1
|
Xu HL, Gong TT, Song XJ, Chen Q, Bao Q, Yao W, Xie MM, Li C, Grzegorzek M, Shi Y, Sun HZ, Li XH, Zhao YH, Gao S, Wu QJ. Artificial Intelligence Performance in Image-Based Cancer Identification: Umbrella Review of Systematic Reviews. J Med Internet Res 2025; 27:e53567. [PMID: 40167239 PMCID: PMC12000792 DOI: 10.2196/53567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/30/2024] [Accepted: 11/11/2024] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Artificial intelligence (AI) has the potential to transform cancer diagnosis, ultimately leading to better patient outcomes. OBJECTIVE We performed an umbrella review to summarize and critically evaluate the evidence for the AI-based imaging diagnosis of cancers. METHODS PubMed, Embase, Web of Science, Cochrane, and IEEE databases were searched for relevant systematic reviews from inception to June 19, 2024. Two independent investigators abstracted data and assessed the quality of evidence, using the Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Systematic Reviews and Research Syntheses. We further assessed the quality of evidence in each meta-analysis by applying the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) criteria. Diagnostic performance data were synthesized narratively. RESULTS In a comprehensive analysis of 158 included studies evaluating the performance of AI algorithms in noninvasive imaging diagnosis across 8 major human system cancers, the accuracy of the classifiers for central nervous system cancers varied widely (ranging from 48% to 100%). Similarities were observed in the diagnostic performance for cancers of the head and neck, respiratory system, digestive system, urinary system, female-related systems, skin, and other sites. Most meta-analyses demonstrated positive summary performance. For instance, 9 reviews meta-analyzed sensitivity and specificity for esophageal cancer, showing ranges of 90%-95% and 80%-93.8%, respectively. In the case of breast cancer detection, 8 reviews calculated the pooled sensitivity and specificity within the ranges of 75.4%-92% and 83%-90.6%, respectively. Four meta-analyses reported the ranges of sensitivity and specificity in ovarian cancer, and both were 75%-94%. Notably, in lung cancer, the pooled specificity was relatively low, primarily distributed between 65% and 80%. Furthermore, 80.4% (127/158) of the included studies were of high quality according to the JBI Critical Appraisal Checklist, with the remaining studies classified as medium quality. The GRADE assessment indicated that the overall quality of the evidence was moderate to low. CONCLUSIONS Although AI shows great potential for achieving accelerated, accurate, and more objective diagnoses of multiple cancers, there are still hurdles to overcome before its implementation in clinical settings. The present findings highlight that a concerted effort from the research community, clinicians, and policymakers is required to overcome existing hurdles and translate this potential into improved patient outcomes and health care delivery. TRIAL REGISTRATION PROSPERO CRD42022364278; https://www.crd.york.ac.uk/PROSPERO/view/CRD42022364278.
Collapse
Affiliation(s)
- He-Li Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Jian Song
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qian Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Bao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Wei Yao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Meng-Meng Xie
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chen Li
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Marcin Grzegorzek
- Institute for Medical Informatics, University of Luebeck, Luebeck, Germany
| | - Yu Shi
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hong-Zan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao-Han Li
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Jun Wu
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
| |
Collapse
|
2
|
Gallo ML, Moriconi M, Phé V. Current applications and future perspectives of artificial intelligence in functional urology and neurourology: how far can we get? Minerva Urol Nephrol 2025; 77:33-42. [PMID: 40183181 DOI: 10.23736/s2724-6051.25.06195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
In the last few years, the scientific community has seen an increasing interest towards the potential applications of artificial intelligence in medicine and healthcare. In this context, urology represents an area of rapid development, particularly in uro-oncology, where a wide range of applications has focused on prostate cancer diagnosis. Other urological branches are also starting to explore the potential advantages of AI in the diagnostic and therapeutic process, and functional urology and neurourology are among them. Although the experiences in this sense have been quite limited so far, some AI applications have already started to show potential benefits, especially for urodynamic and imaging interpretation, as well as for the development of AI-based predictive models for treatment response. A few experiences on the use of ChatGPT to answer questions on functional urology and neurourology topics have also been reported. Conversely, AI applications in functional urology surgery remain largely unexplored. This paper provides a critical overview of the current evidence on this topic, highlighting the potential benefits for the diagnostic workflow, therapeutic evaluation and surgical training, as well as the current limitations that need to be addressed to enable the integration of this tools in the clinical practice in the future.
