1
|
Meier RPH, Pierson RN, Fishman JA, Buhler LH, Bottino R, Ladowski JM, Ekser B, Wolf E, Brenner P, Ierino F, Mohiuddin M, Cooper DKC, Hawthorne WJ. International Xenotransplantation Association (IXA) Position Paper on Kidney Xenotransplantation. Transplantation 2025:00007890-990000000-01051. [PMID: 40197435 DOI: 10.1097/tp.0000000000005372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Porcine kidney xenotransplantation for end-stage renal disease (ESRD) has reached the stage of clinical testing following major advances in donor pig genetic modifications and effective immunosuppressive strategies through decades of rigorous translational research. Reports of pig kidney xenograft survival beyond 1 year post-transplant in nonhuman primate (NHP) models justify optimism for its potential as an alternative to allotransplantation. In the United States, experimental transplantations of genetically engineered (GE) porcine kidneys into brain-dead subjects and a small number of ESRD patients have shown no evidence of hyperacute rejection and adequate pig kidney function for up to several months. Here we discuss pre-clinical/clinical results, infectious disease, ethical, and regulatory considerations, and propose evidence-based recommendations. For initial clinical trials in kidney xenotransplantation, we make the following recommendations: (i) transplantation with organs from a triple knockout (TKO) donor pig, preferably with added human transgenes, (ii) an immunosuppressive regimen with induction therapy to deplete T (and possibly B) cells, and maintenance therapy based on a cluster of differentiation (CD)40/CD154 co-stimulation pathway blockade, (iii) the patient should be fully acceptable as a candidate for allotransplantation but should be unlikely ever to receive an allograft. Patients aged 60-69 years (extendable to 40-75 years, if one of the criteria mentioned below is present), of blood group B or O, and with diabetes are most at risk in this regard. Other patients who could be considered are (i) those who have lost two or more previous kidney allografts from recurrent disease in the graft, (ii) those with broad human leukocyte antigen (HLA)-reactivity but no evidence of anti-pig antibodies, including swine leukocyte antigen (SLA), and (iii) those with failing vascular access. Clinical pilot studies in carefully and highly selected patients with no alternative therapy will provide the foundation upon which to base subsequent formal expanded clinical trials.
Collapse
Affiliation(s)
- Raphael P H Meier
- Department of Surgery, University of Maryland School of, Medicine, Baltimore, MD
| | - Richard N Pierson
- Division of Cardiac Surgery and Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Jay A Fishman
- Transplantation Infectious Disease Program and Massachusetts General Hospital Transplant Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Leo H Buhler
- Cantonal Hospital Fribourg, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Rita Bottino
- Allegheny Health Network, Carnegie Mellon University, Pittsburgh, PA
| | - Joseph M Ladowski
- Department of Surgery, Duke University School of Medicine, Durham, NC
| | - Burcin Ekser
- Division of Abdominal Transplant Surgery, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | | | - Paolo Brenner
- Department of Cardiac Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Francesco Ierino
- Department of Nephrology and Transplantation, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Muhammad Mohiuddin
- Cardiac Xenotransplantation Program, University of Maryland School of Medicine, Baltimore, MD
| | - David K C Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - Wayne J Hawthorne
- The Department of Surgery, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
- The Centre for Transplant & Renal Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| |
Collapse
|
2
|
Meier RPH, Pierson RN, Fishman JA, Buhler LH, Bottino R, Ladowski JM, Ekser B, Wolf E, Brenner P, Ierino F, Mohiuddin M, Cooper DKC, Hawthorne WJ. International Xenotransplantation Association (IXA) Position Paper on Kidney Xenotransplantation. Xenotransplantation 2025; 32:e70003. [PMID: 40198240 DOI: 10.1111/xen.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 04/10/2025]
Abstract
Porcine kidney xenotransplantation for end-stage renal disease (ESRD) has reached the stage of clinical testing following major advances in donor pig genetic modifications and effective immunosuppressive strategies through decades of rigorous translational research. Reports of pig kidney xenograft survival beyond 1 year posttranplant in nonhuman primate (NHP) models justify optimism for its potential as an alternative to allotransplantation. In the United States, experimental transplantations of genetically engineered (GE) porcine kidneys into brain-dead subjects and a small number of ESRD patients have shown no evidence of hyperacute rejection and adequate pig kidney function for up to several months. Here we discuss pre-clinical/clinical results, infectious disease, ethical, and regulatory considerations, and propose evidence-based recommendations. For initial clinical trials in kidney xenotransplantation, we make the following recommendations: (i) transplantation with organs from a triple knockout (TKO) donor pig, preferably with added human transgenes, (ii) an immunosuppressive regimen with induction therapy to deplete T (and possibly B) cells, and maintenance therapy based on a cluster of differentiation (CD)40/CD154 co-stimulation pathway blockade, (iii) the patient should be fully acceptable as a candidate for allotransplantation but should be unlikely ever to receive an allograft. Patients aged 60-69 years (extendable to 40-75 years, if one of the criteria mentioned below is present), of blood group B or O, and with diabetes are most at risk in this regard. Other patients who could be considered are (i) those who have lost two or more previous kidney allografts from recurrent disease in the graft, (ii) those with broad human leukocyte antigen (HLA)-reactivity but no evidence of anti-pig antibodies, including swine leukocyte antigen (SLA), and (iii) those with failing vascular access. Clinical pilot studies in carefully and highly selected patients with no alternative therapy will provide the foundation upon which to base subsequent formal expanded clinical trials.
