1
|
Chen ST, Jheng CY, Lee YC, Huang WC, Lee SY, Chen YH. Intermittent hypoxia-reoxygenation-induced miRNAs inhibit expression of IRF and interferon genes but activate NF-κB and expression of pulmonary fibrosis markers in human small airway epithelial cells. Life Sci 2025; 370:123569. [PMID: 40120975 DOI: 10.1016/j.lfs.2025.123569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
AIM Intermittent hypoxia-reoxygenation (H/R) has been demonstrated to be associated with aviation and various respiratory diseases, and hence it is of interest to unravel the regulatory mechanisms underlying the H/R-induced innate immune and inflammatory responses in both healthy and COPD-diseased human small airway epithelial cells (SAECs). MAIN METHODS The normal healthy and COPD-diseased SAECs (i.e., N-SAECs and D-SAECs) were purchased from PromoCell biotechnology company and respectively cultured under normoxia (21 % O2) or 12/12-h cycles of H/R (i.e., 1 % O2 and 21 % O2 alternately) for 6 days in total for 2D cultures and 21 days in total for the air-liquid interface 3D cultures, followed by qPCR analyses, miRNA fluorescence in situ hybridization, luciferase reporter assays, and immunofluorescence staining. KEY FINDINGS Human SAECs cultured under 12/12-h cycles of H/R showed dramatically increased expression of HIF1A and the H/R-inducible miRNAs miR-129-1-3p, miR-1290 and miR-193b-5p, with miR-129-1-3p and miR-193b-5p targeting and inhibiting IRF5 and IRF7 mRNAs, hence downregulating both the type I and II interferon genes in SAECs cultured under H/R. In addition, miR-129-1-3p, miR-1290 and miR-193b-5p all targeted and inhibited SOCS3 mRNA, hence upregulating transactivation of NF-κB and in turn inducing expression of the inflammatory chemokine genes and pulmonary fibrosis-associated marker genes. SIGNIFICANCE We show for the first time that intermittent H/R upregulates the NF-κB-induced proinflammatory and fibrosis marker genes whereas downregulates the IRF5/7-induced type I/II interferon expression in human SAECs through distinct HIF1A-inducible miRNAs miR-129-1-3p, miR-193b-5p and miR-1290, which may serve as promising therapeutic targets for airway inflammation and pulmonary fibrosis.
Collapse
Affiliation(s)
- Shiuan-Ting Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei City, Taiwan
| | - Cheng-Yu Jheng
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Yu-Chun Lee
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei City, Taiwan
| | - Wei-Chen Huang
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei City, Taiwan
| | - Shih-Yu Lee
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei City, Taiwan
| | - Yi-Hui Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei City, Taiwan.
| |
Collapse
|
2
|
Qayyum AA, Lund TK, Jensen PB, Jensen K, Haack-Sørensen M, Ekblond A, Nørgaard MJ, Møller-Sørensen H, Mathiasen AB, Møller CH, Rørvig SB, Kalhauge A, Bruunsgaard H, Litman T, Johansen EM, Højgaard LD, Kastrup J, Perch M. Allogeneic mesenchymal stromal cell therapy on primary graft dysfunction after lung transplantation. JHLT OPEN 2025; 8:100254. [PMID: 40247997 PMCID: PMC12005341 DOI: 10.1016/j.jhlto.2025.100254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Background Primary graft dysfunction (PGD) is common in lung transplantation affecting 15-30% of recipients. It represents a multifactorial injury to the transplanted lung within the first 72 hours after transplantation.We aimed to investigate clinical safety and efficacy of allogeneic adipose tissue-derived stromal cells (ASCs), as an add-on therapy in patients undergoing double lung transplantation. Methods Single center, double-blinded, investigator-initiated randomized phase I/II study with intravenous infusion of either ASCs or placebo within two hours after lung transplantation. A total of 31 patients were included and randomized 1:1:1 to either 200 million or 100 million ASCs, or placebo infusion.The primary endpoint was difference in PGD grade 72 hours after transplantation between groups. Results No significant differences in PGD were seen between the 3 groups 72 hours after lung transplantation (P=0.426). Combined ASC groups compared to placebo group did not show any difference in PGD 72 hours after transplantation (P=0.252). A reduced progression in PGD from day 1 to day 3 and day 2 to day 3 was observed between the ASC treated patients and patients in the placebo group (P=0.034 and P=0.034, respectively). There were no significant differences in number of serious adverse events or in secondary endpoints such as kidney function, lung function, or quality-of-life between groups. Conclusions Intravenous infusion of allogeneic ASCs in patients immediately after double lung transplantation was safe. The therapy did not show statistic difference in PGD between groups 72 hours after lung transplantation. Clinical trial registration information EudraCT number 2019-004848-30 and NCT04714801.
Collapse
Affiliation(s)
- Abbas Ali Qayyum
- Cardiology Stem Cell Centre, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Hvidovre hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Kromann Lund
- Department of Cardiology, Section for Lung Transplantation, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Pia Bredahl Jensen
- Department of Cardiothoracic Anaesthesiology and Intensive Care, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Jensen
- Department of Cardiology, Section for Lung Transplantation, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mandana Haack-Sørensen
- Cardiology Stem Cell Centre, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Cell2Cure Aps, Birkerød, Denmark
| | - Annette Ekblond
- Cardiology Stem Cell Centre, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Cell2Cure Aps, Birkerød, Denmark
| | - Morten Juhl Nørgaard
- Cardiology Stem Cell Centre, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hasse Møller-Sørensen
- Department of Cardiothoracic Anaesthesiology and Intensive Care, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders Bruun Mathiasen
- Cardiology Stem Cell Centre, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Christian Holdflod Møller
- Department of Cardio-thoracic surgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sara Bird Rørvig
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anna Kalhauge
- Department of Radiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Helle Bruunsgaard
- Department of Clinical immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Litman
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Ellen Mønsted Johansen
- Cardiology Stem Cell Centre, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth Drozd Højgaard
- Cardiology Stem Cell Centre, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Kastrup
- Cardiology Stem Cell Centre, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Cell2Cure Aps, Birkerød, Denmark
| | - Michael Perch
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Section for Lung Transplantation, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Yokoyama Y, Toyomoto M, Tanaka N, Tanaka S, Nishikawa S, Kayawake H, Morimura Y, Oda H, Yamauchi M, Yamamoto M, Chen-Yoshikawa TF, Hagiwara M, Date H. The novel compound PICCS improves cell viability during cold storage and reduces pulmonary ischemia-reperfusion injury in a rat model. Sci Rep 2025; 15:15217. [PMID: 40307436 PMCID: PMC12043901 DOI: 10.1038/s41598-025-99851-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 04/23/2025] [Indexed: 05/02/2025] Open
Abstract
A simple method to achieve better organ preservation is the addition of compounds to the preservation solution, which effectively inhibits cold injury. We aimed to develop novel compounds for better lung graft preservation using TY52156 as a seed compound, which reportedly inhibits cold injury of vascular endothelial cells and exerts organ-protective effects in a rat heart transplant model. Eighteen compounds were newly synthesized and screened using an in vitro screening system for cold storage and rewarming. Among them, three of the synthesized compounds increased cell viability after 4 days of cold storage in both vascular endothelial and airway epithelial cells without cytotoxic effects. They were denoted as preventing inducible cell damage in cold stress (PICCS)-1, -2, and -3. PICCS-3 inhibited apoptotic signaling in airway epithelial cells after 6 h of cold storage. In a rat lung transplant ischemia-reperfusion injury (IRI) model, addition of PICCS-3 to the organ preservation solution attenuated IRI, as evidenced by improved physiological data of the lung graft, reduced lung edema, and extravasation of neutrophils. This study demonstrates the potential of a structure-based synthetic approach and an in vitro screening system using appropriate cell types to develop novel effective additives for organ preservation solutions.
Collapse
Affiliation(s)
- Yuhei Yokoyama
- Department of Thoracic Surgery, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masayasu Toyomoto
- Department of Drug Discovery of Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Drug Discovery for Intractable Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuo Tanaka
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University, Kyoto, Japan
| | - Satona Tanaka
- Department of Thoracic Surgery, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Shigeto Nishikawa
- Department of Thoracic Surgery, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hidenao Kayawake
- Department of Thoracic Surgery, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuki Morimura
- Department of Thoracic Surgery, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiromi Oda
- Department of Thoracic Surgery, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Momono Yamauchi
- Department of Drug Discovery of Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Masatoshi Hagiwara
- Department of Drug Discovery of Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Hiroshi Date
- Department of Thoracic Surgery, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
4
|
Wang DD, Xu B, Sun JJ, Sui M, Li SP, Chen YJ, Zhang YL, Wu JB, Teng SY, Pang QF, Hu CX. MOTS-c mimics remote ischemic preconditioning in protecting against lung ischemia-reperfusion injury by alleviating endothelial barrier dysfunction. Free Radic Biol Med 2025; 229:127-138. [PMID: 39827923 DOI: 10.1016/j.freeradbiomed.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Remote ischemic preconditioning (RIPC) induces the expression of unidentified protective cytokines that mitigate lung ischemia-reperfusion injury (LIRI). This study hypothesizes that MOTS-c, a mitokine with potent protective effects against mitochondrial damage, contributes to RIPC-mediated protection by alleviating endothelial barrier dysfunction. In human lung transplantation patients, serum levels of MOTS-c significantly decreased following IR injury but were markedly increased when RIPC was performed prior to transplantation. Similarly, in a mouse model of LIRI, RIPC restored serum MOTS-c levels and improved lung injury outcomes. Intravenous administration of MOTS-c in mice replicated the protective effects observed with RIPC. Mechanistic studies demonstrated that repeated hypoxia in human primary skeletal muscle immortalized cells (HPSMIC) led to the secretion of conditioned media that protected HUVECs from OGD/R-induced injury; silencing MOTS-c abolished these protective effects. Further investigations using nuclear factor erythroid 2-related factor 2 (Nrf2) knockout mice and the Nrf2 inhibitor ML385 revealed that MOTS-c exerts its protective function by increasing Nrf2 protein levels, thereby maintaining endothelial barrier integrity. In conclusion, this study identifies MOTS-c as a novel mediator of RIPC's protective effects against LIRI and highlights its potential as a therapeutic alternative for preventing lung injury and preserving vascular endothelial function.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu province, China; Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Bo Xu
- Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Jiao-Jiao Sun
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu province, China; Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Meng Sui
- Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Sheng-Peng Li
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu province, China
| | - Yi-Jing Chen
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu province, China
| | - Yan-Li Zhang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu province, China
| | - Jin-Bo Wu
- Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Shi-Yong Teng
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Qing-Fang Pang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu province, China.
| | - Chun-Xiao Hu
- Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, 214023, China.
| |
Collapse
|
5
|
Miceli V, Ferrigno P, Centi C, Carcione C, Iannolo G, Agnese V, Lo Iacono G, Liotta R, Conaldi PG, Pinzani M, De Monte L, Bertani A. Differentially expressed microRNAs in pre-transplant lung biopsies target immune checkpoint proteins and can predict primary graft dysfunction in lung transplantation. Heliyon 2025; 11:e42515. [PMID: 40028527 PMCID: PMC11869042 DOI: 10.1016/j.heliyon.2025.e42515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 01/18/2025] [Accepted: 02/06/2025] [Indexed: 03/02/2025] Open
Abstract
Lung transplantation (LTx) significantly improves outcomes for patients with end-stage respiratory failure. However, primary graft dysfunction (PGD) remains one of the most relevant hurdles. Although PGD is attributed to ischemia-reperfusion injury (IRI), immune responses, primarily T cell-mediated, may play a pivotal role in its pathogenesis. Additionally, innate immune activation following IRI links PGD to adaptive alloimmunity, highlighting the impact of early events on LTx outcomes. Immune checkpoints (ICPs) such as PD-1/PD-L1, CD40/CD40LG, and OX40/OX40L, regulate post-LTx T cell responses, and dysregulation of microRNAs (miRNAs) has been implicated in altering ICP expression, influencing the amplification of immune responses. In this preliminary study, we used the taqMan low-density array (TLDA) cards to investigate miRNA dysregulation's prognostic potential as a PGD marker in pre-transplant back-table lung biopsies. Our analysis revealed differential miRNA expression in donor lung tissues, potentially associated with PGD onset, targeting immune regulatory pathways. Specifically, deregulated miRNAs targeted key ICP proteins, including PD-L1, CD40LG, and OX40L. Moreover, the differential expression of these miRNAs was observed in grafts with future PGD compared to grafts without PGD, suggesting a potential prognostic benefit and a possible role for lung tissue miRNAs in the onset of early graft dysfunction. These findings provide a basis for future investigations into their mechanistic roles and therapeutic potential for PGD. Although based on a limited number of cases, our results imply that miRNAs might be involved in early graft dysfunction. While requiring validation in larger cohorts, our data raise the possibility that the evaluation of the aforementioned markers during the pre-transplant phase, might offer a prognostic benefit in monitoring the onset of PGD. Additionally, the use of compounds that can modulate the function of these molecules could be evaluated for the management of LTx patients.