Collapse
Affiliation(s)
- Maria Lucia Gallo
- Department of Minimally Invasive and Robotic Urologic Surgery, Careggi University Hospital, University of Florence, Florence, Italy -
- Sorbonne University, Department of Urology AP-HP, Tenon Hospital, Paris, France -
| | - Martina Moriconi
- Sorbonne University, Department of Urology AP-HP, Tenon Hospital, Paris, France
- Department of Maternal-Infant and Urological Sciences, Sapienza University, Rome, Italy
| | - Véronique Phé
- Sorbonne University, Department of Urology AP-HP, Tenon Hospital, Paris, France
| |
Collapse
|
3
|
Bleker J, Roest C, Yakar D, Huisman H, Kwee TC. The Effect of Image Resampling on the Performance of Radiomics-Based Artificial Intelligence in Multicenter Prostate MRI. J Magn Reson Imaging 2024; 59:1800-1806. [PMID: 37572098 DOI: 10.1002/jmri.28935] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Single center MRI radiomics models are sensitive to data heterogeneity, limiting the diagnostic capabilities of current prostate cancer (PCa) radiomics models. PURPOSE To study the impact of image resampling on the diagnostic performance of radiomics in a multicenter prostate MRI setting. STUDY TYPE Retrospective. POPULATION Nine hundred thirty patients (nine centers, two vendors) with 737 eligible PCa lesions, randomly split into training (70%, N = 500), validation (10%, N = 89), and a held-out test set (20%, N = 148). FIELD STRENGTH/SEQUENCE 1.5T and 3T scanners/T2-weighted imaging (T2W), diffusion-weighted imaging (DWI), and apparent diffusion coefficient maps. ASSESSMENT A total of 48 normalized radiomics datasets were created using various resampling methods, including different target resolutions (T2W: 0.35, 0.5, and 0.8 mm; DWI: 1.37, 2, and 2.5 mm), dimensionalities (2D/3D) and interpolation techniques (nearest neighbor, linear, Bspline and Blackman windowed-sinc). Each of the datasets was used to train a radiomics model to detect clinically relevant PCa (International Society of Urological Pathology grade ≥ 2). Baseline models were constructed using 2D and 3D datasets without image resampling. The resampling configurations with highest validation performance were evaluated in the test dataset and compared to the baseline models. STATISTICAL TESTS Area under the curve (AUC), DeLong test. The significance level used was 0.05. RESULTS The best 2D resampling model (T2W: Bspline and 0.5 mm resolution, DWI: nearest neighbor and 2 mm resolution) significantly outperformed the 2D baseline (AUC: 0.77 vs. 0.64). The best 3D resampling model (T2W: linear and 0.8 mm resolution, DWI: nearest neighbor and 2.5 mm resolution) significantly outperformed the 3D baseline (AUC: 0.79 vs. 0.67). DATA CONCLUSION Image resampling has a significant effect on the performance of multicenter radiomics artificial intelligence in prostate MRI. The recommended 2D resampling configuration is isotropic resampling with T2W at 0.5 mm (Bspline interpolation) and DWI at 2 mm (nearest neighbor interpolation). For the 3D radiomics, this work recommends isotropic resampling with T2W at 0.8 mm (linear interpolation) and DWI at 2.5 mm (nearest neighbor interpolation). EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Jeroen Bleker
- Medical Imaging Center, Departments of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Christian Roest
- Medical Imaging Center, Departments of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Derya Yakar
- Medical Imaging Center, Departments of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Radiology, Netherlands Cancer Institute-Antoni Van Leeuwenhoek Hospital (NCI-AVL), Amsterdam, The Netherlands
| | - Henkjan Huisman
- Department of Medical Imaging, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Thomas C Kwee
- Medical Imaging Center, Departments of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Feretzakis G, Juliebø-Jones P, Tsaturyan A, Sener TE, Verykios VS, Karapiperis D, Bellos T, Katsimperis S, Angelopoulos P, Varkarakis I, Skolarikos A, Somani B, Tzelves L. Emerging Trends in AI and Radiomics for Bladder, Kidney, and Prostate Cancer: A Critical Review. Cancers (Basel) 2024; 16:810. [PMID: 38398201 PMCID: PMC10886599 DOI: 10.3390/cancers16040810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
This comprehensive review critically examines the transformative impact of artificial intelligence (AI) and radiomics in the diagnosis, prognosis, and management of bladder, kidney, and prostate cancers. These cutting-edge technologies are revolutionizing the landscape of cancer care, enhancing both precision and personalization in medical treatments. Our review provides an in-depth analysis of the latest advancements in AI and radiomics, with a specific focus on their roles in urological oncology. We discuss how AI and radiomics have notably improved the accuracy of diagnosis and staging in bladder cancer, especially through advanced imaging techniques like multiparametric MRI (mpMRI) and CT scans. These tools are pivotal in assessing muscle invasiveness and pathological grades, critical elements in formulating treatment plans. In the realm of kidney cancer, AI and radiomics aid in distinguishing between renal cell carcinoma (RCC) subtypes and grades. The integration of radiogenomics offers a comprehensive view of disease biology, leading to tailored therapeutic approaches. Prostate cancer diagnosis and management have also seen substantial benefits from these technologies. AI-enhanced MRI has significantly improved tumor detection and localization, thereby aiding in more effective treatment planning. The review also addresses the challenges in integrating AI and radiomics into clinical practice, such as the need for standardization, ensuring data quality, and overcoming the "black box" nature of AI. We emphasize the importance of multicentric collaborations and extensive studies to enhance the applicability and generalizability of these technologies in diverse clinical settings. In conclusion, AI and radiomics represent a major paradigm shift in oncology, offering more precise, personalized, and patient-centric approaches to cancer care. While their potential to improve diagnostic accuracy, patient outcomes, and our understanding of cancer biology is profound, challenges in clinical integration and application persist. We advocate for continued research and development in AI and radiomics, underscoring the need to address existing limitations to fully leverage their capabilities in the field of oncology.
Collapse
Affiliation(s)
- Georgios Feretzakis
- School of Science and Technology, Hellenic Open University, 26335 Patras, Greece; (G.F.); (V.S.V.)
| | - Patrick Juliebø-Jones
- Department of Urology, Haukeland University Hospital, 5021 Bergen, Norway;
- Department of Clinical, Medicine University of Bergen, 5021 Bergen, Norway
- European Association of Urology, Young Academic Urologists, Urolithiasis Group, NL-6803 Arnhem, The Netherlands; (A.T.); (T.E.S.)
| | - Arman Tsaturyan
- European Association of Urology, Young Academic Urologists, Urolithiasis Group, NL-6803 Arnhem, The Netherlands; (A.T.); (T.E.S.)
- Department of Urology, Erebouni Medical Center, Yerevan 0087, Armenia
| | - Tarik Emre Sener
- European Association of Urology, Young Academic Urologists, Urolithiasis Group, NL-6803 Arnhem, The Netherlands; (A.T.); (T.E.S.)
- Department of Urology, Marmara University School of Medicine, Istanbul 34854, Turkey
| | - Vassilios S. Verykios
- School of Science and Technology, Hellenic Open University, 26335 Patras, Greece; (G.F.); (V.S.V.)
| | - Dimitrios Karapiperis
- School of Science and Technology, International Hellenic University, 57001 Thessaloniki, Greece;
| | - Themistoklis Bellos
- Second Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, 15126 Athens, Greece; (T.B.); (S.K.); (P.A.); (I.V.); (A.S.)
| | - Stamatios Katsimperis
- Second Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, 15126 Athens, Greece; (T.B.); (S.K.); (P.A.); (I.V.); (A.S.)
| | - Panagiotis Angelopoulos
- Second Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, 15126 Athens, Greece; (T.B.); (S.K.); (P.A.); (I.V.); (A.S.)
| | - Ioannis Varkarakis
- Second Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, 15126 Athens, Greece; (T.B.); (S.K.); (P.A.); (I.V.); (A.S.)
| | - Andreas Skolarikos
- Second Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, 15126 Athens, Greece; (T.B.); (S.K.); (P.A.); (I.V.); (A.S.)
| | - Bhaskar Somani
- Department of Urology, University of Southampton, Southampton SO17 1BJ, UK;
| | - Lazaros Tzelves
- European Association of Urology, Young Academic Urologists, Urolithiasis Group, NL-6803 Arnhem, The Netherlands; (A.T.); (T.E.S.)