Collapse
Affiliation(s)
- Raphael P H Meier
- Department of Surgery, University of Maryland School of, Medicine, Baltimore, Maryland, USA
| | - Richard N Pierson
- Division of Cardiac Surgery and Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jay A Fishman
- Transplantation Infectious Disease Program and Massachusetts General Hospital Transplant Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Leo H Buhler
- Cantonal Hospital Fribourg, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Rita Bottino
- Allegheny Health Network, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Joseph M Ladowski
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Burcin Ekser
- Division of Abdominal Transplant Surgery, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | | | - Paolo Brenner
- Department of Cardiac Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Francesco Ierino
- Department of Nephrology and Transplantation, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Muhammad Mohiuddin
- Cardiac Xenotransplantation Program, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David K C Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Wayne J Hawthorne
- The Department of Surgery, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
- The Centre for Transplant & Renal Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| |
Collapse
|
3
|
Bobier C, Hurst DJ, Rodger D. Xenotransplantation under the Food and Drug Administration's Expanded Access pathway. Am J Transplant 2024; 24:1911-1912. [PMID: 38782186 DOI: 10.1016/j.ajt.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Affiliation(s)
- Christopher Bobier
- Department of Theology and Philosophy, Saint Mary's University of Minnesota, Winona, Minnesota, USA.
| | - Daniel J Hurst
- Department of Family Medicine, Rowan-Virtua School of Osteopathic Medicine, One Medical Center Drive, Stratford, New Jersey, USA
| | - Daniel Rodger
- Institute of Health and Social Care, School of Allied and Community Health, 103 Borough Road, London, UK
| |
Collapse
|
4
|
Pan W, Zhang W, Zheng B, Camellato BR, Stern J, Lin Z, Khodadadi-Jamayran A, Kim J, Sommer P, Khalil K, Weldon E, Bai J, Zhu Y, Meyn P, Heguy A, Mangiola M, Griesemer A, Keating BJ, Montgomery RA, Xia B, Boeke JD. Cellular dynamics in pig-to-human kidney xenotransplantation. MED 2024; 5:1016-1029.e4. [PMID: 38776915 DOI: 10.1016/j.medj.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/30/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Xenotransplantation of genetically engineered porcine organs has the potential to address the challenge of organ donor shortage. Two cases of porcine-to-human kidney xenotransplantation were performed, yet the physiological effects on the xenografts and the recipients' immune responses remain largely uncharacterized. METHODS We performed single-cell RNA sequencing (scRNA-seq) and longitudinal RNA-seq analyses of the porcine kidneys to dissect xenotransplantation-associated cellular dynamics and xenograft-recipient interactions. We additionally performed longitudinal scRNA-seq of the peripheral blood mononuclear cells (PBMCs) to detect recipient immune responses across time. FINDINGS Although no hyperacute rejection signals were detected, scRNA-seq analyses of the xenografts found evidence of endothelial cell and immune response activation, indicating early signs of antibody-mediated rejection. Tracing the cells' species origin, we found human immune cell infiltration in both xenografts. Human transcripts in the longitudinal bulk RNA-seq revealed that human immune cell infiltration and the activation of interferon-gamma-induced chemokine expression occurred by 12 and 48 h post-xenotransplantation, respectively. Concordantly, longitudinal scRNA-seq of PBMCs also revealed two phases of the recipients' immune responses at 12 and 48-53 h. Lastly, we observed global expression signatures of xenotransplantation-associated kidney tissue damage in the xenografts. Surprisingly, we detected a rapid increase of proliferative cells in both xenografts, indicating the activation of the porcine tissue repair program. CONCLUSIONS Longitudinal and single-cell transcriptomic analyses of porcine kidneys and the recipient's PBMCs revealed time-resolved cellular dynamics of xenograft-recipient interactions during xenotransplantation. These cues can be leveraged for designing gene edits and immunosuppression regimens to optimize xenotransplantation outcomes. FUNDING This work was supported by NIH RM1HG009491 and DP5OD033430.
