1
|
Nista EC, Parello S, Brigida M, Amadei G, Saviano A, De Lucia SS, Petruzziello C, Migneco A, Ojetti V. Exploring the Role of Gut Microbiota and Probiotics in Acute Pancreatitis: A Comprehensive Review. Int J Mol Sci 2025; 26:3433. [PMID: 40244415 PMCID: PMC11989318 DOI: 10.3390/ijms26073433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Acute pancreatitis (AP) is a common and potentially severe gastrointestinal condition characterized by acute inflammation of the pancreas. The pathophysiology of AP is multifactorial and intricate, involving a cascade of events that lead to pancreatic injury and systemic inflammation. The progression of AP is influenced by many factors, including genetic predispositions, environmental triggers, and immune dysregulation. Recent studies showed a critical involvement of the gut microbiota in shaping the immune response and modulating inflammatory processes during AP. This review aims to provide a comprehensive overview of the emerging role of gut microbiota and probiotics in AP. We analyzed the implication of gut microbiota in pathogenesis of AP and the modification during an acute attack. The primary goals of microbiome-based therapies, which include probiotics, prebiotics, antibiotics, fecal microbiota transplantation, and enteral nutrition, are to alter the composition of the gut microbial community and the amount of metabolites derived from the microbiota. By resetting the entire flora or supplementing it with certain beneficial organisms and their byproducts, these therapeutic approaches aim to eradicate harmful microorganisms, reducing inflammation and avoiding bacterial translocation and the potential microbiota-based therapeutic target for AP from nutrition to pre- and probiotic supplementation to fecal transplantation.
Collapse
Affiliation(s)
- Enrico Celestino Nista
- Fondazione Policlinico Gemelli, Istituiti di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy; (E.C.N.); (S.P.); (G.A.); (A.S.); (S.S.D.L.); (A.M.)
| | - Simone Parello
- Fondazione Policlinico Gemelli, Istituiti di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy; (E.C.N.); (S.P.); (G.A.); (A.S.); (S.S.D.L.); (A.M.)
| | - Mattia Brigida
- Gastroenterology Unit, Policlinico Universitario Tor Vergata, 00133 Rome, Italy;
| | - Giulio Amadei
- Fondazione Policlinico Gemelli, Istituiti di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy; (E.C.N.); (S.P.); (G.A.); (A.S.); (S.S.D.L.); (A.M.)
| | - Angela Saviano
- Fondazione Policlinico Gemelli, Istituiti di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy; (E.C.N.); (S.P.); (G.A.); (A.S.); (S.S.D.L.); (A.M.)
| | - Sara Sofia De Lucia
- Fondazione Policlinico Gemelli, Istituiti di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy; (E.C.N.); (S.P.); (G.A.); (A.S.); (S.S.D.L.); (A.M.)
| | | | - Alessio Migneco
- Fondazione Policlinico Gemelli, Istituiti di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy; (E.C.N.); (S.P.); (G.A.); (A.S.); (S.S.D.L.); (A.M.)
| | - Veronica Ojetti
- Ospedale San Carlo di Nancy, GVM Research, 00165 Rome, Italy
- Department of Internal Medicine, UniCamillus International Medical University of Rome, 00131 Rome, Italy
| |
Collapse
|
2
|
Ortiz-Placín C, Castillejo-Rufo A, Estarás M, González A. Membrane Lipid Derivatives: Roles of Arachidonic Acid and Its Metabolites in Pancreatic Physiology and Pathophysiology. Molecules 2023; 28:4316. [PMID: 37298790 PMCID: PMC10254454 DOI: 10.3390/molecules28114316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
One of the most important constituents of the cell membrane is arachidonic acid. Lipids forming part of the cellular membrane can be metabolized in a variety of cellular types of the body by a family of enzymes termed phospholipases: phospholipase A2, phospholipase C and phospholipase D. Phospholipase A2 is considered the most important enzyme type for the release of arachidonic acid. The latter is subsequently subjected to metabolization via different enzymes. Three enzymatic pathways, involving the enzymes cyclooxygenase, lipoxygenase and cytochrome P450, transform the lipid derivative into several bioactive compounds. Arachidonic acid itself plays a role as an intracellular signaling molecule. Additionally, its derivatives play critical roles in cell physiology and, moreover, are involved in the development of disease. Its metabolites comprise, predominantly, prostaglandins, thromboxanes, leukotrienes and hydroxyeicosatetraenoic acids. Their involvement in cellular responses leading to inflammation and/or cancer development is subject to intense study. This manuscript reviews the findings on the involvement of the membrane lipid derivative arachidonic acid and its metabolites in the development of pancreatitis, diabetes and/or pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | - Antonio González
- Instituto de Biomarcadores de Patologías Moleculares, Departamento de Fisiología, Universidad de Extremadura, 10003 Cáceres, Spain; (C.O.-P.); (A.C.-R.); (M.E.)
