1
|
Gukovskaya AS, Lerch MM, Mayerle J, Sendler M, Ji B, Saluja AK, Gorelick FS, Gukovsky I. Trypsin in pancreatitis: The culprit, a mediator, or epiphenomenon? World J Gastroenterol 2024; 30:4417-4438. [PMID: 39534420 PMCID: PMC11551668 DOI: 10.3748/wjg.v30.i41.4417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 10/23/2024] Open
Abstract
Pancreatitis is a common, life-threatening inflammatory disease of the exocrine pancreas. Its pathogenesis remains obscure, and no specific or effective treatment is available. Gallstones and alcohol excess are major etiologies of pancreatitis; in a small portion of patients the disease is hereditary. Pancreatitis is believed to be initiated by injured acinar cells (the main exocrine pancreas cell type), leading to parenchymal necrosis and local and systemic inflammation. The primary function of these cells is to produce, store, and secrete a variety of enzymes that break down all categories of nutrients. Most digestive enzymes, including all proteases, are secreted by acinar cells as inactive proforms (zymogens) and in physiological conditions are only activated when reaching the intestine. The generation of trypsin from inactive trypsinogen in the intestine plays a critical role in physiological activation of other zymogens. It was proposed that pancreatitis results from proteolytic autodigestion of the gland, mediated by premature/inappropriate trypsinogen activation within acinar cells. The intra-acinar trypsinogen activation is observed in experimental models of acute and chronic pancreatitis, and in human disease. On the basis of these observations, it has been considered the central pathogenic mechanism of pancreatitis - a concept with a century-old history. This review summarizes the data on trypsinogen activation in experimental and genetic rodent models of pancreatitis, particularly the more recent genetically engineered mouse models that mimic mutations associated with hereditary pancreatitis; analyzes the mechanisms mediating trypsinogen activation and protecting the pancreas against its' damaging effects; discusses the gaps in our knowledge, potential therapeutic approaches, and directions for future research. We conclude that trypsin is not the culprit in the disease pathogenesis but, at most, a mediator of some pancreatitis responses. Therefore, the search for effective therapies should focus on approaches to prevent or normalize other intra-acinar pathologic processes, such as defective autophagy leading to parenchymal cell death and unrelenting inflammation.
Collapse
Affiliation(s)
- Anna S Gukovskaya
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90073, United States
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States
| | - Markus M Lerch
- Department of Medicine, Ludwig Maximilian University Hospital, Munich 81377, Germany
| | - Julia Mayerle
- Department of Medicine II, Ludwig Maximilian University of Munich, Munich 81377, Germany
| | - Matthias Sendler
- Department of Medicine A, University of Greifswald, Greifswald 17475, Germany
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Ashok K Saluja
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Fred S Gorelick
- Departments of Cell Biology and Internal Medicine, Yale University School of Medicine and VA West Haven, New Haven, CT 06519, United States
| | - Ilya Gukovsky
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90073, United States
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States
| |
Collapse
|
2
|
Qu Y, Lu J, Mei W, Jia Y, Bian C, Ding Y, Guo Y, Cao F, Li F. Prognostic biomarkers of pancreatic cancer identified based on a competing endogenous RNA regulatory network. Transl Cancer Res 2022; 11:4019-4036. [PMID: 36523322 PMCID: PMC9745361 DOI: 10.21037/tcr-22-709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/12/2022] [Indexed: 08/30/2023]
Abstract
