1
|
Guihaire J, Guimbretière G, Lebreton G, Allain G, David CH, Pozzi M, Para M, Flecher E, Bouchot O, Leprince P, Vincentelli A. Innovative approaches to organ preservation in heart transplantation: A comprehensive review by the French Society of Thoracic and Cardiovascular Surgery. Arch Cardiovasc Dis 2025:S1875-2136(25)00215-3. [PMID: 40240182 DOI: 10.1016/j.acvd.2025.03.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025]
Abstract
Improved approaches for organ preservation have been recently applied in heart transplantation to prevent the risk of primary graft dysfunction. To review heart-graft preservation systems and to identify criteria for using innovative devices in each specific situation. A working group of the French Society of Thoracic and Cardiovascular Surgery performed a literature review focusing on organ preservation and post-transplant outcomes. Static cold storage is the most widely used method but involves cold ischaemia and is therefore limited for prolonged preservation. Optimizing this method by ensuring uniform and stable cooling (SherpaPak™) seems to be associated with favourable results, even with expanded-criteria grafts. Continuous normothermic organ perfusion (Organ Care System) shortens the cold ischaemia time, thus maintaining heart-graft viability despite long transportation times or long waits to achieve complex recipient-heart explantation. Moreover, this method can rehabilitate Maastricht III heart grafts. Continuous hypothermic oxygenated perfusion (XVivo™, not yet approved by regulatory authorities) has recently been associated with favourable outcomes, even in case of extended out-of-body preservation>8hours. The new devices for heart preservation can be expected to allow successful transplantation despite long transport times, lengthy explantation procedures and the use of grafts from expanded-criteria donors, including donors after controlled circulatory arrest. Further studies are needed to assess patient and graft outcomes, determine the optimal device for each situation and evaluate the cost-benefit ratio.
Collapse
Affiliation(s)
- Julien Guihaire
- Cardiac Surgery and Transplantation, Marie-Lannelongue Hospital, groupe hospitalier Paris Saint-Joseph, université Paris Saclay, 133, avenue de la Resistance, 92350 Le Plessis Robinson, France.
| | - Guillaume Guimbretière
- Cardiac Surgery, Thoracic and Vascular Surgery Department, institut du thorax, University Hospital of Nantes, 44000 Nantes, France
| | - Guillaume Lebreton
- Department of Cardiovascular and Thoracic Surgery, Institute of Cardiology, Pitié-Salpêtrière Hospital, Assistance publique-Hôpitaux de Paris (AP-HP), Sorbonne University, 75013 Paris, France
| | - Géraldine Allain
- Department of Cardio-Thoracic and Vascular Surgery, University Hospital of Poitiers, 90577 Poitiers, France
| | - Charles-Henri David
- Cardiac Surgery, Thoracic and Vascular Surgery Department, institut du thorax, University Hospital of Nantes, 44000 Nantes, France
| | - Matteo Pozzi
- Department of Cardiac Surgery, Louis-Pradel Hospital, hospices civils de Lyon, 69500 Bron, France
| | - Marylou Para
- Department of Cardiovascular Surgery and Transplantation, Bichat Hospital, université Paris Cité, 75018 Paris, France
| | - Erwan Flecher
- Thoracic and Cardiovascular Surgery Department, Rennes University Hospital, 35000 Rennes, France
| | - Olivier Bouchot
- Department of Cardiovascular and Thoracic Surgery, Dijon University Hospital, 21000 Dijon, France
| | - Pascal Leprince
- Department of Cardiovascular and Thoracic Surgery, Institute of Cardiology, Pitié-Salpêtrière Hospital, Assistance publique-Hôpitaux de Paris (AP-HP), Sorbonne University, 75013 Paris, France
| | - André Vincentelli
- Department of Cardiovascular Surgery, institut coeur poumon, Lille University Hospital, 59000 Lille, France
| |
Collapse
|
2
|
Abbas SH, Ceresa CDL, Pollok JM. Steatotic Donor Transplant Livers: Preservation Strategies to Mitigate against Ischaemia-Reperfusion Injury. Int J Mol Sci 2024; 25:4648. [PMID: 38731866 PMCID: PMC11083584 DOI: 10.3390/ijms25094648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Liver transplantation (LT) is the only definitive treatment for end-stage liver disease, yet the UK has seen a 400% increase in liver disease-related deaths since 1970, constrained further by a critical shortage of donor organs. This shortfall has necessitated the use of extended criteria donor organs, including those with evidence of steatosis. The impact of hepatic steatosis (HS) on graft viability remains a concern, particularly for donor livers with moderate to severe steatosis which are highly sensitive to the process of ischaemia-reperfusion injury (IRI) and static cold storage (SCS) leading to poor post-transplantation outcomes. This review explores the pathophysiological predisposition of steatotic livers to IRI, the limitations of SCS, and alternative preservation strategies, including novel organ preservation solutions (OPS) and normothermic machine perfusion (NMP), to mitigate IRI and improve outcomes for steatotic donor livers. By addressing these challenges, the liver transplant community can enhance the utilisation of steatotic donor livers which is crucial in the context of the global obesity crisis and the growing need to expand the donor pool.
