1
|
Pandey V, Fleming-Martinez A, Bastea L, Doeppler HR, Eisenhauer J, Le T, Edenfield B, Storz P. CXCL10/CXCR3 signaling contributes to an inflammatory microenvironment and its blockade enhances progression of murine pancreatic precancerous lesions. eLife 2021; 10:60646. [PMID: 34328416 PMCID: PMC8360647 DOI: 10.7554/elife.60646] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/29/2021] [Indexed: 01/18/2023] Open
Abstract
The development of pancreatic cancer requires recruitment and activation of different macrophage populations. However, little is known about how macrophages are attracted to the pancreas after injury or an oncogenic event, and how they crosstalk with lesion cells or other cells of the lesion microenvironment. Here, we delineate the importance of CXCL10/CXCR3 signaling during the early phase of murine pancreatic cancer. We show that CXCL10 is produced by pancreatic precancerous lesion cells in response to IFNγ signaling and that inflammatory macrophages are recipients for this chemokine. CXCL10/CXCR3 signaling in macrophages mediates their chemoattraction to the pancreas, enhances their proliferation, and maintains their inflammatory identity. Blocking of CXCL10/CXCR3 signaling in vivo shifts macrophage populations to a tumor-promoting (Ym1+, Fizz+, Arg1+) phenotype, increases fibrosis, and mediates progression of lesions, highlighting the importance of this pathway in PDA development. This is reversed when CXCL10 is overexpressed in PanIN cells.
Collapse
Affiliation(s)
- Veethika Pandey
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, United States
| | - Alicia Fleming-Martinez
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, United States
| | - Ligia Bastea
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, United States
| | - Heike R Doeppler
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, United States
| | - Jillian Eisenhauer
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, United States
| | - Tam Le
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, United States
| | - Brandy Edenfield
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, United States
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, United States
| |
Collapse
|
2
|
Marcucci F, Rumio C. The tumor-promoting effects of the adaptive immune system: a cause of hyperprogressive disease in cancer? Cell Mol Life Sci 2021; 78:853-865. [PMID: 32940721 PMCID: PMC11072297 DOI: 10.1007/s00018-020-03606-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/01/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Adaptive antitumor immune responses, either cellular or humoral, aim at eliminating tumor cells expressing the cognate antigens. There are some instances, however, where these same immune responses have tumor-promoting effects. These effects can lead to the expansion of antigen-negative tumor cells, tumor cell proliferation and tumor growth, metastatic dissemination, resistance to antitumor therapy and apoptotic stimuli, acquisition of tumor-initiating potential and activation of various forms of survival mechanisms. We describe the basic mechanisms that underlie tumor-promoting adaptive immune responses and try to identify the variables that induce the switching of a tumor-inhibitory, cellular or humoral immune response, into a tumor-promoting one. We suggest that tumor-promoting adaptive immune responses may be at the origin of at least a fraction of hyperprogressive diseases (HPD) that are observed in cancer patients during therapy with immune checkpoint inhibitors (ICI) and, less frequently, with single-agent chemotherapy. We also propose the use of non-invasive biomarkers allowing to predict which patients may undergo HPD during ICI and other forms of antitumor therapy. Eventually, we suggest possibilities of therapeutic intervention allowing to inhibit tumor-promoting adaptive immune responses.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Trentacoste 2, Milan, Italy.
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Trentacoste 2, Milan, Italy
| |
Collapse
|
3
|
Mucciolo G, Roux C, Scagliotti A, Brugiapaglia S, Novelli F, Cappello P. The dark side of immunotherapy: pancreatic cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:491-520. [PMID: 35582441 PMCID: PMC8992483 DOI: 10.20517/cdr.2020.13] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
Since the journal Science deemed cancer immunotherapy as the "breakthrough of the year" in 2014, there has been an explosion of clinical trials involving immunotherapeutic approaches that, in the last decade - thanks also to the renaissance of the immunosurveillance theory (renamed the three Es theory) - have been continuously and successfully developed. In the latest update of the development of the immuno-oncology drug pipeline, published last November by Nature Review Drug Discovery, it was clearly reported that the immunoactive drugs under study almost doubled in just two years. Of the different classes of passive and active immunotherapies, "cell therapy" is the fastest growing. The aim of this review is to discuss the preclinical and clinical studies that have focused on different immuno-oncology approaches applied to pancreatic cancer, which we assign to the "dark side" of immunotherapy, in the sense that it represents one of the solid tumors showing less response to this type of therapeutic strategy.
Collapse
Affiliation(s)
- Gianluca Mucciolo
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
- The two authors contributed equally
| | - Cecilia Roux
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
- The two authors contributed equally
| | - Alessandro Scagliotti
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
| | - Silvia Brugiapaglia
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
| | - Francesco Novelli
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
- Molecular Biotechnology Center, University of Turin, Turin 10126, Italy
| | - Paola Cappello
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
- Molecular Biotechnology Center, University of Turin, Turin 10126, Italy
| |
Collapse
|
4
|
Ménétrier-Caux C, Ray-Coquard I, Blay JY, Caux C. Lymphopenia in Cancer Patients and its Effects on Response to Immunotherapy: an opportunity for combination with Cytokines? J Immunother Cancer 2019; 7:85. [PMID: 30922400 PMCID: PMC6437964 DOI: 10.1186/s40425-019-0549-5] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
Quantitative lymphocyte alterations are frequent in patients with cancer, and strongly impact prognosis and survival. The development of cancers in immunosuppressed patients has demonstrated the contribution of different T cell populations, including CD4+ cells, in the control of cancer occurrence.Whereas absolute numbers of neutrophils, platelets and red blood cells are routinely monitored in clinic following treatments, because of possible short-term complications, absolute lymphocyte counts (ALC), their subpopulations or diversity (phenotype, TCR) are rarely analyzed and never used to choose therapy or as prognostic criteria. The recent identification of immune checkpoint inhibitors (ICPi) as powerful therapeutic agents has revitalized immunotherapy of cancer in a broader group of diseases than anticipated. The status of the immune system is now recognized as an important biomarker for response to these novel treatments. Blood ALC values, along with tumor infiltration by CD8+T cells, and ICPi and ICPi-ligand expression, are likely to be a potential marker of sensitivity to anti-ICPi therapy.In this article, we review the current knowledge on the incidence and significance of lymphopenia in cancer patients, and discuss therapeutic strategies to restore lymphocyte numbers.
