1
|
Mankani MH, Mahmud O, Hafeez MS, Javed MA, Arain MA, Ul-Haq M, Rana AA. Factors Associated With Long-term Kidney Allograft Survival: A Contemporary Analysis of the UNOS Database. Transplant Proc 2025; 57:194-207. [PMID: 39893091 DOI: 10.1016/j.transproceed.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/18/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Various clinicopathologic markers, such as 1-year serum creatinine (Cr), have been used to prognosticate kidney allografts after transplantation. However, a contemporary analysis of their relationship with long-term graft survival is lacking. This study aimed to analyze recent data on the association of prognostic factors with kidney allograft survival in patients who underwent transplantation in the modern era. METHODS Adult kidney-transplant recipients in the UNOS database (2008-2020) were identified. Living and deceased donor allografts were analyzed separately and stratified by 1-year serum Cr level: ≤1.0, 1.0 to 1.5, 1.5 to 2.0, and >2.0 mg/dL. Time-to-event analysis was performed with long-term death-censored graft survival as the primary outcome. In addition, factors associated with raised 1-year serum Cr and with long-term allograft failure were identified. RESULTS 174,547 patients were included. Ten-year survival decreased with increasing 1-year creatinine, and these trends persisted on adjusted analysis for both living donor (Cr ≤ 1.0 mg/dL: reference; Cr 1.0-1.5 mg/dL aHR = 1.77 [1.59-1.96]; Cr 1.5-2.0 mg/dL aHR = 3.24 [2.89-3.64] and; Cr > 2.0 mg/dL aHR = 9.78, [8.64-11.07], P < .01) as well as deceased donor allografts (Cr ≤ 1.0 mg/dL: reference; Cr 1.0-1.5 mg/dL aHR = 1.74 [1.63-1.86]; Cr 1.5-2.0 mg/dL aHR = 3.06 [2.84-3.30] and; Cr > 2.0 mg/dL aHR = 8.51, [7.89-9.18], P < .01). CONCLUSION These results characterize the association between 1-year serum creatinine levels and other clinicopathologic factors with long-term kidney allograft survival. We demonstrate the ability of prognostic factors to stratify patients by risk of graft failure in a contemporary patient cohort that is representative of current practice and outcomes.
Collapse
Affiliation(s)
| | - Omar Mahmud
- Medical College, Aga Khan University Hospital, Karachi, Pakistan
| | | | | | | | - Muneeb Ul-Haq
- Medical College, Aga Khan University Hospital, Karachi, Pakistan
| | - Abbas A Rana
- Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation and Division of Hepatobiliary Surgery, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
2
|
Dangi A, Husain I, Jordan CZ, Yu S, Natesh N, Shen X, Kwun J, Luo X. Blocking CCL8-CCR8-Mediated Early Allograft Inflammation Improves Kidney Transplant Function. J Am Soc Nephrol 2022; 33:1876-1890. [PMID: 35973731 PMCID: PMC9528333 DOI: 10.1681/asn.2022020139] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/27/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND In kidney transplantation, early allograft inflammation impairs long-term allograft function. However, precise mediators of early kidney allograft inflammation are unclear, making it challenging to design therapeutic interventions. METHODS We used an allogeneic murine kidney transplant model in which CD45.2 BALB/c kidneys were transplanted to CD45.1 C57BL/6 recipients. RESULTS Donor kidney resident macrophages within the allograft expanded rapidly in the first 3 days. During this period, they were also induced to express a high level of Ccl8, which, in turn, promoted recipient monocyte graft infiltration, their differentiation to resident macrophages, and subsequent expression of Ccl8. Enhanced graft infiltration of recipient CCR8+ T cells followed, including CD4, CD8, and γδ T cells. Consequently, blocking CCL8-CCR8 or depleting donor kidney resident macrophages significantly inhibits early allograft immune cell infiltration and promotes superior short-term allograft function. CONCLUSIONS Targeting the CCL8-CCR8 axis is a promising measure to reduce early kidney allograft inflammation.
