1
|
Knoedler L, Knoedler S, Panayi AC, Lee CAA, Sadigh S, Huelsboemer L, Stoegner VA, Schroeter A, Kern B, Mookerjee V, Lian CG, Tullius SG, Murphy GF, Pomahac B, Kauke-Navarro M. Cellular activation pathways and interaction networks in vascularized composite allotransplantation. Front Immunol 2023; 14:1179355. [PMID: 37266446 PMCID: PMC10230044 DOI: 10.3389/fimmu.2023.1179355] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Vascularized composite allotransplantation (VCA) is an evolving field of reconstructive surgery that has revolutionized the treatment of patients with devastating injuries, including those with limb losses or facial disfigurement. The transplanted units are typically comprised of different tissue types, including skin, mucosa, blood and lymphatic vasculature, muscle, and bone. It is widely accepted that the antigenicity of some VCA components, such as skin, is particularly potent in eliciting a strong recipient rejection response following transplantation. The fine line between tolerance and rejection of the graft is orchestrated by different cell types, including both donor and recipient-derived lymphocytes, macrophages, and other immune and donor-derived tissue cells (e.g., endothelium). Here, we delineate the role of different cell and tissue types during VCA rejection. Rejection of VCA grafts and the necessity of life-long multidrug immunosuppression remains one of the major challenges in this field. This review sheds light on recent developments in decoding the cellular signature of graft rejection in VCA and how these may, ultimately, influence the clinical management of VCA patients by way of novel therapies that target specific cellular processes.
Collapse
Affiliation(s)
- Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Adriana C. Panayi
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Catherine A. A. Lee
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Sam Sadigh
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Lioba Huelsboemer
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Viola A. Stoegner
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
| | - Andreas Schroeter
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Barbara Kern
- Department of Plastic Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Vikram Mookerjee
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Christine G. Lian
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - George F. Murphy
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
2
|
Accommodation in allogeneic and xenogeneic organ transplantation: Prevalence, impact, and implications for monitoring and for therapeutics. Hum Immunol 2023; 84:5-17. [PMID: 36244871 DOI: 10.1016/j.humimm.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/04/2022]
Abstract
Accommodation refers to acquired resistance of organs or tissues to immune or inflammatory reactions that might otherwise cause severe injury or rejection. As first observed in ABO-incompatible kidney transplants and heterotopic cardiac xenografts, accommodation was identified when organ transplants continued to function despite the presence of anti-graft antibodies and/or other reactants in the blood of recipients. Recent evidence suggests many and perhaps most organ transplants have accommodation, as most recipients mount B cell responses specific for the graft. Wide interest in the impact of graft-specific antibodies on the outcomes of transplants prompts questions about which mechanisms confer protection against such antibodies, how accommodation might be detected and whether and how rejection could be superimposed on accommodation. Xenotransplantation offers a unique opportunity to address these questions because immune responses to xenografts are easily detected and the pathogenic impact of immune responses is so severe. Xenotransplantation also provides a compelling need to apply these and other insights to decrease the intensity and toxicity of immunosuppression that otherwise could limit clinical application.
Collapse
|
3
|
Cascalho M, Platt JL. TNFRSF13B in B cell responses to organ transplantation. Hum Immunol 2023; 84:27-33. [PMID: 36333165 PMCID: PMC10429825 DOI: 10.1016/j.humimm.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022]
Abstract
Antibodies directed against organ transplants are thought to pose the most vexing hurdle to enduring function and survival of the transplants, particularly organ xenotransplants, and accordingly basic and clinical investigation has focused on elucidating the specificity and pathogenicity of graft-specific antibodies. While much has been learned about these matters, far less is known about the B cells producing graft-specific antibodies and why these antibodies appear to injure some grafts but not others. With the goal of addressing those questions, we have investigated the properties of tumor necrosis factor receptor super family-13B (TNFRSF13B), which regulates various aspects of B cell responses. A full understanding of the functions of TNFRSF13B however is hindered by extreme polymorphism and by diversity of interactions of the protein. Nevertheless, TNFRSF13B variants have been found to exert distinct impact on natural and elicited antibody responses and host defense and mutations of TNFRSF13B have been found to influence the propensity for development of antibody-mediated rejection of organ transplants. Because B cell responses potentially limit application of xenotransplantation, understanding how TNFRSF13B diversity and TNFRSF13B variants govern immunity in xenotransplantation could inspire development of novel therapeutics that could in turn accelerate clinical implementation of xenotransplantation.