- Second Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, 15126 Athens, Greece; (T.B.); (S.K.); (P.A.); (I.V.); (A.S.)
| |
Collapse
|
5
|
Ramacciotti LS, Hershenhouse JS, Mokhtar D, Paralkar D, Kaneko M, Eppler M, Gill K, Mogoulianitis V, Duddalwar V, Abreu AL, Gill I, Cacciamani GE. Comprehensive Assessment of MRI-based Artificial Intelligence Frameworks Performance in the Detection, Segmentation, and Classification of Prostate Lesions Using Open-Source Databases. Urol Clin North Am 2024; 51:131-161. [PMID: 37945098 DOI: 10.1016/j.ucl.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Numerous MRI-based artificial intelligence (AI) frameworks have been designed for prostate cancer lesion detection, segmentation, and classification via MRI as a result of intrareader and interreader variability that is inherent to traditional interpretation. Open-source data sets have been released with the intention of providing freely available MRIs for the testing of diverse AI frameworks in automated or semiautomated tasks. Here, an in-depth assessment of the performance of MRI-based AI frameworks for detecting, segmenting, and classifying prostate lesions using open-source databases was performed. Among 17 data sets, 12 were specific to prostate cancer detection/classification, with 52 studies meeting the inclusion criteria.
Collapse
Affiliation(s)
- Lorenzo Storino Ramacciotti
- USC Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Artificial Intelligence Center at USC Urology, USC Institute of Urology, University of Southern California, Los Angeles, CA, USA; Center for Image-Guided and Focal Therapy for Prostate Cancer, Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jacob S Hershenhouse
- USC Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Artificial Intelligence Center at USC Urology, USC Institute of Urology, University of Southern California, Los Angeles, CA, USA; Center for Image-Guided and Focal Therapy for Prostate Cancer, Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel Mokhtar
- USC Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Artificial Intelligence Center at USC Urology, USC Institute of Urology, University of Southern California, Los Angeles, CA, USA; Center for Image-Guided and Focal Therapy for Prostate Cancer, Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Divyangi Paralkar
- USC Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Artificial Intelligence Center at USC Urology, USC Institute of Urology, University of Southern California, Los Angeles, CA, USA; Center for Image-Guided and Focal Therapy for Prostate Cancer, Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Masatomo Kaneko
- USC Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Artificial Intelligence Center at USC Urology, USC Institute of Urology, University of Southern California, Los Angeles, CA, USA; Center for Image-Guided and Focal Therapy for Prostate Cancer, Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michael Eppler
- USC Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Artificial Intelligence Center at USC Urology, USC Institute of Urology, University of Southern California, Los Angeles, CA, USA; Center for Image-Guided and Focal Therapy for Prostate Cancer, Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Karanvir Gill
- USC Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Artificial Intelligence Center at USC Urology, USC Institute of Urology, University of Southern California, Los Angeles, CA, USA; Center for Image-Guided and Focal Therapy for Prostate Cancer, Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Vasileios Mogoulianitis
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Vinay Duddalwar
- Department of Radiology, University of Southern California, Los Angeles, CA, USA
| | - Andre L Abreu
- USC Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Artificial Intelligence Center at USC Urology, USC Institute of Urology, University of Southern California, Los Angeles, CA, USA; Center for Image-Guided and Focal Therapy for Prostate Cancer, Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Radiology, University of Southern California, Los Angeles, CA, USA
| | - Inderbir Gill
- USC Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Artificial Intelligence Center at USC Urology, USC Institute of Urology, University of Southern California, Los Angeles, CA, USA; Center for Image-Guided and Focal Therapy for Prostate Cancer, Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Giovanni E Cacciamani
- USC Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Artificial Intelligence Center at USC Urology, USC Institute of Urology, University of Southern California, Los Angeles, CA, USA; Center for Image-Guided and Focal Therapy for Prostate Cancer, Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Radiology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Kaneko M, Magoulianitis V, Ramacciotti LS, Raman A, Paralkar D, Chen A, Chu TN, Yang Y, Xue J, Yang J, Liu J, Jadvar DS, Gill K, Cacciamani GE, Nikias CL, Duddalwar V, Jay Kuo CC, Gill IS, Abreu AL. The Novel Green Learning Artificial Intelligence for Prostate Cancer Imaging: A Balanced Alternative to Deep Learning and Radiomics. Urol Clin North Am 2024; 51:1-13. [PMID: 37945095 DOI: 10.1016/j.ucl.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The application of artificial intelligence (AI) on prostate magnetic resonance imaging (MRI) has shown promising results. Several AI systems have been developed to automatically analyze prostate MRI for segmentation, cancer detection, and region of interest characterization, thereby assisting clinicians in their decision-making process. Deep learning, the current trend in imaging AI, has limitations including the lack of transparency "black box", large data processing, and excessive energy consumption. In this narrative review, the authors provide an overview of the recent advances in AI for prostate cancer diagnosis and introduce their next-generation AI model, Green Learning, as a promising solution.
