1
|
Chen W, Ji Y, Wang R, Ji R, Lin Y, Wu Y, Liu L, Sha T, Li W, Zhang L, Yang L, Zhang X, Song J. Investigating POU3F4 in cancer: Expression patterns, prognostic implications, and functional roles in tumor immunity. Heliyon 2025; 11:e41587. [PMID: 39866492 PMCID: PMC11760290 DOI: 10.1016/j.heliyon.2024.e41587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/16/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
Research has demonstrated that POU3F4 is integral to various cancers, in addition to its significance in inner ear development, pancreatic differentiation, as well as neural stem cell differentiation. Nevertheless, comprehensive pan-cancer analyses focusing on POU3F4 remain limited. This study aims to assess the prognostic value of POU3F4 in thirty-three cancers and explore its immune-related functions. Based on data from The Cancer Genome Atlas (TCGA), Cancer Cell Line Encyclopedia (CCLE), Genotype-Tissue Expression (GTE), and Gene Set Cancer Analysis (GSCA), we employed various bioinformatics approaches to investigate the potential carcinogenic effects of POU3F4. Our study encompassed DNA methylation, RNA methylation, tumor mutation burden (TMB), mismatch repair (MMR) genes, microsatellite instability (MSI), the relationship between POU3F4 and prognosis, and immune cell infiltration (ICI) across different tumors. The analysis revealed that POU3F4 expression is typically low in most cancers but is elevated in breast invasive carcinoma, glioblastoma multiforme (GBM), liver hepatocellular carcinoma, and thyroid carcinoma, with the highest levels in GBM. Additionally, POU3F4 expression correlates with cancer prognosis, either positively or negatively. The expression of POU3F4 demonstrated significant associations with MSI in four cancers and TMB in six cancers. POU3F4 expression was significantly linked to DNA methylation in 13 cancer types and RNA methylation in most cancers. It also correlated with the tumor immune microenvironment, immune-related genes, immune checkpoint inhibitors, and drug resistance in various cancers. In vitro experiments demonstrated that POU3F4 enhances cell viability, proliferation, and migration in GBM. Our findings indicate that, given its critical role in carcinogenesis and tumor immunity, POU3F4 serves as a prognostic marker in diverse malignancies.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, 224002, China
- Department of Radiotherapy, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, 224002, China
| | - Yaya Ji
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Rui Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, 224002, China
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ruijie Ji
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yujian Lin
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yuhang Wu
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Lehan Liu
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tianle Sha
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wen Li
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Lei Zhang
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Longfei Yang
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xinhua Zhang
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, 224002, China
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jianxiang Song
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, 224002, China
| |
Collapse
|
2
|
Mitrofanova LB, Perminova AA, Ryzhkova DV, Sukhotskaya AA, Bairov VG, Nikitina IL. Differential Morphological Diagnosis of Various Forms of Congenital Hyperinsulinism in Children. Front Endocrinol (Lausanne) 2021; 12:710947. [PMID: 34497584 PMCID: PMC8419459 DOI: 10.3389/fendo.2021.710947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/04/2021] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Congenital hyperinsulinism (CHI) has diffuse (CHI-D), focal (CHI-F) and atypical (CHI-A) forms. Surgical management depends on preoperative [18F]-DOPA PET/CT and intraoperative morphological differential diagnosis of CHI forms. Objective: to improve differential diagnosis of CHI forms by comparative analysis [18F]-DOPA PET/CT data, as well as cytological, histological and immunohistochemical analysis (CHIA). MATERIALS AND METHODS The study included 35 CHI patients aged 3.2 ± 2.0 months; 10 patients who died from congenital heart disease at the age of 3.2 ± 2.9 months (control group). We used PET/CT, CHIA of pancreas with antibodies to ChrA, insulin, Isl1, Nkx2.2, SST, NeuroD1, SSTR2, SSTR5, DR1, DR2, DR5; fluorescence microscopy with NeuroD1/ChrA, Isl1/insulin, insulin/SSTR2, DR2/NeuroD1 cocktails. RESULTS Intraoperative examination of pancreatic smears showed the presence of large nuclei, on average, in: 14.5 ± 3.5 cells of CHI-F; 8.4 ± 1.1 of CHI-D; and 4.5 ± 0.7 of control group (from 10 fields of view, x400). The percentage of Isl1+ and NeuroD1+endocrinocytes significantly differed from that in the control for all forms of CHI. The percentage of NeuroD1+exocrinocytes was also significantly higher than in the control. The proportion of ChrA+ and DR2+endocrinocytes was higher in CHI-D than in CHI-F, while the proportion of insulin+cells was higher in CHI-A. The number of SST+cells was significantly higher in CHI-D and CHI-F than in CHI-A. CONCLUSION For intraoperative differential diagnosis of CHI forms, in addition to frozen sections, quantitative cytological analysis can be used. In quantitative immunohistochemistry, CHI forms differ in the expression of ChrA, insulin, SST and DR2. The development of a NeuroD1 inhibitor would be advisable for targeted therapy of CHI.
