated expression must be checked in a detailed analysis of the targeted proteins. The involvement of miRNAs has been studied mainly for squamous cell carcinoma and melanoma, and much less in psoriasis and AD; different mechanisms have been considered, such as miRNAs included in extracellular vesicles derived both from MSCs or tumor cells, miRNAs involved in cancer stem cells formation, up to miRNAs as candidates to be new therapeutic tools.
Collapse
Affiliation(s)
- Mariangela Di Vincenzo
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Federico Diotallevi
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Silvia Piccirillo
- Department of Biomedical Sciences and Public Health-Pharmacology, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, Università di Modena e Reggio Emilia, 41121 Modena, Italy
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Anna Campanati
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
3
|
Osteogenic and Adipogenic Differentiation Potential of Oral Cancer Stem Cells May Offer New Treatment Modalities. Int J Mol Sci 2023; 24:ijms24054704. [PMID: 36902135 PMCID: PMC10002556 DOI: 10.3390/ijms24054704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
(1) Treatment failure of oral squamous cell carcinoma (OSCC) is generally due to the development of therapeutic resistance caused by the existence of cancer stem cells (CSCs), a small cell subpopulation with marked self-renewal and differentiation capacity. Micro RNAs, notably miRNA-21, appear to play an important role in OSCC carcinogenesis. Our objectives were to explore the multipotency of oral CSCs by estimating their differentiation capacity and assessing the effects of differentiation on stemness, apoptosis, and several miRNAs' expression. (2) A commercially available OSCC cell line (SCC25) and five primary OSCC cultures generated from tumor tissues obtained from five OSCC patients were used in the experiments. Cells harboring CD44, a CSC marker, were magnetically separated from the heterogeneous tumor cell populations. The CD44+ cells were then subjected to osteogenic and adipogenic induction, and the specific staining was used for differentiation confirmation. The kinetics of the differentiation process was evaluated by qPCR analysis of osteogenic (Bone Morphogenetic Protein-BMP4, Runt-related Transcription Factor 2-RUNX2, Alkaline Phosphatase-ALP) and adipogenic (Fibroblast Activation Protein Alpha-FAP, LIPIN, Peroxisome Proliferator-activated Receptor Gamma-PPARG) markers on days 0, 7, 14, and 21. Embryonic markers (Octamer-binding Transcription Factor 4-OCT4, Sex Determining Region Y Box 2-SOX2, and NANOG) and micro RNAs (miRNA-21, miRNA-133, and miRNA-491) were also correspondingly evaluated by qPCR. An Annexin V assay was used to assess the potential cytotoxic effects of the differentiation process. (3) Following differentiation, the levels of markers for the osteo/adipo lineages showed a gradual increase from day 0 to day 21 in the CD44+ cultures, while stemness markers and cell viability decreased. The oncogenic miRNA-21 also followed the same pattern of gradual decrease along the differentiation process, while tumor suppressor miRNA-133 and miRNA-491 levels increased. (4) Following induction, the CSCs acquired the characteristics of the differentiated cells. This was accompanied by loss of stemness properties, a decrease of the oncogenic and concomitant, and an increase of tumor suppressor micro RNAs.
Collapse
|
4
|
Dioguardi M, Spirito F, Sovereto D, Alovisi M, Aiuto R, Garcovich D, Crincoli V, Laino L, Cazzolla AP, Caloro GA, Di Cosola M, Ballini A, Lo Muzio L, Troiano G. The Prognostic Role of miR-31 in Head and Neck Squamous Cell Carcinoma: Systematic Review and Meta-Analysis with Trial Sequential Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5334. [PMID: 35564727 PMCID: PMC9105938 DOI: 10.3390/ijerph19095334] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide with high recurrence, metastasis, and poor treatment outcome. Prognostic survival biomarkers can be a valid tool for assessing a patient's life expectancy and directing therapy toward specific targets. Recent studies have reported microRNA (miR) might play a critical role in regulating different types of cancer. The main miR used as a diagnostic and prognostic biomarker and reported in the scientific literature for HNSCC is miR-21. Other miRs have been investigated to a lesser extent (miR-99a, miR-99b, miR-100, miR-143, miR-155, miR-7, miR-424, miR-183), but among these, the one that has attracted major interest is the miR-31. METHODS The systematic review was conducted following the PRISMA guidelines using electronic databases, such as PubMed, Scopus, and the Cochrane Central Register of Controlled Trials, with the use of combinations of keywords, such as miR-31 AND HNSCC, microRNA AND HNSCC, and miR-31. The meta-analysis was performed using the RevMan 5.41 software (Cochrane Collaboration, Copenhagen, Denmark). RESULTS This search produced 721 records, which, after the elimination of duplicates and the application of the inclusion and exclusion criteria, led to 4 articles. The meta-analysis was conducted by applying fixed-effects models, given the low rate of heterogeneity (I2 = 40%). The results of the meta-analysis report an aggregate hazard ratio (HR) for the overall survival (OS), between the highest and lowest miR-31 expression, of 1.59, with the relative intervals of confidence (1.22 2.07). Heterogeneity was evaluated through Chi2 = 5.04 df = 3 (p = 0.17) and the Higgins index I2 = 40; testing for the overall effect was Z = 3.44 (p = 0.00006). The forest plot shows us a worsening HR value of OS, in relation to the elevated expression of miR-31. CONCLUSIONS In conclusion, the data resulting from the current meta-analysis suggest that miR-31 is associated with the prognosis of patients with HNSCC and that elevated miR-31 expression could predict a poor prognosis in patients with this type of neoplasm.
Collapse
Affiliation(s)
- Mario Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (A.P.C.); (M.D.C.); (L.L.M.); (G.T.)
| | - Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (A.P.C.); (M.D.C.); (L.L.M.); (G.T.)
| | - Diego Sovereto
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (A.P.C.); (M.D.C.); (L.L.M.); (G.T.)
| | - Mario Alovisi
- Department of Surgical Sciences, Dental School, University of Turin, 10127 Turin, Italy;
| | - Riccardo Aiuto
- Department of Biomedical, Surgical, and Dental Science, University of Milan, 20122 Milan, Italy;
| | - Daniele Garcovich
- Department of Dentistry, Universidad Europea de Valencia, Paseo de la Alameda 7, 46010 Valencia, Spain;
| | - Vito Crincoli
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Division of Complex Operating Unit of Dentistry, “Aldo Moro” University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Luigi Laino
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania “Luigi Vanvitelli”, 80121 Naples, Italy;
| | - Angela Pia Cazzolla
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (A.P.C.); (M.D.C.); (L.L.M.); (G.T.)
| | - Giorgia Apollonia Caloro
- Unità Operativa Nefrologia e Dialisi, Presidio Ospedaliero Scorrano, ASL (Azienda Sanitaria Locale) Lecce, Via Giuseppina Delli Ponti, 73020 Scorrano, Italy;
| | - Michele Di Cosola
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (A.P.C.); (M.D.C.); (L.L.M.); (G.T.)
| | - Andrea Ballini
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy;
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (A.P.C.); (M.D.C.); (L.L.M.); (G.T.)
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (A.P.C.); (M.D.C.); (L.L.M.); (G.T.)
| |
Collapse
|
5
|
Gu Y, Tang S, Wang Z, Cai L, Shen Y, Zhou Y. Identification of key miRNAs and targeted genes involved in the progression of oral squamous cell carcinoma. J Dent Sci 2022; 17:666-676. [PMID: 35756810 PMCID: PMC9201551 DOI: 10.1016/j.jds.2021.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/25/2021] [Indexed: 02/03/2023] Open
Abstract
Background/purpose Oral squamous cell carcinoma (OSCC) is one of the most common types of head and neck squamous cell carcinoma. Accurate biomarkers are needed for early diagnosis and prognosis of OSCC. MicroRNAs (miRNAs) have shown great values in different types of cancers including OSCC. However, most of the miRNAs involved in the development of OSCC remain uncovered. This study aimed to identify hub miRNAs and mRNAs in OSCC. Materials and methods We explored the roles of key miRNAs, target genes and their relationships in OSCC using an integrated bioinformatics approach. Initially, Two OSCC microarray datasets from the Gene Expression Omnibus database were obtained to analyze miRNA expression. MiRNA-targeted mRNAs were acquired, and gene ontology/kyoto encyclopedia of genes and genomes analyses were performed. Thereafter, we constructed a protein–protein interaction (PPI) network to identify hub genes and a miRNA-mRNA interaction network was used to identify key miRNAs. Furthermore, differential gene expression and Kaplan–Meier Plotter survival analysis was performed to evaluate their potential clinical application values. Results Four upregulated, two downregulated miRNAs and 608 target genes of the differentially expressed miRNAs were identified. The PPI and miRNA-mRNA interaction networks highlighted 10 hub genes and two key miRNAs, and pathway analyses showed their correlative involvement in tumorigenesis-related processes. Of these miRNAs and genes, miR-125b, β-actin, vinculin and histone deacetylase 1 were correlated with overall survival (P < 0.05). Conclusion These findings indicate that miR-21 and miR-125b, associated with the 10 hub genes, jointly participate in OSCC tumorigenesis, offering insight into the molecular mechanisms underlying OSCC as potential targets for early diagnosis, treatment and prognosis.
Collapse
|
6
|
Circ_0005033 is an oncogene in laryngeal squamous cell carcinoma and regulates cell progression and Cisplatin sensitivity via miR-107/IGF1R axis. Anticancer Drugs 2021; 33:245-256. [PMID: 34845162 DOI: 10.1097/cad.0000000000001260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transcriptome expression profiles of laryngeal squamous cell carcinoma (LSCC) are altered, and we aimed to investigate expression and role of hsa_circ_0005033 (circ_0005033), microRNA (miR)-107 and insulin-like growth factor 1 receptor (IGF1R) in LSCC. Real-time PCR, western blotting and immunohistochemistry detected RNA and protein expression levels. Functional assays were performed using MTT assay, EdU assay, apoptosis assay, flow cytometry, Transwell assay, and xenograft tumor model. Direct interaction was predicted by Starbase algorithm and validated by dual-luciferase reporter assay and RNA immunoprecipitation. Expression of circ_0005033 was substantially upregulated in LSCC tissues and cells, and allied with miR-107 downregulation and IGF1R upregulation. Circ_0005033 showed a closed-loop structure and long half-life. Essentially, circ_0005033 and IGF1R were competing endogenous RNAs for miR-107 via target binding. Silencing circ_0005033 facilitated apoptosis rate and lowered cell viability, proliferation, migration and invasion of LSCC cells, as well as delayed xenograft tumor growth. Allied with that, cleaved-caspase 3/8/9 expression was elevated via death receptor-mediated and mitochondrial pathways, and expression of matrix metalloproteinase-2 (MMP2), MMP9, cyclin D1 and proliferating cell nuclear antigen was decreased. Moreover, Cisplatin-induced inhibition of cell viability was exacerbated by inhibiting circ_0005033. These functional effects of circ_0005033 depression were consistent with those of miR-107 overexpression. Furthermore, depleting miR-107 and restoring IGF1R abated the effects of circ_0005033 knockdown and miR-107 overexpression, respectively. Circ_0005033 was oncogenic in LSCC by regulating cell progression and Cisplatin sensitivity at least via miR-107/IGF1R axis.
Collapse
|
7
|
Re M, Tomasetti M, Monaco F, Amati M, Rubini C, Sollini G, Bajraktari A, Gioacchini FM, Santarelli L, Pasquini E. MiRNome analysis identifying miR-205 and miR-449a as biomarkers of disease progression in intestinal-type sinonasal adenocarcinoma. Head Neck 2021; 44:18-33. [PMID: 34647653 PMCID: PMC9292973 DOI: 10.1002/hed.26894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/02/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Patients with intestinal-type sinonasal adenocarcinoma (ITAC) have an unfavorable prognosis, and new diagnostic and therapeutic approaches are needed to improve clinical management. METHODS Next-generation sequencing-based miRNome analysis was performed on 43 ITAC patients who underwent surgical resection, and microRNA (miRNA) data were obtained from 35 cases. Four miRNAs were identified, and their expression levels were detected by reverse-transcription quantitative polymerase chain reaction and related to the relevant patient outcome. Overall survival and disease-free survival rates were evaluated through the Kaplan-Meier method and log-rank test, and multivariate analysis was performed by means of Cox proportional hazard analysis. RESULTS High levels of miR-205 and miR-34c/miR-449 cluster expression were associated with an increased recurrence risk and, therefore, a worse prognosis. Multivariate analysis confirmed that miR-205 and miR-449 were significant prognostic predictors. CONCLUSIONS A high expression of miR-205 and miR-449 is independent predictors of poor survival for ITAC patients.