Collapse
Affiliation(s)
- Masatomo Kaneko
- USC Institute of Urology and Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC Institute of Urology, Center for Image-Guided Surgery, Focal Therapy and Artificial Intelligence for Prostate Cancer; Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Vasileios Magoulianitis
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Lorenzo Storino Ramacciotti
- USC Institute of Urology and Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC Institute of Urology, Center for Image-Guided Surgery, Focal Therapy and Artificial Intelligence for Prostate Cancer
| | - Alex Raman
- Western University of Health Sciences. Pomona, CA, USA
| | - Divyangi Paralkar
- USC Institute of Urology and Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC Institute of Urology, Center for Image-Guided Surgery, Focal Therapy and Artificial Intelligence for Prostate Cancer
| | - Andrew Chen
- USC Institute of Urology and Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC Institute of Urology, Center for Image-Guided Surgery, Focal Therapy and Artificial Intelligence for Prostate Cancer
| | - Timothy N Chu
- USC Institute of Urology and Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC Institute of Urology, Center for Image-Guided Surgery, Focal Therapy and Artificial Intelligence for Prostate Cancer
| | - Yijing Yang
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jintang Xue
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jiaxin Yang
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jinyuan Liu
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Donya S Jadvar
- Dornsife School of Letters and Science, University of Southern California, Los Angeles, CA, USA
| | - Karanvir Gill
- USC Institute of Urology and Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC Institute of Urology, Center for Image-Guided Surgery, Focal Therapy and Artificial Intelligence for Prostate Cancer
| | - Giovanni E Cacciamani
- USC Institute of Urology and Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC Institute of Urology, Center for Image-Guided Surgery, Focal Therapy and Artificial Intelligence for Prostate Cancer; Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chrysostomos L Nikias
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Vinay Duddalwar
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - C-C Jay Kuo
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Inderbir S Gill
- USC Institute of Urology and Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andre Luis Abreu
- USC Institute of Urology and Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC Institute of Urology, Center for Image-Guided Surgery, Focal Therapy and Artificial Intelligence for Prostate Cancer; Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Cacciamani GE, Chen A, Gill IS, Hung AJ. Artificial intelligence and urology: ethical considerations for urologists and patients. Nat Rev Urol 2024; 21:50-59. [PMID: 37524914 DOI: 10.1038/s41585-023-00796-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2023] [Indexed: 08/02/2023]
Abstract
The use of artificial intelligence (AI) in medicine and in urology specifically has increased over the past few years, during which time it has enabled optimization of patient workflow, increased diagnostic accuracy and enhanced computer analysis of radiological and pathological images. However, before further use of AI is undertaken, possible ethical issues need to be evaluated to improve understanding of this technology and to protect patients and providers. Possible ethical issues that require consideration when applying AI in clinical practice include patient safety, cybersecurity, transparency and interpretability of the data, inclusivity and equity, fostering responsibility and accountability, and the preservation of providers' decision-making and autonomy. Ethical principles for the application of AI to health care and in urology are proposed to guide urologists, patients and regulators to improve use of AI technologies and guide policy-making.
Collapse
Affiliation(s)
- Giovanni E Cacciamani
- The Catherine and Joseph Aresty Department of Urology, USC Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- AI Center at USC Urology, USC Institute of Urology, University of Southern California, Los Angeles, CA, USA.
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Andrew Chen
- The Catherine and Joseph Aresty Department of Urology, USC Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- AI Center at USC Urology, USC Institute of Urology, University of Southern California, Los Angeles, CA, USA
| | - Inderbir S Gill
- The Catherine and Joseph Aresty Department of Urology, USC Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- AI Center at USC Urology, USC Institute of Urology, University of Southern California, Los Angeles, CA, USA
| | - Andrew J Hung
- The Catherine and Joseph Aresty Department of Urology, USC Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- AI Center at USC Urology, USC Institute of Urology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Rodriguez Peñaranda N, Eissa A, Ferretti S, Bianchi G, Di Bari S, Farinha R, Piazza P, Checcucci E, Belenchón IR, Veccia A, Gomez Rivas J, Taratkin M, Kowalewski KF, Rodler S, De Backer P, Cacciamani GE, De Groote R, Gallagher AG, Mottrie A, Micali S, Puliatti S. Artificial Intelligence in Surgical Training for Kidney Cancer: A Systematic Review of the Literature. Diagnostics (Basel) 2023; 13:3070. [PMID: 37835812 PMCID: PMC10572445 DOI: 10.3390/diagnostics13193070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/17/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
The prevalence of renal cell carcinoma (RCC) is increasing due to advanced imaging techniques. Surgical resection is the standard treatment, involving complex radical and partial nephrectomy procedures that demand extensive training and planning. Furthermore, artificial intelligence (AI) can potentially aid the training process in the field of kidney cancer. This review explores how artificial intelligence (AI) can create a framework for kidney cancer surgery to address training difficulties. Following PRISMA 2020 criteria, an exhaustive search of PubMed and SCOPUS databases was conducted without any filters or restrictions. Inclusion criteria encompassed original English articles focusing on AI's role in kidney cancer surgical training. On the other hand, all non-original articles and articles published in any language other than English were excluded. Two independent reviewers assessed the articles, with a third party settling any disagreement. Study specifics, AI tools, methodologies, endpoints, and outcomes were extracted by the same authors. The Oxford Center for Evidence-Based Medicine's evidence levels were employed to assess the studies. Out of 468 identified records, 14 eligible studies were selected. Potential AI applications in kidney cancer surgical training include analyzing surgical workflow, annotating instruments, identifying tissues, and 3D reconstruction. AI is capable of appraising surgical skills, including the identification of procedural steps and instrument tracking. While AI and augmented reality (AR) enhance training, challenges persist in real-time tracking and registration. The utilization of AI-driven 3D reconstruction proves beneficial for intraoperative guidance and preoperative preparation. Artificial intelligence (AI) shows potential for advancing surgical training by providing unbiased evaluations, personalized feedback, and enhanced learning processes. Yet challenges such as consistent metric measurement, ethical concerns, and data privacy must be addressed. The integration of AI into kidney cancer surgical training offers solutions to training difficulties and a boost to surgical education. However, to fully harness its potential, additional studies are imperative.
Collapse
Affiliation(s)
- Natali Rodriguez Peñaranda
- Department of Urology, Azienda Ospedaliero-Universitaria di Modena, Via Pietro Giardini, 1355, 41126 Baggiovara, Italy; (N.R.P.); (A.E.); (S.F.); (G.B.); (S.D.B.); (S.M.)
| | - Ahmed Eissa
- Department of Urology, Azienda Ospedaliero-Universitaria di Modena, Via Pietro Giardini, 1355, 41126 Baggiovara, Italy; (N.R.P.); (A.E.); (S.F.); (G.B.); (S.D.B.); (S.M.)