Collapse
Affiliation(s)
- Syed Hussain Abbas
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 2JD, UK;
| | - Carlo Domenico Lorenzo Ceresa
- Department of Hepatopancreatobiliary and Liver Transplant Surgery, Royal Free Hospital, Pond Street, Hampstead, London NW3 2QG, UK;
| | - Joerg-Matthias Pollok
- Department of Hepatopancreatobiliary and Liver Transplant Surgery, Royal Free Hospital, Pond Street, Hampstead, London NW3 2QG, UK;
- Division of Surgery & Interventional Science, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
3
|
Ton C, Salehi S, Abasi S, Aggas JR, Liu R, Brandacher G, Guiseppi-Elie A, Grayson WL. Methods of ex vivo analysis of tissue status in vascularized composite allografts. J Transl Med 2023; 21:609. [PMID: 37684651 PMCID: PMC10492401 DOI: 10.1186/s12967-023-04379-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/21/2023] [Indexed: 09/10/2023] Open
Abstract
Vascularized composite allotransplantation can improve quality of life and restore functionality. However, the complex tissue composition of vascularized composite allografts (VCAs) presents unique clinical challenges that increase the likelihood of transplant rejection. Under prolonged static cold storage, highly damage-susceptible tissues such as muscle and nerve undergo irreversible degradation that may render allografts non-functional. Skin-containing VCA elicits an immunogenic response that increases the risk of recipient allograft rejection. The development of quantitative metrics to evaluate VCAs prior to and following transplantation are key to mitigating allograft rejection. Correspondingly, a broad range of bioanalytical methods have emerged to assess the progression of VCA rejection and characterize transplantation outcomes. To consolidate the current range of relevant technologies and expand on potential for development, methods to evaluate ex vivo VCA status are herein reviewed and comparatively assessed. The use of implantable physiological status monitoring biochips, non-invasive bioimpedance monitoring to assess edema, and deep learning algorithms to fuse disparate inputs to stratify VCAs are identified.
Collapse
Affiliation(s)
- Carolyn Ton
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
| | - Sara Salehi
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
| | - Sara Abasi
- Department of Biomedical Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA
- Department of Electrical and Computer Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA
- Media and Metabolism, Wildtype, Inc., 2325 3rd St., San Francisco, CA, 94107, USA
| | - John R Aggas
- Department of Biomedical Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA
- Department of Electrical and Computer Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA
- Test Development, Roche Diagnostics, 9115 Hague Road, Indianapolis, IN, 46256, USA
| | - Renee Liu
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Reconstructive Transplantation Program, Center for Advanced Physiologic Modeling (CAPM), Johns Hopkins University, Ross Research Building/Suite 749D, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
| | - Anthony Guiseppi-Elie
- Department of Biomedical Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA.
- Department of Electrical and Computer Engineering, Center for Bioelectronics, Biosensors and Biochips (C3B®), Texas A&M University, Emerging Technologies Building 3120, 101 Bizzell St, College Station, TX, 77843, USA.
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, USA.
- ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA, USA.
| | - Warren L Grayson
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA.