BACKGROUND Pancreatic cancer is an insidious and heterogeneous malignancy with poor prognosis that is often locally unresectable. Therefore, determining the underlying mechanisms and effective prognostic indicators of pancreatic cancer may help optimize clinical management. This study was conducted to develop a prognostic model for pancreatic cancer based on a competing endogenous RNA (ceRNA) network. METHODS We obtained transcriptomic data and corresponding clinicopathological information of pancreatic cancer samples from The Cancer Genome Atlas (TCGA) database (training set). Based on the ceRNA interaction network, we screened candidate genes to build prediction models. Univariate Cox regression analysis was performed to screen for genes associated with prognosis, and least absolute shrinkage and selection operator (LASSO) regression analysis was conducted to construct a predictive model. A receiver operating characteristic (ROC) curve was drawn, and the C-index was calculated to evaluate the accuracy of the prediction model. Furthermore, we downloaded transcriptomic data and related clinical information of pancreatic cancer samples from the Gene Expression Omnibus database (validation set) to evaluate the robustness of our prediction model. RESULTS Eight genes (ANLN, FHDC1, LY6D, SMAD6, ACKR4, RAB27B, AUNIP, and GPRIN3) were used to construct the prediction model, which was confirmed as an independent predictor for evaluating the prognosis of patients with pancreatic cancer through univariate and multivariate Cox regression analysis. By plotting the decision curve, we found that the risk score model is an independent predictor has the greatest impact on survival compared to pathological stage and targeted molecular therapy. CONCLUSIONS An eight-gene prediction model was constructed for effectively and independently predicting the prognosis of patients with pancreatic cancer. These eight genes identified show potential as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Yuanxu Qu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Jiongdi Lu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Wentong Mei
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Yuchen Jia
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Chunjing Bian
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Yixuan Ding
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Yulin Guo
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Ren YC, Zhao Q, He Y, Li B, Wu Z, Dai J, Wen L, Wang X, Hu G. Legumain promotes fibrogenesis in chronic pancreatitis via activation of transforming growth factor β1. J Mol Med (Berl) 2020; 98:863-874. [PMID: 32415356 DOI: 10.1007/s00109-020-01911-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 01/09/2023]
Abstract
Chronic pancreatitis (CP) is a major risk factor for pancreatic cancer; however, little is known about the pathogenic mechanisms underlying the development of CP. Legumain (Lgmn) has been linked to some chronic inflammatory diseases. The present study investigated the role of legumain in pancreatic fibrogenesis. We induced CP in wild type C57BL6 (WT), Lgmn-deficient (Lgmn-/-), Lgmnflox/flox and Lgmnflox/flox × LysMCre mice by intraperitoneal injection of caerulein for 4 weeks. Pancreata were collected and analyzed by quantitative reverse transcription polymerase chain reaction, Western blotting, and histology. Pancreatic stellate cells and macrophages were isolated and studied using immunofluorescence, gelatin zymography, and enzyme-linked immunosorbent assay. The effects of inhibition of legumain were investigated in vivo by administration of the specific legumain inhibitor, RR-11a. Legumain was found to be upregulated in the serum and pancreatic tissues of mice with caerulein-induced CP. Mice with global and macrophage-specific legumain deficiency exhibited significantly reduced development of pancreatic fibrosis compared with control mice, based on pancreas size, histology, and expression of fibrosis-associated genes. Our results indicate that legumain promotes activation of pancreatic stellate cells and increases synthesis of extracellular matrix proteins via activation of matrix metalloproteinase-2(MMP-2), which hydrolyzes the transforming growth factor-β1 (TGF-β1) precursor to form active TGF-β1. Administration of RR-11a markedly attenuated pancreatic fibrosis in mice with CP. Deficiency or inhibition of legumain significantly reduces the severity of pancreatic fibrosis by suppressing activation of the TGF-β1 precursor. Our results highlight the potential of legumain as a novel therapeutic target for CP. KEY MESSAGES: • Legumain expression was markedly upregulated in CP mice. • Deletion of legumain attenuated pancreatic fibrosis in CP mice. • Legumain promotes fibrosis via MMP-2 activation, which hydrolyzed the TGF-β1 precursor to the active form. • Legumain is a potential therapeutic target for the management of CP.