Collapse
Affiliation(s)
- Marilia Cascalho
- Department of Surgery and Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, United States.
| | - Jeffrey L Platt
- Department of Surgery and Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
4
|
Goncu B, Yucesan E, Ersoy YE, Aysan ME, Ozten Kandas N. HLA-DR, -DP, -DQ expression status of parathyroid tissue as a potential parathyroid donor selection criteria and review of literature. Hum Immunol 2022; 83:113-118. [PMID: 34955228 DOI: 10.1016/j.humimm.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/21/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Basic and clinical studies about parathyroid allotransplantation have to be utilized with more definitive criteria for longer graft survival. Several reports demonstrated different isolation and cultivation methods for parathyroid cells to minimize their immunogenicity. In this study, we aim to compare and evaluate the clinical characteristics and the status of HLA class II expression changes in parathyroid tissue. METHODS A total of 22 parathyroid hyperplasia tissue donors was included in this study. Clinical characteristics were evaluated and compared with the HLA-DR, -DP, -DQ mRNA, and protein expression levels which were determined by qRT-PCR and Western blot. RESULTS We have compared the clinical characteristics (age, dialysis duration, frequency, recurrency of hyperparathyroidism and, calcimimetic usage) and HLA class II expression. HLA class II mRNA and protein levels showed varied expression patterns between tissues. Only, the HLA-DP has high mRNA expression levels without affecting the protein level when compared with the ages of the tissue donors. In addition, the HLA-DR, HLA-DP, and HLA-DQα1 protein expression levels showed a permanent and varied expression rate between tissues. CONCLUSION Expression of HLA class II molecules in parathyroid cells appears to constitute a decisive factor. Despite the lack of clinical outcomes, present data proposes new insight with a detailed understanding of parathyroid immunogenicity. In the future, randomized controlled clinical trials are needed for the accurate assessment of the effect of the varied HLA class II expression profiles in parathyroid tissue.
Collapse
Affiliation(s)
- Beyza Goncu
- Bezmialem Vakif University, Vocational School of Health Services, Department of Medical Services and Techniques, Istanbul, Turkey; Bezmialem Vakif University, Experimental Research Center, Parathyroid Transplantation Unit, Istanbul, Turkey; Bezmialem Vakif University, Health Science Institute, Department of Biotechnology, Istanbul, Turkey.
| | - Emrah Yucesan
- Bezmialem Vakif University, Experimental Research Center, Parathyroid Transplantation Unit, Istanbul, Turkey; Bezmialem Vakif University, Faculty of Medicine, Department of Medical Biology, Istanbul, Turkey
| | - Yeliz Emine Ersoy
- Bezmialem Vakif University, Experimental Research Center, Parathyroid Transplantation Unit, Istanbul, Turkey; Bezmialem Vakif University, Faculty of Medicine, Department of General Surgery, Istanbul, Turkey
| | - Mustafa Erhan Aysan
- Bezmialem Vakif University, Faculty of Medicine, Department of General Surgery, Istanbul, Turkey
| | - Nur Ozten Kandas
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul, Turkey
| |
Collapse
|
5
|
Clinical and preclinical tolerance protocols for vascularized composite allograft transplantation. Arch Plast Surg 2021; 48:703-713. [PMID: 34818720 PMCID: PMC8627932 DOI: 10.5999/aps.2021.00927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/06/2021] [Indexed: 12/01/2022] Open
Abstract
The field of vascularized composite allografts (VCAs) has undergone significant advancement in recent decades, and VCAs are increasingly common and accepted in the clinical setting, bringing hope of functional recovery to patients with debilitating injuries. A major obstacle facing the widespread application of VCAs is the side effect profile associated with the current immunosuppressive regimen, which can cause a wide array of complications such as infection, malignancy, and even death. Significant concerns remain regarding whether the treatment outweighs the risk. The potential solution to this dilemma would be achieving VCA tolerance, which would allow recipients to receive allografts without significant immunosuppression and its sequelae. Promising tolerance protocols are being studied in kidney transplantation; four major trials have attempted to withdraw immunosuppressive treatment with various successes. The common theme in all four trials is the use of radiation treatment and donor cell transplantation. The knowledge gained from these trials can provide valuable insight into the development of a VCA tolerance protocol. Despite similarities, VCAs present additional barriers compared to kidney allografts regarding tolerance induction. VCA donors are likely to be deceased, which limits the time for significant pre-conditioning. VCA donors are also more likely to be human leukocyte antigen–mismatched, which means that tolerance must be induced across major immunological barriers. This review also explores adjunct therapies studied in large animal models that could be the missing element in establishing a safe and stable tolerance induction method.