Collapse
Affiliation(s)
- Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Pia Ferrigno
- Division of Thoracic Surgery and Lung Transplantation, Chest Center, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
- UPMCI (University of Pittsburgh Medical Center Italy), Palermo, Italy
| | - Claudio Centi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | | | - Gioacchin Iannolo
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Valentina Agnese
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Giovanna Lo Iacono
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Rosa Liotta
- Pathology Unit, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
- UPMCI (University of Pittsburgh Medical Center Italy), Palermo, Italy
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Massimo Pinzani
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Lavinia De Monte
- Division of Thoracic Surgery and Lung Transplantation, Chest Center, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | - Alessandro Bertani
- Division of Thoracic Surgery and Lung Transplantation, Chest Center, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
- UPMCI (University of Pittsburgh Medical Center Italy), Palermo, Italy
| |
Collapse
|
6
|
Nakagiri T, Köhler NR, Janciauskiene S, Neubert L, Knöfel AK, Pradhan P, Ruhparwar A, Ius F, Immenschuh S. Hemopexin alleviates sterile inflammation in ischemia-reperfusion-induced lung injury. Front Immunol 2024; 15:1451577. [PMID: 39430764 PMCID: PMC11487521 DOI: 10.3389/fimmu.2024.1451577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction Pulmonary ischemia-reperfusion (IR) injury (IRI) plays a significant role in various lung disorders and is a key factor in the development of primary graft dysfunction following lung transplantation. Hemopexin (Hx) is the major serum scavenger protein for heme, which is a prooxidant and pro-inflammatory compound. In the current study, we hypothesized that Hx could confer beneficial effects in sterile inflammation induced by IR-mediated lung injury. Methods To examine this hypothesis, we administered Hx in an experimental mouse model of unilateral lung IRI. Results Our results demonstrate that treatment with Hx alleviated histopathological signs of inflammation in ischemic lungs, as evidenced by a reduction in the number of infiltrating neutrophils and decreased levels of perivascular edema. In addition, thrombotic vaso-occlusion in pulmonary blood vessels of IRI lungs was reduced by Hx. Immunohistochemical analysis revealed that Hx inhibited the up-regulation of heme oxygenase-1, an enzyme highly induced by heme, in ischemic lungs. Finally, Hx administration caused a decrease in the levels of circulating B- and CD8+ T-lymphocytes in the peripheral blood of mice with pulmonary IRI. Conclusion These findings suggest that the serum heme scavenger protein Hx holds therapeutic promise in alleviating lung IRI-mediated sterile inflammation. Thus, Hx may represent a preemptive therapeutic approach in IR-related lung disorders such as primary graft dysfunction in lung transplantation.
Collapse
Affiliation(s)
- Tomoyuki Nakagiri
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Nadine R. Köhler
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Sabina Janciauskiene
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- Department of Genetics and Clinical Immunology, The Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Lavinia Neubert
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Ann-Kathrin Knöfel
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Pooja Pradhan
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Arjang Ruhparwar
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Fabio Ius
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Stephan Immenschuh
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Leroy V, Manual Kollareth DJ, Tu Z, Valisno JAC, Woolet-Stockton M, Saha B, Emtiazjoo AM, Rackauskas M, Moldawer LL, Efron PA, Cai G, Atkinson C, Upchurch GR, Sharma AK. MerTK-dependent efferocytosis by monocytic-MDSCs mediates resolution of ischemia/reperfusion injury after lung transplant. JCI Insight 2024; 9:e179876. [PMID: 39172530 PMCID: PMC11466183 DOI: 10.1172/jci.insight.179876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024] Open
Abstract
Lung transplantation (LTx) outcomes are impeded by ischemia/reperfusion injury (IRI) and subsequent chronic lung allograft dysfunction (CLAD). We examined the undefined role of receptor Mer tyrosine kinase (MerTK) on monocytic myeloid-derived suppressor cells (M-MDSCs) in efferocytosis to facilitate resolution of lung IRI. Single-cell RNA sequencing of lung tissue and bronchoalveolar lavage (BAL) from patients after LTx were analyzed. Murine lung hilar ligation and allogeneic orthotopic LTx models of IRI were used with BALB/c (WT), Cebpb-/- (MDSC-deficient), Mertk-/-, or MerTK-cleavage-resistant mice. A significant downregulation in MerTK-related efferocytosis genes in M-MDSC populations of patients with CLAD was observed compared with healthy individuals. In the murine IRI model, a significant increase in M-MDSCs, MerTK expression, and efferocytosis and attenuation of lung dysfunction was observed in WT mice during injury resolution that was absent in Cebpb-/- and Mertk-/- mice. Adoptive transfer of M-MDSCs in Cebpb-/- mice significantly attenuated lung dysfunction and inflammation. Additionally, in a murine orthotopic LTx model, increases in M-MDSCs were associated with resolution of lung IRI in the transplant recipients. In vitro studies demonstrated the ability of M-MDSCs to efferocytose apoptotic neutrophils in a MerTK-dependent manner. Our results suggest that MerTK-dependent efferocytosis by M-MDSCs can substantially contribute to the resolution of post-LTx IRI.
Collapse
Affiliation(s)
- Victoria Leroy
- Department of Surgery
- Department of Pharmacology and Therapeutics
| | | | - Zhenxiao Tu
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | | | | | - Biplab Saha
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Amir M. Emtiazjoo
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | | | | | | | - Guoshuai Cai
- Department of Surgery
- Department of Biostatistics, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Carl Atkinson
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | | | - Ashish K. Sharma
- Department of Surgery
- Department of Pharmacology and Therapeutics
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
8
|
Leroy V, Manual Kollareth DJ, Tu Z, Valisno JAC, Woolet-Stockton M, Saha B, Emtiazjoo AM, Rackauskas M, Moldawer LL, Efron PA, Cai G, Atkinson C, Upchurch GR, Sharma AK. MerTK-dependent efferocytosis by monocytic-MDSCs mediates resolution of post-lung transplant injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576261. [PMID: 38328174 PMCID: PMC10849528 DOI: 10.1101/2024.01.18.576261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Rationale Patients with end stage lung diseases require lung transplantation (LTx) that can be impeded by ischemia-reperfusion injury (IRI) leading to subsequent chronic lung allograft dysfunction (CLAD) and inadequate outcomes. Objectives We examined the undefined role of MerTK (receptor Mer tyrosine kinase) on monocytic myeloid-derived suppressor cells (M-MDSCs) in efferocytosis (phagocytosis of apoptotic cells) to facilitate resolution of lung IRI. Methods Single-cell RNA sequencing of lung tissue and BAL from post-LTx patients was analyzed. Murine lung hilar ligation and allogeneic orthotopic LTx models of IRI were used with Balb/c (WT), cebpb -/- (MDSC-deficient), Mertk -/- or MerTK-CR (cleavage resistant) mice. Lung function, IRI (inflammatory cytokine and myeloperoxidase expression, immunohistology for neutrophil infiltration), and flow cytometry of lung tissue for efferocytosis of apoptotic neutrophils were assessed in mice. Measurements and Main Results A significant downregulation in MerTK-related efferocytosis genes in M-MDSC populations of CLAD patients compared to healthy subjects was observed. In the murine IRI model, significant increase in M-MDSCs, MerTK expression and efferocytosis was observed in WT mice during resolution phase that was absent in cebpb -/- Land Mertk -/- mice. Adoptive transfer of M-MDSCs in cebpb -/- mice significantly attenuated lung dysfunction, and inflammation leading to resolution of IRI. Additionally, in a preclinical murine orthotopic LTx model, increases in M-MDSCs were associated with resolution of lung IRI in the transplant recipients. In vitro studies demonstrated the ability of M-MDSCs to efferocytose apoptotic neutrophils in a MerTK-dependent manner. Conclusions Our results suggest that MerTK-dependent efferocytosis by M-MDSCs can significantly contribute to the resolution of post-LTx IRI.
Collapse
|
9
|
Zhang Z, Li X, Guo J, He B, Wu L, Yang R, Li X, Fang D, Yang X, Yang D, Wang F, Tang M, Han Y, Jose PA, Wang H, Zeng C. β-aminoisobutyrics acid, a metabolite of BCAA, activates the AMPK/Nrf-2 pathway to prevent ferroptosis and ameliorates lung ischemia-reperfusion injury. Mol Med 2023; 29:164. [PMID: 38049750 PMCID: PMC10696792 DOI: 10.1186/s10020-023-00729-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/17/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Lung ischemia-reperfusion (I/R) injury is a serious clinical problem without effective treatment. Enhancing branched-chain amino acids (BCAA) metabolism can protect against cardiac I/R injury, which may be related to bioactive molecules generated by BCAA metabolites. L-β-aminoisobutyric acid (L-BAIBA), a metabolite of BCAA, has multi-organ protective effects, but whether it protects against lung I/R injury is unclear. METHODS To assess the protective effect of L-BAIBA against lung I/R injury, an animal model was generated by clamping the hilum of the left lung, followed by releasing the clamp in C57BL/6 mice. Mice with lung I/R injury were pre-treated or post-treated with L-BAIBA (150 mg/kg/day), given by gavage or intraperitoneal injection. Lung injury was assessed by measuring lung edema and analyzing blood gases. Inflammation was assessed by measuring proinflammatory cytokines in bronchoalveolar lavage fluid (BALF), and neutrophil infiltration of the lung was measured by myeloperoxidase activity. Molecular biological methods, including western blot and immunofluorescence, were used to detect potential signaling mechanisms in A549 and BEAS-2B cells. RESULTS We found that L-BAIBA can protect the lung from I/R injury by inhibiting ferroptosis, which depends on the up-regulation of the expressions of GPX4 and SLC7A11 in C57BL/6 mice. Additionally, we demonstrated that the Nrf-2 signaling pathway is key to the inhibitory effect of L-BAIBA on ferroptosis in A549 and BEAS-2B cells. L-BAIBA can induce the nuclear translocation of Nrf-2. Interfering with the expression of Nrf-2 eliminated the protective effect of L-BAIBA on ferroptosis. A screening of potential signaling pathways revealed that L-BAIBA can increase the phosphorylation of AMPK, and compound C can block the Nrf-2 nuclear translocation induced by L-BAIBA. The presence of compound C also blocked the protective effects of L-BAIBA on lung I/R injury in C57BL/6 mice. CONCLUSIONS Our study showed that L-BAIBA protects against lung I/R injury via the AMPK/Nrf-2 signaling pathway, which could be a therapeutic target.
Collapse
Affiliation(s)
- Ziyue Zhang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Ministry of Education of China, Chongqing Institute of Cardiology, Chongqing, P. R. China
- Outpatient Department, Hospital of PLA, Hanzhong, Shanxi, 96608, P. R. China
| | - Xingbing Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Ministry of Education of China, Chongqing Institute of Cardiology, Chongqing, P. R. China
- Department of Cardiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, P. R. China
| | - Jingwen Guo
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Ministry of Education of China, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Bo He
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Ministry of Education of China, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Lianpan Wu
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Ministry of Education of China, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Rongpei Yang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Ministry of Education of China, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Xingyue Li
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Ministry of Education of China, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Dandong Fang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Ministry of Education of China, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - XiaoLi Yang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Ministry of Education of China, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Donghai Yang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Ministry of Education of China, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Fengxian Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Ministry of Education of China, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Ming Tang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Ministry of Education of China, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Yu Han
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Ministry of Education of China, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine, Department of Physiology/Pharmacology, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Hongyong Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P. R. China.
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Ministry of Education of China, Chongqing Institute of Cardiology, Chongqing, P. R. China.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P. R. China.
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Ministry of Education of China, Chongqing Institute of Cardiology, Chongqing, P. R. China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P. R. China.