- Translational Tissue Engineering Center, Johns Hopkins University, 400 North Broadway, Smith Building 5023, Baltimore, MD, 21231, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Abstract
The past decade has been the foreground for a radical revolution in the field of preservation in abdominal organ transplantation. Perfusion has increasingly replaced static cold storage as the preferred and even gold standard preservation method for marginal-quality organs. Perfusion is dynamic and offers several advantages in comparison with static cold storage. These include the ability to provide a continuous supply of new metabolic substrates, clear metabolic waste products, and perform some degree of organ viability assessment before actual transplantation in the recipient. At the same time, the ongoing importance of static cold storage cannot be overlooked, in particular when it comes to logistical and technical convenience and cost, not to mention the fact that it continues to work well for the majority of transplant allografts. The present review article provides an overview of the fundamental concepts of organ preservation, providing a brief history of static cold preservation and description of the principles behind and basic components of cold preservation solutions. An evaluation of current evidence supporting the use of different preservation solutions in abdominal organ transplantation is provided. As well, the range of solutions used for machine perfusion of abdominal organs is described, as are variations in their compositions related to changing metabolic needs paralleling the raising of the temperature of the perfusate from hypothermic to normothermic range. Finally, appraisal of new preservation solutions that are on the horizon is provided.
Collapse
|
5
|
Malekhosseini SA, Ghasemi Y, Rousta J, Aghaei R, Kianpour S, Negahdaripour M, Heidari R, Shamsaeefar A, Gholami S, Nikeghbalian S. Clinical Evaluation of an HTK Solution for Liver Transplantation: A Phase 3 Randomized Pilot Clinical Trial Study. ARCHIVES OF IRANIAN MEDICINE 2022; 25:617-623. [PMID: 37543887 PMCID: PMC10685771 DOI: 10.34172/aim.2022.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 02/27/2022] [Indexed: 08/07/2023]
Abstract
BACKGROUND Organ preservation solutions are not easily accessible in Iran, similar to many resource-limited countries. We aimed to evaluate the efficacy of a locally-produced HTK solution among adult liver transplantation candidates in a pilot clinical trial study. METHODS Adult patients undergoing liver transplantation were randomly allocated into two groups. One received the HTK solution (PharMedCina Inc., Shiraz, Iran), and the second received the commercially available HTK solution (Custodiol ®). RESULTS Overall, 28 individuals entered the study, including 11 and 9 males (78.6% and 64.3%) in the Custodiol® and local HTK groups, respectively. Clinical characteristics, including postoperative biliary complications, reperfusion syndrome, infection and primary non-function (PNF) rates, amount of intraoperative bleeding, length of hospital and ICU stay, peak aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and duration of follow-up were similar between the two groups (P>0.05). One patient died in the locally-produced HTK group. The patient underwent re-transplantation 20 days after his first liver transplantation due to PNF. Two patients died in the Custodiol group, both due to PNF of the liver, which occurred five and three days after transplantation. The two groups did not show any difference regarding serum levels of AST, ALT, alkaline phosphatase (ALP), bilirubin, platelet count, prothrombin time and international normalized ratio, white blood cell count, blood urea nitrogen, and creatinine on the first postoperative day and on the day of discharge (P>0.05). CONCLUSION Based on the findings of this pilot study with the current sample size, no statistically significant difference was found between our locally-produced HTK solution and Custodiol® regarding clinical outcomes.