Collapse
Affiliation(s)
- Christine Ménétrier-Caux
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Centre Léon Bérard, F-69008, Lyon, France. .,Innovation in Immuno-monitoring and Immunotherapy Platform (PI3), Centre Léon Bérard, F-69008, Lyon, France.
| | | | - Jean-Yves Blay
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Centre Léon Bérard, F-69008, Lyon, France.,Medical Oncology department, Centre Léon Bérard, F-69008, Lyon, France
| | - Christophe Caux
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Centre Léon Bérard, F-69008, Lyon, France.,Innovation in Immuno-monitoring and Immunotherapy Platform (PI3), Centre Léon Bérard, F-69008, Lyon, France
| |
Collapse
|
5
|
Hang J, Huang J, Zhou S, Wu L, Zhu Y, Zhu L, Zhou H, Xu K, Jiang H, Yang X. The clinical implication of CD45RA + naïve T cells and CD45RO + memory T cells in advanced pancreatic cancer: a proxy for tumor biology and outcome prediction. Cancer Med 2019; 8:1326-1335. [PMID: 30767430 PMCID: PMC6434335 DOI: 10.1002/cam4.1988] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 01/18/2023] Open
Abstract
Naïve and memory T cells play a pivotal role in solid tumor pathogenesis but their role in pancreatic cancer progression remains elusive. Thus, we aimed to investigate their clinical potential in advanced pancreatic cancer (APC). Flow cytometry was performed to evaluate the level of baseline peripheral naïve and memory T cells from 137 APC patients before receiving first‐line chemotherapy. Interrelationships between naïve, memory T cells and clinicopathological variables were evaluated using Pearson’s correlation. The prognostic impact of naïve and memory T cells were assessed by Kaplan‐Meier analysis and Cox regression. The correlation between naïve/memory T cells and tumor progression was investigated by Student’s t test. CD4+ naïve/memory ratio showed close correlations with hemoglobin, red blood cell (RBC), absolute neutrophil count (ANC) and platelet while CD8+ naïve/memory ratio was correlated with hemoglobin, RBC and CEA. Higher baseline lever of CD4+CD45RO+/CD4+ was correlated with better overall survival (OS) (P = 0.036). Patients with CD4+ naïve/memory ratio ≥0.36 had a poorer OS than those with CD4+ naïve/memory ratio <0.36 (P = 0.021). In addition, CD4+ naïve/memory ratio showed independent prognostic impact (HR 1.427, 95% CI 1.033‐1.973, P = 0.031). Furthermore, poorer clinical response was correlated with higher level of CD8+ naïve/memory ratio after the third cycle of chemotherapy (P = 0.01). Besides, patients with a lower level of CD8+ naïve/memory ratio had longer progression‐free survival (PFS) (P = 0.028). We propose CD4+ naïve/memory ratio as a novel prognostic biomarker for APC. In addition, CD8+ naïve/memory ratio can be a candidate marker for predicting PFS and the change of its level may reflect the progression of APC.