Collapse
Affiliation(s)
- Ying-Chun Ren
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Qiuyan Zhao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yan He
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Bin Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zengkai Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Juanjuan Dai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Li Wen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xingpeng Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
4
|
Zhou Q, Xia S, Guo F, Hu F, Wang Z, Ni Y, Wei T, Xiang H, Shang D. Transforming growth factor-β in pancreatic diseases: Mechanisms and therapeutic potential. Pharmacol Res 2019; 142:58-69. [PMID: 30682425 DOI: 10.1016/j.phrs.2019.01.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/27/2018] [Accepted: 01/18/2019] [Indexed: 12/16/2022]
Abstract
Pancreatic diseases, such as acute pancreatitis, chronic pancreatitis, and pancreatic cancer, are common gastrointestinal diseases resulting in the development of local and systemic complications with a high risk of death. Numerous studies have examined pancreatic diseases over the past few decades; however, the pathogenesis remains unclear, and there is a lack of effective treatment options. Recently, emerging evidence has suggested that transforming growth factor beta (TGF-β) exerts controversial functions in apoptosis, inflammatory responses, and carcinogenesis, indicating its complex role in the pathogenesis of pancreas-associated disease. Therefore, a further understanding of relevant TGF-β signalling will provide new ideas and potential therapeutic targets for preventing disease progression. This is the first systematic review of recent data from animal and human clinical studies focusing on TGF-β signalling in pancreas damage and diseases. This information may aid in the development of therapeutic agents for regulating TGF-β in this pathology to prevent or treat pancreatic diseases.
Collapse
Affiliation(s)
- Qi Zhou
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shilin Xia
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fangyue Guo
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Fenglin Hu
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Zhizhou Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yujia Ni
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Tianfu Wei
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hong Xiang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Dong Shang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China; Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
5
|
P2X7R Blockade Prevents NLRP3 Inflammasome Activation and Pancreatic Fibrosis in a Mouse Model of Chronic Pancreatitis. Pancreas 2017; 46:1327-1335. [PMID: 28930866 DOI: 10.1097/mpa.0000000000000928] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the role of P2X7R (purinergic 2X7 receptor) and NLRP3 (NACHT, LRR, and PYD domains-containing protein 3) inflammasome activation in the process of pancreatic fibrosis in a mouse model of chronic pancreatitis (CP). METHODS Chronic pancreatitis was induced by repeated intraperitoneal injections of 50 μg/kg cerulein for 6 weeks in mice. P2X7R antagonist oxidized ATP (OxATP) or brilliant blue G (BBG) was administered after the last cerulein injection for 2 weeks. Pancreatic chronic inflammation and fibrosis were evaluated by histological score, Sirius red staining, and alpha-smooth muscle actin immunohistochemical staining. We further determined pancreatic P2X7R, NLRP3, and caspase-1 expressions in gene and protein levels and the pancreatic concentrations of caspase-1, interleukin 1β (IL-1β), and IL-18. RESULTS The pancreatic P2X7R, NLRP3, and caspase-1 expressions in gene and protein levels and the pancreatic concentrations of caspase-1, IL-1β, and IL-18 were all reduced significantly in both the OxATP and BBG groups (P < 0.05). The pancreatic chronic inflammation and the fibrosis indices were all remarkably attenuated (P < 0.05). CONCLUSIONS P2X7R antagonist OxATP and BBG significantly decreased pancreatic chronic inflammation and fibrosis in a mouse CP model and suggested that blockade of P2X7R-NLRP3 inflammasome signaling pathway may represent a novel therapeutic strategy for CP and its fibrotic process.