Collapse
Affiliation(s)
- Anil Dangi
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Irma Husain
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Collin Z. Jordan
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Shuangjin Yu
- Division of Organ Transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Naveen Natesh
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, North Carolina
| | - Xiling Shen
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, North Carolina
- Terasaki Institute, Los Angeles, California
| | - Jean Kwun
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
- Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
- Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
3
|
Tepel M, Nagarajah S, Saleh Q, Thaunat O, Bakker SJL, van den Born J, Karsdal MA, Genovese F, Rasmussen DGK. Pretransplant characteristics of kidney transplant recipients that predict posttransplant outcome. Front Immunol 2022; 13:945288. [PMID: 35958571 PMCID: PMC9357871 DOI: 10.3389/fimmu.2022.945288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Better characterization of the potential kidney transplant recipient using novel biomarkers, for example, pretransplant plasma endotrophin, will lead to improved outcome after transplantation. This mini-review will focus on current knowledge about pretransplant recipients’ characteristics, biomarkers, and immunology. Clinical characteristics of recipients including age, obesity, blood pressure, comorbidities, and estimated survival scores have been introduced for prediction of recipient and allograft survival. The pretransplant immunologic risk assessment include histocompatibility leukocyte antigens (HLAs), anti-HLA donor-specific antibodies, HLA-DQ mismatch, and non-HLA antibodies. Recently, there has been the hope that pretransplant determination of markers can further improve the prediction of posttransplant complications, both short-term and long-term outcomes including rejections, allograft loss, and mortality. Higher pretransplant plasma endotrophin levels were independently associated with posttransplant acute allograft injury in three prospective European cohorts. Elevated numbers of non-synonymous single-nucleotide polymorphism mismatch have been associated with increased allograft loss in a multivariable analysis. It is concluded that there is a need for integration of clinical characteristics and novel molecular and immunological markers to improve future transplant medicine to reach better diagnostic decisions tailored to the individual patient.
Collapse
Affiliation(s)
- Martin Tepel
- Department of Nephrology, Odense University Hospital, Odense, Denmark, and Cardiovascular and Renal Research, Institute of Molecular Medicine, Clinical Institute, University of Southern Denmark, Odense, Denmark
- *Correspondence: Martin Tepel,
| | - Subagini Nagarajah
- Department of Nephrology, Odense University Hospital, Odense, Denmark, and Cardiovascular and Renal Research, Institute of Molecular Medicine, Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Qais Saleh
- Department of Nephrology, Odense University Hospital, Odense, Denmark, and Cardiovascular and Renal Research, Institute of Molecular Medicine, Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Olivier Thaunat
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Transplantation, Néphrologie et Immunologie Clinique, Lyon, France
| | - Stephan J. L. Bakker
- Division of Nephrology, Department of Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jacob van den Born
- Division of Nephrology, Department of Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | | | | |
Collapse
|
4
|
Jang HR, Kim M, Hong S, Lee K, Park MY, Yang KE, Lee CJ, Jeon J, Lee KW, Lee JE, Park JB, Kim K, Kwon GY, Kim YG, Kim DJ, Huh W. Early postoperative urinary MCP-1 as a potential biomarker predicting acute rejection in living donor kidney transplantation: a prospective cohort study. Sci Rep 2021; 11:18832. [PMID: 34552150 PMCID: PMC8458304 DOI: 10.1038/s41598-021-98135-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
We investigated the clinical relevance of urinary cytokines/chemokines reflecting intrarenal immunologic micromilieu as prognostic markers and the optimal measurement timing after living donor kidney transplantation (LDKT). This prospective cohort study included 77 LDKT patients who were followed for ≥ 5 years. Patients were divided into control (n = 42) or acute rejection (AR, n = 35) group. Early AR was defined as AR occurring within 3 months. Serum and urine cytokines/chemokines were measured serially as follows: intraoperative, 8/24/72 h, 1 week, 3 months, and 1 year after LDKT. Intrarenal total leukocytes, T cells, and B cells were analyzed with immunohistochemistry followed by tissueFAXS. Urinary MCP-1 and fractalkine were also analyzed in a validation cohort. Urinary MCP-1 after one week was higher in the AR group. Urinary MCP-1, fractalkine, TNF-α, RANTES, and IL-6 after one week were significantly higher in the early AR group. Intrarenal total leukocytes and T cells were elevated in the AR group compared with the control group. Urinary fractalkine, MCP-1, and IL-10 showed positive correlation with intrarenal leukocyte infiltration. Post-KT 1 week urinary MCP-1 showed predictive value in the validation cohort. One-week post-KT urinary MCP-1 may be used as a noninvasive diagnostic marker for predicting AR after LDKT.