Collapse
Affiliation(s)
- Junjie Hang
- Department of Oncology, Changzhou No.2 People's Hospital, Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Junjie Huang
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Siyuan Zhou
- Department of Oncology, Changzhou No.2 People's Hospital, Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Lixia Wu
- Department of Oncology, Shanghai JingAn District ZhaBei Central Hospital, Shanghai, China
| | - Yingwei Zhu
- Department of Oncology, Changzhou No.2 People's Hospital, Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Lina Zhu
- Department of Oncology, Changzhou No.2 People's Hospital, Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Hanyu Zhou
- Department of Oncology, Changzhou No.2 People's Hospital, Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Kequn Xu
- Department of Oncology, Changzhou No.2 People's Hospital, Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Hua Jiang
- Department of Oncology, Changzhou No.2 People's Hospital, Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xuguang Yang
- State Key Laboratory for Oncogenes and Related Genes, Department of Oncology, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Mu W, Wang Z, Zöller M. Ping-Pong-Tumor and Host in Pancreatic Cancer Progression. Front Oncol 2019; 9:1359. [PMID: 31921628 PMCID: PMC6927459 DOI: 10.3389/fonc.2019.01359] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the main cause of high pancreatic cancer (PaCa) mortality and trials dampening PaCa mortality rates are not satisfying. Tumor progression is driven by the crosstalk between tumor cells, predominantly cancer-initiating cells (CIC), and surrounding cells and tissues as well as distant organs, where tumor-derived extracellular vesicles (TEX) are of major importance. A strong stroma reaction, recruitment of immunosuppressive leukocytes, perineural invasion, and early spread toward the peritoneal cavity, liver, and lung are shared with several epithelial cell-derived cancer, but are most prominent in PaCa. Here, we report on the state of knowledge on the PaCIC markers Tspan8, alpha6beta4, CD44v6, CXCR4, LRP5/6, LRG5, claudin7, EpCAM, and CD133, which all, but at different steps, are engaged in the metastatic cascade, frequently via PaCIC-TEX. This includes the contribution of PaCIC markers to TEX biogenesis, targeting, and uptake. We then discuss PaCa-selective features, where feedback loops between stromal elements and tumor cells, including distorted transcription, signal transduction, and metabolic shifts, establish vicious circles. For the latter particularly pancreatic stellate cells (PSC) are responsible, furnishing PaCa to cope with poor angiogenesis-promoted hypoxia by metabolic shifts and direct nutrient transfer via vesicles. Furthermore, nerves including Schwann cells deliver a large range of tumor cell attracting factors and Schwann cells additionally support PaCa cell survival by signaling receptor binding. PSC, tumor-associated macrophages, and components of the dysplastic stroma contribute to perineural invasion with signaling pathway activation including the cholinergic system. Last, PaCa aggressiveness is strongly assisted by the immune system. Although rich in immune cells, only immunosuppressive cells and factors are recovered in proximity to tumor cells and hamper effector immune cells entering the tumor stroma. Besides a paucity of immunostimulatory factors and receptors, immunosuppressive cytokines, myeloid-derived suppressor cells, regulatory T-cells, and M2 macrophages as well as PSC actively inhibit effector cell activation. This accounts for NK cells of the non-adaptive and cytotoxic T-cells of the adaptive immune system. We anticipate further deciphering the molecular background of these recently unraveled intermingled phenomena may turn most lethal PaCa into a curatively treatable disease.
Collapse
Affiliation(s)
- Wei Mu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Wei Mu
| | - Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| | - Margot Zöller
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| |
Collapse
|
7
|
Murthy D, Attri KS, Singh PK. Phosphoinositide 3-Kinase Signaling Pathway in Pancreatic Ductal Adenocarcinoma Progression, Pathogenesis, and Therapeutics. Front Physiol 2018; 9:335. [PMID: 29670543 PMCID: PMC5893816 DOI: 10.3389/fphys.2018.00335] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/19/2018] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by its sudden manifestation, rapid progression, poor prognosis, and limited therapeutic options. Genetic alterations in key signaling pathways found in early pancreatic lesions are pivotal for the development and progression of pancreatic intraepithelial neoplastic lesions into invasive carcinomas. More than 90% of PDAC tumors harbor driver mutations in K-Ras that activate various downstream effector-signaling pathways, including the phosphoinositide-3-kinase (PI3K) pathway. The PI3K pathway also responds to stimuli from various growth factor receptors present on the cancer cell surface that, in turn, modulate downstream signaling cascades. Thus, the inositide signaling acts as a central node in the complex cellular signaling networks to impact cancer cell growth, motility, metabolism, and survival. Also, recent publications highlight the importance of PI3K signaling in stromal cells, whereby PI3K signaling modifies the tumor microenvironment to dictate disease outcome. The high incidence of mutations in the PI3K signaling cascade, accompanied by activation of parallel signaling pathways, makes PI3K a promising candidate for drug therapy. In this review, we describe the role of PI3K signaling in pancreatic cancer development and progression. We also discuss the crosstalk between PI3K and other major cellular signaling cascades, and potential therapeutic opportunities for targeting pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Divya Murthy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kuldeep S Attri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
8
|