Collapse
|
6
|
Modified Xiaochaihu Decoction () prevents the progression of chronic pancreatitis in rats possibly by inhibiting transforming growth factor-β1/Sma- and mad-related proteins signaling pathway. Chin J Integr Med 2013; 19:935-9. [PMID: 24307314 DOI: 10.1007/s11655-013-1656-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To investigate the effect of modified Xiaochaihu Decoction (, MXD) on transforming growth factor-β1/Sma- and Mad-related proteins (TGF-β1/Smads) signaling pathway in rats with chronic pancreatitis (CP) induced by dibutyltin dichloride. METHODS Thirty healthy male Wistar rats were randomly divided into the normal control group, CP group and CP+MXD-treated group. CP was induced by injection of dibutyltin dichloride (DBTC, 7 mg/kg of body weight) into the right caudal vein, and the control rats were treated with vehicle. MXD was given daily by gavage at a dose of 10 g/kg of body weight, starting from the day after CP induction. After 28-day treatment, the n-benzoyl-tyrosyl para-aminobenzoic acid (NBT-PABA) test was carried out to evaluate exocrine pancreatic function. Then, rats were sacrificed, and pancreatic tissues were harvested for histological evaluation. In addition, the mRNA expression of TGF-β1, TGF-β1 type II receptor (TGFβRII), Smad3 and Smad7 was determined in pancreatic tissues by using real-time polymerase chain reaction. RESULTS Treatment of CP with MXD improved the PABA recovery, decreased the histological lesion, and reduced the mRNA expression of TGF-β1, TGFβRII and Smad3 (P<0.05). However, MXD had no effect on Smad7 mRNA level. CONCLUSIONS MXD could protect the pancreas against chronic injury and improve pancreatic exocrine function in DBTC induced rat CP model. Its mechanism may involve inhibition of the TGF-β1/Smads signaling pathway.
Collapse
|
7
|
Alcohol exacerbates LPS-induced fibrosis in subclinical acute pancreatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1508-1517. [PMID: 24091223 DOI: 10.1016/j.ajpath.2013.07.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/02/2013] [Accepted: 07/12/2013] [Indexed: 12/16/2022]
Abstract
The role of pancreatic acinar cells in initiating fibrogenic responses during the early stages of alcoholic acute pancreatitis has not been evaluated. We investigated the ability of injured acinar cells to generate pancreatic fibrosis in acute pancreatitis. Rats were fed either an ethanol-containing or control diet over 14 weeks and euthanized 3 or 24 hours after a single lipopolysaccharide injection. Profibrotic transforming growth factor-β of acinar cells and pancreatic fibrosis were assessed by immunofluorescence, histological characteristics, and electron microscopy. Human pancreatic tissues were also evaluated. Periacinar cell fibrosis and collagen were exacerbated 24 hours after endotoxemia in alcohol-fed rats. Alcohol exposure exacerbated acinar cell-specific production of transforming growth factor β in response to lipopolysaccharide in vivo and in acinar cell-like AR42J cells in vitro. Although a morphological examination showed no visible signs of necrosis, early pancreatic fibrosis can be initiated by little or no pancreatic necrosis. Transforming growth factor β was also significantly increased in human acinar cells from patients with acute/recurrent pancreatitis compared with chronic pancreatitis tissue. Alcohol exacerbates lipopolysaccharide-induced pancreatic fibrosis during the early onset of mild, subclinical, acute pancreatitis. We suggest that multiple, subclinical, acute pancreatitis episodes can accumulate in fibrosis during the development of chronic pancreatitis, even if there is no history of acute pancreatitis.