Collapse
|
3
|
Hamze Z, Vercherat C, Bernigaud-Lacheretz A, Bazzi W, Bonnavion R, Lu J, Calender A, Pouponnot C, Bertolino P, Roche C, Stein R, Scoazec JY, Zhang CX, Cordier-Bussat M. Altered MENIN expression disrupts the MAFA differentiation pathway in insulinoma. Endocr Relat Cancer 2013; 20:833-48. [PMID: 24157940 PMCID: PMC3841063 DOI: 10.1530/erc-13-0164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The protein MENIN is the product of the multiple endocrine neoplasia type I (MEN1) gene. Altered MENIN expression is one of the few events that are clearly associated with foregut neuroendocrine tumours (NETs), classical oncogenes or tumour suppressors being not involved. One of the current challenges is to understand how alteration of MENIN expression contributes to the development of these tumours. We hypothesised that MENIN might regulate factors maintaining endocrine-differentiated functions. We chose the insulinoma model, a paradigmatic example of well-differentiated pancreatic NETs, to study whether MENIN interferes with the expression of v-MAF musculoaponeurotic fibrosarcoma oncogene homologue A (MAFA), a master glucose-dependent transcription factor in differentiated β-cells. Immunohistochemical analysis of a series of human insulinomas revealed a correlated decrease in both MENIN and MAFA. Decreased MAFA expression resulting from targeted Men1 ablation was also consistently observed in mouse insulinomas. In vitro analyses using insulinoma cell lines showed that MENIN regulated MAFA protein and mRNA levels, and bound to Mafa promoter sequences. MENIN knockdown concomitantly decreased mRNA expression of both Mafa and β-cell differentiation markers (Ins1/2, Gck, Slc2a2 and Pdx1) and, in parallel, increased the proliferation rate of tumours as measured by bromodeoxyuridine incorporation. Interestingly, MAFA knockdown alone also increased proliferation rate but did not affect the expression of candidate proliferation genes regulated by MENIN. Finally, MENIN variants with missense mutations detected in patients with MEN1 lost the WT MENIN properties to regulate MAFA. Together, our findings unveil a previously unsuspected MENIN/MAFA connection regarding control of the β-cell differentiation/proliferation balance, which could contribute to tumorigenesis.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Apoptosis
- Blotting, Western
- Carcinoma, Neuroendocrine/genetics
- Carcinoma, Neuroendocrine/metabolism
- Carcinoma, Neuroendocrine/pathology
- Cell Differentiation
- Cell Proliferation
- Chromatin Immunoprecipitation
- Female
- Glucose/pharmacology
- Humans
- Immunoenzyme Techniques
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Insulinoma/genetics
- Insulinoma/metabolism
- Insulinoma/pathology
- Maf Transcription Factors, Large/antagonists & inhibitors
- Maf Transcription Factors, Large/genetics
- Maf Transcription Factors, Large/metabolism
- Male
- Mice
- Mice, Knockout
- Middle Aged
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/physiology
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Rats
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Z Hamze
- INSERM U1052/CNRS UMR5286/Université de Lyon, Lyon1 UMR-S1052, Cancer Research Center of Lyon, Lyon F-69008, France Service de Génétique Moléculaire et Clinique, Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon F-69437, France UMR 3347/CNRS, U1021/INSERM, Institut Curie, Orsay F-91405, France Service Central d'Anatomie et Cytologie Pathologiques, Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon F-69437, France Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Simon-Areces J, Acaz-Fonseca E, Ruiz-Palmero I, Garcia-Segura LM, Arevalo MA. A CRM1-mediated nuclear export signal is essential for cytoplasmic localization of neurogenin 3 in neurons. PLoS One 2013; 8:e55237. [PMID: 23383123 PMCID: PMC3559332 DOI: 10.1371/journal.pone.0055237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 12/27/2012] [Indexed: 01/13/2023] Open
Abstract
Neurogenin 3 (Ngn3), a proneural gene, regulates dendritogenesis and synaptogenesis in mouse hippocampal neurons. Ngn3 is transiently exported from the cell nucleus to the cytoplasm when neuronal polarity is initiated, suggesting that the nucleo-cytoplasmic transport of the protein is important for its action on neuronal development. In this study, we identified for the first time a functional nuclear export sequence (NES2; ¹³¹YIWALTQTLRIA¹⁴²) in Ngn3. The green fluorescent protein (EGFP)-NES2 fusion protein was localized in the cytoplasm and its nucleo-cytoplasmic shuttling was blocked by the CRM1 specific export inhibitor leptomycin B. Mutation of a leucine residue to alanine (L135A) in the NES2 motif resulted in both cytoplasmic and nuclear localization of the EGFP-NES2 fusion protein and in the nuclear accumulation of ectopic full-length myc-Ngn3. In addition, point mutation of the leucine 135 counteracted the effects of Ngn3 on neuronal morphology and synaptic inputs indicating that the cytoplasmic localization of Ngn3 is important for neuronal development. Pharmacological perturbation of the cytoskeleton revealed that cytoplasmic Ngn3 is associated with microtubules.