Zhang J, Wang Y, Wu B, Zhong Z, Wang K, Yang L, Wang Y, Li Y, Gao J, Li Z. Intraepithelial Attack Rather than Intratumorally Infiltration of CD8+T Lymphocytes is a Favorable Prognostic Indicator in Pancreatic Ductal Adenocarcinoma. Curr Mol Med 2017; 17:689-698. [PMID: 29521231 PMCID: PMC6416191 DOI: 10.2174/1566524018666180308115705] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/26/2018] [Accepted: 03/04/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Tumor-infiltrating lymphocytes (TILs) are one of the major participants in the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC). However, the mechanism of interaction between TILs and tumors is complex and remains unclear. OBJECTIVE To evaluate the state of immunoreactions in PDAC tissues, and explore the prognostic value of these markers in a large sample, to provide a new theoretical basis for PDAC immunotherapy. METHOD Immunohistochemical staining of CD4+ and CD8+T cells was performed in a tissue microarray (TMA) of 143 cases of PDAC. Two major variables for the spatial distributions of CD4+T and CD8+T cells in PDAC tissues, intraepithelial attack and intratumoral infiltration, were used to evaluate the state of immunoreactions, and the interrelationships with the clinicopathological variables were analyzed. RESULTS Our data showed that both the intraepithelial CD4+T and CD8+T attack were less frequent than the intratumoral infiltration. CD8+T intraepithelial attack and intratumoral infiltration were more intense than CD4+T. CD8+T intraepithelial attack was an independent favorable prognostic factor for overall survival, correlating negatively with vascular invasion and positively with CD4+T and CD8+T high intratumoral infiltration. CD8+T high intratumoral infiltration without CD8+T intraepithelial attack was a poor prognostic factor. CD8+T high intratumoral infiltration was accompanied by T stage progression. Conclusively, in PDAC progression, imbalances of T cells occurred in CD4+ and CD8+ immunoreactions. The CD8+T intraepithelial attack was an independent favorable prognostic indicator, however the intraepithelial attack of CD4+T and the both intratumoral infiltration of CD8+T and CD4+T played an ambiguous role. CONCLUSION Our data suggested that it is a potential approach to increasing the number of intraepithelial attacking CD8+T cells for tumor immunotherapy, and exploring a new mechanism for immunosuppression in a tumor microenvironment with high T cell infiltration without attack.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - J. Gao
- Address correspondence to these authors at the Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China; Tel: +8613816012151; E-mails: (J. Gao) , (Z.S. Li)
| | - Z.S. Li
- Address correspondence to these authors at the Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China; Tel: +8613816012151; E-mails: (J. Gao) , (Z.S. Li)
| |
Collapse
|
9
|
Chang JH, Jiang Y, Pillarisetty VG. Role of immune cells in pancreatic cancer from bench to clinical application: An updated review. Medicine (Baltimore) 2016; 95:e5541. [PMID: 27930550 PMCID: PMC5266022 DOI: 10.1097/md.0000000000005541] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pancreatic cancer (PC) remains difficult to treat, despite the recent advances in various anticancer therapies. Immuno-inflammatory response is considered to be a major risk factor for the development of PC in addition to a combination of genetic background and environmental factors. Although patients with PC exhibit evidence of systemic immune dysfunction, the PC microenvironment is replete with immune cells. METHODS We searched PubMed for all relevant English language articles published up to March 2016. They included clinical trials, experimental studies, observational studies, and reviews. Trials enrolled at Clinical trial.gov were also searched. RESULTS PC induces an immunosuppressive microenvironment, and intratumoral activation of immunity in PC is attenuated by inhibitory signals that limit immune effector function. Multiple types of immune responses can promote an immunosuppressive microenvironment; key regulators of the host tumor immune response are dendritic cells, natural killer cells, macrophages, myeloid derived suppressor cells, and T cells. The function of these immune cells in PC is also influenced by chemotherapeutic agents and the components in tumor microenvironment such as pancreatic stellate cells. Immunotherapy of PC employs monoclonal antibodies/effector cells generated in vitro or vaccination to stimulate antitumor response. Immune therapy in PC has failed to improve overall survival; however, combination therapies comprising immune checkpoint inhibitors and vaccines have been attempted to increase the response. CONCLUSION A number of studies have begun to elucidate the roles of immune cell subtypes and their capacity to function or dysfunction in the tumor microenvironment of PC. It will not be long before immune therapy for PC becomes a clinical reality.
Collapse
Affiliation(s)
- Jae Hyuck Chang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yongjian Jiang
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Venu G. Pillarisetty
- Department of Surgery, University of Washington Medical Center, Seattle, University of Washington, Seattle, WA
| |
Collapse
|
10
|
Moz S, Basso D, Bozzato D, Galozzi P, Navaglia F, Negm OH, Arrigoni G, Zambon CF, Padoan A, Tighe P, Todd I, Franchin C, Pedrazzoli S, Punzi L, Plebani M. SMAD4 loss enables EGF, TGFβ1 and S100A8/A9 induced activation of critical pathways to invasion in human pancreatic adenocarcinoma cells. Oncotarget 2016; 7:69927-69944. [PMID: 27655713 PMCID: PMC5342525 DOI: 10.18632/oncotarget.12068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/05/2016] [Indexed: 12/12/2022] Open
Abstract
Epidermal Growth Factor (EGF) receptor overexpression, KRAS, TP53, CDKN2A and SMAD4 mutations characterize pancreatic ductal adenocarcinoma. This mutational landscape might influence cancer cells response to EGF, Transforming Growth Factor β1 (TGFβ1) and stromal inflammatory calcium binding proteins S100A8/A9. We investigated whether chronic exposure to EGF modifies in a SMAD4-dependent manner pancreatic cancer cell signalling, proliferation and invasion in response to EGF, TGFβ1 and S100A8/A9. BxPC3, homozigously deleted (HD) for SMAD4, and BxPC3-SMAD4+ cells were or not stimulated with EGF (100 ng/mL) for three days. EGF pre-treated and non pretreated cells were stimulated with a single dose of EGF (100 ng/mL), TGFβ1 (0,02 ng/mL), S100A8/A9 (10 nM). Signalling pathways (Reverse Phase Protein Array and western blot), cell migration (Matrigel) and cell proliferation (XTT) were evaluated. SMAD4 HD constitutively activated ERK and Wnt/β-catenin, while inhibiting PI3K/AKT pathways. These effects were antagonized by chronic EGF, which increased p-BAD (anti-apoptotic) in response to combined TGFβ1 and S100A8/A9 stimulation. SMAD4 HD underlied the inhibition of NF-κB and PI3K/AKT in response to TGFβ1 and S100A8/A9, which also induced cell migration. Chronic EGF exposure enhanced cell migration of both BxPC3 and BxPC3-SMAD4+, rendering the cells less sensitive to the other inflammatory stimuli. In conclusion, SMAD4 HD is associated with the constitutive activation of the ERK and Wnt/β-catenin signalling pathways, and favors the EGF-induced activation of multiple signalling pathways critical to cancer proliferation and invasion. TGFβ1 and S100A8/A9 mainly inhibit NF-κB and PI3K/AKT pathways and, when combined, sinergize with EGF in enhancing anti-apoptotic p-BAD in a SMAD4-dependent manner.