Collapse
Affiliation(s)
- Wanqing Pan
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Weimin Zhang
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Binghan Zheng
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brendan R Camellato
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jeffrey Stern
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY 10016, USA; Department of Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ziyan Lin
- Applied Bioinformatics Laboratories (ABL), NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Jacqueline Kim
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY 10016, USA; Department of Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Philip Sommer
- Department of Anesthesiology, Perioperative Care & Pain Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Karen Khalil
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY 10016, USA
| | - Elaina Weldon
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY 10016, USA; Department of Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jiangshan Bai
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yinan Zhu
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Peter Meyn
- Genome Technology Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Adriana Heguy
- Genome Technology Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Massimo Mangiola
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY 10016, USA
| | - Adam Griesemer
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY 10016, USA; Department of Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Brendan J Keating
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA; NYU Langone Transplant Institute, NYU Langone Health, New York, NY 10016, USA; Department of Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA; Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Robert A Montgomery
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY 10016, USA; Department of Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA.
| | - Bo Xia
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA; Society of Fellows, Harvard University, Cambridge, MA 02138, USA.
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
5
|
Schmauch E, Piening B, Mohebnasab M, Xia B, Zhu C, Stern J, Zhang W, Dowdell AK, Kim JI, Andrijevic D, Khalil K, Jaffe IS, Loza BL, Gragert L, Camellato BR, Oliveira MF, O'Brien DP, Chen HM, Weldon E, Gao H, Gandla D, Chang A, Bhatt R, Gao S, Lin X, Reddy KP, Kagermazova L, Habara AH, Widawsky S, Liang FX, Sall J, Loupy A, Heguy A, Taylor SEB, Zhu Y, Michael B, Jiang L, Jian R, Chong AS, Fairchild RL, Linna-Kuosmanen S, Kaikkonen MU, Tatapudi V, Lorber M, Ayares D, Mangiola M, Narula N, Moazami N, Pass H, Herati RS, Griesemer A, Kellis M, Snyder MP, Montgomery RA, Boeke JD, Keating BJ. Integrative multi-omics profiling in human decedents receiving pig heart xenografts. Nat Med 2024; 30:1448-1460. [PMID: 38760586 DOI: 10.1038/s41591-024-02972-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/03/2024] [Indexed: 05/19/2024]
Abstract
In a previous study, heart xenografts from 10-gene-edited pigs transplanted into two human decedents did not show evidence of acute-onset cellular- or antibody-mediated rejection. Here, to better understand the detailed molecular landscape following xenotransplantation, we carried out bulk and single-cell transcriptomics, lipidomics, proteomics and metabolomics on blood samples obtained from the transplanted decedents every 6 h, as well as histological and transcriptomic tissue profiling. We observed substantial early immune responses in peripheral blood mononuclear cells and xenograft tissue obtained from decedent 1 (male), associated with downstream T cell and natural killer cell activity. Longitudinal analyses indicated the presence of ischemia reperfusion injury, exacerbated by inadequate immunosuppression of T cells, consistent with previous findings of perioperative cardiac xenograft dysfunction in pig-to-nonhuman primate studies. Moreover, at 42 h after transplantation, substantial alterations in cellular metabolism and liver-damage pathways occurred, correlating with profound organ-wide physiological dysfunction. By contrast, relatively minor changes in RNA, protein, lipid and metabolism profiles were observed in decedent 2 (female) as compared to decedent 1. Overall, these multi-omics analyses delineate distinct responses to cardiac xenotransplantation in the two human decedents and reveal new insights into early molecular and immune responses after xenotransplantation. These findings may aid in the development of targeted therapeutic approaches to limit ischemia reperfusion injury-related phenotypes and improve outcomes.