Collapse
Affiliation(s)
- Massimo Re
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Marco Tomasetti
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Federica Monaco
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Monica Amati
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Corrado Rubini
- Department of Biomedical Sciences and Public Health, Anatomy Pathology and Histopathology Section, Polytechnic University of Marche, Ancona, Italy
| | | | - Arisa Bajraktari
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | - Lory Santarelli
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | | |
Collapse
|
8
|
Cheng AJ, You GR, Lee CJ, Lu YC, Tang SJ, Huang YF, Huang YC, Lee LY, Fan KH, Chen YC, Huang SF, Chang JTC. Systemic Investigation Identifying Salivary miR-196b as a Promising Biomarker for Early Detection of Head-Neck Cancer and Oral Precancer Lesions. Diagnostics (Basel) 2021; 11:diagnostics11081411. [PMID: 34441345 PMCID: PMC8392418 DOI: 10.3390/diagnostics11081411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Liquid biopsy is a rapidly growing field, for it may provide a minimally invasive way to acquire pathological data for personalized medicine. This study developed a systemic strategy to discover an effective salivary biomarker for early detection of patients with head-neck squamous carcinoma (HNSC) and oral precancer lesion (OPC). Methods: A total of 10 miRNAs were examined in parallel with multiple independent cohorts. These included a training set of salivary samples from HNSC patients, the TCGA-HNSC and GSE31277 cohorts to differentiate miRNAs between tumor and normal tissues, and groups of salivary samples from healthy individuals, patients with HNSC and OPC. Results: The combined results from the salivary training set and the TCGA-HNSC cohort showed that four miRNAs (miR-148b, miR-155, miR-196b, and miR-31) consistently increased in HNSC patients. Further integration with the GSE31277 cohort, two miRNAs (miR-31 and miR-196b) maintained at high significances. Further assessment showed that salivary miR-196b was a prominent diagnostic biomarker, as it remarkably discriminated between healthy individuals and patients with HNSC (p < 0.0001, AUC = 0.767, OR = 5.64) or OPC (p < 0.0001, AUC = 0.979, OR = 459). Conclusion: Salivary miR-196b could be an excellent biomarker for diagnosing OPC and early detection of HNSC. This molecule may be used for early screening high-risk groups of HNSC.
Collapse
Affiliation(s)
- Ann-Joy Cheng
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33302, Taiwan; (A.-J.C.); (K.-H.F.); (S.-F.H.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (C.-J.L.); (Y.-C.L.); (S.-J.T.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Guo-Rung You
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (C.-J.L.); (Y.-C.L.); (S.-J.T.)
| | - Che-Jui Lee
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (C.-J.L.); (Y.-C.L.); (S.-J.T.)
| | - Ya-Ching Lu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (C.-J.L.); (Y.-C.L.); (S.-J.T.)
| | - Shang-Ju Tang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (C.-J.L.); (Y.-C.L.); (S.-J.T.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Fang Huang
- Department of General Dentistry, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Dental and Craniofacial Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Chen Huang
- Department of Oral and Maxillofacial Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Li-Yu Lee
- Department of Pathology, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Kang-Hsing Fan
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33302, Taiwan; (A.-J.C.); (K.-H.F.); (S.-F.H.)
- Department of Radiation Oncology, New Taipei Municipal TuCheng Hospital, New Taipei City 236017, Taiwan
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yen-Chao Chen
- Department of Radiation Oncology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan;
| | - Shiang-Fu Huang
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33302, Taiwan; (A.-J.C.); (K.-H.F.); (S.-F.H.)
| | - Joseph Tung-Chieh Chang
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33302, Taiwan; (A.-J.C.); (K.-H.F.); (S.-F.H.)
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3-328-1200
| |
Collapse
|
9
|
The upregulation of oncogenic miRNAs in swabbed samples obtained from oral premalignant and malignant lesions. Clin Oral Investig 2021; 26:1343-1351. [PMID: 34342761 DOI: 10.1007/s00784-021-04108-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/24/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Oncogenic miRNAs upregulated in OSCC play a range of versatile roles in oral carcinogenesis. Oral potentially malignant disorders (OPMDs) are the antecedent lesions to oral squamous carcinoma (OSCC) and they require a definitive diagnosis and early intervention. This study hypothesizes the presence of aberrant oncogenic miRNA expression in swabbed oral lesions. MATERIALS AND METHODS The expression of miR-21, miR-31, miR-134, miR-146a, and miR-211 in swabbed samples from 36 dysplastic or hyperplastic OPMDs and 10 OSCCs, relative to respective normal mucosa within the same patient, is analyzed with qRT-PCR to develop a diagnosis. RESULTS Upregulation of all tested miRNAs in OPMD and OSCC samples comparing to controls is found to have occurred. Receiver operating characteristics curve analysis shows that miR-31 gives the best diagnostic accuracy of 0.91 when differentiating OPMD/OSCC from controls. An analysis of miR-134 and miR-211 expression allows the discrimination of the dysplastic state associated with OPMD, while the use of expression of the combined miRNAs further improves the analytical performances when identifying the dysplastic state. The concordant upregulation of miR-21, miR-31, and miR-146a is found to occur during an early stage of OSCC carcinogenesis. CONCLUSION This study demonstrates the upregulation of multiple oncogenic miRNAs in swabbed OPMD and OSCC samples. miRNA expression in swabbed collectives enables the differentiation between normal mucosa and OPMD/OSCC, independent of their histopathological severity. CLINICAL RELEVANCE This conventional and convenient sampling tool, when coupled with an assessment of miR-31 expression, would seem to be an adjuvant approach to the diagnosis of OPMD and OSCC.
Collapse
|
10
|
Knockdown circular RNA circGFRA1 inhibits glioma cell proliferation and migration by upregulating microRNA-99a. Neuroreport 2021; 32:748-756. [PMID: 33994521 DOI: 10.1097/wnr.0000000000001649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glioma is the most widespread and malignant brain tumor in the central nervous system of adult, causing multiple cancer-associated deaths worldwide. Here, we identified the impact of circGFRA1 on glioma, and aimed to uncover the underlying molecular mechanism. The expression of circGFRA1 of glioma specimens was evaluated by using quantitative reverse transcription PCR. Cell viability, proliferation, colony formation, apoptosis and migration were estimated utilizing CCK-8, EdU staining, colony formation assay, TUNEL staining and Transwell assay, respectively. Bioinformatics analysis, luciferase assay and RNA co-immunoprecipitation was utilized for verification of direct binding between circGFRA1 and miR-99a. Western blot was applied to investigate protein expression in U251 cells. The results showed that circGFRA1 expression was overexpressed in glioma specimens. Knockdown circGFRA1 declined viability, colony formation, proliferation and migrative potential, but enhanced U251 cell apoptosis. Moreover, circGFRA1 acts as a microRNA sponge for miR-99a. Furthermore, miR-99a was involved in the circGFRA1-regulated glioma cell behaviors. Silencing circGFRA1 reduced p/t-AKT, p/t-FOXO1 and p/t-mTOR expression levels via upregulating miR-99a expression. In conclusion, our study demonstrated that knockdown circGFRA1 inhibits glioma cell proliferation and migration by upregulating microRNA-99a.
Collapse
|
11
|
Emami Nejad A, Najafgholian S, Rostami A, Sistani A, Shojaeifar S, Esparvarinha M, Nedaeinia R, Haghjooy Javanmard S, Taherian M, Ahmadlou M, Salehi R, Sadeghi B, Manian M. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int 2021; 21:62. [PMID: 33472628 PMCID: PMC7816485 DOI: 10.1186/s12935-020-01719-5] [Citation(s) in RCA: 367] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Hypoxia is a common feature of solid tumors, and develops because of the rapid growth of the tumor that outstrips the oxygen supply, and impaired blood flow due to the formation of abnormal blood vessels supplying the tumor. It has been reported that tumor hypoxia can: activate angiogenesis, thereby enhancing invasiveness and risk of metastasis; increase survival of tumor, as well as suppress anti-tumor immunity and hamper the therapeutic response. Hypoxia mediates these effects by several potential mechanisms: altering gene expression, the activation of oncogenes, inactivation of suppressor genes, reducing genomic stability and clonal selection. We have reviewed the effects of hypoxia on tumor biology and the possible strategiesto manage the hypoxic tumor microenvironment (TME), highlighting the potential use of cancer stem cells in tumor treatment.
Collapse
Affiliation(s)
- Asieh Emami Nejad
- Department of Biology, Payame Noor University (PNU), P.O.Box 19395-3697, Tehran, Iran
| | - Simin Najafgholian
- Department of Emergency Medicine, School of Medicine , Arak University of Medical Sciences, Arak, Iran
| | - Alireza Rostami
- Department of Surgery, School of Medicine Amiralmomenin Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Alireza Sistani
- Department of Emergency Medicine, School of Medicine Valiasr Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Samaneh Shojaeifar
- Department of Midwifery, Faculty of Nursing and Midwifery , Arak University of Medical Sciences , Arak, Iran
| | - Mojgan Esparvarinha
- Department of Immunology, School of Medicine , Tabriz University of Medical Sciences , Tabriz, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease , Isfahan University of Medical Sciences , Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences , Isfahan, Iran
| | - Marjan Taherian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Ahmadlou
- Sciences Medical of University Arak, Hospital Amiralmomenin, Center Development Research Clinical, Arak, Iran
| | - Rasoul Salehi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease , Isfahan University of Medical Sciences , Isfahan, Iran.,Department of Genetics and Molecular Biology, School of Medicine , Isfahan University of Medical Sciences , Isfahan, Iran
| | - Bahman Sadeghi
- Department of Health and Community Medicine, School of Medicine, Arak University of Medical Sciences, Arak, 3848176341, Iran.
| | - Mostafa Manian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Department of Medical Laboratory Science, Faculty of Medical Science Kermanshah Branch, Islamic Azad University, Imam Khomeini Campus, Farhikhtegan Bld., Shahid J'afari St., Kermanshah, 3848176341, Iran.
| |
Collapse
|
12
|
Cerina: systematic circRNA functional annotation based on integrative analysis of ceRNA interactions. Sci Rep 2020; 10:22165. [PMID: 33335165 PMCID: PMC7746713 DOI: 10.1038/s41598-020-78469-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
Circular RNAs, a family of covalently circularized RNAs with tissue-specific expression, were recently demonstrated to play important roles in mammalian biology. Regardless of extensive research to predict, quantify, and annotate circRNAs, our understanding of their functions is still in its infancy. In this study, we developed a novel computational tool: Competing Endogenous RNA for INtegrative Annotations (Cerina), to predict biological functions of circRNAs based on the competing endogenous RNA model. Pareto Frontier Analysis was employed to integrate ENCODE mRNA/miRNA data with predicted microRNA response elements to prioritize tissue-specific ceRNA interactions. Using data from several circRNA-disease databases, we demonstrated that Cerina significantly improved the functional relevance of the prioritized ceRNA interactions by several folds, in terms of precision and recall. Proof-of-concept studies on human cancers and cardiovascular diseases further showcased the efficacy of Cerina on predicting potential circRNA functions in human diseases.
Collapse
|
13
|
Differential expression of microRNAs in the hippocampi of male and female rodents after chronic alcohol administration. Biol Sex Differ 2020; 11:65. [PMID: 33228793 PMCID: PMC7684718 DOI: 10.1186/s13293-020-00342-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Background Women are more vulnerable than men to the neurotoxicity and severe brain damage caused by chronic heavy alcohol use. In addition, brain damage due to chronic heavy alcohol use may be associated with sex-dependent epigenetic modifications. This study aimed to identify microRNAs (miRNAs) and their target genes that are differentially expressed in the hippocampi of male and female animal models in response to alcohol. Methods After chronic alcohol administration (3~3.5 g/kg/day) in male (control, n = 10; alcohol, n = 12) or female (control, n = 10; alcohol, n = 12) Sprague-Dawley rats for 6 weeks, we measured body weights and doublecortin (DCX; a neurogenesis marker) concentrations and analyzed up- or downregulated miRNAs using GeneChip miRNA 4.0 arrays. The differentially expressed miRNAs and their putative target genes were validated by RT-qPCR. Results Alcohol attenuated body weight gain only in the male group. On the other hand, alcohol led to increased serum AST in female rats and decreased serum total cholesterol concentrations in male rats. The expression of DCX was significantly reduced in the hippocampi of male alcohol-treated rats. Nine miRNAs were significantly up- or downregulated in male alcohol-treated rats, including upregulation of miR-125a-3p, let-7a-5p, and miR-3541, and downregulation of their target genes (Prdm5, Suv39h1, Ptprz1, Mapk9, Ing4, Wt1, Nkx3-1, Dab2ip, Rnf152, Ripk1, Lin28a, Apbb3, Nras, and Acvr1c). On the other hand, 7 miRNAs were significantly up- or downregulated in alcohol-treated female rats, including downregulation of miR-881-3p and miR-504 and upregulation of their target genes (Naa50, Clock, Cbfb, Arih1, Ube2g1, and Gng7). Conclusions These results suggest that chronic heavy alcohol use produces sex-dependent effects on neurogenesis and miRNA expression in the hippocampus and that sex differences should be considered when developing miRNA biomarkers to diagnose or treat alcoholics. Supplementary Information The online version contains supplementary material available at 10.1186/s13293-020-00342-3.