Collapse
Affiliation(s)
- Stefania Moz
- University of Padova, Laboratory Medicine, Department of Medicine - DIMED, Padova, Italy
| | - Daniela Basso
- University of Padova, Laboratory Medicine, Department of Medicine - DIMED, Padova, Italy
| | - Dania Bozzato
- University of Padova, Laboratory Medicine, Department of Medicine - DIMED, Padova, Italy
| | - Paola Galozzi
- University of Padova, Rheumatology Unit, Department of Medicine - DIMED, Padova, Italy
| | - Filippo Navaglia
- University of Padova, Laboratory Medicine, Department of Medicine - DIMED, Padova, Italy
| | - Ola H. Negm
- University of Nottingham, School of Life Sciences, Queen's Medical Centre, Nottingham, UK
- Mansoura University, Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura City, Egypt
| | - Giorgio Arrigoni
- University of Padova, Department of Biomedical Sciences, Padova, Italy
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Padova, Italy
| | - Carlo-Federico Zambon
- University of Padova, Laboratory Medicine, Department of Medicine - DIMED, Padova, Italy
| | - Andrea Padoan
- University of Padova, Laboratory Medicine, Department of Medicine - DIMED, Padova, Italy
| | - Paddy Tighe
- University of Nottingham, School of Life Sciences, Queen's Medical Centre, Nottingham, UK
| | - Ian Todd
- University of Nottingham, School of Life Sciences, Queen's Medical Centre, Nottingham, UK
| | - Cinzia Franchin
- University of Padova, Department of Biomedical Sciences, Padova, Italy
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Padova, Italy
| | | | - Leonardo Punzi
- University of Padova, Rheumatology Unit, Department of Medicine - DIMED, Padova, Italy
| | - Mario Plebani
- University of Padova, Laboratory Medicine, Department of Medicine - DIMED, Padova, Italy
| |
Collapse
|
11
|
Goebel L, Grage-Griebenow E, Gorys A, Helm O, Genrich G, Lenk L, Wesch D, Ungefroren H, Freitag-Wolf S, Sipos B, Röcken C, Schäfer H, Sebens S. CD4 + T cells potently induce epithelial-mesenchymal-transition in premalignant and malignant pancreatic ductal epithelial cells-novel implications of CD4 + T cells in pancreatic cancer development. Oncoimmunology 2015; 4:e1000083. [PMID: 26137395 DOI: 10.1080/2162402x.2014.1000083] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 01/06/2023] Open
Abstract
Chronic pancreatitis (CP) is a risk factor of pancreatic ductal adenocarcinoma (PDAC) and characterized by a pronounced desmoplastic reaction with CD4+ T cells accounting for the majority of the stromal T cell infiltrate. Epithelial-mesenchymal-transition (EMT) is a critical process for metastasis by which epithelial/carcinoma cells become enabled to disseminate probably prior to tumor formation. To investigate whether CD4+ T cells induce EMT in human pancreatic ductal epithelial cells, premalignant H6c7 cells were mono- or co-cultured with human CD4+CD25+CD127-CD49d- regulatory T cells (T-regs) or CD4+CD25- T-effector cells (T-effs) being isolated by negative magnetic bead separation from blood of healthy donors. Particularly in the presence of activated T-effs, H6c7 cells acquired a spindle-shaped morphology, reduced E-cadherin expression, and elevated expression of the mesenchymal proteins vimentin, L1CAM, and ZEB-1. This was accompanied by an increased invasive behavior. Moreover, activated T-effs exerted similar effects in the PDAC cell line T3M4. Blocking of TNF-α and IL-6 being released at greater amounts into supernatants during co-cultures with activated T-effs attenuated the EMT-associated alterations in H6c7 cells. Supporting these findings, EMT-associated alterations (exemplified by reduced E-cadherin expression and enhanced expression of vimentin and L1CAM) were predominantly detected in ductal epithelium of CP tissues surrounded by a dense stroma enriched with CD4+ T cells. Overall this study points to a novel role of CD4+ T cells beyond their immune function in pancreatic tumorigenesis and underscores the view that EMT induction in pancreatic ductal epithelial cells represents an early event in PDAC development being essentially promoted by inflammatory processes.