Collapse
|
6
|
On Poetry and Vascularized Composite Allografting. Transplantation 2020; 104:1995-1996. [PMID: 32039964 DOI: 10.1097/tp.0000000000003165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Platt JL, Cascalho M, Piedrahita JA. Xenotransplantation: Progress Along Paths Uncertain from Models to Application. ILAR J 2019; 59:286-308. [PMID: 30541147 DOI: 10.1093/ilar/ily015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 08/23/2018] [Indexed: 12/18/2022] Open
Abstract
For more than a century, transplantation of tissues and organs from animals into man, xenotransplantation, has been viewed as a potential way to treat disease. Ironically, interest in xenotransplantation was fueled especially by successful application of allotransplantation, that is, transplantation of human tissue and organs, as a treatment for a variety of diseases, especially organ failure because scarcity of human tissues limited allotransplantation to a fraction of those who could benefit. In principle, use of animals such as pigs as a source of transplants would allow transplantation to exert a vastly greater impact than allotransplantation on medicine and public health. However, biological barriers to xenotransplantation, including immunity of the recipient, incompatibility of biological systems, and transmission of novel infectious agents, are believed to exceed the barriers to allotransplantation and presently to hinder clinical applications. One way potentially to address the barriers to xenotransplantation is by genetic engineering animal sources. The last 2 decades have brought progressive advances in approaches that can be applied to genetic modification of large animals. Application of these approaches to genetic engineering of pigs has contributed to dramatic improvement in the outcome of experimental xenografts in nonhuman primates and have encouraged the development of a new type of xenograft, a reverse xenograft, in which human stem cells are introduced into pigs under conditions that support differentiation and expansion into functional tissues and potentially organs. These advances make it appropriate to consider the potential limitation of genetic engineering and of current models for advancing the clinical applications of xenotransplantation and reverse xenotransplantation.
Collapse
Affiliation(s)
- Jeffrey L Platt
- Surgery, Microbiology & Immunology, and Transplantation Biology, University of Michigan, Ann Arbor, Michigan
| | - Marilia Cascalho
- Surgery, Microbiology & Immunology, and Transplantation Biology, University of Michigan, Ann Arbor, Michigan
| | - Jorge A Piedrahita
- Translational Medicine and The Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
8
|
Platt JL, Garcia de Mattos Barbosa M, Cascalho M. The five dimensions of B cell tolerance. Immunol Rev 2019; 292:180-193. [PMID: 31609002 PMCID: PMC10387221 DOI: 10.1111/imr.12813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
B cell tolerance has been generally understood to be an acquired property of the immune system that governs antibody specificity in ways that avoid auto-toxicity. As useful as this understanding has proved, it fails to fully explain the existence of auto-reactive specificities in healthy individuals and contribution these may have to health. Mechanisms underlying B cell tolerance are considered to select a clonal repertoire that generates a collection of antibodies that do not bind self, ie tolerance operates more or less in three dimensions that largely spare autologous cells and antigens. Yet, most B lymphocytes in humans and probably in other vertebrates are auto-reactive and absence of these auto-reactive B cells is associated with disease. We suggest that auto-reactivity can be embodied by extending the concept of tolerance by two further dimensions, one of time and circumstance and one that allows healthy cells to actively resist injury. In this novel concept, macromolecular recognition by the B cell receptor leading to deletion, anergy, receptor editing or B cell activation is extended by taking account of the time of development of normal immune responses (4th dimension) and the accommodation (or tolerance) of normal cells to bound antibody, activation of complement, and interaction with inflammatory cells (fifth dimension). We discuss how these dimensions contribute to understanding B cell biology in health or disease.