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, P. R. China.
| |
Collapse
|
10
|
Dugbartey GJ. Therapeutic benefits of nitric oxide in lung transplantation. Biomed Pharmacother 2023; 167:115549. [PMID: 37734260 DOI: 10.1016/j.biopha.2023.115549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023] Open
Abstract
Lung transplantation is an evolutionary procedure from its experimental origin in the twentieth century and is now recognized as an established and routine life-saving intervention for a variety of end-stage pulmonary diseases refractory to medical management. Despite the success and continuous refinement in lung transplantation techniques, the widespread application of this important life-saving intervention is severely hampered by poor allograft quality offered from donors-after-brain-death. This has necessitated the use of lung allografts from donors-after-cardiac-death (DCD) as an additional source to expand the pool of donor lungs. Remarkably, the lung exhibits unique properties that may make it ideally suitable for DCD lung transplantation. However, primary graft dysfunction (PGD), allograft rejection and other post-transplant complications arising from unavoidable ischemia-reperfusion injury (IRI) of transplanted lungs, increase morbidity and mortality of lung transplant recipients annually. In the light of this, nitric oxide (NO), a selective pulmonary vasodilator, has been identified as a suitable agent that attenuates lung IRI and prevents PGD when administered directly to lung donors prior to donor lung procurement, or to recipients during and after transplantation, or administered indirectly by supplementing lung preservation solutions. This review presents a historical account of clinical lung transplantation and discusses the lung as an ideal organ for DCD. Next, the author highlights IRI and its clinical effects in lung transplantation. Finally, the author discusses preservation solutions suitable for lung transplantation, and the protective effects and mechanisms of NO in experimental and clinical lung transplantation.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; Accra College of Medicine, Magnolia St, JVX5+FX9, East Legon, Accra, Ghana.
| |
Collapse
|
11
|
Baciu C, Shin J, Hsin M, Cypel M, Keshavjee S, Liu M. Altered purine metabolism at reperfusion affects clinical outcome in lung transplantation. Thorax 2023; 78:249-257. [PMID: 35450941 DOI: 10.1136/thoraxjnl-2021-217498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Lung transplantation is an established treatment for patients with end-stage lung disease. However, ischaemia reperfusion injury remains a barrier to achieving better survival outcomes. Here, we aim to investigate the metabolomic and transcriptomic profiles in human lungs before and after reperfusion, to identify mechanisms relevant to clinical outcome. METHODS We analysed 67 paired human lung tissue samples collected from 2008 to 2011, at the end of cold preservation and 2 hours after reperfusion. Gene expression analysis was performed with R. Pathway analysis was conducted with Ingenuity Pathway Analysis. MetaboAnalyst and OmicsNet were used for metabolomics analysis and omics data integration, respectively. Association of identified metabolites with transplant outcome was investigated with Kaplan-Meier estimate and Cox proportional hazard models. RESULTS Activation of energy metabolism and reduced antioxidative biochemicals were found by metabolomics. Upregulation of genes related to cytokines and inflammatory mediators, together with major signalling pathways were revealed by transcriptomics. Purine metabolism was identified as the most significantly enriched pathway at reperfusion, based on integrative analysis of the two omics data sets. Elevated expression of purine nucleoside phosphorylase (PNP) could be attributed to activation of multiple transcriptional pathways. PNP catabolised reactions were evidenced by changes in related metabolites, especially decreased levels of inosine and increased levels of uric acid. Multivariable analyses showed significant association of inosine and uric acid levels with intensive care unit length of stay and ventilation time. CONCLUSION Oxidative stress, especially through purine metabolism pathway, is a major metabolic event during reperfusion and may contribute to the ischaemia reperfusion injury of lung grafts.
Collapse
Affiliation(s)
- Cristina Baciu
- Latner Thoracic Surgical Laboratory, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jason Shin
- Latner Thoracic Surgical Laboratory, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael Hsin
- Latner Thoracic Surgical Laboratory, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgical Laboratory, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada.,Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgical Laboratory, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada.,Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgical Laboratory, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada .,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Yu J, Zhang N, Zhang Z, Li Y, Gao J, Chen C, Wen Z. Exploring predisposing factors and pathogenesis contributing to injuries of donor lungs. Expert Rev Respir Med 2022; 16:1191-1203. [PMID: 36480922 DOI: 10.1080/17476348.2022.2157264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Lung transplantation (LTx) remains the only therapeutic strategy for patients with incurable lung diseases. However, its use has been severely limited by the narrow donor pool and potential concerns of inferior quality of donor lungs, which are more susceptible to external influence than other transplant organs. Multiple insults, including various causes of death and a series of perimortem events, may act together on donor lungs and eventually culminate in primary graft dysfunction (PGD) after transplantation as well as other poor short-term outcomes. AREAS COVERED This review focuses on the predisposing factors contributing to injuries to the donor lungs, specifically focusing on the pathogenesis of these injuries and their impact on post-transplant outcomes. Additionally, various maneuvers to mitigate donor lung injuries have been proposed. EXPERT OPINION The selection criteria for eligible donors vary and may be poor discriminators of lung injury. Not all transplanted lungs are in ideal condition. With the rapidly increasing waiting list for LTx, the trend of using marginal donors has become more apparent, underscoring the need to gain a deeper understanding of donor lung injuries and discover more donor resources.
Collapse
Affiliation(s)
- Jing Yu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, Zhejiang, China
| | - Nan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, Zhejiang, China
| | - Zhiyuan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, Zhejiang, China
| | - Yuping Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, Zhejiang, China
| | - Jiameng Gao
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, Zhejiang, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, Zhejiang, China
| | - Zongmei Wen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, Zhejiang, China
| |
Collapse
|
13
|
Gao M, Zhang Z, Lai K, Deng Y, Zhao C, Lu Z, Geng Q. Puerarin: A protective drug against ischemia-reperfusion injury. Front Pharmacol 2022; 13:927611. [PMID: 36091830 PMCID: PMC9449408 DOI: 10.3389/fphar.2022.927611] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
Ischemia-reperfusion (I/R) is a pathological process that occurs in numerous organs throughout the human body and is frequently associated with severe cellular damage and death. Puerarin is an isoflavone compound extracted from the root of Pueraria lobata and has pharmacological effects such as dilating cerebral vessels and anti-free radical generation in cerebral ischemic tissues. With the deepening of experimental research and clinical research on puerarin, it has been found that puerarin has a protective effect on ischemia-reperfusion injury (IRI) of the heart, brain, spinal cord, lung, intestine and other organs. In summary, puerarin has a vast range of pharmacological effects and significant protective effects, and it also has obvious advantages in the clinical protection of patients with organ IRI. With the deepening of experimental pharmacological research and clinical research, it is expected to be an effective drug for IRI treatment. In this review, we summarize the current knowledge of the protective effect of puerarin on I/R organ injury and its possible underlying molecular mechanisms.
Collapse
Affiliation(s)
- Minglang Gao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ziyao Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kai Lai
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chuanbing Zhao
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zilong Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Right lung transplantation with a left-to-right inverted anastomosis in a rat model. JTCVS OPEN 2022; 10:429-439. [PMID: 36004231 PMCID: PMC9390618 DOI: 10.1016/j.xjon.2022.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/13/2022] [Indexed: 12/02/2022]
Abstract
Objective Right lung transplantation in rats has been attempted occasionally, but the technical complexity makes it challenging to apply routinely. Additionally, basic research on inverted lobar lung transplantation is scarce because of the lack of a cost-effective experimental model. We first reported right lung transplantation in a rat model using left-to-right inverted anastomosis to imitate the principle of clinically inverted lung transplantation. Methods Right lung transplantation was performed in 10 consecutive rats. By using a 3-cuff technique, the left lung of the donor rat was implanted into the right thoracic cavity of the recipient rat. The rat lung graft was rotated 180° along the vertical axis to achieve anatomic matching of right hilar structures. Another 10 consecutive rats had received orthotopic left lung transplantation as a control. Results All lung transplantation procedures were technically successful without intraoperative failure. One rat (10%) died of full pulmonary atelectasis after right lung transplantation, whereas all rats survived after left lung transplantation. No significant difference was observed in heart-lung block retrieval (8.6 ± 0.8 vs 8.4 ± 0.9 minutes), cuff preparation (8.3 ± 0.9 vs 8.7 ± 0.9 minutes), or total procedure time (58.2 ± 2.6 vs 56.6 ± 2.1 minutes) between the right lung transplantation and standard left lung transplantation groups (P > .05), although the cold ischemia time (14.2 ± 0.9 vs 25.5 ± 1.7 minutes) and warm ischemia time (19.8 ± 1.5 vs 13.7 ± 1.8 minutes) were different (P < .001). Conclusions Right lung transplantation with a left-to-right inverted anastomosis in a rat model is technically easy to master, expeditious, and reproducible. It can potentially imitate the principle of clinically inverted lung transplantation and become an alternative to standard left lung transplantation.
Collapse
|
15
|
Rozenberg D, Meade MO. Calcineurin Inhibitors in Lung Donors to Attenuate Ischemia Reperfusion Injury in Recipients: Next Steps? Am J Respir Crit Care Med 2022; 206:528-530. [PMID: 35580064 DOI: 10.1164/rccm.202205-0840ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Dmitry Rozenberg
- Toronto General Hospital, Medicine, Respirology , Toronto, Ontario, Canada.,University of Toronto, 7938, University Health Network, Toronto, Ontario, Canada;
| | - Maureen O Meade
- McMaster University, 3710, Clinical Epidemiology & Biostatistics, Hamilton, Ontario, Canada
| |
Collapse
|
16
|
Kalka K, Keldenich Z, Carstens H, Walter B, Rauen U, Ruhparwar A, Weymann A, Kamler M, Reiner G, Koch A. Custodiol-MP for ex vivo lung perfusion - A comparison in a porcine model of donation after circulatory determination of death. Int J Artif Organs 2022; 45:162-173. [PMID: 33530837 PMCID: PMC8777315 DOI: 10.1177/0391398821990663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/07/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Ex vivo lung perfusion (EVLP) is an established technique to evaluate and eventually recondition lungs prior to transplantation. Custodiol-MP (C-MP) solution is a new solution, designed for clinical machine perfusion, that has been used for kidneys. The aim of this study was to compare the effects of EVLP with Custodiol-MP on lung functional outcomes to the gold standard of EVLP with Steen Solution™. MATERIAL AND METHODS In a porcine EVLP model of DCDD (Donation after Circulatory Determination of Death), lungs were perfused with Steen Solution™ (SS, n = 7) or Custodiol-MP solution supplemented with 55 g/l albumin (C-MP, n = 8). Lungs were stored cold for 4 h in low potassium dextran solution and subsequently perfused ex vivo for 4 h. During EVLP pulmonary gas exchange, activities of lactate dehydrogenase (LDH) and alkaline phosphatase (AP) as well as levels of lactate in the perfusate were recorded hourly. RESULTS Oxygenation capacity differed significantly between groups (averaged over 4 h: SS 274 ± 178 mmHg; C-MP 284 ± 151 mmHg p = 0.025). Lactate dehydrogenase activities and lactate concentrations were significantly lower in Custodiol-MP perfused lungs.In a porcine model of DCDD with 4 h of EVLP the use of modified Custodiol-MP as perfusion solution was feasible. The use of C-MP showed at least comparable lung functional outcomes to the use of Steen SolutionTM. Furthermore C-MP perfusion resulted in significantly lower lactate dehydrogenase activity and lactate levels in the perfusate and higher oxygenation capacity.
Collapse
Affiliation(s)
- Katharina Kalka
- Department of Thoracic and
Cardiovascular Surgery, Division of Thoracic Transplantation, West German Heart
Center, University Hospital Essen, Essen, Germany
| | - Zoe Keldenich
- Department of Thoracic and
Cardiovascular Surgery, Division of Thoracic Transplantation, West German Heart
Center, University Hospital Essen, Essen, Germany
| | - Henning Carstens
- Department of Cardiothoracic Surgery,
Center of Cardiology, University Hospital Cologne, Cologne, Nordrhein-Westfalen,
Germany
| | - Björn Walter
- Institut für Physiologische Chemie,
Universitätsklinikum Essen, Essen, Nordrhein-Westfalen, Germany
| | - Ursula Rauen
- Institut für Physiologische Chemie,
Universitätsklinikum Essen, Essen, Nordrhein-Westfalen, Germany
| | - Arjang Ruhparwar
- Department of Thoracic and
Cardiovascular Surgery, Division of Thoracic Transplantation, West German Heart
Center, University Hospital Essen, Essen, Germany
| | - Alexander Weymann
- Department of Thoracic and
Cardiovascular Surgery, Division of Thoracic Transplantation, West German Heart
Center, University Hospital Essen, Essen, Germany
| | - Markus Kamler
- Department of Thoracic and
Cardiovascular Surgery, Division of Thoracic Transplantation, West German Heart
Center, University Hospital Essen, Essen, Germany
| | - Gerald Reiner
- Department of Veterinary Clinical
Sciences, Swine Clinic, Justus-Liebig-University, Giessen, Hessen, Germany
| | - Achim Koch
- Department of Thoracic and
Cardiovascular Surgery, Division of Thoracic Transplantation, West German Heart
Center, University Hospital Essen, Essen, Germany
| |
Collapse
|
17
|
Zhang L, Tai Q, Xu G, Gao W. Lipoxin A4 attenuates the lung ischaemia reperfusion injury in rats after lung transplantation. Ann Med 2021; 53:1142-1151. [PMID: 34259112 PMCID: PMC8281088 DOI: 10.1080/07853890.2021.1949488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Lung ischaemia reperfusion injury (LIRI) is the major cause of primary lung dysfunction after lung transplantation. Lipoxin A4 inhibits the oxidative stress and inflammation. This study aimed to evaluate the potential protective effect of lipoxin A4 on LIRI in rats. METHODS SD (Sprague-Dawley) rats were randomised into the sham, LIRI and LA4 groups. Rats in the sham group received anaesthesia, thoracotomy and intravenous injection of saline, while those in the LIRI or LA4 group received left lung transplantation and intravenous injection of saline or lipoxin A4, respectively. After 24 h of reperfusion, the PaO2/FiO2 (Partial pressure of O2 to fraction inspiratory O2), wet/dry weight ratios and protein levels in lungs were measured to assess the alveolar capillary permeability. The oxidative stress response and inflammation were examined. The histological and apoptosis analyses of lung tissues were performed via HE staining (Haematoxylin-eosin staining) and TUNEL assay, respectively. The effects of lipoxin A4 on the endothelial viability and tube formation of hypoxaemia and reoxygenation-challenged rat pulmonary microvascular endothelium cells were determined. RESULTS Lipoxin A4 significantly ameliorated the alveolar capillary permeability, reduced the oxidative stress and inflammation in transplanted lungs. The histological injury and apoptosis of lung tissues were also alleviated by lipoxin A4. In vitro lipoxin A4 treatment promoted the endothelial tube formation and improved the endothelial viability. CONCLUSION Lipoxin A4 protects LIRI after lung transplantation in rats, and its therapeutic effect is associated with the properties of anti-inflammation, anti-oxidation, and endothelium protection.Key messages:Lung transplantation is a treatment approach for the patients with lung disease.LIRI is the major cause of postoperative primary lung dysfunction.Lipoxins A4 exhibits strong anti-inflammatory properties.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qihang Tai
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangxiao Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
18
|
Oricco S, Boz E, Dravelli G, Rossi C, Papa M, Signorelli S, Gatti L, Gendusa M, Noto F, Caristi D, Bussadori CM. Acute pulmonary edema in a dog with severe pulmonary valve stenosis: A rare complication after balloon valvuloplasty. J Vet Cardiol 2021; 39:1-7. [PMID: 34861639 DOI: 10.1016/j.jvc.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 10/16/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022]
Abstract
Pulmonic stenosis is a frequent congenital heart disease in dogs, and the treatment of choice is balloon valvuloplasty which is usually safe and successful. The authors describe for the first time a severe complication after balloon valvuloplasty in a five-month-old dog. After effective treatment, with a considerable drop in right ventricular pressures, the dog developed hypoxemia and dyspnea due to pulmonary edema. The dog underwent intensive care and symptoms improved after a few hours of oxygen therapy, continuous positive airway pressure, and furosemide. Although this event is rare, it could have a large impact on patient survival and should be considered in the treatment of severe pulmonary valve stenosis in the future.