Collapse
Affiliation(s)
- Lisa Goebel
- Group Inflammatory Carcinogenesis; Institute for Experimental Medicine; Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel ; Kiel, Germany
| | - Evelin Grage-Griebenow
- Group Inflammatory Carcinogenesis; Institute for Experimental Medicine; Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel ; Kiel, Germany
| | - Artur Gorys
- Group Inflammatory Carcinogenesis; Institute for Experimental Medicine; Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel ; Kiel, Germany
| | - Ole Helm
- Group Inflammatory Carcinogenesis; Institute for Experimental Medicine; Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel ; Kiel, Germany
| | - Geeske Genrich
- Group Inflammatory Carcinogenesis; Institute for Experimental Medicine; Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel ; Kiel, Germany
| | - Lennart Lenk
- Group Inflammatory Carcinogenesis; Institute for Experimental Medicine; Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel ; Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology; Christian-Albrechts-University and UKSH Campus Kiel ; Kiel, Germany
| | | | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics; UKSH Campus Kiel ; Kiel, Germany
| | - Bence Sipos
- Department of Pathology and Neuropathology; University Hospital Tübingen ; Tübingen, Germany
| | | | - Heiner Schäfer
- Laboratory of Molecular Gastroenterology & Hepatology; Department of Internal Medicine I; UKSH Campus Kiel ; Kiel, Germany
| | - Susanne Sebens
- Group Inflammatory Carcinogenesis; Institute for Experimental Medicine; Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel ; Kiel, Germany
| |
Collapse
|
12
|
Inman KS, Francis AA, Murray NR. Complex role for the immune system in initiation and progression of pancreatic cancer. World J Gastroenterol 2014; 20:11160-11181. [PMID: 25170202 PMCID: PMC4145756 DOI: 10.3748/wjg.v20.i32.11160] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/27/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
The immune system plays a complex role in the development and progression of pancreatic cancer. Inflammation can promote the formation of premalignant lesions and accelerate pancreatic cancer development. Conversely, pancreatic cancer is characterized by an immunosuppressive environment, which is thought to promote tumor progression and invasion. Here we review the current literature describing the role of the immune response in the progressive development of pancreatic cancer, with a focus on the mechanisms that drive recruitment and activation of immune cells at the tumor site, and our current understanding of the function of the immune cell types at the tumor. Recent clinical and preclinical data are reviewed, detailing the involvement of the immune response in pancreatitis and pancreatic cancer, including the role of specific cytokines and implications for disease outcome. Acute pancreatitis is characterized by a predominantly innate immune response, while chronic pancreatitis elicits an immune response that involves both innate and adaptive immune cells, and often results in profound systemic immune-suppression. Pancreatic adenocarcinoma is characterized by marked immune dysfunction driven by immunosuppressive cell types, tumor-promoting immune cells, and defective or absent inflammatory cells. Recent studies reveal that immune cells interact with cancer stem cells and tumor stromal cells, and these interactions have an impact on development and progression of pancreatic ductal adenocarcinoma (PDAC). Finally, current PDAC therapies are reviewed and the potential for harnessing the actions of the immune response to assist in targeting pancreatic cancer using immunotherapy is discussed.
Collapse
|
13
|
Xu YF, Lu Y, Cheng H, Shi S, Xu J, Long J, Liu L, Liu C, Yu X. Abnormal distribution of peripheral lymphocyte subsets induced by PDAC modulates overall survival. Pancreatology 2014; 14:295-301. [PMID: 25062880 DOI: 10.1016/j.pan.2014.05.797] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/29/2014] [Accepted: 05/31/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES The impairment of the immune system is prevalent in patients with malignancies, including pancreatic ductal adenocarcinoma (PDAC). The present study aimed to evaluate alternations of peripheral lymphocyte subsets in patients with PDAC, and also to assess the prognostic value of observed changes. METHODS We recruited 160 consecutive PDAC patients who had undergone radical surgical resection between 2010 and 2013. To investigate the prognostic factors, we detected the peripheral lymphocyte subsets in PDAC by flow cytometry, including T cells (CD3(+), CD3(+)CD4(+), CD3(+)CD8(+), CD8(+)CD28(+)), regulatory T cells (Tregs, CD4(+)CD25(+)CD127(-)), natural killer cells (NK cells, CD3(-)CD56(+)) and B cells (CD19(+)). We also evaluated the clinical and pathological features of these patients. Survival analysis was performed by univariate and multivariate analyses. RESULTS Our results indicated the profile of peripheral lymphocyte subsets undergone profound changes in PDAC patients. Univariate and multivariate analysis indicated the levels of peripheral lymphocyte subsets (CD19(+) B cells, Tregs and CD8(+)CD28(+) T cells) were independent predictors for overall survival. The results also suggested that the systemic impairment of immune system in patients with PDAC, was reversed when primary tumor was removed. CONCLUSIONS The present study provided some evidences that the impairment of host immunity induced by PDAC may play a role in the survival of patients.
Collapse
Affiliation(s)
- Yong-Feng Xu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China
| | - Yu Lu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China
| | - He Cheng
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China
| | - Si Shi
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China
| | - Jin Xu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China
| | - Jiang Long
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China
| | - Liang Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China
| | - Chen Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China.
| | - Xianjun Yu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China.
| |
Collapse
|
14
|
Mills LD, Zhang L, Marler R, Svingen P, Fernandez-Barrena MG, Dave M, Bamlet W, McWilliams RR, Petersen GM, Faubion W, Fernandez-Zapico ME. Inactivation of the transcription factor GLI1 accelerates pancreatic cancer progression. J Biol Chem 2014; 289:16516-25. [PMID: 24737325 DOI: 10.1074/jbc.m113.539031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The role of GLI1 in pancreatic tumor initiation promoting the progression of preneoplastic lesions into tumors is well established. However, its function at later stages of pancreatic carcinogenesis remains poorly understood. To address this issue, we crossed the gli1 knock-out (GKO) animal with cre-dependent pancreatic activation of oncogenic kras concomitant with loss of the tumor suppressor tp53 (KPC). Interestingly, in this model, GLI1 played a tumor-protective function, where survival of GKO/KPC mice was reduced compared with KPC littermates. Both cohorts developed pancreatic cancer without significant histopathological differences in survival studies. However, analysis of mice using ultrasound-based imaging at earlier time points showed increased tumor burden in GKO/KPC mice. These animals have larger tumors, decreased body weight, increased lactate dehydrogenase production, and severe leukopenia. In vivo and in vitro expression studies identified FAS and FAS ligand (FASL) as potential mediators of this phenomenon. The FAS/FASL axis, an apoptotic inducer, plays a role in the progression of pancreatic cancer, where its expression is usually lost or significantly reduced in advanced stages of the disease. Chromatin immunoprecipitation and reporter assays identified FAS and FASL as direct targets of GLI1, whereas GKO/KPC mice showed lower levels of this ligand compared with KPC animals. Finally, decreased levels of apoptosis were detected in tumor tissue in the absence of GLI1 by TUNEL staining. Together, these findings define a novel pathway regulated by GLI1 controlling pancreatic tumor progression and provide a new theoretical framework to help with the design and analysis of trials targeting GLI1-related pathways.