Collapse
Affiliation(s)
- Jeffrey L. Platt
- Department of Surgery University of Michigan Ann Arbor MI USA
- Department of Microbiology and Immunology and Department of Surgery University of Michigan Ann Arbor MI USA
- Lead Contacts Ann Arbor MI USA
| | | | - Marilia Cascalho
- Department of Surgery University of Michigan Ann Arbor MI USA
- Department of Microbiology and Immunology and Department of Surgery University of Michigan Ann Arbor MI USA
- Lead Contacts Ann Arbor MI USA
| |
Collapse
|
9
|
Abstract
Increasing evidence indicates an integral role for the complement system in the deleterious inflammatory reactions that occur during critical phases of the transplantation process, such as brain or cardiac death of the donor, surgical trauma, organ preservation and ischaemia-reperfusion injury, as well as in humoral and cellular immune responses to the allograft. Ischaemia is the most common cause of complement activation in kidney transplantation and in combination with reperfusion is a major cause of inflammation and graft damage. Complement also has a prominent role in antibody-mediated rejection (ABMR) owing to ABO and HLA incompatibility, which leads to devastating damage to the transplanted kidney. Emerging drugs and treatment modalities that inhibit complement activation at various stages in the complement cascade are being developed to ameliorate the damage caused by complement activation in transplantation. These promising new therapies have various potential applications at different stages in the process of transplantation, including inhibiting the destructive effects of ischaemia and/or reperfusion injury, treating ABMR, inducing accommodation and modulating the adaptive immune response.
Collapse
|
10
|
Kollar B, Kamat P, Klein H, Waldner M, Schweizer R, Plock J. The Significance of Vascular Alterations in Acute and Chronic Rejection for Vascularized Composite Allotransplantation. J Vasc Res 2019; 56:163-180. [DOI: 10.1159/000500958] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/14/2019] [Indexed: 11/19/2022] Open
|
11
|
Yucesan E, Goncu B, Ozdemir B, Idiz O, Ersoy YE, Aysan E. Importance of HLA typing, PRA and DSA tests for successful parathyroid allotransplantation. Immunobiology 2019; 224:485-489. [PMID: 31204065 DOI: 10.1016/j.imbio.2019.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/18/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
Parathyroid allotransplantation is increasingly practiced for patients who have permanent hypoparathyroidsm. Parathyroid allotransplantation success is varied, and no defined criteria about immunologic monitoring for pre-/post-transplantation follow-up. This study sought to evaluate the possible role of immunological tests. Four unrelated recipients and one living donor who have chronic kidney disease were evaluated for HLA-typing, PRA, CXM tests to conduct parathyroid allotransplantation. Parathyroid glands were obtained and resected from the donor, then cells were isolated and cryopreserved. Upon histologic examination, cells were cultivated and injected into muscle of four recipients. Recipient's were followed for parathormone and calcium levels for four years. PRA screening were monitored and de novo DSA was evaluated as well. In two of the recipients, allografts continued to be functional more than four years. In one recipient, allograft remained functional for two years and another recipient lost function after one year. Two out four were negative for de novo DSA and three out of four of the recipients remained negative for PRA. Neither HLA-matching nor de novo DSA positivity and PRA screenings seems significant for successfull parathyroid allotransplantation. This study has considerable potential for immunological monitoring of parathyroid allotransplantation.
Collapse
Affiliation(s)
- Emrah Yucesan
- Bezmialem Vakif University, Institute of Life Sciences and Biotechnology, Istanbul, Turkey.
| | - Beyza Goncu
- Bezmialem Vakif University, Experimental Research Center, Istanbul, Turkey
| | - Burcu Ozdemir
- Bezmialem Vakif University, Experimental Research Center, Istanbul, Turkey
| | - Oguz Idiz
- Istanbul Teaching and Research Hospital, General Surgery Clinic, Istanbul, Turkey
| | - Yeliz Emine Ersoy
- Bezmialem Vakif University, Faculty of Medicine, Department of General Surgery, Istanbul, Turkey
| | - Erhan Aysan
- Bezmialem Vakif University, Faculty of Medicine, Department of General Surgery, Istanbul, Turkey
| |
Collapse
|
12
|
Kaufman CL, Cascalho M, Ozyurekoglu T, Jones CM, Ramirez A, Roberts T, Tien HY, Moreno R, Galvis E, Tsai TM, Palazzo M, Farner S, Platt JL. The role of B cell immunity in VCA graft rejection and acceptance. Hum Immunol 2019; 80:385-392. [DOI: 10.1016/j.humimm.2019.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
|
13
|
Platt JL, Cascalho M. Non-canonical B cell functions in transplantation. Hum Immunol 2019; 80:363-377. [PMID: 30980861 PMCID: PMC6544480 DOI: 10.1016/j.humimm.2019.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
Abstract
B cells are differentiated to recognize antigen and respond by producing antibodies. These activities, governed by recognition of ancillary signals, defend the individual against microorganisms and the products of microorganisms and constitute the canonical function of B cells. Despite the unique differentiation (e.g. recombination and mutation of immunoglobulin gene segments) toward this canonical function, B cells can provide other, "non-canonical" functions, such as facilitating of lymphoid organogenesis and remodeling and fashioning T cell repertoires and modifying T cell responses. Some non-canonical functions are exerted by antibodies, but most are mediated by other products and/or direct actions of B cells. The diverse set of non-canonical functions makes the B cell as much as any cell a central organizer of innate and adaptive immunity. However, the diverse products and actions also confound efforts to weigh the importance of individual non-canonical B cell functions. Here we shall describe the non-canonical functions of B cells and offer our perspective on how those functions converge in the development and governance of immunity, particularly immunity to transplants, and hurdles to advancing understanding of B cell functions in transplantation.