Collapse
Affiliation(s)
- S Oricco
- Centro Veterinario Imperiese, Via Dott. Augusto Armelio 10, Imperia, 18100, Italy.
| | - E Boz
- Clinica Veterinaria Gran Sasso, Via Donatello, 26, Milano, 20131, Italy
| | - G Dravelli
- Clinica Veterinaria Gran Sasso, Via Donatello, 26, Milano, 20131, Italy
| | - C Rossi
- Clinica Veterinaria Gran Sasso, Via Donatello, 26, Milano, 20131, Italy
| | - M Papa
- Clinica Veterinaria Gran Sasso, Via Donatello, 26, Milano, 20131, Italy
| | - S Signorelli
- Clinica Veterinaria Gran Sasso, Via Donatello, 26, Milano, 20131, Italy
| | - L Gatti
- Clinica Veterinaria Gran Sasso, Via Donatello, 26, Milano, 20131, Italy
| | - M Gendusa
- Clinica Veterinaria Gran Sasso, Via Donatello, 26, Milano, 20131, Italy
| | - F Noto
- Clinica Veterinaria Gran Sasso, Via Donatello, 26, Milano, 20131, Italy
| | - D Caristi
- Clinica Veterinaria Gran Sasso, Via Donatello, 26, Milano, 20131, Italy
| | - C M Bussadori
- Clinica Veterinaria Gran Sasso, Via Donatello, 26, Milano, 20131, Italy
| |
Collapse
|
19
|
Lung Transplantation, Pulmonary Endothelial Inflammation, and Ex-Situ Lung Perfusion: A Review. Cells 2021; 10:cells10061417. [PMID: 34200413 PMCID: PMC8229792 DOI: 10.3390/cells10061417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
Lung transplantation (LTx) is the gold standard treatment for end-stage lung disease; however, waitlist mortality remains high due to a shortage of suitable donor lungs. Organ quality can be compromised by lung ischemic reperfusion injury (LIRI). LIRI causes pulmonary endothelial inflammation and may lead to primary graft dysfunction (PGD). PGD is a significant cause of morbidity and mortality post-LTx. Research into preservation strategies that decrease the risk of LIRI and PGD is needed, and ex-situ lung perfusion (ESLP) is the foremost technological advancement in this field. This review addresses three major topics in the field of LTx: first, we review the clinical manifestation of LIRI post-LTx; second, we discuss the pathophysiology of LIRI that leads to pulmonary endothelial inflammation and PGD; and third, we present the role of ESLP as a therapeutic vehicle to mitigate this physiologic insult, increase the rates of donor organ utilization, and improve patient outcomes.
Collapse
|
20
|
Ischemia-Reperfusion Injury in Lung Transplantation. Cells 2021; 10:cells10061333. [PMID: 34071255 PMCID: PMC8228304 DOI: 10.3390/cells10061333] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 02/08/2023] Open
Abstract
Lung transplantation has been established worldwide as the last treatment for end-stage respiratory failure. However, ischemia–reperfusion injury (IRI) inevitably occurs after lung transplantation. The most severe form of IRI leads to primary graft failure, which is an important cause of morbidity and mortality after lung transplantation. IRI may also induce rejection, which is the main cause of mortality in recipients. Despite advances in donor management and graft preservation, most donor grafts are still unsuitable for transplantation. Although the pulmonary endothelium is the primary target site of IRI, the pathophysiology of lung IRI remains incompletely understood. It is essential to understand the mechanism of pulmonary IRI to improve the outcomes of lung transplantation. Therefore, we reviewed the state-of-the-art in the management of pulmonary IRI after lung transplantation. Recently, the ex vivo lung perfusion (EVLP) system has been clinically introduced worldwide. Various promising therapeutic strategies for the protection of the endothelium against IRI, including EVLP, inhalation therapy with therapeutic gases and substances, fibrinolytic treatment, and mesenchymal stromal cell therapy, are awaiting clinical application. We herein review the latest advances in the field of pulmonary IRI in lung transplantation.
Collapse
|
21
|
Chen-Yoshikawa TF, Fukui T, Nakamura S, Ito T, Kadomatsu Y, Tsubouchi H, Ueno H, Sugiyama T, Goto M, Mori S, Ozeki N, Hakiri S, Kawaguchi K. Current trends in thoracic surgery. NAGOYA JOURNAL OF MEDICAL SCIENCE 2021; 82:161-174. [PMID: 32581397 PMCID: PMC7276403 DOI: 10.18999/nagjms.82.2.161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Thoracic surgery has evolved drastically in recent years. Although thoracic surgeons mainly deal with tumorous lesion in the lungs, mediastinum, and pleura, they also perform lung transplantation surgery in patients with end-stage lung disease. Herein, we introduce various major current topics in thoracic surgery. Minimally invasive surgical procedures include robot-assisted thoracic surgery and uniportal video-assisted thoracic surgery. Novel techniques for sublobar resection include virtual-assisted lung mapping, image-guided video-assisted thoracic surgery, and segmentectomy using indocyanine green. Three-dimensional (3D) computed tomography (CT) simulation consists of surgeon-friendly 3D-CT image analysis systems and new-generation, dynamic 3D-CT imaging systems. Updates in cadaveric lung transplantation include use of marginal donors, including donation after circulatory death, and ex vivo lung perfusion for such donors. Topics in living donor lobar lung transplantation include size matching, donor issues, and new surgical techniques. During routine clinical practice, thoracic surgeons encounter various pivotal topics related to thoracic surgery, which are described in this report.
Collapse
Affiliation(s)
| | - Takayuki Fukui
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shota Nakamura
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshinari Ito
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuka Kadomatsu
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Tsubouchi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Harushi Ueno
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoshi Sugiyama
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaki Goto
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shunsuke Mori
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Ozeki
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shuhei Hakiri
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Kawaguchi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
22
|
The Endothelial Glycocalyx and Organ Preservation-From Physiology to Possible Clinical Implications for Solid Organ Transplantation. Int J Mol Sci 2021; 22:ijms22084019. [PMID: 33924713 PMCID: PMC8070558 DOI: 10.3390/ijms22084019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/14/2023] Open
Abstract
The endothelial glycocalyx is a thin layer consisting of proteoglycans, glycoproteins and glycosaminoglycans that lines the luminal side of vascular endothelial cells. It acts as a barrier and contributes to the maintenance of vascular homeostasis and microperfusion. During solid organ transplantation, the endothelial glycocalyx of the graft is damaged as part of Ischemia Reperfusion Injury (IRI), which is associated with impaired organ function. Although several substances are known to mitigate glycocalyx damage, it has not been possible to use these substances during graft storage on ice. Normothermic machine perfusion (NMP) emerges as an alternative technology for organ preservation and allows for organ evaluation, but also offers the possibility to treat and thus improve organ quality during storage. This review highlights the current knowledge on glycocalyx injury during organ transplantation, presents ways to protect the endothelial glycocalyx and discusses potential glycocalyx protection strategies during normothermic machine perfusion.
Collapse
|
23
|
Comparison of de novo donor-specific antibodies between living and cadaveric lung transplantation. J Heart Lung Transplant 2021; 40:607-613. [PMID: 34078558 DOI: 10.1016/j.healun.2021.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/24/2021] [Accepted: 03/20/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Despite growing interest in donor-specific antibodies (DSAs) and antibody-mediated rejection (AMR) in lung transplantation (LTx), no study evaluating the outcomes in recipients with de novo DSAs (dnDSAs) in living-donor lobar LTx (LDLLT) exists. We compared various characteristics of DSAs in LDLLT with those in cadaveric LTx (CLT) based on prospectively collected data. METHODS Between October 2009 and September 2019, 211 recipients underwent LTx (128 CLTs and 83 LDLLTs). We reviewed 108 CLTs and 74 LDLLTs to determine the characteristics and clinical impact of dnDSAs. Eighteen data-deficient cases, 7 cases with preformed DSAs, and 4 re-transplants were excluded. RESULTS There were significant differences between CLT and LDLLT patients in age, primary disease, ischemic time, and number of human leukocyte antigen mismatches per donor. The dnDSA incidence in LDLLT (6.8%) was significantly lower than that in CLT (19.4%, p = 0.02). The dnDSAs appeared later in LDLLT (mean 1,256 days) than in CLT (mean 196 days, p = 0.003). According to Cox models analyzed using dnDSA as a time-dependent covariate, dnDSA positivity was significantly associated with a poor overall survival (OS; hazard ratio [HR] 3.46, 95% confidence interval [CI] 1.59-7.57, p = 0.002) and poor CLAD-free survival in case of CLT (HR: 2.23, 95% CI: 1.08-4.63, p = 0.003). However, no such significant associations were noted in case of LDLLT. CONCLUSIONS The dnDSA occurrence was significantly lower and later in LDLLT than in CLT. Furthermore, dnDSA-positivity was significantly associated with worse OS and CLAD-free survival after CLT but not after LDLLT.
Collapse
|
24
|
Protective effect of necrosulfonamide on rat pulmonary ischemia-reperfusion injury via inhibition of necroptosis. J Thorac Cardiovasc Surg 2021; 163:e113-e122. [PMID: 33612303 DOI: 10.1016/j.jtcvs.2021.01.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/22/2020] [Accepted: 01/10/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Necroptosis plays an important role in cell death during pulmonary ischemia-reperfusion injury (IRI). We hypothesized that therapy with necrosulfonamide (NSA), a mixed-lineage kinase domain-like protein inhibitor, would attenuate lung IRI. METHODS Rats were assigned at random into the sham operation group (n = 6), vehicle group (n = 8), or NSA group (n = 8). In the NSA and vehicle groups, the animals were heparinized and underwent left thoracotomy, and the left hilum was clamped for 90 minutes, followed by reperfusion for 120 minutes. NSA (0.5 mg/body) and a solvent were administered i.p. in the NSA group and the vehicle group, respectively. The sham group underwent 210 minutes of perfusion without ischemia. After reperfusion, arterial blood gas analysis, physiologic data, lung wet-to-dry weight ratio, histologic changes, and cytokine levels were assessed. Fluorescence double immunostaining was performed to evaluate necroptosis and apoptosis. RESULTS Arterial partial pressure of oxygen/fraction of inspired oxygen (PaO2/FiO2) was better, dynamic compliance was higher, and mean airway pressure and lung edema were lower in the NSA group compared with the vehicle group. Moreover, in the NSA group, lung injury was significantly alleviated, and the mean number of necroptotic cells (55.3 ± 4.06 vs 78.2 ± 6.87; P = .024), but not of apoptotic cells (P = .084), was significantly reduced compared with the vehicle group. Interleukin (IL)-1β and IL-6 levels were significantly lower with NSA administration. CONCLUSIONS In a rat model, our results suggest that NSA may have a potential protective role in lung IRI through the inhibition of necroptosis.
Collapse
|
25
|
Miceli V, Bertani A, Chinnici CM, Bulati M, Pampalone M, Amico G, Carcione C, Schmelzer E, Gerlach JC, Conaldi PG. Conditioned Medium from Human Amnion-Derived Mesenchymal Stromal/Stem Cells Attenuating the Effects of Cold Ischemia-Reperfusion Injury in an In Vitro Model Using Human Alveolar Epithelial Cells. Int J Mol Sci 2021; 22:510. [PMID: 33419219 PMCID: PMC7825633 DOI: 10.3390/ijms22020510] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
The clinical results of lung transplantation (LTx) are still less favorable than other solid organ transplants in both the early and long term. The fragility of the lungs limits the procurement rate and can favor the occurrence of ischemia-reperfusion injury (IRI). Ex vivo lung perfusion (EVLP) with Steen SolutionTM (SS) aims to address problems, and the implementation of EVLP to alleviate the activation of IRI-mediated processes has been achieved using mesenchymal stromal/stem cell (MSC)-based treatments. In this study, we investigated the paracrine effects of human amnion-derived MSCs (hAMSCs) in an in vitro model of lung IRI that includes cold ischemia and normothermic EVLP. We found that SS enriched by a hAMSC-conditioned medium (hAMSC-CM) preserved the viability and delayed the apoptosis of alveolar epithelial cells (A549) through the downregulation of inflammatory factors and the upregulation of antiapoptotic factors. These effects were more evident using the CM of 3D hAMSC cultures, which contained an increased amount of immunosuppressive and growth factors compared to both 2D cultures and encapsulated-hAMSCs. To conclude, we demonstrated an in vitro model of lung IRI and provided evidence that a hAMSC-CM attenuated IRI effects by improving the efficacy of EVLP, leading to strategies for a potential implementation of this technique.