Collapse
Affiliation(s)
- Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Minjung Kim
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Sungjun Hong
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Kyungho Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Mee Yeon Park
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Kyeong Eun Yang
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Cheol-Jung Lee
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Junseok Jeon
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Kyo Won Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung Eun Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyunga Kim
- Statistics and Data Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Ghee Young Kwon
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yoon Goo Kim
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Dae Joong Kim
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Wooseong Huh
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea.
| |
Collapse
|
5
|
Michon A, Durrbach A, Gautier JC, Benain X, Lunven C, Jagerschmidt A, Aubert C, Poetz O, Joos T, Gury T, Becquemont L. Investigation of new biomarkers of kidney injury in renal transplant recipients undergoing graft biopsy. Clin Transplant 2021; 35:e14408. [PMID: 34196434 DOI: 10.1111/ctr.14408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/21/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022]
Abstract
AIM Urinary and blood kidney biomarkers (BM) remain insufficient for early kidney injury detection. We aimed to compare new kidney BM with histopathological data in kidney allograft recipients. METHODS Blood and urine samples were collected from consecutive adult patients just before graft biopsy. All kidney samples were classified according to the Banff 2007 classification. The diagnostic performance of 16 new BM was compared to those of urinary proteins, blood urea nitrogen, eGFR, and serum creatinine to identify histopathological groups. RESULTS Two hundred and twenty-three patients were analyzed. Microalbuminuria and urinary proteins performed well to discriminate glomerular injury from slightly modified renal parenchyma (SMRP). Urinary neutrophil gelatinase-associated lipocalin (NGAL) had the best performance relative to SMRP (AUROC .93) for acute tubular necrosis (ATN) diagnosis. Other BM had a slightly lower AUROC (.89). For the comparison of ATN to acute rejection, several new urinary BM (NGAL, cystatin C, MCP1) and classical BM (eGFR, serum creatinine) gave similar AUROC values (from .80 to .85). Urinary NGAL values in patients with ATN were 10-time higher than those with acute rejection (P=.0004). CONCLUSION The new BM did not outperform classical BM in the context of renal transplantation. Urinary NGAL may be useful for distinguishing between ATN and acute rejection.
Collapse
Affiliation(s)
- Arthur Michon
- Nephrology Department, Bicêtre University Hospital, APHP, Paris, France
| | - Antoine Durrbach
- University Paris Saclay, Paris, France.,INSERM UMRS-1186, Gustave Roussy Institute, Paris, France.,Nephrology Department, Henri Mondor, University Hospital, APHP, Paris, France
| | | | - Xavier Benain
- Biostatistics and Programming, Sanofi R&D, Paris, France
| | | | | | - Catherine Aubert
- Biomarkers and Clinical Bioanalyses, Translational Medicine and Early Development, Sanofi R&D, Paris, France
| | - Oliver Poetz
- SIGNATOPE GmbH, Paris, France.,Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Thomas Joos
- Biomarkers and Clinical Bioanalyses, Translational Medicine and Early Development, Sanofi R&D, Paris, France.,Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Thierry Gury
- Nephrology Department, Henri Mondor, University Hospital, APHP, Paris, France
| | - Laurent Becquemont
- Nephrology Department, Bicêtre University Hospital, APHP, Paris, France.,University Paris Saclay, Paris, France.,CESP/INSERM U1018 (Centre de Recherche en Épidémiologie et Santé des Populations), Paris, France
| |
Collapse
|
6
|
Matar AJ, Crepeau RL, Duran-Struuck R. Non-invasive imaging for the diagnosis of acute rejection in transplantation: The next frontier. Transpl Immunol 2021; 68:101431. [PMID: 34157374 DOI: 10.1016/j.trim.2021.101431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
Acute rejection is a leading cause of organ transplant failure and the most common indication for re-transplantation. Clinically, suspicion of acute rejection is often dependent upon serum laboratory values which may only manifest after organ injury. The gold standard for diagnosis requires an invasive biopsy which can carry serious clinical risks including bleeding and graft loss as well as the possibility of sampling error. The use of noninvasive imaging modalities to monitor transplanted organs is of great clinical value, particularly as a tool for early detection of graft dysfunction or acute rejection. Herein, we provide an overview of the existing literature evaluating noninvasive imaging modalities of solid organ and cellular allografts after transplantation, including both preclinical and clinical studies.