Collapse
Affiliation(s)
- Seyed Ali Malekhosseini
- Shiraz Transplant Center, Abu Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Javad Rousta
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roghayyeh Aghaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Kianpour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Shamsaeefar
- Shiraz Transplant Center, Abu Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Siavash Gholami
- Shiraz Transplant Center, Abu Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saman Nikeghbalian
- Shiraz Transplant Center, Abu Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Wen L, Yan T, xiao Y, Xia W, Li X, Guo C, Lang M. A hypothermia-sensitive micelle with controlled release of hydrogen sulfide for protection against anoxia/reoxygenation-induced cardiomyocyte injury. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Bardallo RG, da Silva RT, Carbonell T, Palmeira C, Folch-Puy E, Roselló-Catafau J, Adam R, Panisello-Rosello A. Liver Graft Hypothermic Static and Oxygenated Perfusion (HOPE) Strategies: A Mitochondrial Crossroads. Int J Mol Sci 2022; 23:5742. [PMID: 35628554 PMCID: PMC9143961 DOI: 10.3390/ijms23105742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022] Open
Abstract
Marginal liver grafts, such as steatotic livers and those from cardiac death donors, are highly vulnerable to ischemia-reperfusion injury that occurs in the complex route of the graft from "harvest to revascularization". Recently, several preservation methods have been developed to preserve liver grafts based on hypothermic static preservation and hypothermic oxygenated perfusion (HOPE) strategies, either combined or alone. However, their effects on mitochondrial functions and their relevance have not yet been fully investigated, especially if different preservation solutions/effluents are used. Ischemic liver graft damage is caused by oxygen deprivation conditions during cold storage that provoke alterations in mitochondrial integrity and function and energy metabolism breakdown. This review deals with the relevance of mitochondrial machinery in cold static preservation and how the mitochondrial respiration function through the accumulation of succinate at the end of cold ischemia is modulated by different preservation solutions such as IGL-2, HTK, and UW (gold-standard reference). IGL-2 increases mitochondrial integrity and function (ALDH2) when compared to UW and HTK. This mitochondrial protection by IGL-2 also extends to protective HOPE strategies when used as an effluent instead of Belzer MP. The transient oxygenation in HOPE sustains the mitochondrial machinery at basal levels and prevents, in part, the accumulation of energy metabolites such as succinate in contrast to those that occur in cold static preservation conditions. Additionally, several additives for combating oxygen deprivation and graft energy metabolism breakdown during hypothermic static preservation such as oxygen carriers, ozone, AMPK inducers, and mitochondrial UCP2 inhibitors, and whether they are or not to be combined with HOPE, are presented and discussed. Finally, we affirm that IGL-2 solution is suitable for protecting graft mitochondrial machinery and simplifying the complex logistics in clinical transplantation where traditional (static preservation) and innovative (HOPE) strategies may be combined. New mitochondrial markers are presented and discussed. The final goal is to take advantage of marginal livers to increase the pool of suitable organs and thereby shorten patient waiting lists at transplantation clinics.
Collapse
Affiliation(s)
- Raquel G. Bardallo
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain; (R.G.B.); (T.C.)
| | - Rui T. da Silva
- Center for Neuroscience and Cell Biology, Universidade Coimbra, 3000-370 Coimbra, Portugal; (R.T.d.S.); (C.P.)
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (E.F.-P.); (J.R.-C.)
| | - Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain; (R.G.B.); (T.C.)
| | - Carlos Palmeira
- Center for Neuroscience and Cell Biology, Universidade Coimbra, 3000-370 Coimbra, Portugal; (R.T.d.S.); (C.P.)
| | - Emma Folch-Puy
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (E.F.-P.); (J.R.-C.)
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (E.F.-P.); (J.R.-C.)
| | - René Adam
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, 94800 Villejuif, France;
| | - Arnau Panisello-Rosello
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)-IDIBAPS, CIBEREHD, 08036 Barcelona, Catalonia, Spain; (E.F.-P.); (J.R.-C.)
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, 94800 Villejuif, France;
| |
Collapse
|
8
|
Recent Methods of Kidney Storage and Therapeutic Possibilities of Transplant Kidney. Biomedicines 2022; 10:biomedicines10051013. [PMID: 35625750 PMCID: PMC9139114 DOI: 10.3390/biomedicines10051013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
Kidney transplantation is the standard procedure for the treatment of end-stage renal disease (ESRD). During kidney storage and before implantation, the organ is exposed to damaging factors which affect the decline in condition. The arrest of blood circulation results in oxygen and nutrient deficiency that lead to changes in the cell metabolism from aerobic to anaerobic, damaging organelles and cell structures. Currently, most kidney grafts are kept in a cold preservation solution to preserve low metabolism. However, there are numerous reports that machine perfusion is a better solution for organ preservation before surgery. The superiority of machine perfusion was proved in the case of marginal donor grafts, such as extended criteria donors (ECD) and donation after circulatory death (DCD). Different variant of kidney machine perfusions are evaluated. Investigators look for optimal conditions to protect kidneys from ischemia-reperfusion damage consequences by examining the best temperature conditions and comparing systems with constant or pulsatile flow. Moreover, machine perfusion brings additional advantages in clinical practice. Unlike cold static storage, machine perfusion allows the monitoring of the parameters of organ function, which gives a real possibility to make a decision prior to transplantation concerning whether the kidney is suitable for implantation. Moreover, new pharmacological therapies are sought to minimize organ damage. New components or cellular therapies can be applied, since perfusion solution flows through the organ. This review outlines the pros and cons of each machine perfusion technique and summarizes the latest achievements in the context of kidney transplantation using machine perfusion systems.