Collapse
|
14
|
Zhu Y, Mohamed ASR, Lai SY, Yang S, Kanwar A, Wei L, Kamal M, Sengupta S, Elhalawani H, Skinner H, Mackin DS, Shiao J, Messer J, Wong A, Ding Y, Zhang L, Court L, Ji Y, Fuller CD. Imaging-Genomic Study of Head and Neck Squamous Cell Carcinoma: Associations Between Radiomic Phenotypes and Genomic Mechanisms via Integration of The Cancer Genome Atlas and The Cancer Imaging Archive. JCO Clin Cancer Inform 2020; 3:1-9. [PMID: 30730765 DOI: 10.1200/cci.18.00073] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Recent data suggest that imaging radiomic features of a tumor could be indicative of important genomic biomarkers. Understanding the relationship between radiomic and genomic features is important for basic cancer research and future patient care. We performed a comprehensive study to discover the imaginggenomic associations in head and neck squamous cell carcinoma (HNSCC) and explore the potential of predicting tumor genomic alternations using radiomic features. METHODS Our retrospective study integrated whole-genome multiomics data from The Cancer Genome Atlas with matched computed tomography imaging data from The Cancer Imaging Archive for the same set of 126 patients with HNSCC. Linear regression and gene set enrichment analysis were used to identify statistically significant associations between radiomic imaging and genomic features. Random forest classifier was used to predict the status of two key HNSCC molecular biomarkers, human papillomavirus and disruptive TP53 mutation, on the basis of radiomic features. RESULTS Widespread and statistically significant associations were discovered between genomic features (including microRNA expression, somatic mutations, and transcriptional activity, copy number variations, and promoter region DNA methylation changes of pathways) and radiomic features characterizing the size, shape, and texture of tumor. Prediction of human papillomavirus and TP53 mutation status using radiomic features achieved areas under the receiver operating characteristic curve of 0.71 and 0.641, respectively. CONCLUSION Our exploratory study suggests that radiomic features are associated with genomic characteristics at multiple molecular layers in HNSCC and provides justification for continued development of radiomics as biomarkers for relevant genomic alterations in HNSCC.
Collapse
Affiliation(s)
- Yitan Zhu
- NorthShore University HealthSystem, Evanston, IL
| | - Abdallah S R Mohamed
- The University of Texas MD Anderson Cancer Center, Houston, TX.,Alexandria University, Alexandria, Egypt
| | - Stephen Y Lai
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Aasheesh Kanwar
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lin Wei
- NorthShore University HealthSystem, Evanston, IL
| | - Mona Kamal
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Heath Skinner
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dennis S Mackin
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jay Shiao
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jay Messer
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Andrew Wong
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yao Ding
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lifei Zhang
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Laurence Court
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yuan Ji
- NorthShore University HealthSystem, Evanston, IL.,The University of Chicago, Chicago, IL
| | | |
Collapse
|
15
|
Moghadasi M, Alivand M, Fardi M, Moghadam KS, Solali S. Emerging molecular functions of microRNA-124: Cancer pathology and therapeutic implications. Pathol Res Pract 2020; 216:152827. [PMID: 31983567 DOI: 10.1016/j.prp.2020.152827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/22/2019] [Accepted: 01/18/2020] [Indexed: 12/23/2022]
Abstract
MicroRNAs are characterized as small, single-stranded, non-coding RNA molecules that bind to their target mRNA to prevent protein synthesis. MicroRNAs regulate various normal processes; however, they are aberrantly regulated in many cancers. They control the expression of various genes, including cancer-related genes. This causes microRNAs to be considered as a good target for further investigations for designing novel therapeutic strategies. Since miR124 is known for some time already, it has a tumor-suppressing role in various cancers. Numerous studies indicate its definite roles in malignant processes such as epithelial-to-mesenchymal transition, cell cycle arrest, metastasis, cancer stem cell formation and induction of apoptosis. However, some studies have indicated a dual role for miR-124 in oncogenic processes like autophagy and multi-drug resistance. In this article, we will review recent researches on the biological functions and clinical implications of miR-124. Subsequently, we will discuss future perspectives in terms of the roles of this miRNA in cancers.
Collapse
Affiliation(s)
- Maryam Moghadasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Alivand
- Department of Medical Genetics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Fardi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saeed Solali
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Division of Hematology and Transfusion Medicine, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Yu D, Liu X, Han G, Liu Y, Zhao X, Wang D, Bian X, Gu T, Wen L. The let-7 family of microRNAs suppresses immune evasion in head and neck squamous cell carcinoma by promoting PD-L1 degradation. Cell Commun Signal 2019; 17:173. [PMID: 31881947 PMCID: PMC6935121 DOI: 10.1186/s12964-019-0490-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
Background Accumulation of immunosuppressive protein programmed death-ligand 1 (PD-L1) has been documented in several cancers and contributes to the evasion of the host immune system. However, cancer cell-intrinsic signaling-dependent control of PD-L1 expression remains to be elucidated. Herein, we aimed to identify the let-7 family of microRNAs as candidates that up-regulate tumor cell PD-L1 expression and mediates immune evasion of head and neck squamous cell carcinoma (HNSCC). Methods The expression of let-7 family and PD-L1 was quantified in HNSCC tissues and adjacent normal tissues. PD-L1 degradation was evaluated in HNSCC cells in response to elevated expressions of let-7a or let-7b. The regulation of let-7 family on PD-L1 degradation through a mechanism involving T-cell factor-4 (TCF-4) control of β-catenin/STT3 pathway was evaluated. Immune recognition of HNSCC in vivo was examined in subcutaneous tumor-bearing C3H mice in the presence of let-7a/b and/or CTLA-4 antibody. Results The let-7 family were significantly down-regulated in the context of HNSCC, sharing a negative correlation with PD-L1 expression. Glycosylated PD-L1 was detected in HNSCC cells, which was reduced by let-7a/b over-expression. TCF-4, the target of let-7a/b, activated the β-catenin/STT3 pathway and promoted PD-L1 degradation. In vivo analysis demonstrated that let-7a/b over-expression potentiated anticancer immunotherapy by CTLA-4 blockade. Conclusions Taken together, our findings highlight targeting let-7 family as a potential strategy to enhance immune checkpoint therapy for HNSCC.
Collapse
Affiliation(s)
- Dan Yu
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, People's Republic of China
| | - Xueshibojie Liu
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, People's Republic of China
| | - Guanghong Han
- Department of Oral Geriatrics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Yan Liu
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, People's Republic of China
| | - Xue Zhao
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, People's Republic of China
| | - Di Wang
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, People's Republic of China
| | - Xiaomin Bian
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, People's Republic of China
| | - Tingting Gu
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, People's Republic of China
| | - Lianji Wen
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, People's Republic of China.
| |
Collapse
|
17
|
Kim DH, Khan H, Ullah H, Hassan STS, Šmejkal K, Efferth T, Mahomoodally MF, Xu S, Habtemariam S, Filosa R, Lagoa R, Rengasamy KR. MicroRNA targeting by quercetin in cancer treatment and chemoprotection. Pharmacol Res 2019; 147:104346. [PMID: 31295570 DOI: 10.1016/j.phrs.2019.104346] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 02/08/2023]
Abstract
A growing number of evidences from clinical and preclinical studies have shown that dysregulation of microRNA (miRNA) function contributes to the progression of cancer and thus miRNA can be an effective target in therapy. Dietary phytochemicals, such as quercetin, are natural products that have potential anti-cancer properties due to their proven antioxidant, anti-inflammatory, and anti-proliferative effects. Available experimental studies indicate that quercetin could modulate multiple cancer-relevant miRNAs including let-7, miR-21, miR-146a and miR-155, thereby inhibiting cancer initiation and development. This paper reviews the data supporting the use of quercetin for miRNA-mediated chemopreventive and therapeutic strategies in various cancers, with the aim to comprehensively understand its health-promoting benefits and pharmacological potential. Integration of technology platforms for miRNAs biomarker and drug discovery is also presented.
Collapse
Affiliation(s)
- Doo Hwan Kim
- Department of Bioresources and Food Science, Konkuk University, Seoul, 05029, South Korea
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Sherif T S Hassan
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | | | - Suowen Xu
- University of Rochester, Aab Cardiovascular Research Institute, Rochester, NY, 14623, USA
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services UK, University of Greenwich, UK
| | - Rosanna Filosa
- Institute of Food Sciences, National Research Council, Roma str. 64, Avellino, 83100, Italy; Consorzio Sannio Tech, AMP Biotec, Appia Str, Apollosa, Benevento, 82030, Italy
| | - Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Portugal; UCIBIO-Faculty of Science and Technology, University NOVA of Lisbon, Portugal.
| | - Kannan Rr Rengasamy
- Department of Bioresources and Food Science, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
18
|
Khan AQ, Ahmed EI, Elareer NR, Junejo K, Steinhoff M, Uddin S. Role of miRNA-Regulated Cancer Stem Cells in the Pathogenesis of Human Malignancies. Cells 2019; 8:840. [PMID: 31530793 PMCID: PMC6721829 DOI: 10.3390/cells8080840] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Recent biomedical discoveries have revolutionized the concept and understanding of carcinogenesis, a complex and multistep phenomenon which involves accretion of genetic, epigenetic, biochemical, and histological changes, with special reference to MicroRNAs (miRNAs) and cancer stem cells (CSCs). miRNAs are small noncoding molecules known to regulate expression of more than 60% of the human genes, and their aberrant expression has been associated with the pathogenesis of human cancers and the regulation of stemness features of CSCs. CSCs are the small population of cells present in human malignancies well-known for cancer resistance, relapse, tumorigenesis, and poor clinical outcome which compels the development of novel and effective therapeutic protocols for better clinical outcome. Interestingly, the role of miRNAs in maintaining and regulating the functioning of CSCs through targeting various oncogenic signaling pathways, such as Notch, wingless (WNT)/β-Catenin, janus kinases/ signal transducer and activator of transcription (JAK/STAT), phosphatidylinositol 3-kinase/ protein kinase B (PI3/AKT), and nuclear factor kappa-light-chain-enhancer of activated B (NF-kB), is critical and poses a huge challenge to cancer treatment. Based on recent findings, here, we have documented the regulatory action or the underlying mechanisms of how miRNAs affect the signaling pathways attributed to stemness features of CSCs, such as self-renewal, differentiation, epithelial to mesenchymal transition (EMT), metastasis, resistance and recurrence etc., associated with the pathogenesis of various types of human malignancies including colorectal cancer, lung cancer, breast cancer, head and neck cancer, prostate cancer, liver cancer, etc. We also shed light on the fact that the targeted attenuation of deregulated functioning of miRNA related to stemness in human carcinogenesis could be a viable approach for cancer treatment.
Collapse
Affiliation(s)
- Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Eiman I Ahmed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Noor R Elareer
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Kulsoom Junejo
- General Surgery Department, Hamad General Hospital, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
- Weill Cornell Medicine, Doha, P.O. Box 24811, Qatar
- Weill Cornell University, New York, NY 10065, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar.
| |
Collapse
|
19
|
Lu Z, He Q, Liang J, Li W, Su Q, Chen Z, Wan Q, Zhou X, Cao L, Sun J, Wu Y, Liu L, Wu X, Hou J, Lian K, Wang A. miR-31-5p Is a Potential Circulating Biomarker and Therapeutic Target for Oral Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:471-480. [PMID: 31051332 PMCID: PMC6495075 DOI: 10.1016/j.omtn.2019.03.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/30/2019] [Accepted: 03/31/2019] [Indexed: 12/15/2022]
Abstract
MicroRNAs have been proposed as novel biomarkers for the diagnosis and treatment of many types of cancer. The levels of five candidate microRNAs (miRNAs) (miR-99a-5p, miR-31-5p, miR-138-5p, miR-21-5p, and miR-375-3p) in sera from oral cancer patients and paired tumor and normal tissues were detected by real-time qPCR. The diagnostic power of these miRNAs was analyzed by receiver operating characteristic (ROC) curves. Patient-derived xenograft (PDX) models of oral cancer were established and utilized to verify the potential therapeutic effect of miR-31-5p. Candidate miRNAs were screened from our previous studies and verified in 11 paired oral cancer and adjacent normal tissues. Only serum miR-31-5p levels were significantly different between oral cancer patients and healthy controls and between pre- and postoperative patients. Based on the logistic regression model, this panel of five miRNAs distinguished oral cancer patients from healthy control, with an area under the ROC curve (AUC) of 0.776 (sensitivity = 76.8% and specificity = 73.6%). Furthermore, a miR-31-5p mimic enhanced the proliferation of normal epithelial cells, and antagomiR-31-5p inhibited the proliferation of oral cancer cells in vitro. In vivo, antagomiR-31-5p significantly inhibited tumor growth in oral cancer PDX models. Our findings suggest that circulating miR-31-5p might act as an independent biomarker for oral cancer diagnosis and could serve as a therapeutic target for oral cancer.