Collapse
Affiliation(s)
- Abraham J Matar
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Rebecca L Crepeau
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Raimon Duran-Struuck
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Zahran A, Attia A, Mansell H, Shoker A. Contribution of diminished kidney transplant GFR to increased circulating chemokine ligand 27 level. JOURNAL OF INFLAMMATION-LONDON 2018; 15:18. [PMID: 30214382 PMCID: PMC6131940 DOI: 10.1186/s12950-018-0194-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022]
Abstract
Background Inflammatory chemokine ligands (CCLs) play an important role in cardiovascular disease and allograft injury. CCLs may independently associate with diminished estimated glomerular filtration rate (eGFR) in stable renal transplant recipients (RTR). Methods Plasma levels of 19 CCLs (1, 2, 3, 4, 5, 8, 11, 13, 15, 17, 21, 24, 26, 27, CXCL5, 8, 10, 12 and 13) were measured in a cohort of 101 RTR. The cohort was divided according to CKD-EPI equation into three groups; group 1: eGFR ≥ 60 ml/min, group 2: eGFR 30–59.9 ml/min and group 3 eGFR ≤ 29.9 ml/min. ANOVA, Krusklwallis, Mann- Whitney Spearman correlation and regression analysis tests were used to determine association between reduced eGFR and inflammatory CCLs plasma levels measured by multiplex techniques. 20 healthy subjects with eGFR above 90 ml/min were included as control. Significance was sat at < 0.05. Results Levels of CCLs 1, 4, 15, 27, CXCL8 and CXCL10 were significantly different among the four studied groups. Multivariate regression analysis (MVA) between eGFR and all CCLs demonstrated that CCL27 was the only ligand to remain significantly associated with diminished eGFR {P = 0.021 and r = − 0.35,(P = 0.001)}. In a second MVA between CCL 27 and patient’s demographics and laboratory variables, diminished eGFR, and elevated PTH, out of the twenty one available variables remained significantly associated with elevated CCL27levels. Conclusion Diminished eGFR in stable RTR is associated with elevated plasma levels of CCL27. This association may explain, at least in part, the independent contribution of reduced eGFR to enhanced inflammation in RTR.
Collapse
Affiliation(s)
- Ahmed Zahran
- 1Nephrology Unit, Department of Medicine, Faculty of Medicine, University of Menoufia, Shibin El Kom, Egypt
| | - Ahmed Attia
- 2National Liver Institute, University of Menoufia, Shibin El Kom, Egypt
| | - Holly Mansell
- 3College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK Canada
| | - Ahmed Shoker
- 4Department of Medicine, University of Saskatchewan, Saskatoon, SK Canada.,5Saskatchewan Transplant Program, St Paul's Hospital, 1702- 20th Street West, Saskatoon, SK S7M 0Z9 Canada
| |
Collapse
|
8
|
Mockler C, Sharma A, Gibson IW, Gao A, Wong A, Ho J, Blydt-Hansen TD. The prognostic value of urinary chemokines at 6 months after pediatric kidney transplantation. Pediatr Transplant 2018; 22:e13205. [PMID: 29733487 DOI: 10.1111/petr.13205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2018] [Indexed: 11/29/2022]
Abstract
Pediatric kidney transplantation is lifesaving, but long-term allograft survival is still limited by injury processes mediated by alloimmune inflammation that may otherwise be clinically silent. Chemokines associated with alloimmune inflammation may offer prognostic value early post-transplant by identifying patients at increased risk of poor graft outcomes. We conducted a single-center prospective cohort study of consecutive pediatric kidney transplant recipients (<19 years). Urinary CCL2 and CXCL10 measured at 6 months post-transplant were evaluated for association with long-term eGFR decline, allograft survival, and concomitant acute cellular rejection histology. Thirty-eight patients with a mean age of 12.4 ± 4.6 years were evaluated. Urinary CCL2 was associated with eGFR decline until 6 months (ρ -0.43; P < .01), but not at later time points. Urinary CXCL10 was associated with eGFR decline at 36 months (ρ -0.49; P < .01), risk of 50% eGFR decline (HR = 1.04; P = .02), risk of allograft loss (HR = 1.05; P = .01), borderline rejection or rejection episodes 6-12 months post-transplant (r .41; P = .02), and Banff i + t score (r .47, P < .01). CCL2 and CXCL10 were also correlated with one another (ρ 0.54; P < .01). CCL2 and CXCL10 provide differing, but complementary, information that may be useful for early non-invasive prognostic testing in pediatric kidney transplant recipients.