Collapse
|
9
|
Veloso-Giménez V, Escamilla R, Necuñir D, Corrales-Orovio R, Riveros S, Marino C, Ehrenfeld C, Guzmán CD, Boric MP, Rebolledo R, Egaña JT. Development of a Novel Perfusable Solution for ex vivo Preservation: Towards Photosynthetic Oxygenation for Organ Transplantation. Front Bioeng Biotechnol 2022; 9:796157. [PMID: 34976984 PMCID: PMC8714958 DOI: 10.3389/fbioe.2021.796157] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/24/2021] [Indexed: 12/26/2022] Open
Abstract
Oxygen is the key molecule for aerobic metabolism, but no animal cells can produce it, creating an extreme dependency on external supply. In contrast, microalgae are photosynthetic microorganisms, therefore, they are able to produce oxygen as plant cells do. As hypoxia is one of the main issues in organ transplantation, especially during preservation, the main goal of this work was to develop the first generation of perfusable photosynthetic solutions, exploring its feasibility for ex vivo organ preservation. Here, the microalgae Chlamydomonas reinhardtii was incorporated in a standard preservation solution, and key aspects such as alterations in cell size, oxygen production and survival were studied. Osmolarity and rheological features of the photosynthetic solution were comparable to human blood. In terms of functionality, the photosynthetic solution proved to be not harmful and to provide sufficient oxygen to support the metabolic requirement of zebrafish larvae and rat kidney slices. Thereafter, isolated porcine kidneys were perfused, and microalgae reached all renal vasculature, without inducing damage. After perfusion and flushing, no signs of tissue damage were detected, and recovered microalgae survived the process. Altogether, this work proposes the use of photosynthetic microorganisms as vascular oxygen factories to generate and deliver oxygen in isolated organs, representing a novel and promising strategy for organ preservation.
Collapse
Affiliation(s)
- Valentina Veloso-Giménez
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rosalba Escamilla
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David Necuñir
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rocío Corrales-Orovio
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.,Division of Hand, Plastic and Aesthetic Surgery, LMU Munich, University Hospital, Munich, Germany
| | - Sergio Riveros
- Department of Digestive Surgery, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlo Marino
- Department of Digestive Surgery, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Ehrenfeld
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Mauricio P Boric
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rolando Rebolledo
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.,Hepatobiliary and Pancreatic Surgery Unit, Surgery Service, Hospital Dr. Sótero del Río, Santiago, Chile
| | - José Tomás Egaña
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
10
|
Hosgood SA, Brown RJ, Nicholson ML. Advances in Kidney Preservation Techniques and Their Application in Clinical Practice. Transplantation 2021; 105:e202-e214. [PMID: 33982904 PMCID: PMC8549459 DOI: 10.1097/tp.0000000000003679] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 11/25/2022]
Abstract
The use of cold preservation solutions to rapidly flush and cool the kidney followed by static cold storage in ice has been the standard kidney preservation technique for the last 50 y. Nonetheless, changing donor demographics that include organs from extended criteria donors and donation after circulatory death donors have led to the adoption of more diverse techniques of preservation. Comparison of hypothermic machine perfusion and static cold storage techniques for deceased donor kidneys has long been debated and is still contested by some. The recent modification of hypothermic machine perfusion techniques with the addition of oxygen or perfusion at subnormothermic or near-normothermic temperatures are promising strategies that are emerging in clinical practice. In addition, the use of normothermic regional perfusion to resuscitate abdominal organs of donation after circulatory death donors in situ before cold flushing is also increasingly being utilized. This review provides a synopsis of the different types of preservation techniques including their mechanistic effects and the outcome of their application in clinical practice for different types of donor kidney.