Collapse
Affiliation(s)
- Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (P.G.C.)
| | - Alessandro Bertani
- Thoracic Surgery and Lung Transplantation Unit, Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, 90127 Palermo, Italy;
| | - Cinzia Maria Chinnici
- Regenerative Medicine Unit, Fondazione Ri.MED, 90127 Palermo, Italy; (C.M.C.); (M.P.); (G.A.); (C.C.)
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS–ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Matteo Bulati
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (P.G.C.)
| | - Mariangela Pampalone
- Regenerative Medicine Unit, Fondazione Ri.MED, 90127 Palermo, Italy; (C.M.C.); (M.P.); (G.A.); (C.C.)
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS–ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Giandomenico Amico
- Regenerative Medicine Unit, Fondazione Ri.MED, 90127 Palermo, Italy; (C.M.C.); (M.P.); (G.A.); (C.C.)
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS–ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Claudia Carcione
- Regenerative Medicine Unit, Fondazione Ri.MED, 90127 Palermo, Italy; (C.M.C.); (M.P.); (G.A.); (C.C.)
| | - Eva Schmelzer
- Department of Surgery, School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219-3130, USA; (E.S.); (J.C.G.)
| | - Jörg C. Gerlach
- Department of Surgery, School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219-3130, USA; (E.S.); (J.C.G.)
- Department of Bioengineering, School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219-3130, USA
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (P.G.C.)
| |
Collapse
|
26
|
Wang L, Chen B, Xiong X, Chen S, Jin L, Zhu M. Necrostatin-1 Synergizes the Pan Caspase Inhibitor to Attenuate Lung Injury Induced by Ischemia Reperfusion in Rats. Mediators Inflamm 2020; 2020:7059304. [PMID: 33162831 PMCID: PMC7604602 DOI: 10.1155/2020/7059304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/25/2020] [Accepted: 10/08/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Both apoptosis and necroptosis have been recognized to be involved in ischemia reperfusion-induced lung injury. We aimed to compare the efficacies of therapies targeting necroptosis and apoptosis and to determine if there is a synergistic effect between the two therapies in reducing lung ischemia reperfusion injury. METHODS Forty Sprague-Dawley rats were randomized into 5 groups: sham (SM) group, ischemia reperfusion (IR) group, necrostatin-1+ischemia reperfusion (NI) group, carbobenzoxy-Val-Ala-Asp-fluoromethylketone+ischemia reperfusion (ZI) group, and necrostatin-1+carbobenzoxy-Val-Ala-Asp-fluoromethylketone+ischemia reperfusion (NZ) group. The left lung hilum was exposed without being clamped in rats from the SM group, whereas the rats were subjected to lung ischemia reperfusion by clamping the left lung hilum for 1 hour, followed by reperfusion for 3 hours in the IR group. 1 mg/kg necrostatin-1 (Nec-1: a specific necroptosis inhibitor) and 3 mg/kg carbobenzoxy-Val-Ala-Asp-fluoromethylketone (z-VAD-fmk: a pan caspase inhibitor) were intraperitoneally administrated prior to ischemia in NI and ZI groups, respectively, and the rats received combined administration of Nec-1 and z-VAD-fmk in the NZ group. Upon reperfusion, expressions of receptor-interacting protein 1 (RIP1), receptor-interacting protein 3 (RIP3), and caspase-8 were measured, and the flow cytometry analysis was used to assess the cell death patterns in the lung tissue. Moreover, inflammatory marker levels in the bronchoalveolar lavage fluid and pulmonary edema were evaluated. RESULTS Both Nec-1 and z-VAD-fmk, either alone or in combination, significantly reduced morphological damage, inflammatory markers, and edema in lung tissues following reperfusion, and cotreatment of z-VAD-fmk with Nec-1 produced the optimal effect. The rats treated with Nec-1 had lower levels of inflammatory markers in the bronchoalveolar lavage fluid than those receiving z-VAD-fmk alone (P < 0.05). Interestingly, the z-VAD-fmk administration upregulated RIP1 and RIP3 expressions in the lung tissue from the ZI group compared to those in the IR group (P < 0.05). Reperfusion significantly increased the percentages of necrotic and apoptotic cells in lung tissue single-cell suspension, which could be decreased by Nec-1 and z-VAD-fmk, respectively (P < 0.05). CONCLUSIONS Nec-1 synergizes the pan caspase inhibitor to attenuate lung ischemia reperfusion injury in rats. Our data support the potential use of Nec-1 in lung transplantation-related disorders.
Collapse
Affiliation(s)
- Liangrong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Baihui Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiangqing Xiong
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Shunli Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lida Jin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Meizhen Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
27
|
Yang YY, Lin CJ, Wang CC, Chen CM, Kao WJ, Chen YH. Consecutive Hypoxia Decreases Expression of NOTCH3, HEY1, CC10, and FOXJ1 via NKX2-1 Downregulation and Intermittent Hypoxia-Reoxygenation Increases Expression of BMP4, NOTCH1, MKI67, OCT4, and MUC5AC via HIF1A Upregulation in Human Bronchial Epithelial Cells. Front Cell Dev Biol 2020; 8:572276. [PMID: 33015064 PMCID: PMC7500169 DOI: 10.3389/fcell.2020.572276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/17/2020] [Indexed: 01/11/2023] Open
Abstract
Previous studies have shown that the experimental models of hypoxia-reoxygenation (H/R) mimics the physiological conditions of ischemia-reperfusion and induce oxidative stress and injury in various types of organs, tissues, and cells, both in vivo and in vitro, including human lung adenocarcinoma epithelial cells. Nonetheless, it had not been reported whether H/R affected proliferation, apoptosis, and expression of stem/progenitor cell markers in the bronchial epithelial cells. In this study, we investigated differential effects of consecutive hypoxia and intermittent 24/24-h cycles of H/R on human bronchial epithelial (HBE) cells derived from the same-race and age-matched healthy subjects (i.e., NHBE) and subjects with chronic obstructive pulmonary disease (COPD) (i.e., DHBE). To analyze gene/protein expression during differentiation, both the NHBE and DHBE cells at the 2nd passage were cultured at the air-liquid interface (ALI) in the differentiation medium under normoxia for 3 days, followed by either culturing under hypoxia (1% O2) for consecutively 9 days and then returning to normoxia for another 9 days, or culturing under 24/24-h cycles of H/R (i.e., 24 h of 1% O2 followed by 24 h of 21% O2, repetitively) for 18 days in total, so that all differentiating HBE cells were exposed to hypoxia for a total of 9 days. In both the normal and diseased HBE cells, intermittent H/R significantly increased HIF1A, BMP4, NOTCH1, MKI67, OCT4, and MUC5AC expression, while consecutive hypoxia significantly decreased NKX2-1, NOTCH3, HEY1, CC10, and FOXJ1 expression. Inhibition of HIF1A or NKX2-1 expression by siRNA transfection respectively decreased BMP4/NOTCH1/MKI67/OCT4/MUC5AC and NOTCH3/HEY1/CC10/FOXJ1 expression in the HBE cells cultured under intermittent H/R to the same levels under normoxia. Overexpression of NKX2-1 via cDNA transfection caused more than 2.8-fold increases in NOTCH3, HEY1, and FOXJ1 mRNA levels in the HBE cells cultured under consecutive hypoxia compared to the levels under normoxia. Taken together, our results show for the first time that consecutive hypoxia decreased expression of the co-regulated gene module NOTCH3/HEY1/CC10 and the ciliogenesis-inducing transcription factor gene FOXJ1 via NKX2-1 mRNA downregulation, while intermittent H/R increased expression of the co-regulated gene module BMP4/NOTCH1/MKI67/OCT4 and the predominant airway mucin gene MUC5AC via HIF1A mRNA upregulation.
Collapse
Affiliation(s)
- Yung-Yu Yang
- Department of General Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chao-Ju Lin
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Chin Wang
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan.,Section of Respiratory Therapy, Rueifang Miner Hospital, New Taipei City, Taiwan
| | - Chieh-Min Chen
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Jen Kao
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Hui Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
28
|
Jin Z, Hana Z, Alam A, Rajalingam S, Abayalingam M, Wang Z, Ma D. Review 1: Lung transplant-from donor selection to graft preparation. J Anesth 2020; 34:561-574. [PMID: 32476043 PMCID: PMC7261511 DOI: 10.1007/s00540-020-02800-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 05/17/2020] [Indexed: 12/16/2022]
Abstract
For various end-stage lung diseases, lung transplantation remains one of the only viable treatment options. While the demand for lung transplantation has steadily risen over the last few decades, the availability of donor grafts is limited, which have resulted in progressively longer waiting lists. In the early years of lung transplantation, only the 'ideal' donor grafts are considered for transplantation. Due to the donor shortages, there is ongoing discussion about the safe use of 'suboptimal' grafts to expand the donor pool. In this review, we will discuss the considerations around donor selection, donor-recipient matching, graft preparation and graft optimisation.
Collapse
Affiliation(s)
- Zhaosheng Jin
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Zac Hana
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Azeem Alam
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Shamala Rajalingam
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Mayavan Abayalingam
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Zhiping Wang
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK.
| |
Collapse
|
29
|
Cienfuegos-Pecina E, Ibarra-Rivera TR, Saucedo AL, Ramírez-Martínez LA, Esquivel-Figueroa D, Domínguez-Vázquez I, Alcántara-Solano KJ, Moreno-Peña DP, Alarcon-Galvan G, Rodríguez-Rodríguez DR, Torres-González L, Muñoz-Espinosa LE, Pérez-Rodríguez E, Cordero-Pérez P. Effect of sodium ( S)-2-hydroxyglutarate in male, and succinic acid in female Wistar rats against renal ischemia-reperfusion injury, suggesting a role of the HIF-1 pathway. PeerJ 2020; 8:e9438. [PMID: 32728491 PMCID: PMC7357568 DOI: 10.7717/peerj.9438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/08/2020] [Indexed: 12/30/2022] Open
Abstract
Background Ischemia–reperfusion (IR) injury is the main cause of delayed graft function in solid organ transplantation. Hypoxia-inducible factors (HIFs) control the expression of genes related to preconditioning against IR injury. During normoxia, HIF-α subunits are marked for degradation by the egg-laying defective nine homolog (EGLN) family of prolyl-4-hydroxylases. The inhibition of EGLN stabilizes HIFs and protects against IR injury. The aim of this study was to determine whether the EGLN inhibitors sodium (S)-2-hydroxyglutarate [(S)-2HG] and succinic acid (SA) have a nephroprotective effect against renal IR injury in Wistar rats. Methods (S)-2HG was synthesized in a 22.96% yield from commercially available L-glutamic acid in a two-step methodology (diazotization/alkaline hydrolysis), and its structure was confirmed by nuclear magnetic resonance and polarimetry. SA was acquired commercially. (S)-2HG and SA were independently evaluated in male and female Wistar rats respectively after renal IR injury. Rats were divided into the following groups: sham (SH), nontoxicity [(S)-2HG: 12.5 or 25 mg/kg; SA: 12.5, 25, or 50 mg/kg], IR, and compound+IR [(S)-2HG: 12.5 or 25 mg/kg; SA: 12.5, 25, or 50 mg/kg]; independent SH and IR groups were used for each assessed compound. Markers of kidney injury (BUN, creatinine, glucose, and uric acid) and liver function (ALT, AST, ALP, LDH, serum proteins, and albumin), proinflammatory cytokines (IL-1β, IL-6, and TNF-α), oxidative stress biomarkers (malondialdehyde and superoxide dismutase), and histological parameters (tubular necrosis, acidophilic casts, and vascular congestion) were assessed. Tissue HIF-1α was measured by ELISA and Western blot, and the expression of Hmox1 was assessed by RT-qPCR. Results (S)-2HG had a dose-dependent nephroprotective effect, as evidenced by a significant reduction in the changes in the BUN, creatinine, ALP, AST, and LDH levels compared with the IR group. Tissue HIF-1α was only increased in the IR group compared to SH; however, (S)-2HG caused a significant increase in the expression of Hmox1, suggesting an early accumulation of HIF-1α in the (S)-2HG-treated groups. There were no significant effects on the other biomarkers. SA did not show a nephroprotective effect; the only changes were a decrease in creatinine level at 12.5 mg/kg and increased IR injury at 50 mg/kg. There were no effects on the other biochemical, proinflammatory, or oxidative stress biomarkers. Conclusion None of the compounds were hepatotoxic at the tested doses. (S)-2HG showed a dose-dependent nephroprotective effect at the evaluated doses, which involved an increase in the expression of Hmox1, suggesting stabilization of HIF-1α. SA did not show a nephroprotective effect but tended to increase IR injury when given at high doses.