Collapse
Affiliation(s)
- Claire Mockler
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Atul Sharma
- Department of Pediatrics and Child Health, Children's Hospital at Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Ian W Gibson
- Department of Pathology, Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Ang Gao
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Alexander Wong
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Julie Ho
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada.,Section of Nephrology, Department of Internal Medicine, Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Tom D Blydt-Hansen
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Despite modern immunosuppression, renal allograft rejection remains a major contributor to graft loss. Novel biomarkers may help improve posttransplant outcomes through the early detection and treatment of rejection. Our objective is to provide an overview of proteomics, review recent discovery-based rejection studies, and explore innovative approaches in biomarker development. RECENT FINDINGS Urine MMP7 was identified as a biomarker of subclinical and clinical rejection using two-dimensional liquid chromatography tandem-mass spectrometry (LC-MS/MS) and improved the overall diagnostic discrimination of urine CXCL10 : Cr alone for renal allograft inflammation. A novel peptide signature to classify stable allografts from acute rejection, chronic allograft injury, and polyoma virus (BKV) nephropathy was identified using isobaric tag for relative and absolute quantitation (TRAQ) and label-free MS, with independent validation by selected reaction monitoring mass spectrometry (SRM-MS). Finally, an in-depth exploration of peripheral blood mononuclear cells identified differential proteoform expression in healthy transplants versus rejection. SUMMARY There is still much in the human proteome that remains to be explored, and further integration of renal, urinary, and exosomal data may offer deeper insight into the pathophysiology of rejection. Functional proteomics may be more biologically relevant than protein/peptide quantity alone, such as assessment of proteoforms or activity-based protein profiling. Discovery-based studies have identified potential biomarker candidates, but external validation studies are required.
Collapse
|
10
|
Choi N, Rigatto C, Zappitelli M, Gao A, Christie S, Hiebert B, Arora RC, Ho J. Urinary Hepcidin-25 Is Elevated in Patients That Avoid Acute Kidney Injury Following Cardiac Surgery. Can J Kidney Health Dis 2018; 5:2054358117744224. [PMID: 29399365 PMCID: PMC5788097 DOI: 10.1177/2054358117744224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/28/2017] [Indexed: 12/16/2022] Open
Abstract
Background: Acute kidney injury (AKI) following cardiac surgery leads to increased morbidity and mortality. Characterization and validation of early biomarkers of AKI may ultimately facilitate early therapeutic intervention. We have previously identified that elevated urinary hepcidin-25 is inversely and independently associated with the development of AKI in adult cardiac surgery patients. Hepcidin-25 is an antimicrobial peptide that sequesters iron intracellularly, and its elevation following human ischemia reperfusion injury may represent a renoprotective response to minimize renal injury. Objective: Our goal was to validate urinary hepcidin-25 as a non-invasive biomarker in an independent cardiac surgery cohort, within the context of clinical AKI predictors. Design: Prospective observational cohort study. Setting: Adult cardiac surgery program at St. Boniface Hospital, Winnipeg, Manitoba, Canada. Patients: Adult cardiac surgery patients undergoing cardiopulmonary bypass (CPB), n = 306. Measurements: Urine hepcidin-25, measured on post-operative day (POD) 1. Methods: A prospective, observational cohort of adult CPB patients (n = 306) was collected with serial perioperative urine samples. Urine hepcidin-25 at POD 1 was measured by competitive ELISA. Its diagnostic performance was evaluated in conjunction with clinical parameters and the Thakar clinical prediction score, using multivariate logistic regression. Results: Urinary hepcidin-25 is elevated following cardiac surgery in AKI and non-AKI patients. Elevated urinary hepcidin-25 concentration was inversely associated with AKI on both univariate (odds ratio [OR]: 0.61, 95% confidence interval [CI]: 0.45-0.83, P = .002) and multivariate analysis (OR: 0.67, 95% CI: 0.50-0.95, P = .02). A combined model with clinical risk factors demonstrated that baseline estimated glomerular filtration rate (eGFR), diabetes mellitus, and urinary hepcidin-25 concentration had an overall area under the curve (AUC) of 0.82 (0.75-0.88) for predicting subsequent AKI development, which was superior to clinical prediction alone as determined by the Thakar score. Limitations: (1) A single-center observational study. (2) Polyclonal antibody–based competitive ELISA. Conclusion: Hepcidin-25 is inversely associated with AKI in a multivariate model when combined with eGFR and diabetes mellitus, with an overall AUC of 0.82. Notably, urinary hepcidin-25 improves on clinical AKI prediction compared to the Thakar score alone.