- Department of Urology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Stefania Ferretti
- Department of Urology, Azienda Ospedaliero-Universitaria di Modena, Via Pietro Giardini, 1355, 41126 Baggiovara, Italy; (N.R.P.); (A.E.); (S.F.); (G.B.); (S.D.B.); (S.M.)
| | - Giampaolo Bianchi
- Department of Urology, Azienda Ospedaliero-Universitaria di Modena, Via Pietro Giardini, 1355, 41126 Baggiovara, Italy; (N.R.P.); (A.E.); (S.F.); (G.B.); (S.D.B.); (S.M.)
| | - Stefano Di Bari
- Department of Urology, Azienda Ospedaliero-Universitaria di Modena, Via Pietro Giardini, 1355, 41126 Baggiovara, Italy; (N.R.P.); (A.E.); (S.F.); (G.B.); (S.D.B.); (S.M.)
| | - Rui Farinha
- Orsi Academy, 9090 Melle, Belgium; (R.F.); (P.D.B.); (R.D.G.); (A.G.G.); (A.M.)
- Urology Department, Lusíadas Hospital, 1500-458 Lisbon, Portugal
| | - Pietro Piazza
- Division of Urology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Enrico Checcucci
- Department of Surgery, FPO-IRCCS Candiolo Cancer Institute, 10060 Turin, Italy;
| | - Inés Rivero Belenchón
- Urology and Nephrology Department, Virgen del Rocío University Hospital, 41013 Seville, Spain;
| | - Alessandro Veccia
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy;
| | - Juan Gomez Rivas
- Department of Urology, Hospital Clinico San Carlos, 28040 Madrid, Spain;
| | - Mark Taratkin
- Institute for Urology and Reproductive Health, Sechenov University, 119435 Moscow, Russia;
| | - Karl-Friedrich Kowalewski
- Department of Urology and Urosurgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Severin Rodler
- Department of Urology, University Hospital LMU Munich, 80336 Munich, Germany;
| | - Pieter De Backer
- Orsi Academy, 9090 Melle, Belgium; (R.F.); (P.D.B.); (R.D.G.); (A.G.G.); (A.M.)
- Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Giovanni Enrico Cacciamani
- USC Institute of Urology, Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA;
- AI Center at USC Urology, USC Institute of Urology, University of Southern California, Los Angeles, CA 90089, USA
| | - Ruben De Groote
- Orsi Academy, 9090 Melle, Belgium; (R.F.); (P.D.B.); (R.D.G.); (A.G.G.); (A.M.)
| | - Anthony G. Gallagher
- Orsi Academy, 9090 Melle, Belgium; (R.F.); (P.D.B.); (R.D.G.); (A.G.G.); (A.M.)
- Faculty of Life and Health Sciences, Ulster University, Derry BT48 7JL, UK
| | - Alexandre Mottrie
- Orsi Academy, 9090 Melle, Belgium; (R.F.); (P.D.B.); (R.D.G.); (A.G.G.); (A.M.)
| | - Salvatore Micali
- Department of Urology, Azienda Ospedaliero-Universitaria di Modena, Via Pietro Giardini, 1355, 41126 Baggiovara, Italy; (N.R.P.); (A.E.); (S.F.); (G.B.); (S.D.B.); (S.M.)
| | - Stefano Puliatti
- Department of Urology, Azienda Ospedaliero-Universitaria di Modena, Via Pietro Giardini, 1355, 41126 Baggiovara, Italy; (N.R.P.); (A.E.); (S.F.); (G.B.); (S.D.B.); (S.M.)
| |
Collapse
|
9
|
Belue MJ, Harmon SA, Lay NS, Daryanani A, Phelps TE, Choyke PL, Turkbey B. The Low Rate of Adherence to Checklist for Artificial Intelligence in Medical Imaging Criteria Among Published Prostate MRI Artificial Intelligence Algorithms. J Am Coll Radiol 2023; 20:134-145. [PMID: 35922018 PMCID: PMC9887098 DOI: 10.1016/j.jacr.2022.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the rigor, generalizability, and reproducibility of published classification and detection artificial intelligence (AI) models for prostate cancer (PCa) on MRI using the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) guidelines, a 42-item checklist that is considered a measure of best practice for presenting and reviewing medical imaging AI research. MATERIALS AND METHODS This review searched English literature for studies proposing PCa AI detection and classification models on MRI. Each study was evaluated with the CLAIM checklist. The additional outcomes for which data were sought included measures of AI model performance (eg, area under the curve [AUC], sensitivity, specificity, free-response operating characteristic curves), training and validation and testing group sample size, AI approach, detection versus classification AI, public data set utilization, MRI sequences used, and definition of gold standard for ground truth. The percentage of CLAIM checklist fulfillment was used to stratify studies into quartiles. Wilcoxon's rank-sum test was used for pair-wise comparisons. RESULTS In all, 75 studies were identified, and 53 studies qualified for analysis. The original CLAIM items that most studies did not fulfill includes item 12 (77% no): de-identification methods; item 13 (68% no): handling missing data; item 15 (47% no): rationale for choosing ground truth reference standard; item 18 (55% no): measurements of inter- and intrareader variability; item 31 (60% no): inclusion of validated interpretability maps; item 37 (92% no): inclusion of failure analysis to elucidate AI model weaknesses. An AUC score versus percentage CLAIM fulfillment quartile revealed a significant difference of the mean AUC scores between quartile 1 versus quartile 2 (0.78 versus 0.86, P = .034) and quartile 1 versus quartile 4 (0.78 versus 0.89, P = .003) scores. Based on additional information and outcome metrics gathered in this study, additional measures of best practice are defined. These new items include disclosure of public dataset usage, ground truth definition in comparison to other referenced works in the defined task, and sample size power calculation. CONCLUSION A large proportion of AI studies do not fulfill key items in CLAIM guidelines within their methods and results sections. The percentage of CLAIM checklist fulfillment is weakly associated with improved AI model performance. Additions or supplementations to CLAIM are recommended to improve publishing standards and aid reviewers in determining study rigor.