Collapse
Affiliation(s)
- Zhiyuan Lu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, 510080 Guangzhou, China
| | - Qianting He
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, 510080 Guangzhou, China
| | - Jianfeng Liang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 510080 Guangzhou, China
| | - Wuguo Li
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-Sen University, 510080 Guangzhou, China
| | - Qiao Su
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-Sen University, 510080 Guangzhou, China
| | - Zujian Chen
- Center for Molecular Biology of Oral Diseases, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60601, USA
| | - Quan Wan
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, China
| | - Xiaofeng Zhou
- Center for Molecular Biology of Oral Diseases, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60601, USA
| | - Laurel Cao
- Guanghua College of Stomatology, Sun-Yat Sen University, 510080 Guangzhou, China
| | - Jingjing Sun
- Department of Stomatology, First Affiliated Hospital, Guangdong Pharmaceutical University, 510080 Guangzhou, China
| | - Yu Wu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, 510080 Guangzhou, China
| | - Lin Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, 510080 Guangzhou, China
| | - Xinming Wu
- Center for Molecular Biology of Oral Diseases, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60601, USA
| | - Jinsong Hou
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 510080 Guangzhou, China
| | - Keqian Lian
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-Sen University, 510080 Guangzhou, China.
| | - Anxun Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, 510080 Guangzhou, China.
| |
Collapse
|
20
|
Wang X, Li GH. MicroRNA-16 functions as a tumor-suppressor gene in oral squamous cell carcinoma by targeting AKT3 and BCL2L2. J Cell Physiol 2018; 233:9447-9457. [PMID: 30136280 PMCID: PMC6221029 DOI: 10.1002/jcp.26833] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/10/2018] [Indexed: 12/20/2022]
Abstract
Aberrant expressions of microRNAs have been reported to be strongly associated with the progression and prognosis of various tumors, including oral squamous cell carcinoma (OSCC). Recent studies on miRNA expression profiling have suggested that microRNA-16 (miR-16) may be dysregulated in OSCC. However, the tumorigenic roles and mechanisms of miR-16 in OSCC are still largely unknown. In this study, we demonstrated that miR-16 was specifically downregulated in both OSCC patients and cancer cell lines. In addition, functional roles of miR-16 in vitro suggested that the miR-16 mimic inhibited cell proliferation and induced apoptosis, whereas miR-16 inhibitor displayed the opposite effects. Luciferase reporter assay and correlation analysis showed that AKT3 and BCL2L2 were directly targeted by miR-16 and were inversely expressed with miR-16 in OSCC. Moreover, restoration of AKT3 and BCL2L2 expression could partially reverse the cell proliferation inhibition and apoptosis induction caused by miR-16. In xenograft nude mice, miR-16 mimics decreased the expression of AKT3 and BCL2L2 and reduced the tumors volumes and weights, whereas the miR-16 inhibitor exhibited adverse effects in the derived xenografts. In conclusion, the findings suggested that miR-16 functions as a tumor suppressor miRNA to inhibit cell proliferation and induce apoptosis in OSCC through decreasing the oncogenes AKT3 and BCL2L2 and that miR-16 could be a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Xi Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guang-Hui Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Domingues CSDC, Serambeque BP, Laranjo Cândido MS, Marto CMM, Veiga FJDB, Sarmento Antunes Cruz Ribeiro AB, Figueiras ARR, Botelho MFR, Dourado MDARF. Epithelial-mesenchymal transition and microRNAs: Challenges and future perspectives in oral cancer. Head Neck 2018; 40:2304-2313. [PMID: 30120853 DOI: 10.1002/hed.25381] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/23/2018] [Accepted: 05/28/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Head and neck cancer is the sixth most common cancer worldwide, with oral squamous cell carcinoma (OSCC) being the most representative type. OSCC is a public health problem with high morbidity and poor survival rate. Epithelial-mesenchymal transition is emerging as a hallmark in OSCC. METHODS In this study, we described the role of microRNAs in epithelial-mesenchymal transition regulation in OSCC based on a PubMed search using articles published in English between January 1, 2010, and January 31, 2018. RESULTS MicroRNA's regulatory networks seem to be a hallmark of epithelial-mesenchymal transition in OSCC pathophysiology becoming a growing challenge to design new studies and strategies from biology to clinical applications. CONCLUSION Therefore, we propose that targeting therapies to epithelial-mesenchymal transition-type cells, namely, coordinating microRNAs and/or hydrophobic drugs, such as conventional therapy, could be a promising strategy to improve the outcomes of patients with OSCC.
Collapse
Affiliation(s)
- Cátia Sofia da Costa Domingues
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Beatriz Prazeres Serambeque
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Biophysics Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Mafalda Sofia Laranjo Cândido
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Biophysics Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC/IBILI, Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Carlos Miguel Machado Marto
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Biophysics Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC/IBILI, Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal.,Experimental Pathology Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Francisco José de Baptista Veiga
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CNC/IBILI, Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana Bela Sarmento Antunes Cruz Ribeiro
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC/IBILI, Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana Rita Ramalho Figueiras
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Maria Filomena Roque Botelho
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Biophysics Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC/IBILI, Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Marília de Assunção Rodrigues Ferreira Dourado
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Pathophysiology Course Unit, Dentistry Area, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
22
|
Zhao Y, Ling Z, Hao Y, Pang X, Han X, Califano JA, Shan L, Gu X. MiR-124 acts as a tumor suppressor by inhibiting the expression of sphingosine kinase 1 and its downstream signaling in head and neck squamous cell carcinoma. Oncotarget 2018; 8:25005-25020. [PMID: 28212569 PMCID: PMC5421905 DOI: 10.18632/oncotarget.15334] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/10/2017] [Indexed: 01/08/2023] Open
Abstract
By analyzing the expression profile of microRNAs in head and neck squamous cell carcinomas (HNSCC), we found that the expression level of miR-124 was 4.59-fold lower in tumors than in normal tissues. To understand its functions, we generated a miR-124-expressing subline (JHU-22miR124) and a mock vector-transfected subline (JHU-22vec) by transfecting the mimic of miR-124 into JHU-22 cancer cells. Restored expression of miR-124 in JHU-22miR124 cells led to reduced cell proliferation, delayed colony formation, and decreased tumor growth, indicating a tumor-suppressive effect of miR-124. Subsequent target search revealed that the 3′-UTR of SphK1 mRNA carries a complementary site for the seed region of miR-124. SphK1 was also detected to be overexpressed in HNSCC cell lines, but down-expressed in JHU-22miR124 cells and tumor xenografts. These results suggest that SphK1 is a target of miR-124. To confirm this finding, we constructed a 3′-UTR-Luc-SphK1 vector and a binding site-mutated luciferase reporter vector. Co-transfection of 3′-UTR-Luc-SphK1 with miR-124 expression vector exhibited a 9-fold decrease in luciferase activity compared with mutated vector, suggesting that miR-124 inhibits SphK1 activity directly. Further studies on downstream signaling demonstrated accumulation of ceramide, increased expression of the pro-apoptotic Bax, BAD and PARP, decreased expression of the anti-apoptotic Bcl-2 and Bcl-xL, and enhanced expression of cytochrome c and caspase proteins in JHU-22miR124 compared with JHU-22vec cells and tumor xenografts. We conclude that miR-124 acts as a tumor suppressor in HNSCC by directly inhibiting SphK1 activity and its downstream signals.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Oral Pathology, College of Dentistry, Howard University, Washington DC, USA
| | - Zhiqiang Ling
- Zhejiang Cancer Hospital, Zhejiang Cancer Research Institute, Hangzhou, Zhejiang, China
| | - Yubin Hao
- Department of Oral Pathology, College of Dentistry, Howard University, Washington DC, USA
| | - Xiaowu Pang
- Department of Oral Pathology, College of Dentistry, Howard University, Washington DC, USA
| | - Xianlin Han
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Joseph A Califano
- Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins University, San Diego, California, USA
| | - Liang Shan
- Department of Oral Pathology, College of Dentistry, Howard University, Washington DC, USA.,Department of Radiology, College of Medicine, Howard University, Washington DC, USA
| | - Xinbin Gu
- Department of Oral Pathology, College of Dentistry, Howard University, Washington DC, USA.,Cancer Center, Howard University, Washington DC, USA
| |
Collapse
|
23
|
Lu WC, Liu CJ, Tu HF, Chung YT, Yang CC, Kao SY, Chang KW, Lin SC. miR-31 targets ARID1A and enhances the oncogenicity and stemness of head and neck squamous cell carcinoma. Oncotarget 2018; 7:57254-57267. [PMID: 27528032 PMCID: PMC5302987 DOI: 10.18632/oncotarget.11138] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022] Open
Abstract
miR-31 is oncogenic for head and neck squamous cell carcinoma (HNSCC). Proteins containing the AT-rich interacting domain (ARID) modulate the accessibility of chromatin to the transcription machinery needed for gene expression. In this study, we showed that miR-31 was able to target ARID1A in HNSCC. HNSCC tumors had an inverse miR-31 and ARID1A expression. miR-31 associated oncogenicities were rescued by ARID1A expression in HNSCC cells. Furthermore, ARID1A repressed the stemness properties and transcriptional activity of Nanog/OCT4/Sox2/EpCAM via the protein's affinity for AT-rich sites within promoters. HNSCC patients with tumors having high level of miR-31 expression and high levels of Nanog/OCT4/Sox2/EpCAM expression, together with low level of ARID1A expression, were found to have the worst survival. This study provides novel mechanistic clues demonstrating that miR-31 inhibits ARID1A and that this enriches the oncogenicity and stemness of HNSCC.
Collapse
Affiliation(s)
- Wen-Cheng Lu
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hsi-Feng Tu
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Tung Chung
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Chieh Yang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shou-Yen Kao
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
24
|
Up-regulation of miR-187 modulates the advances of oral carcinoma by targeting BARX2 tumor suppressor. Oncotarget 2018; 7:61355-61365. [PMID: 27542258 PMCID: PMC5308656 DOI: 10.18632/oncotarget.11349] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/09/2016] [Indexed: 12/31/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide. Aberrations in miRNA regulation are known to play important roles in OSCC pathogenesis. miR-187 was shown to be up-regulated in head and neck malignancies in our previous screening. This study further investigated the oncogenic potential, clinical implications, and targets of miR-187 in OSCC. We observed that miR-187 increased oncogenicity, particularly migration, of OSCC cells. miR-187 expression increased the xenografic tumorigenicity and metastasis in mice. In addition, metastatic human OSCC had higher miR-187 expression than did non-metastatic tumors. Through vigorous screening, we confirmed BarH-like Homeobox 2 (BARX2) gene as an miR-187 target. BARX2 expression suppressed the migration, invasion, anchorage-independent colony formation, and orthotopic tumorigenesis of OSCC cells. The migratory phenotype and neck metastasis induced by miR-187 was rescued by BARX2 expression. BARX2 expression was down-regulated in the vast majority of OSCC, and this down-regulation was particularly conspicuous in tumors with advanced nodal metastasis. In addition, plasma miR-187 was significantly higher in OSCC patients than in normal individuals. This study highlights the roles of miR-187-BARX2 in driving the carcinogenesis of OSCC. The results suggest that miR-187 is a potential serological marker for OSCC and that targeting of miR-187 might prove effective in attenuating nodal metastasis.
Collapse
|
25
|
Lai YH, Liu H, Chiang WF, Chen TW, Chu LJ, Yu JS, Chen SJ, Chen HC, Tan BCM. MiR-31-5p-ACOX1 Axis Enhances Tumorigenic Fitness in Oral Squamous Cell Carcinoma Via the Promigratory Prostaglandin E2. Am J Cancer Res 2018; 8:486-504. [PMID: 29290822 PMCID: PMC5743562 DOI: 10.7150/thno.22059] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023] Open
Abstract
During neoplastic development, a multitude of changes in genome-encoded information are progressively selected to confer growth and survival advantages to tumor cells. microRNAs-mRNAs regulatory networks, given their role as a critical layer of robust gene expression control, are frequently altered in neoplasm. However, whether and how these gene perturbations impact metabolic homeostasis remains largely unresolved. Methods: Through targeted miRNA expression screening, we uncovered an oral squamous cell carcinoma (OSCC)-associated miRNAome, among which miR-31-5p was identified based on extent of up-regulation, functional impact on OSCC cell migration and invasion, and direct regulation of the rate-limiting enzyme in peroxisomal β-oxidation, ACOX1. Results: We further found that both miR-31-5p and ACOX1 underpin, in an antagonistic manner, the overall cellular lipidome profiles as well as the migratory and invasive abilities of OSCC cells. Interestingly, the extracellular levels of prostaglandin E2 (PGE2), a key substrate of ACOX1, were controlled by the miR-31-5p-ACOX1 axis, and were shown to positively influence the extent of cell motility in correlation with metastatic status. The promigratory effect of this metabolite was mediated by an elevation in EP1-ERK-MMP9 signaling. Of note, functional significance of this regulatory pathway was further corroborated by its clinicopathologically-correlated expression in OSCC patient specimens. Conclusions: Collectively, our findings outlined a model whereby misregulated miR-31-5p-ACOX1 axis in tumor alters lipid metabolomes, consequently eliciting an intracellular signaling change to enhance cell motility. Our clinical analysis also unveiled PGE2 as a viable salivary biomarker for prognosticating oral cancer progression, further underscoring the importance of lipid metabolism in tumorigenesis.