Collapse
Affiliation(s)
- Nora Choi
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Canada.,Department of Immunology, University of Manitoba, Winnipeg, Canada.,Section of Cardiac Sciences, St. Boniface Hospital, Winnipeg, Manitoba, Canada
| | - Claudio Rigatto
- Department of Internal Medicine, Section of Nephrology, University of Manitoba, Winnipeg, Canada
| | - Michael Zappitelli
- Department of Pediatrics, Division of Nephrology, McGill University, Montréal, Quebec, Canada
| | - Ang Gao
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Canada
| | - Simon Christie
- Section of Cardiac Sciences, St. Boniface Hospital, Winnipeg, Manitoba, Canada
| | - Brett Hiebert
- Section of Cardiac Sciences, St. Boniface Hospital, Winnipeg, Manitoba, Canada
| | - Rakesh C Arora
- Section of Cardiac Sciences, St. Boniface Hospital, Winnipeg, Manitoba, Canada.,Department of Surgery, University of Manitoba, Winnipeg, Canada
| | - Julie Ho
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Canada.,Department of Immunology, University of Manitoba, Winnipeg, Canada.,Department of Internal Medicine, Section of Nephrology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
11
|
Abstract
The concept that individuals with the same disease and a similar clinical presentation may have very different outcomes and need very different therapies is not novel. With the development of many innovative tools derived from the omics technologies, transplant medicine is slowly entering the era of precision medicine. Biomarkers are the cornerstone of precision medicine, which aims to integrate biomarkers with traditional clinical information and tailor medical care to achieve the best outcome for an individual patient. Here, we discuss the basic concepts of precision medicine and biomarkers, with a specific focus on progress in renal transplantation. We delineate the different types of biomarkers and provide a general assessment of the current applications and shortcomings of previously proposed biomarkers. We also outline the potential of precision medicine in transplantation. Moving toward precision medicine in the field of transplantation will require transplant physicians to embrace the increased complexity and expanded decision algorithms and therapeutic options that are associated with improved disease nosology.
Collapse
Affiliation(s)
- Maarten Naesens
- Department of Microbiology and Immunology, Laboratory of Nephrology, Katholieke Universiteit Leuven, University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Dany Anglicheau
- Necker-Enfants Malades Institute, French National Institutes of Health and Medical Research U1151, Paris, France; .,Paris Descartes, Sorbonne Paris Cité University, Paris, France.,Réseau Thématique de Recherche et de Soins Centaure, Paris, France.,Labex Transplantex, Paris, France; and.,Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
12
|
Macrophage density in early surveillance biopsies predicts future renal transplant function. Kidney Int 2017; 92:479-489. [PMID: 28359537 DOI: 10.1016/j.kint.2017.01.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/12/2017] [Indexed: 01/10/2023]
Abstract
Inflammation impairs renal allograft survival but is difficult to quantify by eye at low densities. Here we measured leukocyte abundance in early surveillance biopsies by digital image analysis to test for a role of chemokine receptor genotypes and analyze the predictive value of leukocyte subsets to allograft function. In six-week surveillance biopsies, T-cell (CD3), B-cell (CD20), macrophage (CD68), and dendritic cell (CD209) densities were assessed in whole slide scans. Renal cortical CD3, CD20, and CD68 were significantly higher in histologic rejection. The CCR2 V64I genotype was associated with lower CD3 and CD209 densities. Above-median CD68 density was significantly associated with lower combined patient and graft survival with a hazard ratio of 3.5 (95% confidence interval 1.1-11.0). Both CD20 and CD68 densities inversely correlated with estimated glomerular filtration rate (eGFR) four years after transplantation. Additionally, CD68 correlated with eGFR loss. Among histological measurements including a complete Banff classification, only CD68 density was a significant predictor of an eGFR under 30ml/min after four years (odds ratio 7.4, 1.8-31.0) and part of the best eGFR prediction set in a multivariable linear regression analysis of multiple clinical and pathologic parameters. In a second independent cohort, the original CD68 median maintained its discriminative power for survival and eGFR. Thus, digital high-resolution assessment of CD68+ leukocyte infiltration significantly improves prognostic value of early renal transplant biopsies.