Collapse
Affiliation(s)
- Mason J Belue
- Medical Research Scholars Program Fellow, Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephanie A Harmon
- Staff Scientist, Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Nathan S Lay
- Staff Scientist, Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Asha Daryanani
- Intramural Research Training Program Fellow, Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Tim E Phelps
- Postdoctoral Fellow, Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Peter L Choyke
- Artificial Intelligence Resource, Chief of Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Baris Turkbey
- Senior Clinician/Director, Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
10
|
Liu X, Elbanan MG, Luna A, Haider MA, Smith AD, Sabottke CF, Spieler BM, Turkbey B, Fuentes D, Moawad A, Kamel S, Horvat N, Elsayes KM. Radiomics in Abdominopelvic Solid-Organ Oncologic Imaging: Current Status. AJR Am J Roentgenol 2022; 219:985-995. [PMID: 35766531 PMCID: PMC10616929 DOI: 10.2214/ajr.22.27695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Radiomics is the process of extraction of high-throughput quantitative imaging features from medical images. These features represent noninvasive quantitative biomarkers that go beyond the traditional imaging features visible to the human eye. This article first reviews the steps of the radiomics pipeline, including image acquisition, ROI selection and image segmentation, image preprocessing, feature extraction, feature selection, and model development and application. Current evidence for the application of radiomics in abdominopelvic solid-organ cancers is then reviewed. Applications including diagnosis, subtype determination, treatment response assessment, and outcome prediction are explored within the context of hepatobiliary and pancreatic cancer, renal cell carcinoma, prostate cancer, gynecologic cancer, and adrenal masses. This literature review focuses on the strongest available evidence, including systematic reviews, meta-analyses, and large multicenter studies. Limitations of the available literature are highlighted, including marked heterogeneity in radiomics methodology, frequent use of small sample sizes with high risk of overfitting, and lack of prospective design, external validation, and standardized radiomics workflow. Thus, although studies have laid a foundation that supports continued investigation into radiomics models, stronger evidence is needed before clinical adoption.
Collapse
Affiliation(s)
- Xiaoyang Liu
- Joint Department of Medical Imaging, Division of Abdominal Imaging, University Health Network, University of Toronto, ON, Canada
| | - Mohamed G Elbanan
- Department of Radiology, Yale New Haven Health, Bridgeport Hospital, Bridgeport, CT
| | | | - Masoom A Haider
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Joint Department of Medical Imaging, University Health Network, Sinai Health System and University of Toronto, Toronto, ON, Canada
| | - Andrew D Smith
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Carl F Sabottke
- Department of Medical Imaging, University of Arizona College of Medicine, Tucson, AZ
| | - Bradley M Spieler
- Department of Radiology, University Medical Center, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Baris Turkbey
- Molecular Imaging Program, National Cancer Institute, NIH, Bethesda, MD
| | - David Fuentes
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ahmed Moawad
- Department of Diagnostic and Interventional Radiology, Mercy Catholic Medical Center, Darby, PA
| | - Serageldin Kamel
- Department of Lymphoma, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Natally Horvat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Khaled M Elsayes
- Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, 1400 Pressler St, Houston, TX 77030
| |
Collapse
|
11
|
Martinez-Millana A, Saez-Saez A, Tornero-Costa R, Azzopardi-Muscat N, Traver V, Novillo-Ortiz D. Artificial intelligence and its impact on the domains of universal health coverage, health emergencies and health promotion: An overview of systematic reviews. Int J Med Inform 2022; 166:104855. [PMID: 35998421 PMCID: PMC9551134 DOI: 10.1016/j.ijmedinf.2022.104855] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Artificial intelligence is fueling a new revolution in medicine and in the healthcare sector. Despite the growing evidence on the benefits of artificial intelligence there are several aspects that limit the measure of its impact in people's health. It is necessary to assess the current status on the application of AI towards the improvement of people's health in the domains defined by WHO's Thirteenth General Programme of Work (GPW13) and the European Programme of Work (EPW), to inform about trends, gaps, opportunities, and challenges. OBJECTIVE To perform a systematic overview of systematic reviews on the application of artificial intelligence in the people's health domains as defined in the GPW13 and provide a comprehensive and updated map on the application specialties of artificial intelligence in terms of methodologies, algorithms, data sources, outcomes, predictors, performance, and methodological quality. METHODS A systematic search in MEDLINE, EMBASE, Cochrane and IEEEXplore was conducted between January 2015 and June 2021 to collect systematic reviews using a combination of keywords related to the domains of universal health coverage, health emergencies protection, and better health and wellbeing as defined by the WHO's PGW13 and EPW. Eligibility criteria was based on methodological quality and the inclusion of practical implementation of artificial intelligence. Records were classified and labeled using ICD-11 categories into the domains of the GPW13. Descriptors related to the area of implementation, type of modeling, data entities, outcomes and implementation on care delivery were extracted using a structured form and methodological aspects of the included reviews studies was assessed using the AMSTAR checklist. RESULTS The search strategy resulted in the screening of 815 systematic reviews from which 203 were assessed for eligibility and 129 were included in the review. The most predominant domain for artificial intelligence applications was Universal Health Coverage (N = 98) followed by Health Emergencies (N = 16) and Better Health and Wellbeing (N = 15). Neoplasms area on Universal Health Coverage was the disease area featuring most of the applications (21.7 %, N = 28). The reviews featured analytics primarily over both public and private data sources (67.44 %, N = 87). The most used type of data was medical imaging (31.8 %, N = 41) and predictors based on regions of interest and clinical data. The most prominent subdomain of Artificial Intelligence was Machine Learning (43.4 %, N = 56), in which Support Vector Machine method was predominant (20.9 %, N = 27). Regarding the purpose, the application of Artificial Intelligence I is focused on the prediction of the diseases (36.4 %, N = 47). With respect to the validation, more than a half of the reviews (54.3 %, N = 70) did not report a validation procedure and, whenever available, the main performance indicator was the accuracy (28.7 %, N = 37). According to the methodological quality assessment, a third of the reviews (34.9 %, N = 45) implemented methods for analysis the risk of bias and the overall AMSTAR score below was 5 (4.01 ± 1.93) on all the included systematic reviews. CONCLUSION Artificial intelligence is being used for disease modelling, diagnose, classification and prediction in the three domains of GPW13. However, the evidence is often limited to laboratory and the level of adoption is largely unbalanced between ICD-11 categoriesand diseases. Data availability is a determinant factor on the developmental stage of artificial intelligence applications. Most of the reviewed studies show a poor methodological quality and are at high risk of bias, which limits the reproducibility of the results and the reliability of translating these applications to real clinical scenarios. The analyzed papers show results only in laboratory and testing scenarios and not in clinical trials nor case studies, limiting the supporting evidence to transfer artificial intelligence to actual care delivery.