Collapse
|
26
|
Maruyama T, Nishihara K, Umikawa M, Arasaki A, Nakasone T, Nimura F, Matayoshi A, Takei K, Nakachi S, Kariya KI, Yoshimi N. MicroRNA-196a-5p is a potential prognostic marker of delayed lymph node metastasis in early-stage tongue squamous cell carcinoma. Oncol Lett 2017; 15:2349-2363. [PMID: 29434944 PMCID: PMC5778269 DOI: 10.3892/ol.2017.7562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/20/2017] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRs) are expected to serve as prognostic tools for cancer. However, many miRs have been reported as prognostic markers of recurrence or metastasis in oral squamous cell carcinoma patients. We aimed to determine the prognostic markers in early-stage tongue squamous cell carcinoma (TSCC). Based on previous studies, we hypothesized that miR-10a, 10b, 196a-5p, 196a-3p, and 196b were prognostic markers and we retrospectively performed miR expression analyses using formalin-fixed paraffin-embedded sections of surgical specimens. Total RNA was isolated from cancer tissues and adjacent normal tissue as control, and samples were collected by laser-capture microdissection. After cDNA synthesis, reverse transcription-quantitative polymerase chain reaction was performed. Statistical analyses for patient clinicopathological characteristics, recurrence/metastasis, and survival rates were performed to discern their relationships with miR expression levels, and the 2−ΔΔCq method was used. miR-196a-5p levels were significantly upregulated in early-stage TSCC, particularly in the lymph node metastasis (LNM) group. The LNM-free survival rate in the low miR-196a-5p ΔΔCq value regulation group was found to be lower than that in the high ΔΔCq value regulation group (P=0.0079). Receiver operating characteristic analysis of ΔΔCq values revealed that miR-196a-5p had a P-value=0.0025, area under the curve=0.740, and a cut-off value=−0.875 for distinguishing LNM. To our knowledge, this is the first study to examine LNM-related miRs in early-stage TSCC as well as miRs and ‘delayed LNM’ in head and neck cancer. miR-196a-5p upregulation may predict delayed LNM. Our data serve as a foundation for future studies to evaluate miR levels and facilitate the prediction of delayed LNM during early-stage TSCC, which prevent metastasis when combined with close follow-up and aggressive adjuvant therapy or elective neck dissection. Moreover, our data will serve as a foundation for future studies to evaluate whether miR-196a-5p can serve as a therapeutic marker for preventing metastasis.
Collapse
Affiliation(s)
- Tessho Maruyama
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan.,Department of Oral and Maxillofacial Surgery, University Hospital of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Kazuhide Nishihara
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan.,Department of Oral and Maxillofacial Surgery, University Hospital of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Masato Umikawa
- Department of Medical Biochemistry, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Akira Arasaki
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan.,Department of Oral and Maxillofacial Surgery, University Hospital of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Toshiyuki Nakasone
- Department of Oral and Maxillofacial Surgery, University Hospital of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Fumikazu Nimura
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Akira Matayoshi
- Department of Oral and Maxillofacial Surgery, University Hospital of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Kimiko Takei
- Department of Medical Biochemistry, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Saori Nakachi
- Department of Pathology, University Hospital of the Ryukyus, Nishihara, Okinawa 903-0215, Japan.,Department of Pathology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Ken-Ichi Kariya
- Department of Medical Biochemistry, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Naoki Yoshimi
- Department of Pathology, University Hospital of the Ryukyus, Nishihara, Okinawa 903-0215, Japan.,Department of Pathology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| |
Collapse
|
27
|
Kovarikova H, Bubancova I, Laco J, Sieglova K, Vosmikova H, Vosmik M, Dundr P, Nemejcova K, Michalek J, Palicka V, Chmelarova M. Deregulation of selected microRNAs in sinonasal carcinoma: Value of miR-21 as prognostic biomarker in sinonasal squamous cell carcinoma. Head Neck 2017; 39:2528-2536. [PMID: 28960576 DOI: 10.1002/hed.24930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 06/26/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Tumors occurring in the sinonasal area are characterized by unfavorable outcome due to difficult diagnosis, treatment, and prognosis of the disease corresponding with the anatomic complexity of the area. METHODS We used quantitative real-time polymerase chain reaction (PCR) to compare relative expression of miR-21, miR-141, and miR-200c in 70 formalin-fixed, paraffin-embedded samples of sinonasal carcinoma tissue (majority of squamous cell carcinoma [SCC] samples) with 17 control samples of sinonasal tissue. RESULTS Our data showed significant upregulation of miR-21 in sinonasal cancer tissue. Expression levels of miR-141 and miR-200c were below detectable levels in both sinonasal cancer samples and healthy tissue. Kaplan-Meier analysis with log-rank survival showed that patients with SCC with high expression of miR-21 (highest quartile) had impaired survival close to reaching statistical significance (P = .0630). CONCLUSION Our results suggest that miR-21 upregulation is involved in tumorigenesis of sinonasal carcinoma and that it is associated with poor prognosis. Thus, miR-21 could be used as a valuable prognostic biomarker.
Collapse
Affiliation(s)
- Helena Kovarikova
- Institute for Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine, Hradec Kralove and University Hospital Hradec Kralove, Czech Republic
| | - Ivana Bubancova
- Institute for Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine, Hradec Kralove and University Hospital Hradec Kralove, Czech Republic
| | - Jan Laco
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine, Hradec Kralove and University Hospital Hradec Kralove, Czech Republic
| | - Katerina Sieglova
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine, Hradec Kralove and University Hospital Hradec Kralove, Czech Republic
| | - Hana Vosmikova
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine, Hradec Kralove and University Hospital Hradec Kralove, Czech Republic
| | - Milan Vosmik
- Department of Oncology and Radiotherapy, Charles University, Faculty of Medicine, Hradec Kralove and University Hospital Hradec Kralove, Czech Republic
| | - Pavel Dundr
- Department of Pathology, Charles University, First Faculty of Medicine and General University Hospital in Prague, Czech Republic
| | - Kristyna Nemejcova
- Department of Pathology, Charles University, First Faculty of Medicine and General University Hospital in Prague, Czech Republic
| | - Jaroslav Michalek
- Department of Clinical and Molecular Pathology, Palacky University Olomouc, Faculty of Medicine and Dentistry and University Hospital Olomouc, Czech Republic
| | - Vladimir Palicka
- Institute for Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine, Hradec Kralove and University Hospital Hradec Kralove, Czech Republic
| | - Marcela Chmelarova
- Institute for Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine, Hradec Kralove and University Hospital Hradec Kralove, Czech Republic
| |
Collapse
|
28
|
Expression Levels and Clinical Significance of miR-21-5p, miR-let-7a, and miR-34c-5p in Laryngeal Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3921258. [PMID: 29082244 PMCID: PMC5610801 DOI: 10.1155/2017/3921258] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 08/01/2017] [Indexed: 01/11/2023]
Abstract
Objective Altered microRNAs (miRNAs) expression has been found in many cancer types, including laryngeal squamous cell carcinoma (LSCC). The aim of this study was to determine the role and clinical value of three LSCC-related miRs, such as miR-21-5p, miR-let-7a, and miR-34c-5p in a homogeneous cohort of patients with primary LSCC treated by primary surgery. Methods Expression levels of miR-21-5p, miR-let-7a, and miR-34c-5p were detected in 43 pairs of LSCC and adjacent normal tissues by reverse-transcription quantitative PCR. Overall survival and disease-free survival were evaluated using the Kaplan–Meier method, and multivariate analysis was performed using the Cox proportional hazard analysis. Results miR-21-5p is significantly upregulated, while miR-let-7a is significantly downregulated in LSCC tumor tissues compared with the corresponding adjacent normal tissues. The downregulation of miR-34c-5p expression significantly correlated with a shorter disease-free survival and, in the multivariate analysis, low miR-34c-5p expression was associated with an increased risk of recurrence. Conclusions miR-21-5p, miR-let-7a, and miR-34c-5p seem to play a critical role in LSCC carcinogenesis and might have a diagnostic and prognostic clinical value. The miR-let-7a levels could have a predictive role for lymph node metastases and miR-34c-5p might be a promising biomarker of patient outcome.
Collapse
|
29
|
Jimenez L, Lim J, Burd B, Harris TM, Ow TJ, Kawachi N, Belbin TJ, Angeletti R, Prystowsky MB, Childs G, Segall JE. miR-375 Regulates Invasion-Related Proteins Vimentin and L-Plastin. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1523-1536. [PMID: 28499703 PMCID: PMC5500828 DOI: 10.1016/j.ajpath.2017.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/27/2017] [Indexed: 12/21/2022]
Abstract
Invasion is a hallmark of advanced head and neck squamous cell carcinoma (HNSCC). We previously determined that low relative miR-375 expression was associated with poor patient prognosis. HNSCC cells with increased miR-375 expression have lower invasive properties and impaired invadopodium activity. Using stable isotope labeling with amino acids in cell culture and reverse-phase liquid chromatography mass spectrometry, we assessed the impact of miR-375 expression on protein levels in UM-SCC-1 cells. Increased miR-375 expression was associated with down-regulation of proteins involved in cellular assembly and organization, death and survival, and movement. Two invasion-associated proteins, vimentin and L-plastin, were strongly down-regulated by miR-375. Luciferase reporter assays demonstrated that high miR-375 expression reduced vimentin promoter activity, suggesting that vimentin is an indirect target of miR-375. Runt-related transcription factor 1 (RUNX1) is a potential miR-375 direct target, and its knockdown reduced vimentin and L-plastin expression. Data in The Cancer Genome Atlas HNSCC database showed a significant inverse correlation between miR-375 expression and RUNX1, vimentin, and L-plastin RNA expression. These clinical correlations validate our in vitro model findings and support a mechanism in which miR-375 suppresses RUNX1 levels, resulting in reduced vimentin and L-plastin expression. Furthermore, knockdown of RUNX1, L-plastin, and vimentin resulted in significant reductions in cell invasion in vitro, indicating the functional significance of miR-375 regulation of specific proteins involved in HNSCC invasion.
Collapse
Affiliation(s)
- Lizandra Jimenez
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York; Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Jihyeon Lim
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York; Laboratory for Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine, Bronx, New York
| | - Berta Burd
- Laboratory for Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine, Bronx, New York
| | - Thomas M Harris
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Thomas J Ow
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Nicole Kawachi
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Thomas J Belbin
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Ruth Angeletti
- Laboratory for Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine, Bronx, New York
| | | | - Geoffrey Childs
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Jeffrey E Segall
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York; Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
30
|
Different levels of let-7d expression modulate response of FaDu cells to irradiation and chemotherapeutics. PLoS One 2017; 12:e0180265. [PMID: 28665983 PMCID: PMC5493379 DOI: 10.1371/journal.pone.0180265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/13/2017] [Indexed: 12/19/2022] Open
Abstract
The implication of the let-7 family in cancer development is multifaceted. The family acts as tumor suppressor miRNA although overexpression of let-7 has also been described in many types of cancer, including head and neck squamous cell carcinoma (HNSCC). The aim of this study includes whether different expression levels of let-7d has an influence on chemo- and radiosensitivity. FaDu cell line models with a gradually increased level of let-7d (models from A to E) were generated with the lentiviral system. Expression levels of pluripotency, chemo-radioresistance/apoptosis, and targets of mRNAs were analyzed by real-time reverse transcription-PCR (qRT-PCR). Radiosensitivity was analyzed using a clonogenic assay after irradiation. Response to cisplatin, 5-FU, doxorubicin, and paclitaxel was done with MTT assay. Statistically significant decrease of K-RAS (p = 0.0369) and CASPASE3 (p = 0.0342) were observed with the growing expression level of let-7d. Cisplatin, 5-FU and doxorubicin caused similar decreased of cell survival with the increase of let-7d level (p = 0.004, post-trend p = 0.046; p = 0.004, post trend p = 0.0005 and p<0.0001, post trend p = 0.0001, respectively). All models were resistant to paclitaxel, irrespective of let-7d expression levels. Only two of the generated models (A and C) were radiosensitive (p = 0.0002). Conclusion: the above results indicated that the level of let-7d expression is an important factor for cell response to irradiation and chemotherapeutics.