Collapse
Affiliation(s)
- Sarah A. Hosgood
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Rachel J. Brown
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Michael L. Nicholson
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
11
|
Abbas SH, Friend PJ. Principles and current status of abdominal organ preservation for transplantation. SURGERY IN PRACTICE AND SCIENCE 2020. [DOI: 10.1016/j.sipas.2020.100020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
12
|
|
13
|
Carnevale ME, Lausada N, Juan de Paz L, Stringa P, Machuca M, Rumbo M, Guibert EE, Tiribelli C, Gondolesi GE, Rodriguez JV. The Novel N,N-bis-2-Hydroxyethyl-2-Aminoethanesulfonic Acid-Gluconate-Polyethylene Glycol-Hypothermic Machine Perfusion Solution Improves Static Cold Storage and Reduces Ischemia/Reperfusion Injury in Rat Liver Transplant. Liver Transpl 2019; 25:1375-1386. [PMID: 31121085 DOI: 10.1002/lt.25573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/16/2019] [Indexed: 01/19/2023]
Abstract
Organ transplantation is the treatment of choice against terminal and irreversible organ failure. Optimal preservation of the graft is crucial to counteract cold ischemia effects. As we developed an N,N-bis-2-hydroxyethyl-2-aminoethanesulfonic acid-gluconate-polyethylene glycol (BGP)-based solution (hypothermic machine perfusion [HMP]), we aimed to analyze the use of this solution on static cold storage (SCS) of rat livers for transplantation as compared with the histidine tryptophan ketoglutarate (HTK) preservation solution. Livers procured from adult male Sprague Dawley rats were preserved with BGP-HMP or HTK solutions. Liver total water content and metabolites were measured during the SCS at 0°C for 24 hours. The function and viability of the preserved rat livers were first assessed ex vivo after rewarming (90 minutes at 37°C) and in vivo using the experimental model of reduced-size heterotopic liver transplantation. After SCS, the water and glycogen content in both groups remained unchanged as well as the tissue glutathione concentration. In the ex vivo studies, livers preserved with the BGP-HMP solution were hemodynamically more efficient and the O2 consumption rate was higher than in livers from the HTK group. Bile production and glycogen content after 90 minutes of normothermic reperfusion was diminished in both groups compared with the control group. Cellular integrity of the BGP-HMP group was better, and the histological damage was reversible. In the in vivo model, HTK-preserved livers showed a greater degree of histological injury and higher apoptosis compared with the BGP-HMP group. In conclusion, our results suggest a better role of the BGP-HMP solution compared with HTK in preventing ischemia/reperfusion injury in the rat liver model.
Collapse
Affiliation(s)
- Matías E Carnevale
- Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada, Universidad Nacional de Rosario, Rosario, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de la Plata, La Plata, Argentina
| | - Natalia Lausada
- Cátedra de Trasplante, Facultad de Ciencias Médicas, Universidad Nacional de la Plata, La Plata, Argentina
| | - Leonardo Juan de Paz
- Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada, Universidad Nacional de Rosario, Rosario, Argentina
| | - Pablo Stringa
- Cátedra de Trasplante, Facultad de Ciencias Médicas, Universidad Nacional de la Plata, La Plata, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de la Plata, La Plata, Argentina
| | - Mariana Machuca
- Laboratorio de Patología Especial, Facultad de Ciencias Veterinarias, Universidad Nacional de la Plata, La Plata, Argentina
| | - Martin Rumbo
- Instituto de Estudios Inmunológicos y Fisiopatológicos, Universidad Nacional de la Plata, La Plata, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de la Plata, La Plata, Argentina
| | - Edgardo E Guibert
- Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada, Universidad Nacional de Rosario, Rosario, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de la Plata, La Plata, Argentina
| | | | - Gabriel E Gondolesi
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de la Plata, La Plata, Argentina.,Servicio de Cirugía General, Trasplante Hepático, Pancreático e Intestinal, Hospital Universitario Fundación Favaloro, Laboratorio de Microcirugía Experimental, Instituto de Medicina Traslacional, Trasplante y Bioengeniería, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Favaloro, Buenos Aires, Argentina
| | - Joaquin V Rodriguez
- Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada, Universidad Nacional de Rosario, Rosario, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de la Plata, La Plata, Argentina