Collapse
Affiliation(s)
- Antonio Martinez-Millana
- Instituto Universitario de Investigación de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera S/N, Valencia 46022, Spain
| | - Aida Saez-Saez
- Instituto Universitario de Investigación de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera S/N, Valencia 46022, Spain
| | - Roberto Tornero-Costa
- Instituto Universitario de Investigación de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera S/N, Valencia 46022, Spain
| | - Natasha Azzopardi-Muscat
- Division of Country Health Policies and Systems, World Health Organization, Regional Office for Europe, Copenhagen, Denmark
| | - Vicente Traver
- Instituto Universitario de Investigación de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera S/N, Valencia 46022, Spain
| | - David Novillo-Ortiz
- Division of Country Health Policies and Systems, World Health Organization, Regional Office for Europe, Copenhagen, Denmark.
| |
Collapse
|
12
|
Quality of Multicenter Studies Using MRI Radiomics for Diagnosing Clinically Significant Prostate Cancer: A Systematic Review. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070946. [PMID: 35888036 PMCID: PMC9324573 DOI: 10.3390/life12070946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
Abstract
Background: Reproducibility and generalization are major challenges for clinically significant prostate cancer modeling using MRI radiomics. Multicenter data seem indispensable to deal with these challenges, but the quality of such studies is currently unknown. The aim of this study was to systematically review the quality of multicenter studies on MRI radiomics for diagnosing clinically significant PCa. Methods: This systematic review followed the 2020 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. Multicenter studies investigating the value of MRI radiomics for the diagnosis of clinically significant prostate cancer were included. Quality was assessed using the checklist for artificial intelligence in medical imaging (CLAIM) and the radiomics quality score (RQS). CLAIM consisted of 42 equally important items referencing different elements of good practice AI in medical imaging. RQS consisted of 36 points awarded over 16 items related to good practice radiomics. Final CLAIM and RQS scores were percentage-based, allowing for a total quality score consisting of the average of CLAIM and RQS. Results: Four studies were included. The average total CLAIM score was 74.6% and the average RQS was 52.8%. The corresponding average total quality score (CLAIM + RQS) was 63.7%. Conclusions: A very small number of multicenter radiomics PCa classification studies have been performed with the existing studies being of bad or average quality. Good multicenter studies might increase by encouraging preferably prospective data sharing and paying extra care to documentation in regards to reproducibility and clinical utility.
Collapse
|
13
|
Artificial Intelligence Applications in Urology: Reporting Standards to Achieve Fluency for Urologists. Urol Clin North Am 2022; 49:65-117. [PMID: 34776055 PMCID: PMC9147289 DOI: 10.1016/j.ucl.2021.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The growth and adoption of artificial intelligence has led to impressive results in urology. As artificial intelligence grows more ubiquitous, it is important to establish artificial intelligence literacy in the workforce. To this end, we present a narrative review of the literature of artificial intelligence and machine learning in urology and propose a checklist of reporting standards to improve readability and evaluate the current state of the literature. The listed article demonstrated heterogeneous reporting of methodologies and outcomes, limiting generalizability of research. We hope that this review serves as a foundation for future evaluation of medical research in artificial intelligence.
Collapse
|
14
|
Kaneko M, Lenon MSL, Storino Ramacciotti L, Medina LG, Sayegh AS, La Riva A, Perez LC, Ghoreifi A, Lizana M, Jadvar DS, Lebastchi AH, Cacciamani GE, Abreu AL. Multiparametric ultrasound of prostate: role in prostate cancer diagnosis. Ther Adv Urol 2022; 14:17562872221145625. [PMID: 36601020 PMCID: PMC9806443 DOI: 10.1177/17562872221145625] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 11/25/2022] [Indexed: 12/28/2022] Open
Abstract
Recent advances in ultrasonography (US) technology established modalities, such as Doppler-US, HistoScanning, contrast-enhanced ultrasonography (CEUS), elastography, and micro-ultrasound. The early results of these US modalities have been promising, although there are limitations including the need for specialized equipment, inconsistent results, lack of standardizations, and external validation. In this review, we identified studies evaluating multiparametric ultrasonography (mpUS), the combination of multiple US modalities, for prostate cancer (PCa) diagnosis. In the past 5 years, a growing number of studies have shown that use of mpUS resulted in high PCa and clinically significant prostate cancer (CSPCa) detection performance using radical prostatectomy histology as the reference standard. Recent studies have demonstrated the role mpUS in improving detection of CSPCa and guidance for prostate biopsy and therapy. Furthermore, some aspects including lower costs, real-time imaging, applicability for some patients who have contraindication for magnetic resonance imaging (MRI) and availability in the office setting are clear advantages of mpUS. Interobserver agreement of mpUS was overall low; however, this limitation can be improved using standardized and objective evaluation systems such as the machine learning model. Whether mpUS outperforms MRI is unclear. Multicenter randomized controlled trials directly comparing mpUS and multiparametric MRI are warranted.