Collapse
|
31
|
Greither T, Vorwerk F, Kappler M, Bache M, Taubert H, Kuhnt T, Hey J, Eckert AW. Salivary miR-93 and miR-200a as post-radiotherapy biomarkers in head and neck squamous cell carcinoma. Oncol Rep 2017; 38:1268-1275. [PMID: 28677748 DOI: 10.3892/or.2017.5764] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/27/2017] [Indexed: 11/06/2022] Open
Abstract
Head and neck squamous cell carcinoma is the 6th most malignant tumor entity worldwide and has exhibited a 5-year mortality of approximately 50% for the last fifty years. For the therapy monitoring and successful management of this tumor entity new and easily accessible biomarkers are greatly needed. The aim of the study was to determine whether and to what extent microRNAs, a class of small regulatory RNAs, are detectable in saliva post-radiation therapy. The expression and feasibility as therapy monitoring marker of the microRNAs were analyzed by RT-qPCR in 83 saliva samples from 33 patients collected at several time points pre-, during and post-radiotherapy treatment. Ten head and neck squamous cell carcinoma- or radiation-associated microRNAs (miR-93, miR-125a, miR-142-3p, miR-200a, miR-203, miR-213, let-7a, let-7b, let-7g and let-7i) were analyzed. All were detectable to a different extent in the saliva of the patients. miR-93 and miR-200a were significantly higher expressed 12 months post-radiotherapy than at baseline (p=0.047 and p=0.036). These results point towards miR-93 and miR-200a as biomarkers for the treatment monitoring post-radiation of head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Thomas Greither
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Germany
| | - Freya Vorwerk
- Department of Prosthetic Dentistry, University School of Dental Medicine, Martin Luther University Halle-Wittenberg, Germany
| | - Matthias Kappler
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Matthias Bache
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Helge Taubert
- Department of Urology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Kuhnt
- Department of Imaging and Radiation Medicine, University Clinic of Radiotherapy Leipzig, Leipzig, Germany
| | - Jeremias Hey
- Department of Prosthetic Dentistry, University School of Dental Medicine, Martin Luther University Halle-Wittenberg, Germany
| | - Alexander W Eckert
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
32
|
Rastogi B, Kumar A, Raut SK, Panda NK, Rattan V, Joshi N, Khullar M. Downregulation of miR-377 Promotes Oral Squamous Cell Carcinoma Growth and Migration by Targeting HDAC9. Cancer Invest 2017; 35:152-162. [PMID: 28267394 DOI: 10.1080/07357907.2017.1286669] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
microRNAs are the post-transcriptional regulators implicated in the initiation and progression of various cancer types, including oral squamous cell carcinoma (OSCC). Here, we investigated the role of miR-377 in OSCC tumorigenesis. miR-377 expression was reduced in OSCC samples and cell line (UPCI-SCC-116), and was associated with patient survival. In vitro restoration of miR-377 repressed cell growth, induced apoptosis, and reduced cell migration. We identified HDAC9 as a target of miR-377 and found miR-377 to regulate HDAC9 and its pro-apoptotic target, NR4A1/Nur77. Our findings show that miR-377 targets HDAC9 pathway in OSCC, suggesting that miR-377-HDAC9 axis may provide a novel therapeutic target for OSCC therapy.
Collapse
Affiliation(s)
- Bhawna Rastogi
- a Department of Otolaryngology and Head and Neck Surgery , Postgraduate Institute of Medical Education and Research , Chandigarh , India
| | - Amit Kumar
- b Department of Experimental Medicine and Biotechnology , Postgraduate Institute of Medical Education and Research , Chandigarh , India
| | - Satish K Raut
- b Department of Experimental Medicine and Biotechnology , Postgraduate Institute of Medical Education and Research , Chandigarh , India
| | - Naresh K Panda
- a Department of Otolaryngology and Head and Neck Surgery , Postgraduate Institute of Medical Education and Research , Chandigarh , India
| | - Vidya Rattan
- c Department of Oral Health Sciences Centre , Postgraduate Institute of Medical Education and Research , Chandigarh , India
| | - Nainesh Joshi
- b Department of Experimental Medicine and Biotechnology , Postgraduate Institute of Medical Education and Research , Chandigarh , India
| | - Madhu Khullar
- b Department of Experimental Medicine and Biotechnology , Postgraduate Institute of Medical Education and Research , Chandigarh , India
| |
Collapse
|
33
|
Peng CY, Liao YW, Lu MY, Yu CH, Yu CC, Chou MY. Downregulation of miR-1 enhances tumorigenicity and invasiveness in oral squamous cell carcinomas. J Formos Med Assoc 2017; 116:782-789. [PMID: 28089494 DOI: 10.1016/j.jfma.2016.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/23/2016] [Accepted: 12/04/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND/PURPOSE Cumulative evidence suggest that microRNAs (miRNAs) function as biosignatures of oral squamous cell carcinomas (OSCC). However, the functional roles of miR-1 as well as its downstream targets in the regulation of tumorigenicity in OSCC remain unclear. METHODS miRNAs RT-PCR analysis was performed to identify miR-1 as a putative candidate on mediating invasiveness of OSCC cells. Consequently, we elucidated the tumorigenicity of OSCC cells with miR-1 downregulation or overexpression, respectively. Finally, miR-1 on OSCC tumor tissues was examined. RESULTS miR-1 levels were significantly downregulated in the malignant OSCC cells. Overexpression of miR-1 significantly reduced migration/invasiveness of OSCC cells. In addition, overexpression of miR-1 decreased cancer stem cells properties. Conversely, downregulation of miR-1 promotes migration and invasiveness in OSCC cells. We have shown that miR-1 is able to target Slug, suppressing their expression. Clinically, lower miR-1 expression was found in patients with advanced nodal metastasis OSCC. CONCLUSION miR-1 as novel biosignatures in OSCC lymph node metastatic patients, supporting the development of novel strategies for OSCC treatment.
Collapse
Affiliation(s)
- Chih-Yu Peng
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Yi Lu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chuan-Hang Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.
| | - Ming-Yung Chou
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
34
|
Entangling Relation of Micro RNA-let7, miRNA-200 and miRNA-125 with Various Cancers. Pathol Oncol Res 2017; 23:707-715. [DOI: 10.1007/s12253-016-0184-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/29/2016] [Indexed: 12/18/2022]
|
35
|
Liu TP, Huang CC, Yeh KT, Ke TW, Wei PL, Yang JR, Cheng YW. Down-regulation of let-7a-5p predicts lymph node metastasis and prognosis in colorectal cancer: Implications for chemotherapy. Surg Oncol 2016; 25:429-434. [DOI: 10.1016/j.suronc.2016.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/15/2016] [Accepted: 05/19/2016] [Indexed: 02/06/2023]
|
36
|
Karatas OF, Suer I, Yuceturk B, Yilmaz M, Oz B, Guven G, Cansiz H, Creighton CJ, Ittmann M, Ozen M. Identification of microRNA profile specific to cancer stem-like cells directly isolated from human larynx cancer specimens. BMC Cancer 2016; 16:853. [PMID: 27816053 PMCID: PMC5097853 DOI: 10.1186/s12885-016-2863-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 10/04/2016] [Indexed: 12/14/2022] Open
Abstract
Background Emerging evidences proposed that microRNAs are associated with regulation of distinct physio-pathological processes including development of normal stem cells and carcinogenesis. In this study we aimed to investigate microRNA profile of cancer stem-like cells (CSLCs) isolated form freshly resected larynx cancer (LCa) tissue samples. Methods CD133 positive (CD133+) stem-like cells were isolated from freshly resected LCa tumor specimens. MicroRNA profile of 12 pair of CD133+ and CD133− cells was determined using microRNA microarray and differential expressions of selvected microRNAs were validated by quantitative real time PCR (qRT-PCR). Results MicroRNA profiling of CD133+ and CD133− LCa samples with microarray revealed that miR-26b, miR-203, miR-200c, and miR-363-3p were significantly downregulated and miR-1825 was upregulated in CD133+ larynx CSLCs. qRT-PCR analysis in a total of 25 CD133+/CD133− sample pairs confirmed the altered expressions of these five microRNAs. Expressions of miR-26b, miR-200c, and miR-203 were significantly correlated with miR-363-3p, miR-203, and miR-363-3p expressions, respectively. Furthermore, in silico analysis revealed that these microRNAs target both cancer and stem-cell associated signaling pathways. Conclusions Our results showed that certain microRNAs in CD133+ cells could be used as cancer stem cell markers. Based on these results, we propose that this panel of microRNAs might carry crucial roles in LCa pathogenesis through regulating stem cell properties of tumor cells. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2863-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Omer Faruk Karatas
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
| | - Ilknur Suer
- Department of Medical Genetics, Istanbul University Cerrahpasa Medical School, Istanbul, Turkey
| | - Betul Yuceturk
- Department of Medical Genetics, Istanbul University Cerrahpasa Medical School, Istanbul, Turkey.,Advanced Genomics and Bioinformatics Research Center, The Scientific and Technological Research Council of Turkey (TUBITAK), Gebze, Kocaeli, Turkey
| | - Mehmet Yilmaz
- Department of Otorhinolaryngology, Cerrahpasa Medical School, Istanbul University, Istanbul, Turkey
| | - Buge Oz
- Department of Pathology, Cerrahpasa Medical School, Istanbul University, Istanbul, Turkey
| | - Gulgun Guven
- Department of Medical Genetics, Istanbul University Cerrahpasa Medical School, Istanbul, Turkey
| | - Harun Cansiz
- Department of Otorhinolaryngology, Cerrahpasa Medical School, Istanbul University, Istanbul, Turkey
| | - Chad J Creighton
- Department of Medicine and Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX, USA
| | - Michael Ittmann
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA.,Michael E. DeBakey VAMC, Houston, TX, 77030, USA
| | - Mustafa Ozen
- Department of Medical Genetics, Istanbul University Cerrahpasa Medical School, Istanbul, Turkey. .,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
37
|
Erkul E, Yilmaz I, Gungor A, Kurt O, Babayigit MA. MicroRNA-21 in laryngeal squamous cell carcinoma: Diagnostic and prognostic features. Laryngoscope 2016; 127:E62-E66. [DOI: 10.1002/lary.26226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/17/2016] [Accepted: 07/07/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Evren Erkul
- Department of Otorhinolaryngology; Gulhane Military Medical Academy Haydarpasa Training Hospital; Istanbul Turkey
- Department of Otolaryngology-Head and Neck Surgery; Medical University of South Carolina; Charleston South Carolina U.S.A
| | - Ismail Yilmaz
- Department of Pathology, Gulhane Military Medical Academy; Haydarpasa Training Hospital; Istanbul Turkey
| | - Atila Gungor
- Department of Otorhinolaryngology; Gulhane Military Medical Academy Haydarpasa Training Hospital; Istanbul Turkey
| | - Onuralp Kurt
- Department of Otorhinolaryngology; Erzincan Military Hospital; Erzincan Turkey
| | | |
Collapse
|
38
|
Chen YF, Yang CC, Kao SY, Liu CJ, Lin SC, Chang KW. MicroRNA-211 Enhances the Oncogenicity of Carcinogen-Induced Oral Carcinoma by Repressing TCF12 and Increasing Antioxidant Activity. Cancer Res 2016; 76:4872-86. [PMID: 27221705 DOI: 10.1158/0008-5472.can-15-1664] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 04/09/2016] [Indexed: 11/16/2022]
Abstract
miR-211 expression in human oral squamous cell carcinoma (OSCC) has been implicated in poor patient survival. To investigate the oncogenic roles of miR-211, we generated K14-EGFP-miR-211 transgenic mice tagged with GFP. Induction of oral carcinogenesis in transgenic mice using 4-nitroquinoline 1-oxide (4NQO) resulted in more extensive and severe tongue tumorigenesis compared with control animals. We found that 4NQO and arecoline upregulated miR-211 expression in OSCC cells. In silico and experimental evidence further revealed that miR-211 directly targeted transcription factor 12 (TCF12), which mediated suppressor activities in OSCC cells and was drastically downregulated in tumor tissues. We used GeneChip analysis and bioinformatic algorithms to identify transcriptional targets of TCF12 and confirmed through reporter and ChIP assays that family with sequence similarity 213, member A (FAM213A), a peroxiredoxin-like antioxidative protein, was repressed transcriptionally by TCF12. FAM213A silencing in OSCC cells diminished oncogenic activity, reduced the ALDH1-positive cell population, and increased reactive oxygen species. TCF12 and FAM213A expression was correlated inversely in head and neck carcinoma samples according to The Cancer Genome Atlas. OSCC patients bearing tumors with high FAM213A expression tended to have worse survival. Furthermore, 4NQO treatment downregulated TCF12 and upregulated FAM213A by modulating miR-211 both in vitro and in vivo Overall, our findings develop a mouse model that recapitulates the molecular and histopathologic alterations of human OSCC pathogenesis and highlight a new miRNA-mediated oncogenic mechanism. Cancer Res; 76(16); 4872-86. ©2016 AACR.