Collapse
Affiliation(s)
| | | | - Ronald Marler
- the Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Scottsdale, Arizona 85259
| | | | | | - Maneesh Dave
- Laboratory of Epigenetics and Chromatin Dynamics
| | | | | | - Gloria M Petersen
- Division of Epidemiology, Mayo Clinic, Rochester, Minnesota 55905 and
| | | | | |
Collapse
|
15
|
Grage-Griebenow E, Jerg E, Gorys A, Wicklein D, Wesch D, Freitag-Wolf S, Goebel L, Vogel I, Becker T, Ebsen M, Röcken C, Altevogt P, Schumacher U, Schäfer H, Sebens S. L1CAM promotes enrichment of immunosuppressive T cells in human pancreatic cancer correlating with malignant progression. Mol Oncol 2014; 8:982-97. [PMID: 24746181 DOI: 10.1016/j.molonc.2014.03.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 12/17/2022] Open
Abstract
Regulatory T cell (T-reg) enrichment in the tumor microenvironment is regarded as an important mechanism of tumor immune escape. Hence, the presence of T-regs in highly malignant pancreatic ductal adenocarcinoma (PDAC) is correlated with short survival. Likewise, the adhesion molecule L1CAM is upregulated during PDAC progression in the pancreatic ductal epithelium also being associated with poor prognosis. To investigate whether L1CAM contributes to enrichment of T-regs in PDAC, human CD4(+)CD25(+)CD127(-)CD49d(-) T-regs and CD4(+)CD25(-) T-effector cells (T-effs) were isolated by magnetic bead separation from blood of healthy donors. Their phenotype and functional behavior were analyzed in dependence on human premalignant (H6c7) or malignant (Panc1) pancreatic ductal epithelial cells, either exhibiting or lacking L1CAM expression. T cells derived from blood and tumors of PDAC patients were analyzed by flow cytometry and findings were correlated with clinical parameters. Predominantly T-regs but not T-effs showed an increased migration on L1CAM expressing H6c7 and Panc1 cells. Whereas proliferation of T-regs did not change in the presence of L1CAM, T-effs proliferated less, exhibited a decreased CD25 expression and an increased expression of CD69. Moreover, these T-effs exhibited a regulatory phenotype as they inhibited proliferation of autologous T cells. Accordingly, CD4(+)CD25(-)CD69(+) T cells were highly abundant in PDAC tissues compared to blood being associated with nodal invasion and higher grading in PDAC patients. Overall, these data point to an important role of L1CAM in the enrichment of immunosuppressive T cells in particular of a CD4(+)CD25(-)CD69(+)-phenotype in PDAC providing a novel mechanism of tumor immune escape which contributes to tumor progression.
Collapse
Affiliation(s)
- Evelin Grage-Griebenow
- Group Inflammatory Carcinogenesis, Institute for Experimental Medicine, UKSH Campus Kiel, Arnold-Heller-Str. 3, Building 17, 24105 Kiel, Germany
| | - Elfi Jerg
- Group Inflammatory Carcinogenesis, Institute for Experimental Medicine, UKSH Campus Kiel, Arnold-Heller-Str. 3, Building 17, 24105 Kiel, Germany
| | - Artur Gorys
- Group Inflammatory Carcinogenesis, Institute for Experimental Medicine, UKSH Campus Kiel, Arnold-Heller-Str. 3, Building 17, 24105 Kiel, Germany
| | - Daniel Wicklein
- Institute for Anatomy and Experimental Morphology, UKE Hamburg Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Daniela Wesch
- Institute of Immunology, UKSH Campus Kiel, Arnold-Heller-Str. 3, Building 17, 24105 Kiel, Germany
| | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, UKSH Campus Kiel, Brunswiker Str. 10, 24105 Kiel, Germany
| | - Lisa Goebel
- Group Inflammatory Carcinogenesis, Institute for Experimental Medicine, UKSH Campus Kiel, Arnold-Heller-Str. 3, Building 17, 24105 Kiel, Germany
| | - Ilka Vogel
- Department of Surgery, Community Hospital Kiel, Chemnitzstr. 33, 24116 Kiel, Germany
| | - Thomas Becker
- Department of General and Thoracic Surgery, UKSH Campus Kiel, Arnold-Heller-Str. 3, Building 18, 24105 Kiel, Germany
| | - Michael Ebsen
- Institute of Pathology, Community Hospital Kiel, Chemnitzstr. 33, 24116 Kiel, Germany
| | - Christoph Röcken
- Institute of Pathology, UKSH Campus Kiel, Arnol-Heller-Str. 3, Building 14, 24105 Kiel, Germany
| | - Peter Altevogt
- Department of Translational Immunology D015, German Cancer Research Center, Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Udo Schumacher
- Institute for Anatomy and Experimental Morphology, UKE Hamburg Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Heiner Schäfer
- Laboratory of Molecular Gastroenterology & Hepatology, Department of Internal Medicine I, UKSH Campus Kiel; Arnold-Heller-Str. 3, Building 6, 24105 Kiel, Germany
| | - Susanne Sebens
- Group Inflammatory Carcinogenesis, Institute for Experimental Medicine, UKSH Campus Kiel, Arnold-Heller-Str. 3, Building 17, 24105 Kiel, Germany.