| |
Collapse
|
3
|
Gitto SB, Nakkina SP, Beardsley JM, Parikh JG, Altomare DA. Induction of pancreatitis in mice with susceptibility to pancreatic cancer. Methods Cell Biol 2022; 168:139-159. [PMID: 35366980 DOI: 10.1016/bs.mcb.2021.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chronic inflammation is known to be associated with pancreatic cancer, however a complete picture regarding how these pathologies intersect is still being characterized. In vivo model systems are critical for the study of mechanisms underlying how inflammation accelerates neoplasia. Repeat injection of cerulein, a cholecystokinin (CCK) analog, is widely used to experimentally induce acute and chronic pancreatitis in vivo. Chronic cerulein administration into genetically engineered mouse models (GEMMs) with predisposition to pancreatic cancer can induce a pro-inflammatory immune response, pancreatic acinar cell damage, pancreatic stellate cell activation, and accelerate the onset of neoplasia. Here we provide a detailed protocol and insights into using cerulein to induce pancreatitis in GEMMs, and methods to experimentally assess inflammation and pancreatic neoplasia.
Collapse
Affiliation(s)
- Sarah B Gitto
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, United States; Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sai Preethi Nakkina
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Jordan M Beardsley
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Jignesh G Parikh
- Department of Pathology, Orlando VA Medical Center, Orlando, FL, United States
| | - Deborah A Altomare
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States.
| |
Collapse
|
4
|
Jeong YK, Kim H. A Mini-Review on the Effect of Docosahexaenoic Acid (DHA) on Cerulein-Induced and Hypertriglyceridemic Acute Pancreatitis. Int J Mol Sci 2017; 18:ijms18112239. [PMID: 29068376 PMCID: PMC5713209 DOI: 10.3390/ijms18112239] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/21/2017] [Accepted: 10/23/2017] [Indexed: 12/17/2022] Open
Abstract
Acute pancreatitis refers to the sudden inflammation of the pancreas. It is associated with premature activation and release of digestive enzymes into the pancreatic interstitium and systemic circulation, resulting in pancreatic tissue autodigestion and multiple organ dysfunction, as well as with increased cytokine production, ultimately leading to deleterious local and systemic effects. Although mechanisms involved in pathogenesis of acute pancreatitis have not been completely elucidated, oxidative stress is regarded as a major risk factor. In human acute pancreatitis, lipid peroxide levels in pancreatic tissues increase. Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid (C22:6n-3), exerts anti-inflammatory and antioxidant effects on various cells. Previous studies have shown that DHA activates peroxisome proliferator-activated receptor-γ and induces catalase, which inhibits oxidative stress-mediated inflammatory signaling required for cytokine expression in experimental acute pancreatitis using cerulein. Cerulein, a cholecystokinin analog, induces intra-acinar activation of trypsinogen in the pancreas, which results in human acute pancreatitis-like symptoms. Therefore, DHA supplementation may be beneficial for preventing or inhibiting acute pancreatitis development. Since DHA reduces serum triglyceride levels, addition of DHA to lipid-lowering drugs like statins has been investigated to reduce hypertriglyceridemic acute pancreatitis. However, high DHA concentrations increase cytosolic Ca2+, which activates protein kinase C and may induce hyperlipidemic acute pancreatitis. In this review, effect of DHA on cerulein-induced and hypertriglyceridemic acute pancreatitis has been discussed. The relation of high concentration of DHA to hyperlipidemic acute pancreatitis has been included.