Collapse
Affiliation(s)
- Eloi Schmauch
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Brian Piening
- Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR, USA
| | - Maedeh Mohebnasab
- Division of Molecular Genetics Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Bo Xia
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
- Society of Fellows, Harvard University, Cambridge, MA, USA
| | - Chenchen Zhu
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Jeffrey Stern
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA
- Department of Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Weimin Zhang
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
| | - Alexa K Dowdell
- Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR, USA
| | - Jacqueline I Kim
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA
- Department of Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | - David Andrijevic
- Department of Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Karen Khalil
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA
| | - Ian S Jaffe
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA
- Department of Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Bao-Li Loza
- Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Loren Gragert
- Division of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | | | - Han M Chen
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Elaina Weldon
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA
- Department of Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Hui Gao
- Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Divya Gandla
- Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Chang
- Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Riyana Bhatt
- Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah Gao
- Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiangping Lin
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Kriyana P Reddy
- Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Alawi H Habara
- Department of Biochemistry, College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Sophie Widawsky
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA
- Department of Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Feng-Xia Liang
- DART Microscopy Laboratory, NYU Langone Health, New York, NY, USA
| | - Joseph Sall
- DART Microscopy Laboratory, NYU Langone Health, New York, NY, USA
| | - Alexandre Loupy
- Université Paris Cité, Paris Institute for Transplantation and Organ Regeneration, Paris, France
| | - Adriana Heguy
- Genome Technology Center, NYU Langone Health, New York, NY, USA
| | | | - Yinan Zhu
- Division of Molecular Genetics Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Basil Michael
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Lihua Jiang
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Ruiqi Jian
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Anita S Chong
- Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Robert L Fairchild
- Department of Inflammation and Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Suvi Linna-Kuosmanen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Minna U Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Vasishta Tatapudi
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA
- Department of Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | | | | | - Massimo Mangiola
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA
| | - Navneet Narula
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Nader Moazami
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA
- Department of Cardiothoracic Surgery, NYU Langone Health, New York, NY, USA
| | - Harvey Pass
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA
- Department of Cardiothoracic Surgery, NYU Langone Health, New York, NY, USA
| | - Ramin S Herati
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Adam Griesemer
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA
- Department of Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | | | - Robert A Montgomery
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA
- Department of Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
| | - Brendan J Keating
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA.
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA.
- Department of Surgery, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Zhou Y, Zhou S, Wang Q, Zhang B. Mitigating Cross-Species Viral Infections in Xenotransplantation: Progress, Strategies, and Clinical Outlook. Cell Transplant 2024; 33:9636897241226849. [PMID: 38258759 PMCID: PMC10807386 DOI: 10.1177/09636897241226849] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Xenotransplantation holds great promise as a solution to address the critical shortage of organs, but it raises concerns regarding the potential transmission of porcine viruses to recipients, leading to infections and even zoonotic diseases. Data used in this review were mainly from literature of Pubmed database. Keywords included xenotransplantation, infection, virus, and epidemiology. The original articles and critical reviews selected were relevant to this review's theme. We review the major viral infections of concern in xenotransplantation, their risk of transmission, diagnosis, treatment, and ways to prevent infection. Then, we pivot to a comprehensive overview of the current status of xenotransplantation. In addition, we offer our own insights and recommendations for propelling xenotransplantation forward, transitioning from preclinical experiments to the critical phase of clinical trials. Viral infections pose considerable safety concerns within xenotransplantation, particularly with the possibility of emerging or currently unidentified viruses. Clinical trials serve as a crucial platform to progress the safety standards of xenotransplantation. However, further studies and dedicated efforts are required to effectively translate findings into practical applications that can improve safety measures in this field.
Collapse
Affiliation(s)
- Yenong Zhou
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Shuyu Zhou
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, China
| | - Qian Wang
- Nutriology Department, Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, China
| | - Bing Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|