Collapse
|
5
|
Abstract
Cancer cells silence autosomal tumor suppressor genes by Knudson's two-hit mechanism in which loss-of-function mutations and then loss of heterozygosity occur at the tumor suppressor gene loci. However, the identification of X-linked tumor suppressor genes has challenged the traditional theory of 'two-hit inactivation' in tumor suppressor genes, introducing the novel concept that a single genetic hit can cause loss of tumor suppressor function. The mechanism through which these genes are silenced in human cancer is unclear, but elucidating the details will greatly enhance our understanding of the pathogenesis of human cancer. Here, we review the identification of X-linked tumor suppressor genes and discuss the potential mechanisms of their inactivation. In addition, we also discuss how the identification of X-linked tumor suppressor genes can potentially lead to new approaches in cancer therapy.
Collapse
Affiliation(s)
- Runhua Liu
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Department of Genetics, School of Medicine, University of Alabama at Birmingham and Comprehensive Cancer Center, Birmingham, AL, USA
| | - Mandy Kain
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Lizhong Wang
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Department of Genetics, School of Medicine, University of Alabama at Birmingham and Comprehensive Cancer Center, Birmingham, AL, USA
| |
Collapse
|
7
|
Hermann G, Konukiewitz B, Schmitt A, Perren A, Klöppel G. Hormonally defined pancreatic and duodenal neuroendocrine tumors differ in their transcription factor signatures: expression of ISL1, PDX1, NGN3, and CDX2. Virchows Arch 2011; 459:147-54. [PMID: 21739268 DOI: 10.1007/s00428-011-1118-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/15/2011] [Accepted: 04/20/2011] [Indexed: 12/26/2022]
Abstract
We recently identified the transcription factor (TF) islet 1 gene product (ISL1) as a marker for well-differentiated pancreatic neuroendocrine tumors (P-NETs). In order to better understand the expression of the four TFs, ISL1, pancreatico-duodenal homeobox 1 gene product (PDX1), neurogenin 3 gene product (NGN3), and CDX-2 homeobox gene product (CDX2), that mainly govern the development and differentiation of the pancreas and duodenum, we studied their expression in hormonally defined P-NETs and duodenal (D-) NETs. Thirty-six P-NETs and 14 D-NETs were immunostained with antibodies against the four pancreatic hormones, gastrin, serotonin, calcitonin, ISL1, PDX1, NGN3, and CDX2. The TF expression pattern of each case was correlated with the tumor's hormonal profile. Insulin-positive NETs expressed only ISL1 (10/10) and PDX1 (9/10). Glucagon-positive tumors expressed ISL1 (7/7) and were almost negative for the other TFs. Gastrin-positive NETs, whether of duodenal or pancreatic origin, frequently expressed PDX1 (17/18), ISL1 (14/18), and NGN3 (14/18). CDX2 was mainly found in the gastrin-positive P-NETs (5/8) and rarely in the D-NETs (1/10). Somatostatin-positive NETs, whether duodenal or pancreatic in origin, expressed ISL1 (9/9), PDX1 (3/9), and NGN3 (3/9). The remaining tumors showed labeling for ISL1 in addition to NGN3. There was no association between a particular TF pattern and NET features such as grade, size, location, presence of metastases, and functional activity. We conclude from our data that there is a correlation between TF expression patterns and certain hormonally defined P-NET and D-NET types, suggesting that most of the tumor types originate from embryologically determined precursor cells. The observed TF signatures do not allow us to distinguish P-NETs from D-NETs.
Collapse
Affiliation(s)
- Gratiana Hermann
- Department of Pathology, Assaf Harofeh Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
8
|
Abstract
Beta-cell regeneration represents a major goal of therapy for diabetes. Unravelling the origin of beta cells during pancreatic regeneration could help restore a functional beta-cell mass in diabetes patients. This scientific question has represented a longstanding interest still intensively investigated today. This review focuses on pioneering observations and subsequent theories made 100 years ago and describes how technical innovation helped resolve some, but not all, of the controversies generated by these early investigators. At the end of the 19th century, complete pancreatectomy demonstrated the crucial physiological role of the pancreas and its link with diabetes. Pancreatic injury models, including pancreatectomy and ductal ligation, allowed investigators to describe islet function and to assess the regenerative capacity of the pancreas. Three main theories were proposed to explain the origins of newly formed islets: (i) transdifferentiation of acinar cells into islets, (ii) islet neogenesis, a process reminiscent of islet formation during embryonic development, and (iii) replication of preexisting islet cells. Despite considerable technical innovation in the last 50 years, the origin of new adult beta cells remains highly controversial and the same three theories are still debated today.
Collapse
Affiliation(s)
- A Granger
- Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, USA
| | | |
Collapse
|