Collapse
Affiliation(s)
- Masatomo Kaneko
- Center for Image-Guided Surgery, Focal Therapy, and Artificial Intelligence for Prostate Cancer, USC Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Maria Sarah L. Lenon
- Center for Image-Guided Surgery, Focal Therapy, and Artificial Intelligence for Prostate Cancer, USC Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lorenzo Storino Ramacciotti
- Center for Image-Guided Surgery, Focal Therapy, and Artificial Intelligence for Prostate Cancer, USC Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Luis G. Medina
- Center for Image-Guided Surgery, Focal Therapy, and Artificial Intelligence for Prostate Cancer, USC Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Aref S. Sayegh
- Center for Image-Guided Surgery, Focal Therapy, and Artificial Intelligence for Prostate Cancer, USC Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anibal La Riva
- Center for Image-Guided Surgery, Focal Therapy, and Artificial Intelligence for Prostate Cancer, USC Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Laura C. Perez
- Center for Image-Guided Surgery, Focal Therapy, and Artificial Intelligence for Prostate Cancer, USC Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alireza Ghoreifi
- Center for Image-Guided Surgery, Focal Therapy, and Artificial Intelligence for Prostate Cancer, USC Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Maria Lizana
- Center for Image-Guided Surgery, Focal Therapy, and Artificial Intelligence for Prostate Cancer, USC Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Donya S. Jadvar
- Dornsife School of Letters and Science, University of Southern California, Los Angeles, CA, USA
| | - Amir H. Lebastchi
- Center for Image-Guided Surgery, Focal Therapy, and Artificial Intelligence for Prostate Cancer, USC Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Giovanni E. Cacciamani
- Center for Image-Guided Surgery, Focal Therapy, and Artificial Intelligence for Prostate Cancer, USC Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andre Luis Abreu
- Center for Image-Guided Surgery, Focal Therapy, and Artificial Intelligence for Prostate Cancer, USC Institute of Urology and Catherine & Joseph Aresty
- Department of Urology, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave, Suite 7416, Los Angeles, CA 90089, USADepartment of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
15
|
Prostate Cancer Radiogenomics-From Imaging to Molecular Characterization. Int J Mol Sci 2021; 22:ijms22189971. [PMID: 34576134 PMCID: PMC8465891 DOI: 10.3390/ijms22189971] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Radiomics and genomics represent two of the most promising fields of cancer research, designed to improve the risk stratification and disease management of patients with prostate cancer (PCa). Radiomics involves a conversion of imaging derivate quantitative features using manual or automated algorithms, enhancing existing data through mathematical analysis. This could increase the clinical value in PCa management. To extract features from imaging methods such as magnetic resonance imaging (MRI), the empiric nature of the analysis using machine learning and artificial intelligence could help make the best clinical decisions. Genomics information can be explained or decoded by radiomics. The development of methodologies can create more-efficient predictive models and can better characterize the molecular features of PCa. Additionally, the identification of new imaging biomarkers can overcome the known heterogeneity of PCa, by non-invasive radiological assessment of the whole specific organ. In the future, the validation of recent findings, in large, randomized cohorts of PCa patients, can establish the role of radiogenomics. Briefly, we aimed to review the current literature of highly quantitative and qualitative results from well-designed studies for the diagnoses, treatment, and follow-up of prostate cancer, based on radiomics, genomics and radiogenomics research.
Collapse
|
16
|
Cacciamani GE, Anvar A, Chen A, Gill I, Hung AJ. How the use of the artificial intelligence could improve surgical skills in urology: state of the art and future perspectives. Curr Opin Urol 2021; 31:378-384. [PMID: 33965984 DOI: 10.1097/mou.0000000000000890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW As technology advances, surgical training has evolved in parallel over the previous decade. Training is commonly seen as a way to prepare surgeons for their day-to-day work; however, more importantly, it allows for certification of skills to ensure maximum patient safety. This article reviews advances in the use of machine learning and artificial intelligence for improvements of surgical skills in urology. RECENT FINDINGS Six studies have been published, which met the inclusion criteria. All articles assessed the application of artificial intelligence in improving surgical training. Different approaches were taken, such as using machine learning to identify and classify suturing gestures, creating automated objective evaluation reports, and determining surgical technical skill levels to predict clinical outcomes. The articles illustrated the continuously growing role of artificial intelligence to address the difficulties currently present in evaluating urological surgical skills. SUMMARY Artificial intelligence allows us to efficiently analyze the surmounting data related to surgical training and use it to come to conclusions that normally would require human intelligence. Although these metrics have been shown to predict surgeon expertise and surgical outcomes, evidence is still scarce regarding their ability to directly improve patient outcomes. Considering this, current active research is growing on the topic of deep learning-based computer vision to provide automated metrics needed for real-time surgeon feedback.
Collapse
Affiliation(s)
- Giovanni E Cacciamani
- USC Institute of Urology and Catherine & Joseph Aresty Department of Urology, Keck School of Medicine
- AI Center at USC Urology, USC Institute of Urology
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Arya Anvar
- USC Institute of Urology and Catherine & Joseph Aresty Department of Urology, Keck School of Medicine
- AI Center at USC Urology, USC Institute of Urology
| | - Andrew Chen
- USC Institute of Urology and Catherine & Joseph Aresty Department of Urology, Keck School of Medicine
- AI Center at USC Urology, USC Institute of Urology
| | - Inderbir Gill
- USC Institute of Urology and Catherine & Joseph Aresty Department of Urology, Keck School of Medicine
- AI Center at USC Urology, USC Institute of Urology
| | - Andrew J Hung
- USC Institute of Urology and Catherine & Joseph Aresty Department of Urology, Keck School of Medicine
- AI Center at USC Urology, USC Institute of Urology
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The goal of this study is to review recent findings and evaluate the utility of MRI transrectal ultrasound fusion biopsy (FBx) techniques and discuss future directions. RECENT FINDINGS FBx detects significantly higher rates of clinically significant prostate cancer (csPCa) than ultrasound-guided systematic prostate biopsy (SBx), particularly in repeat biopsy settings. FBx has also been shown to detect significantly lower rates of clinically insignificant prostate cancer. In addition, a dedicated prostate MRI can assist in more accurately predicting the Gleason score and provide further information regarding the index cancer location, prostate volume, and clinical stage. The ability to accurately evaluate specific lesions is vital to both focal therapy and active surveillance, for treatment selection, planning, and adequate follow-up. FBx has been demonstrated in multiple high-quality studies to have improved performance in diagnosis of csPCa compared to SBx. The combination of FBx with novel technologies including radiomics, prostate-specific membrane antigen positron emission tomography (PSMA PET), and high-resolution micro-ultrasound may have the potential to further enhance this performance.
Collapse
|