Collapse
|
8
|
Cattaruzza F, Johnson C, Leggit A, Grady E, Schenk AK, Cevikbas F, Cedron W, Bondada S, Kirkwood R, Malone B, Steinhoff M, Bunnett N, Kirkwood KS. Transient receptor potential ankyrin 1 mediates chronic pancreatitis pain in mice. Am J Physiol Gastrointest Liver Physiol 2013; 304:G1002-12. [PMID: 23558009 PMCID: PMC3680686 DOI: 10.1152/ajpgi.00005.2013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chronic pancreatitis (CP) is a devastating disease characterized by persistent and uncontrolled abdominal pain. Our lack of understanding is partially due to the lack of experimental models that mimic the human disease and also to the lack of validated behavioral measures of visceral pain. The ligand-gated cation channel transient receptor potential ankyrin 1 (TRPA1) mediates inflammation and pain in early experimental pancreatitis. It is unknown if TRPA1 causes fibrosis and sustained pancreatic pain. We induced CP by injecting the chemical agent trinitrobenzene sulfonic acid (TNBS), which causes severe acute pancreatitis, into the pancreatic duct of C57BL/6 trpa1(+/+) and trpa1(-/-) mice. Chronic inflammatory changes and pain behaviors were assessed after 2-3 wk. TNBS injection caused marked pancreatic fibrosis with increased collagen-staining intensity, atrophy, fatty replacement, monocyte infiltration, and pancreatic stellate cell activation, and these changes were reflected by increased histological damage scores. TNBS-injected animals showed mechanical hypersensitivity during von Frey filament probing of the abdomen, decreased daily voluntary wheel-running activity, and increased immobility scores during open-field testing. Pancreatic TNBS also reduced the threshold to hindpaw withdrawal to von Frey filament probing, suggesting central sensitization. Inflammatory changes and pain indexes were significantly reduced in trpa1(-/-) mice. In conclusion, we have characterized in mice a model of CP that resembles the human condition, with marked histological changes and behavioral measures of pain. We have demonstrated, using novel and objective pain measurements, that TRPA1 mediates inflammation and visceral hypersensitivity in CP and could be a therapeutic target for the treatment of sustained inflammatory abdominal pain.
Collapse
Affiliation(s)
- Fiore Cattaruzza
- 1Department of Surgery, University of California, San Francisco, California;
| | - Cali Johnson
- 1Department of Surgery, University of California, San Francisco, California;
| | - Alan Leggit
- 2Department of Neuroscience, University of California, San Francisco, California;
| | - Eileen Grady
- 1Department of Surgery, University of California, San Francisco, California;
| | - A. Katrin Schenk
- 5Department of Physics, Randolph College, Lynchburg, Virginia; and
| | - Ferda Cevikbas
- 3Department of Dermatology, University of California, San Francisco, California;
| | - Wendy Cedron
- 3Department of Dermatology, University of California, San Francisco, California;
| | - Sandhya Bondada
- 1Department of Surgery, University of California, San Francisco, California;
| | - Rebekah Kirkwood
- 1Department of Surgery, University of California, San Francisco, California;
| | - Brian Malone
- 4Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California;
| | - Martin Steinhoff
- 1Department of Surgery, University of California, San Francisco, California; ,3Department of Dermatology, University of California, San Francisco, California;
| | - Nigel Bunnett
- 6Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | | |
Collapse
|
9
|
Aghdassi AA, Mayerle J, Christochowitz S, Weiss FU, Sendler M, Lerch MM. Animal models for investigating chronic pancreatitis. FIBROGENESIS & TISSUE REPAIR 2011; 4:26. [PMID: 22133269 PMCID: PMC3274456 DOI: 10.1186/1755-1536-4-26] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 12/01/2011] [Indexed: 02/06/2023]
Abstract
Chronic pancreatitis is defined as a continuous or recurrent inflammatory disease of the pancreas characterized by progressive and irreversible morphological changes. It typically causes pain and permanent impairment of pancreatic function. In chronic pancreatitis areas of focal necrosis are followed by perilobular and intralobular fibrosis of the parenchyma, by stone formation in the pancreatic duct, calcifications in the parenchyma as well as the formation of pseudocysts. Late in the course of the disease a progressive loss of endocrine and exocrine function occurs. Despite advances in understanding the pathogenesis no causal treatment for chronic pancreatitis is presently available. Thus, there is a need for well characterized animal models for further investigations that allow translation to the human situation. This review summarizes existing experimental models and distinguishes them according to the type of pathological stimulus used for induction of pancreatitis. There is a special focus on pancreatic duct ligation, repetitive overstimulation with caerulein and chronic alcohol feeding. Secondly, attention is drawn to genetic models that have recently been generated and which mimic features of chronic pancreatitis in man. Each technique will be supplemented with data on the pathophysiological background of the model and their limitations will be discussed.
Collapse
Affiliation(s)
- Alexander A Aghdassi
- Department of Medicine A, University Medicine, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany.
| | | | | | | | | | | |
Collapse
|