Collapse
Affiliation(s)
- Eduardo Cienfuegos-Pecina
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Tannya R Ibarra-Rivera
- Universidad Autonoma de Nuevo Leon, Department of Analytical Chemistry, School of Medicine, Monterrey, Nuevo León, Mexico
| | - Alma L Saucedo
- Universidad Autonoma de Nuevo Leon, Department of Analytical Chemistry, School of Medicine, Monterrey, Nuevo León, Mexico
| | - Luis A Ramírez-Martínez
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Deanna Esquivel-Figueroa
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Ixel Domínguez-Vázquez
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Karina J Alcántara-Solano
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Diana P Moreno-Peña
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Gabriela Alarcon-Galvan
- Universidad de Monterrey, Basic Science Department, School of Medicine, Monterrey, Nuevo León, Mexico
| | - Diana Raquel Rodríguez-Rodríguez
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Liliana Torres-González
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Linda E Muñoz-Espinosa
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Edelmiro Pérez-Rodríguez
- Universidad Autonoma de Nuevo Leon, Transplant Service, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Paula Cordero-Pérez
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| |
Collapse
|
30
|
Ozeki N, Chen-Yoshikawa TF. Commentary: Constant dripping wears a stone away. J Thorac Cardiovasc Surg 2020; 162:e159-e160. [PMID: 32690414 DOI: 10.1016/j.jtcvs.2020.04.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 11/18/2022]
Affiliation(s)
- Naoki Ozeki
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | |
Collapse
|
31
|
Kayawake H, Chen-Yoshikawa TF, Saito M, Yamagishi H, Yoshizawa A, Hirano SI, Kurokawa R, Date H. Protective Effects of a Hydrogen-Rich Preservation Solution in a Canine Lung Transplantation Model. Ann Thorac Surg 2020; 111:246-252. [PMID: 32649946 DOI: 10.1016/j.athoracsur.2020.05.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/17/2020] [Accepted: 05/11/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Molecular hydrogen (H2) has protective effects against ischemia-reperfusion injury in various organs. Because they are easier to transport and safer to use than inhaled H2, H2-rich solutions are suitable for organ preservation. In this study, we examined the protective effects of an H2-rich solution for lung preservation in a canine left lung transplantation (LTx) model. METHODS Ten beagles underwent orthotopic left LTx after 23 hours of cold ischemia followed by reperfusion for 4 hours. Forty-five minutes after reperfusion, the right main pulmonary artery was clamped to evaluate the function of the implanted graft. The beagles were divided into two groups: control group (n = 5), and H2 group (n = 5). In the control group, the donor lungs were flushed and immersed during cold preservation at 4°C using ET-Kyoto solution, and in the H2 group, these were flushed and immersed using H2-rich ET-Kyoto solution. Physiologic assessments were performed during reperfusion. After reperfusion, the wet-to-dry ratios were determined, and histology examinations were performed. RESULTS Significantly higher partial pressure of arterial oxygen and significantly lower partial pressure of carbon dioxide were observed in the H2 group than in the control group (P = .045 and P < .001, respectively). The wet-to-dry ratio was significantly lower in the H2 group than in the control group (P = .032). Moreover, in histology examination, less lung injury and fewer apoptotic cells were observed in the H2 group (P < .001 and P < .001, respectively). CONCLUSIONS Our results demonstrated that the H2-rich preservation solution attenuated ischemia-reperfusion injury in a canine left LTx model.
Collapse
Affiliation(s)
- Hidenao Kayawake
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Masao Saito
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Thoracic Surgery, Shimada Municipal Hospital, Shimada, Japan
| | - Hiroya Yamagishi
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiko Yoshizawa
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | | | | | - Hiroshi Date
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
32
|
Buchko MT, Stewart CJ, Hatami S, Himmat S, Freed DH, Nagendran J. Total parenteral nutrition in ex vivo lung perfusion: Addressing metabolism improves both inflammation and oxygenation. Am J Transplant 2019; 19:3390-3397. [PMID: 31420938 DOI: 10.1111/ajt.15572] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/15/2019] [Accepted: 08/04/2019] [Indexed: 01/25/2023]
Abstract
Ex vivo lung perfusion (EVLP) protocols generally limit metabolic supplementation to insulin and glucose. We sought to determine whether the addition of total parenteral nutrition (TPN) would improve lung function in EVLP. Ten porcine lungs were perfused using EVLP for 24 hours and supplemented with insulin and glucose. In the treatment group (n = 5), the perfusate was also supplemented with a continuous infusion of TPN containing lipids, amino acids, essential vitamins, and cofactors. Physiologic parameters and perfusate electrolytes were continuously evaluated. Perfusate lactate, lipid and branch chain amino acid (BCAA) concentrations were also analyzed to elucidate how substrates were being utilized over time. Lungs in the TPN group exhibited significantly better oxygenation. Perfusate sodium was more stable in the TPN group. In the control group, free fatty acids (FFA) were quickly depleted, reaching negligible levels early in the perfusion. Alternatively, BCAA in the control group rose continually over the perfusion demonstrating a shift toward proteolysis for energy substrate. In the TPN group, both FFA and BCAA concentrations remained stable at in vivo levels after initial stabilization. TNF-α concentrations were lower in the TPN group. The addition of TPN in EVLP allows for better electrolyte composition, decreased inflammation, and improved graft performance.
Collapse
Affiliation(s)
- Max T Buchko
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, AB, Canada.,Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - Catherine J Stewart
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Sanaz Hatami
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Sayed Himmat
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Darren H Freed
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, AB, Canada.,Mazankowski Alberta Heart Institute, Edmonton, AB, Canada.,Alberta Transplant Institute, Edmonton, AB, Canada.,Canadian National Transplant Research Program, Edmonton, AB, Canada
| | - Jayan Nagendran
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, AB, Canada.,Mazankowski Alberta Heart Institute, Edmonton, AB, Canada.,Alberta Transplant Institute, Edmonton, AB, Canada.,Canadian National Transplant Research Program, Edmonton, AB, Canada
| |
Collapse
|
33
|
Chen-Yoshikawa TF, Nakajima D. Commentary: Development of a new concept is achieved only step-by-step. J Thorac Cardiovasc Surg 2019; 159:1656-1657. [PMID: 31677886 DOI: 10.1016/j.jtcvs.2019.09.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 11/17/2022]
Affiliation(s)
| | - Daisuke Nakajima
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
34
|
Goldberg H. Maximising lung procurement in a changing transplant landscape. THE LANCET RESPIRATORY MEDICINE 2019; 7:925-926. [DOI: 10.1016/s2213-2600(19)30245-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022]
|
35
|
Saito M, Chen-Yoshikawa TF, Takahashi M, Kayawake H, Yokoyama Y, Kurokawa R, Hirano SI, Date H. Protective effects of a hydrogen-rich solution during cold ischemia in rat lung transplantation. J Thorac Cardiovasc Surg 2019; 159:2110-2118. [PMID: 31780065 DOI: 10.1016/j.jtcvs.2019.09.175] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Molecular hydrogen can reduce the oxidative stress of ischemia-reperfusion injury in various organs for transplantation and potentially improve survival rates in recipients. This study aimed to evaluate the protective effects of a hydrogen-rich preservation solution against ischemia-reperfusion injury after cold ischemia in rat lung transplantation. METHODS Lewis rats were divided into a nontransplant group (n = 3), minimum-ischemia group (n = 3), cold ischemia group (n = 6), and cold ischemia with hydrogen-rich (more than 1.0 ppm) preservation solution group (n = 6). The rats in the nontransplant group underwent simple thoracotomy, and the rats in the remaining 3 groups underwent orthotopic left lung transplantation. The ischemic time was <30 minutes in the minimum-ischemia group and 6 hours in the cold ischemia groups. After 2-hour reperfusion, we evaluated arterial blood gas levels, pulmonary function, lung wet-to-dry weight ratio, and histologic features of the lung tissue. The expression of proinflammatory cytokines was measured using quantitative polymerase chain reaction assays, and 8-hydroxydeoxyguanosine levels were evaluated using enzyme-linked immunosorbent assays. RESULTS When compared with the nontransplant and minimum-ischemia groups, the cold ischemia group had lower dynamic compliance, lower oxygenation levels, and higher wet-to-dry weight ratios. However, these variables were significantly improved in the cold ischemia with hydrogen-rich preservation solution group. This group also had fewer signs of perivascular edema, lower interleukin-1β messenger RNA expression, and lower 8-hydroxydeoxyguanosine levels than the cold ischemia group. CONCLUSIONS The use of a hydrogen-rich preservation solution attenuates ischemia-reperfusion injury in rat lungs during cold ischemia through antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Masao Saito
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Mamoru Takahashi
- Department of Thoracic Surgery, Kyoto Katsura Hospital, Kyoto, Japan
| | - Hidenao Kayawake
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuhei Yokoyama
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
36
|
Zampieri D, Azzollini N, Vuljan S, Pezzuto F, Fiori S, Mister M, Todeschini M, Rodriguez Ordonez PY, Marulli G, Rea F, Calabrese F, Casiraghi F. Vein Suturing Results in Worse Lung Graft Outcomes Compared to the Cuff Method. Eur Surg Res 2019; 60:106-116. [PMID: 31480059 DOI: 10.1159/000501805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 06/28/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND The rat orthotopic lung transplant model is not widely used yet because of the complexity of the procedure, in particular, venous anastomosis. Here, we performed a rat orthotopic lung transplantation using either the suture (ST) or cuff (CT) method for vein anastomosis. OBJECTIVES To compare the vein ST and CT techniques in terms of operative time, success, recipient survival, and early histological outcomes was the objective of this study. METHODS A total of 24 left lung transplants in rats were performed. Twelve syngeneic (Lewis to Lewis) and 12 allogeneic (Brown-Norway to Lewis) lung transplants were performed using either the vein ST or the CT procedure. Arterial and bronchial anastomoses were performed with the CT technique. Graft histological damage was evaluated 3-7 days post-transplant in all rat lungs. RESULTS The surgical success rate was 75% in both the ST and CT groups. Failures related mainly to vein bleeding (n = 2 in the ST group) and thrombosis (n = 1 in the ST group; n = 2 in the CT group). Total ischemia time was longer in the ST group (122 ± 25 min in ST group vs. 83 ± 10 min in CT group, mean ± SD), due to prolonged warm ischemia time (60 ± 12 min in the ST group vs. 21 ± 5 min in the CT group, mean ± SD), reflecting the time required to complete the vein ST procedure. The prolonged warm ischemia time resulted in significantly higher vascular inflammation in syngeneic grafts (2.3 ± 1.2 ST group vs. 0 in the CT group, mean ± SD) and in increased severity of ischemia/reperfusion injury and acute graft rejection (3.6 ± 0.4 in the ST group vs. 2.6 ± 0.4 in the CT group, mean ± SD) in allogeneic lung transplants. CONCLUSIONS The vein ST technique is a more time-consuming procedure than the CT method and the prolonged anastomosis time has a deleterious impact on transplant outcomes. These findings suggest that warm ischemia time - one of the modifiable transplant factors - should be considered a major risk factor in lung transplantation, particularly in the setting of donation after cardiac death.
Collapse
Affiliation(s)
- Davide Zampieri
- Department of Cardiologic, Thoracic Surgery Unit, Thoracic and Vascular Sciences, University of Padua, Padua, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Nadia Azzollini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Stefania Vuljan
- Department of Cardiologic, Thoracic Surgery Unit, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Federica Pezzuto
- Department of Cardiologic, Thoracic Surgery Unit, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Sonia Fiori
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marilena Mister
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marta Todeschini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | | | - Giuseppe Marulli
- Department of Cardiologic, Thoracic Surgery Unit, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Federico Rea
- Department of Cardiologic, Thoracic Surgery Unit, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Fiorella Calabrese
- Department of Cardiologic, Thoracic Surgery Unit, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | | |
Collapse
|
37
|
Mesenchymal stem cell-derived extracellular vesicles improve the molecular phenotype of isolated rat lungs during ischemia/reperfusion injury. J Heart Lung Transplant 2019; 38:1306-1316. [PMID: 31530458 DOI: 10.1016/j.healun.2019.08.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/14/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Lung ischemia/reperfusion (IR) injury contributes to the development of severe complications in patients undergoing transplantation. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) exert beneficial actions comparable to those of MSCs without the risks of the cell-based strategy. This research investigated EV effects during IR injury in isolated rat lungs. METHODS An established model of 180-minutes ex vivo lung perfusion (EVLP) was used. At 60 minutes EVs (n = 5) or saline (n = 5) were administered. Parallel experiments used labeled EVs to determine EV biodistribution (n = 4). Perfusate samples were collected to perform gas analysis and to assess the concentration of nitric oxide (NO), hyaluronan (HA), inflammatory mediators, and leukocytes. Lung biopsies were taken at 180 minutes to evaluate HA, adenosine triphosphate (ATP), gene expression, and histology. RESULTS Compared with untreated lungs, EV-treated organs showed decreased vascular resistance and a rise of perfusate NO metabolites. EVs prevented the reduction in pulmonary ATP caused by IR. Increased medium-high-molecular-weight HA was detected in the perfusate and in the lung tissue of the IR + EV group. Significant differences in cell count on perfusate and tissue samples, together with induction of transcription and synthesis of chemokines, suggested EV-dependent modulation of leukocyte recruitment. EVs upregulated genes involved in the resolution of inflammation and oxidative stress. Biodistribution analysis showed that EVs were retained in the lung tissue and internalized within pulmonary cells. CONCLUSIONS This study shows multiple novel EV influences on pulmonary energetics, tissue integrity, and gene expression during IR. The use of cell-free therapies during EVLP could constitute a valuable strategy for reconditioning and repair of injured lungs before transplantation.