| |
Collapse
|
14
|
Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochim Biophys Acta Gen Subj 2019; 1863:1398-1409. [DOI: 10.1016/j.bbagen.2019.06.010] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 01/10/2023]
|
15
|
Passov A, Schramko A, Mäkisalo H, Nordin A, Andersson S, Pesonen E, Ilmakunnas M. Graft glycocalyx degradation in human liver transplantation. PLoS One 2019; 14:e0221010. [PMID: 31415628 PMCID: PMC6695121 DOI: 10.1371/journal.pone.0221010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Ischaemia/reperfusion-injury degrades endothelial glycocalyx. Graft glycocalyx degradation was studied in human liver transplantation. METHODS To assess changes within the graft, blood was drawn from portal and hepatic veins in addition to systemic samples in 10 patients. Plasma syndecan-1, heparan sulfate and chondroitin sulfate, were measured with enzyme-linked immunosorbent assay. RESULTS During reperfusion, syndecan-1 levels were higher in graft caval effluent [3118 (934-6141) ng/ml, P = 0.005] than in portal venous blood [101 (75-121) ng/ml], indicating syndecan-1 release from the graft. Concomitantly, heparan sulfate levels were lower in graft caval effluent [96 (32-129) ng/ml, P = 0.037] than in portal venous blood [112 (98-128) ng/ml], indicating heparan sulfate uptake within the graft. Chondroitin sulfate levels were equal in portal and hepatic venous blood. After reperfusion arterial syndecan-1 levels increased 17-fold (P < 0.001) and heparan sulfate decreased to a third (P < 0.001) towards the end of surgery. CONCLUSION Syndecan-1 washout from the liver indicates extensive glycocalyx degradation within the graft during reperfusion. Surprisingly, heparan sulfate was taken up by the graft during reperfusion. Corroborating previous experimental reports, this suggests that endogenous heparan sulfate might be utilized within the graft in the repair of damaged glycocalyx.
Collapse
Affiliation(s)
- Arie Passov
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Alexey Schramko
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Heikki Mäkisalo
- Transplantation and Liver Surgery Clinic, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Arno Nordin
- Transplantation and Liver Surgery Clinic, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sture Andersson
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eero Pesonen
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Minna Ilmakunnas
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
16
|
Petrenko A, Carnevale M, Somov A, Osorio J, Rodríguez J, Guibert E, Fuller B, Froghi F. Organ Preservation into the 2020s: The Era of Dynamic Intervention. Transfus Med Hemother 2019; 46:151-172. [PMID: 31244584 PMCID: PMC6558325 DOI: 10.1159/000499610] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Organ preservation has been of major importance ever since transplantation developed into a global clinical activity. The relatively simple procedures were developed on a basic comprehension of low-temperature biology as related to organs outside the body. In the past decade, there has been a significant increase in knowledge of the sequelae of effects in preserved organs, and how dynamic intervention by perfusion can be used to mitigate injury and improve the quality of the donated organs. The present review focuses on (1) new information about the cell and molecular events impacting on ischemia/reperfusion injury during organ preservation, (2) strategies which use varied compositions and additives in organ preservation solutions to deal with these, (3) clear definitions of the developing protocols for dynamic organ perfusion preservation, (4) information on how the choice of perfusion solutions can impact on desired attributes of dynamic organ perfusion, and (5) summary and future horizons.
Collapse
Affiliation(s)
- Alexander Petrenko
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine, Ukraine Academy of Sciences, Kharkov, Ukraine
| | - Matias Carnevale
- Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alexander Somov
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine, Ukraine Academy of Sciences, Kharkov, Ukraine
| | - Juliana Osorio
- Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Rosario, Argentina
| | - Joaquin Rodríguez
- Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Rosario, Argentina
| | - Edgardo Guibert
- Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Barry Fuller
- UCL Division of Surgery and Interventional Sciences, Royal Free Hospital, London, United Kingdom
| | - Farid Froghi
- UCL Division of Surgery and Interventional Sciences, Royal Free Hospital, London, United Kingdom
| |
Collapse
|