Collapse
Affiliation(s)
- Yoo Kyung Jeong
- Department of Food and Nutrition, Brian Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brian Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
5
|
Berressem D, Koch K, Franke N, Klein J, Eckert GP. Intravenous Treatment with a Long-Chain Omega-3 Lipid Emulsion Provides Neuroprotection in a Murine Model of Ischemic Stroke - A Pilot Study. PLoS One 2016; 11:e0167329. [PMID: 27902774 PMCID: PMC5130273 DOI: 10.1371/journal.pone.0167329] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 11/11/2016] [Indexed: 01/08/2023] Open
Abstract
Single long-chain omega-3 fatty acids (e.g. docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA)) are known for their neuroprotective properties associated with ischemic stroke. This pilot study aimed to test the effectiveness of an acute treatment with a long-chain omega-3 lipid emulsion (Omegaven 10%®, OGV) that contains fish oil (DHA 18 mg/ml; EPA 21 mg/ml) and α-tocopherol (0.2 mg/ml) in a transient middle cerebral artery occlusion (MCAO) model of ischemic stroke in mice. For this purpose, female CD-1 mice were anesthetized and subjected to 90 minutes of MCAO. To reflect a clinically relevant situation for an acute treatment, either after induction of stroke or after reperfusion, a single dose of OGV was injected intravenously into the tail vein (5 ml/kg b.w.). A neurological severity score was used to assess motor function and neurological outcome. Stroke-related parameters were determined 24 hours after MCAO. Microdialysis was used to collect samples from extracellular space of the striatum. Mitochondrial function was determined in isolated mitochondria or dissociated brain cells. Inflammation markers were measured in brain homogenate. According to control experiments, neuroprotective effects could be attributed to the long-chain omega-3 content of the emulsion. Intravenous injection of OGV reduced size and severity of stroke, restored mitochondrial function, and prevented excitotoxic glutamate release. Increases of pro-inflammatory markers (COX-2 and IL-6) were attenuated. Neurological severity scoring and neurochemical data demonstrated that acute OGV treatment shortly after induction of stroke was most efficient and able to improve short-term neurological outcome, reflecting the importance of an acute treatment to improve the outcome. Summarising, acute treatment of stroke with a single intravenous dose of OGV provided strong neuroprotective effects and was most effective when given immediately after onset of ischemia. As OGV is an approved fishoil emulsion for parenteral nutrition in humans, our results may provide first translational data for a possible early management of ischemic stroke with administration of OGV to prevent further brain damage.