Collapse
|
38
|
Wei L, Li J, Han Z, Chen Z, Zhang Q. Silencing of lncRNA MALAT1 Prevents Inflammatory Injury after Lung Transplant Ischemia-Reperfusion by Downregulation of IL-8 via p300. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:285-297. [PMID: 31604167 PMCID: PMC6796730 DOI: 10.1016/j.omtn.2019.05.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022]
Abstract
Ischemia-reperfusion injury is a common early complication after lung transplantation. It was reported that long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is involved in ischemia-reperfusion injury and regulates inflammation. This study aimed to explore the role of MALAT1 in inflammatory injury following lung transplant ischemia-reperfusion (LTIR). A LTIR rat model was successfully established, with the expression of MALAT1 and interleukin-8 (IL-8) in lung tissues detected. Then, in vitro loss- and gain-of-function investigations were conducted to evaluate the effect of MALAT1 on pulmonary epithelial cell apoptosis and IL-8 expression. The relationship among MALAT1, p300, and IL-8 was tested. Moreover, a sh-MALAT1-mediated model of LTIR was established in vivo to examine inflammatory injury and chemotaxis infiltration. Both IL-8 and MALAT1 were highly expressed in LTIR. MALAT1 interacted with p300 to regulate the IL-8 expression by recruiting p300. Importantly, silencing of MALAT1 inhibited the chemotaxis of neutrophils by downregulating IL-8 expression via binding to p300. Besides, MALAT1 silencing alleviated the inflammatory injury after LTIR by downregulating IL-8 and inhibiting infiltration and activation of neutrophils. Collectively, these results demonstrated that silencing of MALAT1 ameliorated the inflammatory injury after LTIR by inhibiting chemotaxis of neutrophils through p300-mediated downregulation of IL-8, providing clinical insight for LTIR injury.
Collapse
Affiliation(s)
- Li Wei
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou 450003, P.R. China
| | - Jiwei Li
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou 450003, P.R. China.
| | - Zhijun Han
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou 450003, P.R. China
| | - Zhong Chen
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou 450003, P.R. China
| | - Quan Zhang
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou 450003, P.R. China
| |
Collapse
|
39
|
Voisin MB, Leoni G, Woodfin A, Loumagne L, Patel NS, Di Paola R, Cuzzocrea S, Thiemermann C, Perretti M, Nourshargh S. Neutrophil elastase plays a non-redundant role in remodeling the venular basement membrane and neutrophil diapedesis post-ischemia/reperfusion injury. J Pathol 2019; 248:88-102. [PMID: 30632166 PMCID: PMC6850085 DOI: 10.1002/path.5234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/09/2018] [Accepted: 12/23/2018] [Indexed: 12/20/2022]
Abstract
Ischemia/reperfusion (I/R) injury is a severe inflammatory insult associated with numerous pathologies, such as myocardial infarction, stroke and acute kidney injury. I/R injury is characterized by a rapid influx of activated neutrophils secreting toxic free radical species and degrading enzymes that can irreversibly damage the tissue, thus impairing organ functions. Significant efforts have been invested in identifying therapeutic targets to suppress neutrophil recruitment and activation post‐I/R injury. In this context, pharmacological targeting of neutrophil elastase (NE) has shown promising anti‐inflammatory efficacy in a number of experimental and clinical settings of I/R injury and is considered a plausible clinical strategy for organ care. However, the mechanisms of action of NE, and hence its inhibitors, in this process are not fully understood. Here we conducted a comprehensive analysis of the impact of NE genetic deletion on neutrophil infiltration in four murine models of I/R injury as induced in the heart, kidneys, intestine and cremaster muscle. In all models, neutrophil migration into ischemic regions was significantly suppressed in NE−/− mice as compared with wild‐type controls. Analysis of inflamed cremaster muscle and mesenteric microvessels by intravital and confocal microscopy revealed a selective entrapment of neutrophils within venular walls, most notably at the level of the venular basement membrane (BM) following NE deletion/pharmacological blockade. This effect was associated with the suppression of NE‐mediated remodeling of the low matrix protein expressing regions within the venular BM used by transmigrating neutrophils as exit portals. Furthermore, whilst NE deficiency led to reduced neutrophil activation and vascular leakage, levels of monocytes and prohealing M2 macrophages were reduced in tissues of NE−/− mice subjected to I/R. Collectively our results identify a vital and non‐redundant role for NE in supporting neutrophil breaching of the venular BM post‐I/R injury but also suggest a protective role for NE in promoting tissue repair. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Mathieu-Benoit Voisin
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Giovanna Leoni
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilian University (LMU), Munich, Germany
| | - Abigail Woodfin
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Laure Loumagne
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nimesh Sa Patel
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Christoph Thiemermann
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sussan Nourshargh
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
40
|
Chen-Yoshikawa TF. Commentary: Promising future solution for unmet needs in lung transplantation. J Thorac Cardiovasc Surg 2019; 157:2107-2108. [PMID: 30709667 DOI: 10.1016/j.jtcvs.2018.12.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 10/27/2022]
|
41
|
Mesenchymal stromal cells-derived exosomes alleviate ischemia/reperfusion injury in mouse lung by transporting anti-apoptotic miR-21-5p. Eur J Pharmacol 2019; 852:68-76. [PMID: 30682335 DOI: 10.1016/j.ejphar.2019.01.022] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/18/2018] [Accepted: 01/22/2019] [Indexed: 12/12/2022]
Abstract
MiR-21-5p is an anti-apoptotic miRNA known to mediate the protective effect of mesenchymal stromal cell-secreted exosomes (MSC-Exo) against oxidative stress-induced cell death. In the present research we employed murine lung ischemia/reperfusion (I/R) model and in vitro hypoxia/reoxygenation (H/R) model using primary murine pulmonary endothelial cells to investigate whether MSC-Exo could alleviate lung IRI by transporting miR-21-5p. Our data suggested that intratracheal administration of MSC-Exo or miR-21-5p agomir significantly reduced lung edema and dysfunction, M1 polarization of alveolar macrophages as well as secretion of HMGB1, IL-8, IL-1β, IL-6, IL-17 and TNF-α. Pre-challenge of MSCs by H/R significant increased miR-21-5p expression level in exosomes they secreted and the anti-IRI effect of these MSC-Exo, while pre-treatment of MSCs with miR-21-5p antagomir showed opposite effect. We further demonstrated that MSC-Exo ameliorated IRI in vivo or H/R induced apoptosis in vitro by inhibiting both intrinsic and extrinsic apoptosis pathway via miR-21-5p targeting PTEN and PDCD4, while artificial overexpressing PTEN or PDCD4 significantly attenuated the anti-apoptotic effect of MSC-Exo in vitro. Treatment with miR-21-5p agomir mimicked the IRI-reducing and anti-apoptotic effect of MSC-Exo. Our data suggested that MSC-Exo alleviate IRI in lung in an exosomal miR-21-5p-dependent manner. Treatment with MSC-Exo or miR-21-5p agomir might ameliorate IRI in lung.
Collapse
|
42
|
Beller JP, Hawkins RB, Mehaffey JH, Chancellor WZ, Teaster R, Walters DM, Krupnick AS, Davis RD, Lau CL. Poor Performance Flagging Is Associated With Fewer Transplantations at Centers Flagged Multiple Times. Ann Thorac Surg 2019; 107:1678-1682. [PMID: 30629928 DOI: 10.1016/j.athoracsur.2018.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Lung transplantation outcomes are heavily scrutinized, given the high stakes of these operations, yet the Center for Medicare and Medicaid Services (CMS) method of using Scientific Registry of Transplant Recipients (SRTR) risk-adjusted outcomes to identify underperforming centers is controversial. We hypothesized that CMS flagging results in conservative behavior for recipient and organ selection, resulting in fewer patients added to the waitlist and fewer transplantations performed. METHODS SRTR reports from July 2012 through July 2017 were included. Center characteristics were compared, stratified by number of flagging events. The impact of flagging for underperformance on risk aversion outcomes was analyzed using a mixed-effects regression model. RESULTS A total of 72 centers had reported SRTR data during the study period. Of these, 21 centers (29%) met flagging criteria a median of 2 times (interquartile range, 1 to 4 times) for a total of 53 events. Flagging had no statistically significant impact on waitlist or transplantation volume and patient selection by mixed-effects modeling. Despite similar average expected 1-year survival (86.6% versus 87.7%, p = 0.27), centers that were flagged only once added more patients per year to the waitlist (16.3 patients versus 7.8 patients, p = 0.01) and performed more transplantations per year (28.4 transplantations versus 11.1 transplantations, p = 0.01). CONCLUSIONS This analysis defines center-level trends in lung transplantation after CMS flagging. Contrary to our primary hypothesis, flagging did not result in temporal center-level changes. However, programs on prolonged probation demonstrated reduced activity, which likely indicates a shift to higher performing centers.
Collapse
Affiliation(s)
- Jared P Beller
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Robert B Hawkins
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - J Hunter Mehaffey
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - William Z Chancellor
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Robert Teaster
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Dustin M Walters
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Alexander S Krupnick
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - R Duane Davis
- Cardiovascular and Transplant Institutes, Florida Hospital Orlando, Orlando, Florida
| | - Christine L Lau
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
43
|
Pirfenidone alleviates lung ischemia-reperfusion injury in a rat model. J Thorac Cardiovasc Surg 2018; 158:289-296. [PMID: 30385019 DOI: 10.1016/j.jtcvs.2018.08.098] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Lung ischemia-reperfusion injury is among the complications seen after lung transplantation, resulting in morbidity and mortality. Pirfenidone, an antifibrotic agent for the treatment of idiopathic pulmonary fibrosis, is reported to have cytoprotective properties in various disease models. The purpose of this study was to investigate the effect of pirfenidone on lung ischemia-reperfusion injury. METHODS Male Lewis rats (260-290 g) were divided into 3 groups: sham group (n = 5), warm ischemia (WI) group (n = 10), and WI plus pirfenidone (WI+PFD) group (n = 10). The sham group underwent 210 minutes of perfusion without ischemia. The WI and WI+PFD groups underwent 90 minutes of warm ischemia and 120 minutes of reperfusion. In the WI+PFD group, pirfenidone (300 mg/kg) was administered orally by gavage 30 minutes before ischemia. After reperfusion, arterial blood gas analysis, lung mechanics, lung wet-to-dry weight ratio, and histologic findings were obtained. The gene expressions of proinflammatory cytokines in lung tissue were measured by quantitative reverse transcription polymerase chain reaction. RESULTS Compared with the WI group, the WI+PFD group had significantly better dynamic pulmonary compliance (P < .01) and oxygenation levels (P < .05). The wet-to-dry ratio was lower in the WI+PFD group (P < .05). Histologic analysis showed that the WI+PFD group had reduced perivascular edema and neutrophil infiltration. The expression of tumor necrosis factor-α messenger RNA was decreased in the WI+PFD group (P < .05). CONCLUSIONS Our results revealed that in a rat hilar clamp model, pirfenidone alleviated lung ischemia-reperfusion through anti-inflammatory effects.
Collapse
|
44
|
Penehyclidine hydrochloride preconditioning provides pulmonary and systemic protection in a rat model of lung ischaemia reperfusion injury. Eur J Pharmacol 2018; 839:1-11. [PMID: 30201378 DOI: 10.1016/j.ejphar.2018.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 11/23/2022]
Abstract
Penehyclidine hydrochloride (PHC) is a new anticholinergic agent that provides protective effects in experimental models of heart and brain ischaemia as well as reperfusion (I/R) injury. In this study, we tested the hypothesis that PHC can alleviate lung ischaemia-reperfusion injury and improve pulmonary and systemic function in rats. PHC was administered intravenously at various doses (d= 0.1, 0.3, 1, 3 mg/kg) to I/R rats. We used six indicators, including lung function, histologic examination, pulmonary oedema, oxidative stress, inflammatory responses, and apoptosis staining to quantify the pulmonary and systemic protective effects of PHC. Haematoxylin and eosin staining was used for pulmonary histologic examination. The expression of Toll-like receptor (TLR) 4, phospho-inhibitor of NF-κB (p-IκB) and nuclear factor-kappa B (NF-κB) was analysed using western blotting. ELISA was conducted to detect inflammatory mediators. Oxidative stress markers as well as myeloperoxidase (MPO) were determined using an assay kit. PHC preconditioning (with concentrations ranging from 0.3 mg/kg to 3 mg/kg 30 min before the onset of I/R) significantly reduced lung histopathological changes, down regulated TLR4, p-IκB and NF-κB expression, and decreased inflammatory mediators as well as the total number of leukocytes and neutrophils in bronchoalveolar lavage (BAL) fluid and plasma. The lung tissue contents of reactive oxygen species (ROS), malondialdehyde (MDA), and MPO as well as pulmonary oedema formation decreased, while SOD (superoxide dismutase) activity was significantly upregulated. PHC preconditioning (with concentrations ranging from 1 mg/kg to 3 mg/kg) significantly improved the lung function and attenuated the apoptotic rate. The probable mechanism for this finding is the inhibition of proinflammatory mediators via the suppression of reactive oxygen species production and the TLR4/NF-κB signalling pathway.