Collapse
Affiliation(s)
- Jeffrey L Platt
- Departments of Surgery and of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, United States.
| | - Marilia Cascalho
- Departments of Surgery and of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
14
|
Kaufman CL, Bhutiani N, Ramirez A, Tien HY, Palazzo MD, Galvis E, Farner S, Ozyurekoglu T, Jones CM. Current Status of Vascularized Composite Allotransplantation. Am Surg 2019. [DOI: 10.1177/000313481908500628] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The field of vascularized composite allotransplantation (VCA) has moved from a highly experimental procedure to, at least for some patients, one of the best treatment alternatives for catastrophic tissue loss or dysfunction. Although the worldwide experience is still limited, progress has been made in translation to the clinic, and hand transplantation was recently designated standard of care and is now covered in full by the British Health System. This progress is tempered by the long-term challenges of systemic immunosuppression, and the rapidly evolving indications for VCA such as urogenital transplantation. This update will cover the state of and recent changes in the field, and an update of the Louisville VCA program as our initial recipient, the first person to receive a hand transplant in the United States celebrates the 20th anniversary of his transplant. The achievements and complications encountered over the last two decades will be reviewed. In addition, potential directions for research and collaboration as well as practical issues of how third party payers and funding are affecting growth of the field are presented.
Collapse
|
15
|
Platt JL, West LJ, Chinnock RE, Cascalho M. Toward a solution for cardiac failure in the newborn. Xenotransplantation 2018; 25:e12479. [PMID: 30537350 DOI: 10.1111/xen.12479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/29/2018] [Indexed: 01/14/2023]
Abstract
The newborn infant with severe cardiac failure owed to congenital structural heart disease or cardiomyopathy poses a daunting therapeutic challenge. The ideal solution for both might be cardiac transplantation if availability of hearts was not limiting and if tolerance could be induced, obviating toxicity of immunosuppressive therapy. If one could safely and effectively exploit neonatal tolerance for successful xenotransplantation of the heart, the challenge of severe cardiac failure in the newborn infant might be met. We discuss the need, the potential for applying neonatal tolerance in the setting of xenotransplantation and the possibility that other approaches to this problem might emerge.
Collapse
Affiliation(s)
- Jeffrey L Platt
- Department of Surgery and Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan
| | - Lori J West
- Department of Pediatrics, Department of Surgery, Department of Immunology, Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Richard E Chinnock
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
| | - Marilia Cascalho
- Department of Surgery and Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
16
|
de Mattos Barbosa MG, Cascalho M, Platt JL. Accommodation in ABO-incompatible organ transplants. Xenotransplantation 2018; 25:e12418. [PMID: 29913044 PMCID: PMC6047762 DOI: 10.1111/xen.12418] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/09/2018] [Accepted: 05/03/2018] [Indexed: 12/21/2022]
Abstract
Accommodation refers to a condition in which a transplant (or any tissue) appears to resist immune-mediated injury and loss of function. Accommodation was discovered and has been explored most thoroughly in ABO-incompatible kidney transplantation. In this setting, kidney transplants bearing blood group A or B antigens often are found to function normally in recipients who lack and hence produce antibodies directed against the corresponding antigens. Whether accommodation is owed to changes in anti-blood group antibodies, changes in antigen or a change in the response of the transplant to antibody binding are critically reviewed and a new working model that allows for the kinetics of development of accommodation is put forth. Regardless of how accommodation develops, observations on the fate of ABO-incompatible transplants offer lessons applicable more broadly in transplantation and in other fields.
Collapse
|