Collapse
|
13
|
Menon MC, Murphy B, Heeger PS. Moving Biomarkers toward Clinical Implementation in Kidney Transplantation. J Am Soc Nephrol 2017; 28:735-747. [PMID: 28062570 DOI: 10.1681/asn.2016080858] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Long-term kidney transplant outcomes remain suboptimal, delineating an unmet medical need. Although current immunosuppressive therapy in kidney transplant recipients is effective, dosing is conventionally adjusted empirically on the basis of time after transplant or altered in response to detection of kidney dysfunction, histologic evidence of allograft damage, or infection. Such strategies tend to detect allograft rejection after significant injury has already occurred, fail to detect chronic subclinical inflammation that can negatively affect graft survival, and ignore specific risks and immune mechanisms that differentially contribute to allograft damage among transplant recipients. Assays and biomarkers that reliably quantify and/or predict the risk of allograft injury have the potential to overcome these deficits and thereby, aid clinicians in optimizing immunosuppressive regimens. Herein, we review the data on candidate biomarkers that we contend have the highest potential to become clinically useful surrogates in kidney transplant recipients, including functional T cell assays, urinary gene and protein assays, peripheral blood cell gene expression profiles, and allograft gene expression profiles. We identify barriers to clinical biomarker adoption in the transplant field and suggest strategies for moving biomarker-based individualization of transplant care from a research hypothesis to clinical implementation.
Collapse
Affiliation(s)
- Madhav C Menon
- Renal Division, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Barbara Murphy
- Renal Division, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Peter S Heeger
- Renal Division, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
14
|
Bontha SV, Maluf DG, Mueller TF, Mas VR. Systems Biology in Kidney Transplantation: The Application of Multi-Omics to a Complex Model. Am J Transplant 2017; 17:11-21. [PMID: 27214826 DOI: 10.1111/ajt.13881] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/15/2016] [Accepted: 05/12/2016] [Indexed: 01/25/2023]
Abstract
In spite of reduction of rejection rates and improvement in short-term survival post-kidney transplantation, modest progress has occurred in long-term graft attrition over the years. Timely identification of molecular events that precede clinical and histopathological changes might help in early intervention and thereby increase the graft half-life. Evolution of "omics" tools has enabled systemic investigation of the influence of the whole genome, epigenome, transcriptome, proteome and microbiome on transplant function and survival. In this omics era, systemic approaches, in-depth clinical phenotyping and use of strict validation methods are the key for further understanding the complex mechanisms associated with graft function. Systems biology is an interdisciplinary holistic approach that focuses on complex and dynamic interactions within biological systems. The complexity of the human kidney transplant is unlikely to be captured by a reductionist approach. It appears essential to integrate multi-omics data that can elucidate the multidimensional and multilayered regulation of the underlying heterogeneous and complex kidney transplant model. Herein, we discuss studies that focus on genetic biomarkers, emerging technologies and systems biology approaches, which should increase the ability to discover biomarkers, understand mechanisms and stratify patients and responses post-kidney transplantation.