| |
Collapse
|
16
|
Qiu Y, Yun MM, Xu MB, Wang YZ, Yun S. Pancreatic carcinoma-specific immunotherapy using synthesised alpha-galactosyl epitope-activated immune responders: findings from a pilot study. Int J Clin Oncol 2013; 18:657-65. [PMID: 22847800 DOI: 10.1007/s10147-012-0434-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/29/2012] [Indexed: 01/13/2023]
Abstract
BACKGROUND Dendritic cell (DC)-based and cytokine-induced killer cell (CIK)-based therapy can induce specific antitumor T-cell responses. This clinical pilot study examined the safety, the feasibility, and the outcome of tumor-specific immunotherapy for patients with advanced pancreatic adenocarcinoma. METHODS Alpha-Gal epitopes were synthesised on pancreatic carcinoma cell membranes with α1,3-galactosyltransferase in vitro. Subsequently, the addition of natural human anti-Gal IgG to the processed membranes resulted in opsonization and effective phagocytosis by DCs, which were co-cultured with newly differentiated CIKs from bone marrow stem cells to generate tumor-specific immune responders ex vivo. Fourteen patients with inoperable stage III/IV pancreatic adenocarcinoma were enrolled in the study; the treatment procedure consisted of injections of DCs and CIKs. RESULTS Clinical observation showed that the procedure was safe and lacked serious side effects. Tests showed that 12 patients had strong positive delayed-type IV hypersensitivity to the autologous cancer cell lysate; robust systemic cytotoxicity elicited by interferon (IFN)γ expression by peripheral blood mononuclear cells; and significant increases in CD3+CD8+, CD3+CD45RO+, and CD3+CD56+ cells in peripheral blood lymphocytes after 3 injections. During the follow up, the percentages of CD3+CD8+, CD3+CD45RO+, and CD3+CD56+ cells returned to the normal range at 6 to 9 months after the third injection and IFNγ expression in the cells stayed at the higher level from the third injection to 24 months after the treatment. CONCLUSIONS This new tumor-specific immunotherapy is safe, feasible, and has great potential for pancreatic carcinoma treatment.
Collapse
Affiliation(s)
- Ying Qiu
- Department of Oncology, First Teaching Hospital, Inner Mongolia Medical College, Huhhot, China
| | | | | | | | | |
Collapse
|
17
|
Basso D, Fogar P, Falconi M, Fadi E, Sperti C, Frasson C, Greco E, Tamburrino D, Teolato S, Moz S, Bozzato D, Pelloso M, Padoan A, De Franchis G, Gnatta E, Facco M, Zambon CF, Navaglia F, Pasquali C, Basso G, Semenzato G, Pedrazzoli S, Pederzoli P, Plebani M. Pancreatic tumors and immature immunosuppressive myeloid cells in blood and spleen: role of inhibitory co-stimulatory molecules PDL1 and CTLA4. An in vivo and in vitro study. PLoS One 2013; 8:e54824. [PMID: 23359812 PMCID: PMC3554636 DOI: 10.1371/journal.pone.0054824] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/17/2012] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Blood and spleen expansion of immature myeloid cells (IMCs) might compromise the immune response to cancer. We studied in vivo circulating and splenic T lymphocyte and IMC subsets in patients with benign and malignant pancreatic diseases. We ascertained in vitro whether pancreatic adenocarcinoma (PDAC)-associated IMC subsets are induced by tumor-derived soluble factors and whether they are immunosuppressive focusing on the inhibitory co-stimulatory molecules PDL1 and CTLA4. METHODOLOGY AND PRINCIPAL FINDINGS 103 pancreatic and/or splenic surgical patients were enrolled including 52 PDAC, 10 borderline and 10 neuroendocrine tumors (NETs). Lymphocytes and IMCs were analysed by flow cytometry in blood, in spleen and in three PDAC cell conditioned (CM) or non conditioned PBMC. PDL1 and CTLA4 were studied in 30 splenic samples, in control and conditioned PBMC. IMCs were FACS sorted and co-coltured with allogenic T lymphocytes. In PDAC a reduction was found in circulating CD8(+) lymphocytes (p = 0.004) and dendritic cells (p = 0.01), which were reduced in vitro by one PDAC CM (Capan1; p = 0.03). Blood myeloid derived suppressive cells (MDSCs) CD33(+)CD14(-)HLA-DR(-) were increased in PDAC (p = 0.022) and were induced in vitro by BxPC3 CM. Splenic dendritic cells had a higher PDL1 expression (p = 0.007), while CD33(+)CD14(+)HLA-DR(-) IMCs had a lower CTLA4 expression (p = 0.029) in PDAC patients. In vitro S100A8/A9 complex, one of the possible inflammatory mediators of immune suppression in PDAC, induced PDL1 (p = 0.018) and reduced CTLA4 expression (p = 0.028) among IMCs. IMCs not expressing CTLA4 were demonstrated to be immune suppressive. CONCLUSION In PDAC circulating dendritic and cytotoxic T cells are reduced, while MDSCs are increased and this might favour tumoral growth and progression. The reduced CTLA4 expression found among splenic IMCs of PDAC patients was demonstrated to characterize an immune suppressive phenotype and to be consequent to the direct exposure of myeloid cells to pancreatic cancer derived products, S100A8/A9 complex in particular.
Collapse
Affiliation(s)
- Daniela Basso
- Department of Medicine, University of Padova, Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|