Collapse
Affiliation(s)
- Yi-Fen Chen
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Chieh Yang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan. Department of Dentistry, National Yang-Ming University, Taipei, Taiwan. Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shou-Yen Kao
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan. Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan. Department of Dentistry, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan. Department of Dentistry, National Yang-Ming University, Taipei, Taiwan. Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Kuo-Wei Chang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan. Department of Dentistry, National Yang-Ming University, Taipei, Taiwan. Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
39
|
Datta J, Islam M, Dutta S, Roy S, Pan Q, Teknos TN. Suberoylanilide hydroxamic acid inhibits growth of head and neck cancer cell lines by reactivation of tumor suppressor microRNAs. Oral Oncol 2016; 56:32-9. [PMID: 27086484 DOI: 10.1016/j.oraloncology.2016.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/17/2016] [Accepted: 02/29/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND microRNAs negatively regulate gene expression at the post-transcriptional level. Mounting evidence shows that miR expression is deregulated in human cancers including head and neck squamous cell carcinoma (HNSCC). Epigenetically silenced tumor suppressor miRs may be re-expressed upon treatment with histone deacetylases inhibitors. Suberoylanilide Hydroxamic Acid (SAHA) is a histone deacetylase inhibitor that is currently being investigated in clinical trials for HNSCC. We hypothesized that SAHA will re-express a set of tumor suppressor miRs and enhance the efficacy of cisplatin and radiation in HNSCC. RESULTS In this study, miR expression profile was utilized to identify the tumor suppressor miRs that are re-expressed following SAHA treatment in HNSCC. Our data demonstrated that two tumor suppressor miRs, miR-107 and miR-138, were significantly up-regulated in CAL27 and SCC25 cell lines, following SAHA treatment. In addition to this, treatment with SAHA in a dose dependent manner significantly inhibited the cell proliferation, cell migration, and anchorage dependent clonogenic survival in CAL27 and SCC25 cell lines, respectively. Further, the expression of several oncogenes, PKCε, HIF1β, CDK6, and RhoC were down regulated in response to SAHA treatment. Additionally, we demonstrated that the combination treatment with SAHA and a chemotherapeutic drug cisplatin caused a significant reduction of cell growth compared to the single agent treatment. CONCLUSION Our data indicate that SAHA treatment results in reactivation of the silenced tumor suppressor miRs. Furthermore, this study emphasizes the usefulness of this drug as a novel combination therapy for HNSCC patients.
Collapse
Affiliation(s)
- Jharna Datta
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Mozaffarul Islam
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Samidha Dutta
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Sounak Roy
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Quintin Pan
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Theodoros N Teknos
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
40
|
Yeh LY, Liu CJ, Wong YK, Chang C, Lin SC, Chang KW. miR-372 inhibits p62 in head and neck squamous cell carcinoma in vitro and in vivo. Oncotarget 2016; 6:6062-75. [PMID: 25714028 PMCID: PMC4467422 DOI: 10.18632/oncotarget.3340] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/05/2015] [Indexed: 01/18/2023] Open
Abstract
Here we showed that exogenous miR-372 expression and knockdown of p62 (sequestosome1 or SQSTM1), both increased migration of head and neck squamous cell carcinoma (HNSCC) cells. p62 induced phase II detoxification enzyme NADPH quinone oxidoreductase 1 (NQO1), which decreased ROS levels and cell migration. Also, miR-372 decreased p62 during hypoxia, thus increasing cell migration. Levels of miR-372 and p62 inversely correlated in human HNSCC tissues. Plasma levels of miR-372 was associated with advanced tumor stage and patient mortality. Both plasma and salivary miR-372 levels were decreased after tumor resection. We conclude that miR-372 decreases p62, thus increasing ROS and motility in HNSCC cells.
Collapse
Affiliation(s)
- Li-Yin Yeh
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, Taipei Mackay Memorial Hospital, Taipei, Taiwan
| | - Yong-Kie Wong
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Christine Chang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
41
|
Brito BDL, Lourenço SV, Damascena AS, Kowalski LP, Soares FA, Coutinho-Camillo CM. Expression of stem cell-regulating miRNAs in oral cavity and oropharynx squamous cell carcinoma. J Oral Pathol Med 2016; 45:647-654. [PMID: 26841253 DOI: 10.1111/jop.12424] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the sixth most common tumor worldwide and is histologically heterogeneous. Studies have demonstrated the presence of stem cell markers in HNSCC, and microRNAs (miRNAs) have emerged as powerful regulators of differentiation, controlling the self-renewal of stem cells. miRNAs are non-coding RNA molecules that regulate gene expression post-transcriptionally. Many miRNAs have been described as regulators of stem cells in different types of cancer. METHODS We have analyzed the expression of let-7a, miR-34, miR-125b, miR-138, miR-145, miR-183, miR-200b, miR-203, and miR-205 by real-time RT-PCR (qPCR), in 35 oral cavity and oropharynx squamous cell carcinoma (SCC) samples and 10 non-neoplastic oral mucosa controls, to determine possible associations between the expression of these miRNAs and clinical and pathological features of these tumors. RESULTS We observed downregulation of miR-200b and miR-203 in 60.0% and 71.4% of the samples, respectively. Upregulation of miR-138 and miR-183 was observed in 50.0% of the samples. Downregulation of let-7a was associated with perineural invasion. Upregulation of miR-138, miRNA-145, and miR-205 was associated with advanced tumor stages, vascular invasion, and lymph node metastasis, respectively. CONCLUSIONS Our study provides evidence of the expression of miRNAs associated with stem cell regulation in oral cavity and oropharynx SCC and the association of these miRNAs with clinical and pathological features of these tumors.
Collapse
Affiliation(s)
- Bárbara de Lima Brito
- International Research Center, A.C. Camargo Cancer Center, São Paulo, SP, Brazil.,Department of Anatomic Pathology, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Silvia Vanessa Lourenço
- Department of General Pathology, Dental School, University of São Paulo, São Paulo, SP, Brazil
| | | | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, AC Camargo Cancer Center, São Paulo, SP, Brazil
| | - Fernando Augusto Soares
- Department of Anatomic Pathology, A.C. Camargo Cancer Center, São Paulo, SP, Brazil.,Department of General Pathology, Dental School, University of São Paulo, São Paulo, SP, Brazil
| | - Cláudia Malheiros Coutinho-Camillo
- International Research Center, A.C. Camargo Cancer Center, São Paulo, SP, Brazil. .,Department of Anatomic Pathology, A.C. Camargo Cancer Center, São Paulo, SP, Brazil.
| |
Collapse
|
42
|
Ning MS, Andl T. Concise review: custodians of the transcriptome: how microRNAs guard stemness in squamous epithelia. Stem Cells 2016; 33:1047-54. [PMID: 25524325 DOI: 10.1002/stem.1922] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 11/14/2014] [Indexed: 12/19/2022]
Abstract
At the core of every dynamic epithelium resides a population of carefully regulated stem cells ensuring its maintenance and balance. The complex mammalian epidermis is no exception to this rule. The last decade has delivered a wealth of knowledge regarding the biology of adult stem cells, but questions still remain regarding the intricate details of their function and maintenance. To help address these gaps, we turn to the small, single-stranded RNA molecules known as microRNAs. Since their discovery, microRNAs have provided us with novel insights and ground-breaking impulses to enhance our understanding of the biological sciences. Due to their unique role in post-transcriptional regulation, microRNAs are essential to cutaneous biology as well as the epidermal stem cell. By serving as buffers to balance between epithelial stemness, proliferation, and differentiation, microRNAs play essential roles in the maintenance of cutaneous stem cells and their transition out of the stem cell compartment. Following an updated overview of microRNA biology, we summarize the current knowledge of the role of microRNAs in cutaneous stem cells, focusing on three major players that have dominated the recent literature: miR-205, miR-203, and miR-125b. We then review clinical applications, discussing the potential of microRNAs as therapeutic targets in regenerative and oncological stem cell-based medicine.
Collapse
Affiliation(s)
- Matthew S Ning
- Division of Dermatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | |
Collapse
|
43
|
Raudenska M, Gumulec J, Fribley AM, Masarik M. HNSCC Biomarkers Derived from Key Processes of Cancerogenesis. TARGETING ORAL CANCER 2016:115-160. [DOI: 10.1007/978-3-319-27647-2_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
44
|
Hung KF, Liu CJ, Chiu PC, Lin JS, Chang KW, Shih WY, Kao SY, Tu HF. MicroRNA-31 upregulation predicts increased risk of progression of oral potentially malignant disorder. Oral Oncol 2015; 53:42-7. [PMID: 26675284 DOI: 10.1016/j.oraloncology.2015.11.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/16/2015] [Accepted: 11/20/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVES MicroRNAs (miRNAs, miRs) have shown diagnostic and prognostic potential for oral cancer but their role in oral potentially malignant disorder (OPMD) has been less investigated. We aimed to assess whether miR-21 and miR-31, two of the most relevant miRNAs in oral cancer, are useful as prognostic factors for OPMD progression. MATERIALS AND METHODS miR-21 and miR-31 in 20 saliva samples and 46 tissue samples from patients with OPMD (mean follow-up of 820days) were analyzed by quantitative reverse transcription PCR and in situ hybridization, respectively. The log-rank test, receiver operating characteristic curve, and Kaplan-Meier disease free survival analysis were used to assess the correlation between miRNA levels and OPMD progression. RESULTS Significantly increased salivary miR-21 and miR-31 expression (P=0.003 and P<0.001, respectively) was observed in patients with OPMD compared to control individuals. Patients with recurrent OPMD and/or malignant transformation exhibited a further augmented expression of miR-31, but not miR-21, in the epithelium. Furthermore, increased miR-31 expression as well as epithelial dysplasia is an independent risk factor for OPMD progression as demonstrated in Cox-proportional hazard model (HR: 8.43, P<0.05, 95%CI: 1.04 to 68.03). CONCLUSIONS Salivary miR-21 and miR-31 are applicable as useful OPMD screening tools. Epithelial dysplasia and miR-31 up-regulation synergistically predict the increased incidence of recurrence and/or malignant transformation in patients with OPMD. Detection of miR-31 expression is an adjuvant method for screening of high-risk OPMD.
Collapse
Affiliation(s)
- Kai-Feng Hung
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Dentistry, Taipei MacKay Memorial Hospital, Taipei, Taiwan
| | - Peng-Chih Chiu
- Department of Dentistry, National Yang-Ming University Hospital, I-Lan, Taiwan
| | - Jiun-Sheng Lin
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Dentistry, Taipei MacKay Memorial Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Yu Shih
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shou-Yen Kao
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Hsi-Feng Tu
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Dentistry, National Yang-Ming University Hospital, I-Lan, Taiwan.
| |
Collapse
|
45
|
Kolokythas A, Zhou Y, Schwartz JL, Adami GR. Similar Squamous Cell Carcinoma Epithelium microRNA Expression in Never Smokers and Ever Smokers. PLoS One 2015; 10:e0141695. [PMID: 26544609 PMCID: PMC4636300 DOI: 10.1371/journal.pone.0141695] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/11/2015] [Indexed: 12/15/2022] Open
Abstract
The incidence of oral tumors in patients who never used mutagenic agents such as tobacco is increasing. In an effort to better understand these tumors we studied microRNA (miRNA) expression in tumor epithelium of never tobacco users, tumor epithelium of ever tobacco users, and nonpathological control oral epithelium. A comparison of levels among 372 miRNAs in 12 never tobacco users with oral squamous cell carcinoma (OSCC) versus 10 healthy controls was made using the reverse transcription quantitative polymerase chain reaction. A similar analysis was done with 8 ever tobacco users with OSCC. These comparisons revealed miR-10b-5p, miR-196a-5p, and miR-31-5p as enriched in the tumor epithelium in OSCC of both never and ever tobacco users. Examination of The Cancer Genome Atlas (TCGA) project miRNA data on 305 OSCCs and 30 controls revealed 100% of those miRNAs enriched in never smoker OSCCs in this patient group were also enriched in ever smoker OSCCs. Nonsupervised clustering of TCGA OSCCs was suggestive of two or four subgroups of tumors based on miRNA levels with limited evidence for differences in tobacco exposure among the groups. Results from both patient groups together stress the importance of miR196a-5p in OSCC malignancy in both never and ever smokers, and emphasize the overall similarity of miRNA expression in OSCCs in these two risk groups. It implies that there may be great similarity in etiology of OSCC in never and ever smokers and that classifying OSCC based on tobacco exposure may not be helpful in the clinic.