Collapse
Affiliation(s)
- S V Bontha
- Translational Genomics Transplant Laboratory, Division of Transplant, Department of Surgery, University of Virginia, Charlottesville, VA
| | - D G Maluf
- Translational Genomics Transplant Laboratory, Division of Transplant, Department of Surgery, University of Virginia, Charlottesville, VA
| | - T F Mueller
- Division of Nephrology, University Hospital, Zürich, Switzerland
| | - V R Mas
- Translational Genomics Transplant Laboratory, Division of Transplant, Department of Surgery, University of Virginia, Charlottesville, VA
| |
Collapse
|
15
|
Matz M, Lorkowski C, Fabritius K, Wu K, Rudolph B, Frischbutter S, Brakemeier S, Gaedeke J, Neumayer HH, Mashreghi MF, Budde K. The selective biomarker IL-8 identifies IFTA after kidney transplantation in blood cells. Transpl Immunol 2016; 39:18-24. [DOI: 10.1016/j.trim.2016.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 12/20/2022]
|
16
|
Rose EM, Kennedy SE, Mackie FE. Surveillance biopsies after paediatric kidney transplantation: A review. Pediatr Transplant 2016; 20:748-55. [PMID: 27306873 DOI: 10.1111/petr.12733] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/11/2016] [Indexed: 11/28/2022]
Abstract
Kidney transplantation is the most effective means of treating children with end-stage kidney disease, and yet, there continues to be a limited "life span" of transplanted kidneys in paediatric recipients. Early graft monitoring, using the surveillance biopsy, has the potential to extend renal allograft survival in paediatric recipients. The surveillance biopsy provides important and timely information about acute and chronic graft pathology, particularly SCR and calcineurin inhibitor-induced nephrotoxicity, which can subsequently guide management decisions and improve long-term graft survival. The ostensible value of the surveillance biopsy is furthered by the limitations of conventional renal functional studies. However, there is still much debate surrounding the surveillance biopsy in paediatric recipients, particularly in regard to its overall utility, safety and timing. This review discusses the current literature regarding the utility, safety, and potential predictive value of surveillance biopsies for guiding post-transplant management in paediatric renal allograft recipients, as well as the viability of other potentially newer non-invasive strategies for renal allograft monitoring.
Collapse
Affiliation(s)
- Edward M Rose
- School of Women's & Children's Health, UNSW Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Sean E Kennedy
- School of Women's & Children's Health, UNSW Medicine, University of New South Wales, Sydney, NSW, Australia.,Nephrology, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Fiona E Mackie
- School of Women's & Children's Health, UNSW Medicine, University of New South Wales, Sydney, NSW, Australia.,Nephrology, Sydney Children's Hospital, Randwick, NSW, Australia
| |
Collapse
|
17
|
Standardized Outcomes in Nephrology-Transplantation: A Global Initiative to Develop a Core Outcome Set for Trials in Kidney Transplantation. Transplant Direct 2016; 2:e79. [PMID: 27500269 PMCID: PMC4946524 DOI: 10.1097/txd.0000000000000593] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/09/2016] [Indexed: 12/20/2022] Open
Abstract
Background Although advances in treatment have dramatically improved short-term graft survival and acute rejection in kidney transplant recipients, long-term graft outcomes have not substantially improved. Transplant recipients also have a considerably increased risk of cancer, cardiovascular disease, diabetes, and infection, which all contribute to appreciable morbidity and premature mortality. Many trials in kidney transplantation are short-term, frequently use unvalidated surrogate endpoints, outcomes of uncertain relevance to patients and clinicians, and do not consistently measure and report key outcomes like death, graft loss, graft function, and adverse effects of therapy. This diminishes the value of trials in supporting treatment decisions that require individual-level multiple tradeoffs between graft survival and the risk of side effects, adverse events, and mortality. The Standardized Outcomes in Nephrology-Transplantation initiative aims to develop a core outcome set for trials in kidney transplantation that is based on the shared priorities of all stakeholders. Methods This will include a systematic review to identify outcomes reported in randomized trials, a Delphi survey with an international multistakeholder panel (patients, caregivers, clinicians, researchers, policy makers, members from industry) to develop a consensus-based prioritized list of outcome domains and a consensus workshop to review and finalize the core outcome set for trials in kidney transplantation. Conclusions Developing and implementing a core outcome set to be reported, at a minimum, in all kidney transplantation trials will improve the transparency, quality, and relevance of research; to enable kidney transplant recipients and their clinicians to make better-informed treatment decisions for improved patient outcomes.
Collapse
|