Collapse
Affiliation(s)
- Dirk Berressem
- Goethe-University of Frankfurt, Department of Pharmacology, Germany
- * E-mail:
| | - Konrad Koch
- Goethe-University of Frankfurt, Department of Pharmacology, Germany
| | - Nicole Franke
- Goethe-University of Frankfurt, Department of Pharmacology, Germany
| | - Jochen Klein
- Goethe-University of Frankfurt, Department of Pharmacology, Germany
| | - Gunter P. Eckert
- Goethe-University of Frankfurt, Department of Pharmacology, Germany
- Justus-Liebig-University Giessen, Institute of Nutritional Sciences, Germany
| |
Collapse
|
6
|
Kuliaviene I, Gulbinas A, Cremers J, Pundzius J, Kupcinskas L, Dambrauskas Z, Jansen E. Fatty acids of erythrocyte membrane in acute pancreatitis patients. World J Gastroenterol 2013; 19:5678-5684. [PMID: 24039361 PMCID: PMC3769905 DOI: 10.3748/wjg.v19.i34.5678] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/03/2013] [Accepted: 06/19/2013] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate changes in the fatty acid composition of erythrocyte membrane phospholipids during severe and mild acute pancreatitis (AP) of alcoholic and nonalcoholic etiology. METHODS All consecutive patients with a diagnosis of AP and onset of the disease within the last 72 h admitted to the Hospital of Lithuanian University of Health Sciences between June and December 2007 were included. According to the Acute Physiology and Chronic Health Evaluation (APACHE II) scale, the patients were subdivided into the mild (APACHE II score < 7, n = 22) and severe (APACHE II score ≥ 7, n = 17) AP groups. Healthy individuals (n = 26) were enrolled as controls. Blood samples were collected from patients on admission to the hospital. Fatty acids (FAs) were extracted from erythrocyte phospholipids and expressed as percentages of the total FAs present in the chromatogram. The concentrations of superoxide dismutase and glutathione peroxidase were measured in erythrocytes. RESULTS We found an increase in the percentages of saturated and monounsaturated FAs, a decrease in the percentages of total polyunsaturated FAs (PUFAs) and n-3 PUFAs in erythrocyte membrane phospholipids of AP patients compared with healthy controls. Palmitic (C16:0), palmitoleic (C16:1n7cis), arachidonic (C20:4n6), docosahexaenoic (DHA, C22:6n3), and docosapentaenoic (DPA, C22:5n3) acids were the major contributing factors. A decrease in the peroxidation and unsaturation indexes in AP patients as well as the severe and mild AP groups as compared with controls was observed. The concentrations of antioxidant enzymes in the mild AP group were lower than in the control group. In severe AP of nonalcoholic etiology, the percentages of arachidic (C20:0) and arachidonic (C20:4n6) acids were decreased as compared with the control group. The patients with mild AP of nonalcoholic etiology had the increased percentages of total saturated FAs and gama linoleic acid (C18:3n6) and the decreased percentages of elaidic (C18:1n9t), eicosapentaenoic acid (EPA, C20:5n3), DPA (C22:5n3), DHA (C22:6n3) as well as total and n-3 PUFAs in erythrocyte membrane phospholipids. CONCLUSION The composition of FAs in erythrocyte membranes is altered during AP. These changes are likely to be associated with alcohol consumption, inflammatory processes, and oxidative stress.
Collapse
|
7
|
Kremmyda LS, Tvrzicka E, Stankova B, Zak A. Fatty acids as biocompounds: their role in human metabolism, health and disease: a review. part 2: fatty acid physiological roles and applications in human health and disease. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2012; 155:195-218. [PMID: 22286806 DOI: 10.5507/bp.2011.052] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND This is the second of two review parts aiming at describing the major physiological roles of fatty acids, as well as their applications in specific conditions related to human health. RESULTS The review included the current literature published in Pubmed up to March 2011. In humans, fatty acids are a principle energy substrate and structural components of cell membranes (phospholipids) and second messengers. Fatty acids are also ligands of nuclear receptors affecting gene expression. Longer-chain (LC) polyunsaturated fatty acids (PUFA), including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid are precursors of lipid mediators such as eicosanoids (prostaglandins, leukotrienes, thromboxanes), resolvins and neuroprotectins. Lipid mediators produced by EPA and DHA (LC n-3 PUFA; mainly found in oily fish) are considered as inflammation-resolving, and thus, fish oil has been characterised as antiinflammatory. Recommendations for EPA plus DHA intake from oily fish vary between 250-450 mg/day. Dietary reference values for fat vary between nutrition bodies, but mainly agree on a low total and saturated fat intake. The existing literature supports the protective effects of LC n-3 PUFA (as opposed to n-6 PUFA and saturated fat) in maternal and offspring health, cardiovascular health, insulin sensitivity, the metabolic syndrome, cancer, critically ill patients, and immune system disorders. CONCLUSION Fatty acids are involved in multiple pathways and play a major role in health. Further investigation and a nutrigenomics approach to the effects of these biocompounds on health and disease development are imperative and highlight the importance of environmental modifications on disease outcome.
Collapse
|