Collapse
Affiliation(s)
- Antonia Kolokythas
- Department of Oral and Maxillofacial Surgery, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, Illinois, 60610, United States of America
| | - Yalu Zhou
- Arphion Ltd, 2242 W. Harrison Street, Chicago, Illinois, 60612, United States of America
| | - Joel L. Schwartz
- Arphion Ltd, 2242 W. Harrison Street, Chicago, Illinois, 60612, United States of America
| | - Guy R. Adami
- Department of Oral Medicine and Oral Diagnostics, Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, 801 South Paulina Street, Chicago, Illinois, 60610, United States of America
- * E-mail:
| |
Collapse
|
46
|
Nilsson EM, Laursen KB, Whitchurch J, McWilliam A, Ødum N, Persson JL, Heery DM, Gudas LJ, Mongan NP. MiR137 is an androgen regulated repressor of an extended network of transcriptional coregulators. Oncotarget 2015; 6:35710-25. [PMID: 26461474 PMCID: PMC4742136 DOI: 10.18632/oncotarget.5958] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/12/2015] [Indexed: 01/02/2023] Open
Abstract
Androgens and the androgen receptor (AR) play crucial roles in male development and the pathogenesis and progression of prostate cancer (PCa). The AR functions as a ligand dependent transcription factor which recruits multiple enzymatically distinct epigenetic coregulators to facilitate transcriptional regulation in response to androgens. Over-expression of AR coregulators is implicated in cancer. We have shown that over-expression of KDM1A, an AR coregulator, contributes to PCa recurrence by promoting VEGFA expression. However the mechanism(s) whereby AR coregulators are increased in PCa remain poorly understood. In this study we show that the microRNA hsa-miR-137 (miR137) tumor suppressor regulates expression of an extended network of transcriptional coregulators including KDM1A/LSD1/AOF1, KDM2A/JHDM1A/FBXL11, KDM4A/JMJD2A, KDM5B JARID1B/PLU1, KDM7A/JHDM1D/PHF8, MED1/TRAP220/DRIP205 and NCoA2/SRC2/TIF2. We show that expression of miR137 is increased by androgen in LnCaP androgen PCa responsive cells and that the miR137 locus is epigenetically silenced in androgen LnCaP:C4-2 and PC3 independent PCa cells. In addition, we found that restoration of miR137 expression down-regulates expression of VEGFA, an AR target gene, which suggests a role of miR137 loss also in cancer angiogenesis. Finally we show functional inhibition of miR137 function enhanced androgen induction of PSA/KLK3 expression. Our data indicate that miR137 functions as an androgen regulated suppressor of androgen signaling by modulating expression of an extended network of transcriptional coregulators. Therefore, we propose that epigenetic silencing of miR137 is an important event in promoting androgen signaling during prostate carcinogenesis and progression.
Collapse
Affiliation(s)
- Emeli M. Nilsson
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, United Kingdom
| | - Kristian B. Laursen
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - Jonathan Whitchurch
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, United Kingdom
- School of Pharmacy, University of Nottingham, United Kingdom
| | - Andrew McWilliam
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, United Kingdom
| | - Niels Ødum
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - David M. Heery
- School of Pharmacy, University of Nottingham, United Kingdom
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - Nigel P. Mongan
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, United Kingdom
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
47
|
Kao YY, Tu HF, Kao SY, Chang KW, Lin SC. The increase of oncogenic miRNA expression in tongue carcinogenesis of a mouse model. Oral Oncol 2015; 51:1103-12. [PMID: 26525105 DOI: 10.1016/j.oraloncology.2015.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/15/2015] [Accepted: 10/10/2015] [Indexed: 01/27/2023]
Abstract
OBJECTIVES This study investigated the oncogenic miRNA level in the tissue and biofluids in the Nitroquinoline 1-Oxide (4NQO)-induced mouse tongue carcinogenesis model for potential diagnostic or therapeutic application. MATERIALS AND METHODS The histological examination, immunohistochemistry, in situ hybridization, quantitative PCR analysis and bioinformatic algorithms were performed to unravel the signaling activation and miRNA expression in female murine samples. RESULTS The increase of miR-21 and miR-31 staining, and EGFR activation paralleled the severity of 4NQO-induced epithelial pathogenesis in tongue epithelium. A progressive increase of miR-21, miR-31 and miR-146a in both saliva and plasma samples was also noted. miR-31 was the earliest emerging miRNA in the saliva. The increase of plasma miR-146a, miR-184 and miR-372 was detectable early in the induction, and it was particularly eminent at the most advanced lesion state. The combined analysis of the multiple oncogenic miRNAs in the plasma signified a potent discriminative capacity between normal and pathological states. As the blockage of EGFR or AKT activation drastically reverted the miR-21, miR-31 and miR-146a expression induced by 4NQO in human oral carcinoma cell lines, the results implicated a mechanistic linkage of the oncogenic miRNAs' induction through EGFR/AKT activation. CONCLUSIONS In this study, we show the dysregulation of oncogenic miRNAs in murine tongue tumorigenesis, which simulates human counterparts. Increased multiple miRNAs in the biofluids may be valuable non-invasive markers in detecting oral carcinogenesis at an early stage. This animal model may also be useful for developing liquid biopsies and prevention strategies against oral carcinoma by abrogating EGFR or oncogenic miRNAs.
Collapse
Affiliation(s)
- Yu-Yu Kao
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Hsi-Feng Tu
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan; Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Shou-Yen Kao
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan; Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Shu-Chun Lin
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan; Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
48
|
Marioni G, Agostini M, Cappellesso R, Bedin C, Ottaviano G, Marchese-Ragona R, Lovato A, Cacco T, Giacomelli L, Nitti D, Blandamura S, Stellini E, de Filippis C. miR-19a and SOCS-1 expression in the differential diagnosis of laryngeal (glottic) verrucous squamous cell carcinoma. J Clin Pathol 2015; 69:415-21. [PMID: 26502748 DOI: 10.1136/jclinpath-2015-203308] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 09/30/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Laryngeal verrucous squamous cell carcinoma (VSCC) is a highly differentiated squamous cell carcinoma (SCC), the diagnosis of which can meet with many pitfalls: benign hyperplastic lesions and conventional SCC are the most important differential diagnoses. The microRNA miR-19a is overexpressed in many solid tumours and regulates the suppressor of cytokine signalling-1 (SOCS-1) expression. AIMS The main endpoints were to assess miR-19a and SOCS-1 expression in glottic VSCC, and the former's potential role in differentiating between glottic VSCC, conventional SCC and hyperplastic lesions. METHODS The expression of MiR-19a (by reverse transcription and quantitative real-time PCR) and SOCS-1 (by immunohistochemistry, rabbit polyclonal anti-SOCS-1 antibody) was assessed in 11 consecutive cases of glottic VSCC, 20 of papillary hyperplasia and 42 cases of conventional SCC. RESULTS Mean miR-19a expression was significantly higher (p = 0.000) in malignant glottic lesions (conventional SCC/VSCC) than in benign conditions. Significant differences in mean miR-19a expression also emerged between conventional SCC and papillary hyperplasia (p = 0.000), and between conventional SCC and VSCC (p = 0.03). miR-19a expression was not statistically associated with SOCS-1 immunoreactivity or immunostaining intensity in VSCC, conventional SCC or papillary hyperplasia. CONCLUSIONS Our preliminary outcomes suggest the utility of miR-19a in the challenging differential diagnosis of laryngeal VSCC. Although miR-19a has been found to regulate SOCS-1 expression, this evidence was not confirmed by this investigation.
Collapse
Affiliation(s)
- Gino Marioni
- Department of Neurosciences DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - Marco Agostini
- Department of Surgical, Oncological and Gastroenterological Sciences, Padova University, Padova, Italy Istituto di Ricerca Pediatrica-Città della Speranza, Padova, Italy Nanomedicine Department, The Methodist Hospital Research Institute, Houston, Texas, USA
| | | | - Chiara Bedin
- Department of Surgical, Oncological and Gastroenterological Sciences, Padova University, Padova, Italy Istituto di Ricerca Pediatrica-Città della Speranza, Padova, Italy
| | - Giancarlo Ottaviano
- Department of Neurosciences DNS, Otolaryngology Section, Padova University, Padova, Italy
| | | | - Andrea Lovato
- Department of Neurosciences DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - Tommaso Cacco
- Department of Neurosciences DNS, Otolaryngology Section, Padova University, Padova, Italy
| | | | - Donato Nitti
- Department of Surgical, Oncological and Gastroenterological Sciences, Padova University, Padova, Italy
| | | | - Edoardo Stellini
- Department of Neurosciences DNS, Odontostomatology Institute, Padova University, Padova, Italy
| | - Cosimo de Filippis
- Department of Neurosciences DNS, Audiology Unit, Treviso Hospital, Padova University, Treviso, Italy
| |
Collapse
|
49
|
Jimenez L, Sharma VP, Condeelis J, Harris T, Ow TJ, Prystowsky MB, Childs G, Segall JE. MicroRNA-375 Suppresses Extracellular Matrix Degradation and Invadopodial Activity in Head and Neck Squamous Cell Carcinoma. Arch Pathol Lab Med 2015; 139:1349-61. [PMID: 26172508 DOI: 10.5858/arpa.2014-0471-oa] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CONTEXT Head and neck squamous cell carcinoma (HNSCC) is a highly invasive cancer with an association with locoregional recurrence and lymph node metastasis. We have previously reported that low microRNA-375 (miR-375) expression levels correlate with poor patient survival, increased locoregional recurrence, and distant metastasis. Increasing miR-375 expression in HNSCC cell lines to levels found in normal cells results in suppressed invasive properties. HNSCC invasion is mediated in part by invadopodia-associated degradation of the extracellular matrix. OBJECTIVE To determine whether elevated miR-375 expression in HNSCC cell lines also affects invadopodia formation and activity. DESIGN For evaluation of the matrix degradation properties of the HNSCC lines, an invadopodial matrix degradation assay was used. The total protein levels of invadopodia-associated proteins were measured by Western blot analyses. Immunoprecipitation experiments were conducted to evaluate the tyrosine phosphorylation state of cortactin. Human protease arrays were used for the detection of the secreted proteases. Quantitative real time-polymerase chain reaction measurements were used to evaluate the messenger RNA (mRNA) expression of the commonly regulated proteases. RESULTS Increased miR-375 expression in HNSCC cells suppresses extracellular matrix degradation and reduces the number of mature invadopodia. Higher miR-375 expression does not reduce cellular levels of selected invadopodia-associated proteins, nor is tyrosine phosphorylation of cortactin altered. However, HNSCC cells with higher miR-375 expression had significant reductions in the mRNA expression levels and secreted levels of specific proteases. CONCLUSIONS MicroRNA-375 regulates invadopodia maturation and function potentially by suppressing the expression and secretion of proteases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jeffrey E Segall
- From the Departments of Pathology (Ms Jimenez and Drs Harris, Ow, Prystowsky, Childs, and Segall) and Anatomy & Structural Biology (Ms Jimenez and Drs Sharma, Condeelis, and Segall), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
50
|
Re M, Çeka A, Rubini C, Ferrante L, Zizzi A, Gioacchini FM, Tulli M, Spazzafumo L, Sellari-Franceschini S, Procopio AD, Olivieri F. MicroRNA-34c-5p is related to recurrence in laryngeal squamous cell carcinoma. Laryngoscope 2015; 125:E306-12. [PMID: 26153151 DOI: 10.1002/lary.25475] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/02/2015] [Accepted: 06/09/2015] [Indexed: 11/10/2022]
Abstract
OBJECTIVES/HYPOTHESIS Altered microRNA expression has been found in many cancer types, including laryngeal squamous cell carcinoma (LSCC). We investigated the association of LSCC-related miR-34c-5p with disease-free survival and overall survival. STUDY DESIGN Retrospective cohort study. METHODS Expression levels of miR-34c-5p were detected in 90 LSCC formalin-fixed paraffin-embedded tissues by reverse-transcription quantitative polymerase chain reaction. Overall survival and disease-free survival were evaluated using the Kaplan-Meier method, and multivariate analysis was performed using Cox proportional hazard analysis. RESULTS A downregulation of miR-34c-5p expression significantly correlated with worse disease-free and overall survival. In the multivariate analysis, low miR-34c-5p expression was associated with an increased risk of recurrence. CONCLUSIONS A downregulation of miR-34c-5p in LSCC is independently associated with unfavorable disease-free survival, suggesting that miR-34c-5p might be a promising marker for evaluating the risk of recurrences. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
- Massimo Re
- Department of Otorhinolaryngology, Umberto I University General Hospital, Polytechnic University of the Marches, Ancona, Italy
| | - Artan Çeka
- Department of Molecular and Clinical Sciences, Polytechnic University of the Marches, Ancona, Italy
| | - Corrado Rubini
- Pathologic Anatomy and Histopathology Division, Department of Biomedical Sciences and Public Health, Polytechnic University of the Marches, Ancona, Italy
| | - Luigi Ferrante
- Department of Biomedical Sciences and Public Health, Section of Medical Statistics, Faculty of Medicine, Polytechnic University of the Marches, Ancona, Italy
| | - Antonio Zizzi
- Pathologic Anatomy and Histopathology Division, Department of Biomedical Sciences and Public Health, Polytechnic University of the Marches, Ancona, Italy
| | - Federico M Gioacchini
- Department of Otorhinolaryngology, Umberto I University General Hospital, Polytechnic University of the Marches, Ancona, Italy
| | - Michele Tulli
- Department of Otorhinolaryngology, Umberto I University General Hospital, Polytechnic University of the Marches, Ancona, Italy
| | - Liana Spazzafumo
- Center of Biostatistics, National Institute of Repose and Cure for Elderly-Scientific Institute for Hospitalization and Treatment (INRCA-IRCCS) Italian National Institute, Ancona, Italy
| | | | - Antonio D Procopio
- Department of Molecular and Clinical Sciences, Polytechnic University of the Marches, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS Italian National Institute, Ancona, Italy
| | - Fabiola Olivieri
- Department of Molecular and Clinical Sciences, Polytechnic University of the Marches, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS Italian National Institute, Ancona, Italy
| |
Collapse
|