Collapse
|
45
|
The Anti-inflammatory Effect of Hydrogen on Lung Transplantation Model of Pulmonary Microvascular Endothelial Cells During Cold Storage Period. Transplantation 2018; 102:1253-1261. [DOI: 10.1097/tp.0000000000002276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
46
|
Mast cells participate in allograft rejection: can IL-37 play an inhibitory role? Inflamm Res 2018; 67:747-755. [PMID: 29961151 DOI: 10.1007/s00011-018-1166-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the role of mast cells (MCs) in allograft rejection, eventually inhibited by IL-37. Immune cells including MCs participate in allograft rejection by generating IL-1, IL-33, TNF and other cytokines. METHODS We evaluated allograft rejection on the experience of our experimental data and using the relevant literature. RESULTS MCs are involved in initiation and regulation of innate and adaptive immune responses-pathways. MCs are important pro-inflammatory cells which express high-affinity receptor FceRI and can be activated by IgE and some pro-inflammatory cytokines, such as IL-1 and IL-33. The cross-linkage of high affinity IgE receptor on MCs by antigen ligation has a crucial role in allergy, asthma, anaphylaxis, cancer and allograft rejection. MCs mediate immunity in organ transplant, leading to the activation of allospecific T cells implicated in the rejection and generate pro-inflammatory cytokines/chemokines. IL-1 pro-inflammatory cytokine family members released by MCs mediate allograft rejection and inflammation. IL-37 is also an IL-1 family member generated by macrophage cell line in small amounts, which binds to IL-18Rα and produces an anti-inflammatory effect. IL-37 provokes the inhibition of TLR signaling, TLR-induced mTOR and (MyD88)-mediated responses, suppressing pro-inflammatory IL-1 family members and increasing IL-10. CONCLUSION IL-37 inhibition offers the opportunity to immunologically modulate MCs, by suppressing their production of IL-1 family members and reducing the risk of allograft rejection, resulting as a potential good therapeutic new cytokine. Here, we report the relationship between inflammatory MCs, allograft rejection and pro-inflammatory and anti-inflammatory IL-37.
Collapse
|
47
|
Kisu I, Umene K, Adachi M, Emoto K, Nogami Y, Banno K, Itagaki I, Kawamoto I, Nakagawa T, Narita H, Yoshida A, Tsuchiya H, Ogasawara K, Aoki D. Allowable warm ischemic time and morphological and biochemical changes in uterine ischemia/reperfusion injury in cynomolgus macaque: a basic study for uterus transplantation. Hum Reprod 2018; 32:2026-2035. [PMID: 28938750 DOI: 10.1093/humrep/dex250] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/11/2017] [Indexed: 12/16/2022] Open
Abstract
STUDY QUESTION How long is the allowable warm ischemic time of the uterus and what morphological and biochemical changes are caused by uterine ischemia/reperfusion injury in cynomolgus macaques? SUMMARY ANSWER Warm ischemia in the uterus of cynomolgus macaques is tolerated for up to 4 h and reperfusion after uterine ischemia caused no further morphological and biochemical changes. WHAT IS KNOWN ALREADY Uterus transplantation is a potential option for women with uterine factor infertility. The allowable warm ischemic time and ischemia/reperfusion injury of the uterus in humans and non-human primates is unknown. STUDY DESIGN, SIZE, DURATION This experimental study included 18 female cynomolgus macaques with periodic menstruation. PARTICIPANTS/MATERIALS, SETTING, METHODS Animals were divided into six groups of three monkeys each: a control group and groups with uterine ischemia for 0.5, 1, 2, 4 and 8 h. Biopsies of uterine tissues were performed before blood flow blockage, after each blockage time, and after reperfusion for 3 h. Blood sampling was performed after each blockage time, and after reperfusion for 5, 15 and 30 min for measurement of biochemical data. Resumption of menstruation was monitored after the surgical procedure. Morphological, physiological and biochemical changes after ischemia and reperfusion were evaluated. MAIN RESULTS AND THE ROLE OF CHANCE Mild muscle degeneration and zonal degeneration were observed in all animals subjected to warm ischemia for 4 or 8 h, but there were no marked differences in the appearance of specimens immediately after ischemia and after reperfusion for 3 h in animals subjected to 4 or 8 h of warm ischemia. There were no significant changes in any biochemical parameters at any time point in each group. Periodical menstruation resumed in all animals with warm ischemia up to 4 h, but did not recover in animals with warm ischemia for 8 h with atrophic uteri. LIMITATIONS, REASON FOR CAUTION Warm ischemia in actual transplantation was not exactly mimicked in this study because uteri were not perfused, cooled, transplanted or reanastomosed with vessels. Results in non-human primates cannot always be extrapolated to humans. WIDER IMPLICATIONS OF THE FINDINGS The findings suggest that the tolerable warm ischemia time in the uterus is expected to be longer than that in other vital organs. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 26713050. None of the authors has a conflict of interest to declare.
Collapse
Affiliation(s)
- Iori Kisu
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kiyoko Umene
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masataka Adachi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Katsura Emoto
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuya Nogami
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kouji Banno
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Iori Itagaki
- Research Center for Animal Life Science, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192, Japan.,The Corporation for Production and Research of Laboratory Primates, Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Ikuo Kawamoto
- Research Center for Animal Life Science, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192, Japan
| | - Takahiro Nakagawa
- Research Center for Animal Life Science, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192, Japan
| | - Hayato Narita
- Research Center for Animal Life Science, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192, Japan
| | - Atsushi Yoshida
- Research Center for Animal Life Science, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192, Japan
| | - Hideaki Tsuchiya
- Research Center for Animal Life Science, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192, Japan
| | - Kazumasa Ogasawara
- Research Center for Animal Life Science, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192, Japan.,Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
48
|
Perlikos F, Lagiou M, Papalois A, Rizou T, Kroupis C, Toumpoulis IK. Lazaroid (U-74389G) ameliorates lung injury due to lipid peroxidation and nitric oxide synthase-dependent reactive oxygen species generation caused by remote systematic ischemia-reperfusion following thoracoabdominal aortic occlusion. Int J Surg 2018; 55:156-161. [PMID: 29860124 DOI: 10.1016/j.ijsu.2018.05.735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/03/2018] [Accepted: 05/27/2018] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Lung ischemia-reperfusion injury after thoracoabdominal aortic occlusion represents a major complication, which increases morbidity and mortality. In the present study we hypothesized that lazaroid U-74389G intravenous administration protects from lung ischemia-reperfusion injury through lipid peroxidation inhibition. MATERIALS AND METHODS A total of 24 pigs were randomized in three groups. Group I (n = 8) underwent sham operation, group II (n = 8) underwent thoracoabdominal aortic occlusion for 45min and received placebo and group III (n = 8) received 3 doses of lazaroid (3 mg/kg) 60 and 30min before thoracoabdominal aortic occlusion and at 30min during thoracoabdominal aortic occlusion (duration 45min). Aortic occlusion was performed with aortic balloon-catheters under fluoroscopic guidance. All animals were sacrificed at the 7 t h postoperative day and lung specimens were harvested for molecular analysis. RESULTS mRNA levels of leukotrienes LB4 (LTB4R2), LC4 (LTC4S) and nitric oxide synthase (NOS) isoforms including iNOS, nNOS and eNOS were determined with real-time RT-qPCR. Nitric oxide can either induce (iNOS) or inhibit (nNOS and eNOS) lipid peroxidation based on its specific isoform origin. Group III showed significantly reduced mRNA levels of LTB4R2 (-63.7%), LTC4S (-35.9%) and iNOS (-60.2%) when compared with group II (P < 0.05, for all). The mRNA levels of nNOS was significantly increased (+37.4%), while eNOS was slightly increased (+2.1%) in group III when compared with group II (P < 0.05 and P = 0.467 respectively). CONCLUSION Lazaroid U-74389G may represent an effective pharmacologic intervention in reducing lung ischemia-reperfusion injury following thoracoabdominal aortic occlusion.
Collapse
Affiliation(s)
- Fotis Perlikos
- First Department of Critical Care and Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens, Greece.
| | - Maria Lagiou
- Department of Clinical Biochemistry, Attikon Hospital, National and Kapodistrian University of Athens, Greece
| | | | - Tatiana Rizou
- Department of Clinical Biochemistry, Attikon Hospital, National and Kapodistrian University of Athens, Greece
| | - Christos Kroupis
- Department of Clinical Biochemistry, Attikon Hospital, National and Kapodistrian University of Athens, Greece
| | - Ioannis K Toumpoulis
- Department of Cardiac Surgery, Attikon Hospital, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
49
|
Pak O, Sydykov A, Kosanovic D, Schermuly RT, Dietrich A, Schröder K, Brandes RP, Gudermann T, Sommer N, Weissmann N. Lung Ischaemia-Reperfusion Injury: The Role of Reactive Oxygen Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:195-225. [PMID: 29047088 DOI: 10.1007/978-3-319-63245-2_12] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lung ischaemia-reperfusion injury (LIRI) occurs in many lung diseases and during surgical procedures such as lung transplantation. The re-establishment of blood flow and oxygen delivery into the previously ischaemic lung exacerbates the ischaemic injury and leads to increased microvascular permeability and pulmonary vascular resistance as well as to vigorous activation of the immune response. These events initiate the irreversible damage of the lung with subsequent oedema formation that can result in systemic hypoxaemia and multi-organ failure. Alterations in the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been suggested as crucial mediators of such responses during ischaemia-reperfusion in the lung. Among numerous potential sources of ROS/RNS within cells, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, xanthine oxidases, nitric oxide synthases and mitochondria have been investigated during LIRI. Against this background, we aim to review here the extensive literature about the ROS-mediated cellular signalling during LIRI, as well as the effectiveness of antioxidants as treatment option for LIRI.
Collapse
Affiliation(s)
- Oleg Pak
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Akylbek Sydykov
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Djuro Kosanovic
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Ralph T Schermuly
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Alexander Dietrich
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336, Munich, Germany
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Thomas Gudermann
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336, Munich, Germany
| | - Natascha Sommer
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany.
| |
Collapse
|
50
|
Götzfried J, Smirnova NF, Morrone C, Korkmaz B, Yildirim AÖ, Eickelberg O, Jenne DE. Preservation with α 1-antitrypsin improves primary graft function of murine lung transplants. J Heart Lung Transplant 2018; 37:1021-1028. [PMID: 29776812 PMCID: PMC6078707 DOI: 10.1016/j.healun.2018.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/15/2018] [Accepted: 03/28/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Vascular damage and primary graft dysfunction increase with prolonged preservation times of transplanted donor lungs. Hence, storage and conservation of donated lungs in protein-free, dextran-containing electrolyte solutions, like Perfadex, is limited to about 6 hours. We hypothesized that transplanted lungs are protected against neutrophil-mediated proteolytic damage by adding α1-anti-trypsin (AAT), a highly abundant human plasma proteinase inhibitor, to Perfadex. METHODS A realistic clinically oriented murine model of lung transplantation was used to simulate the ischemia-reperfusion process. Lung grafts were stored at 4°C in Perfadex solution supplemented with AAT or an AAT mutant devoid of elastase-inhibiting activity for 18 hours. We examined wild-type and proteinase 3/neutrophil elastase (PR3/NE) double-deficient mice as graft recipients. Gas exchange function and infiltrating neutrophils of the transplanted lung, as well as protein content and neutrophil numbers in the bronchoalveolar lavage fluid, were determined. RESULTS AAT as a supplement to Perfadex reduced the extent of primary graft dysfunction and early neutrophil responses after extended storage for 18 hours at 4°C and 4-hour reperfusion in the recipients. Double-knockout recipients that lack elastase-like activities in neutrophils were also protected from early reperfusion injury, but not lung grafts that were perfused with a reactive center mutant of AAT devoid of elastase-inhibiting activity. CONCLUSIONS PR3 and NE, the principal targets of AAT, are major triggers of post-ischemic reperfusion damage. Their effective inhibition in the graft and recipient is a promising strategy for organ usage after storage for >6 hours.
Collapse
Affiliation(s)
- Jessica Götzfried
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University, Munich, Germany
| | - Natalia F Smirnova
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University, Munich, Germany
| | - Carmela Morrone
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University, Munich, Germany
| | - Brice Korkmaz
- INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, Tours, France
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University, Munich, Germany; German Center for Lung Research, Munich, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University, Munich, Germany; Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, Colorado, USA
| | - Dieter E Jenne
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University, Munich, Germany; German Center for Lung Research, Munich, Germany; Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany.
| |
Collapse
|