1
|
Jiang J, Shen T, Chen D, Dai Z, Wang X, Meng Q, Yang Z, Zhang D, Guo X, Xu J, Gu J, Wang C. FOXM1, a super enhancer-associated gene, is related to poorer prognosis and gemcitabine resistance in pancreatic cancer. Cell Biochem Biophys 2025; 83:2441-2452. [PMID: 39899193 DOI: 10.1007/s12013-024-01653-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 02/04/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive solid tumor; however, the barrier of chemoresistance has yet to be overcome for longer survival. Aberrant gene expression due to epigenetic modification plays an important role in tumorigenesis and treatment. Super enhancers are epigenetic elements that promote targeted gene transcription and ultimately lead to chemoresistance. This study found that the expression of FOXM1 was higher in PDAC tissues and negatively correlated with prognosis. Through RNA sequencing and chromatin immunoprecipitation-sequencing analyses, FOXM1 was found to be regulated by a BRD4-associated super enhancer, which finally promoted gemcitabine resistance via TGFβ/Smad signaling pathway activation. Both TGFβ/Smad-specific inhibitor LY364947 and the BRD4 inhibitor JQ1 decreased the IC50 value of gemcitabine in vitro. Furthermore, combined gemcitabine and JQ1 therapy could not only enhance the therapeutic effect of gemcitabine but also reverse drug resistance in vivo. In conclusion, the super enhancer-associated gene FOMX1 contributes to gemcitabine resistance and is a promising target in PDAC treatment.
Collapse
MESH Headings
- Humans
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Deoxycytidine/therapeutic use
- Gemcitabine
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/diagnosis
- Pancreatic Neoplasms/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Forkhead Box Protein M1/genetics
- Forkhead Box Protein M1/metabolism
- Cell Line, Tumor
- Prognosis
- Transcription Factors/metabolism
- Transcription Factors/antagonists & inhibitors
- Animals
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/diagnosis
- Carcinoma, Pancreatic Ductal/metabolism
- Triazoles/pharmacology
- Triazoles/therapeutic use
- Female
- Mice
- Azepines/pharmacology
- Azepines/therapeutic use
- Male
- Cell Cycle Proteins/metabolism
- Antimetabolites, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/therapeutic use
- Enhancer Elements, Genetic
- Gene Expression Regulation, Neoplastic/drug effects
- Mice, Nude
- Signal Transduction/drug effects
- Transforming Growth Factor beta/metabolism
- Super Enhancers
- Bromodomain Containing Proteins
Collapse
Affiliation(s)
- Jian Jiang
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tianci Shen
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dan Chen
- Department of Pathology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zihao Dai
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuelong Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Zhuo Yang
- Department of Endoscope, General Hospital of Northern Theater Command, Shenyang, China
| | - Di Zhang
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaoyi Guo
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jianqiang Xu
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, Liaoning, China
| | - Jiangning Gu
- Department of Endoscope, General Hospital of Northern Theater Command, Shenyang, China.
| | - Changmiao Wang
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
2
|
Khan MA, Khan P, Ahmad A, Fatima M, Nasser MW. FOXM1: A small fox that makes more tracks for cancer progression and metastasis. Semin Cancer Biol 2023; 92:1-15. [PMID: 36958703 PMCID: PMC10199453 DOI: 10.1016/j.semcancer.2023.03.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/21/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Transcription factors (TFs) are indispensable for the modulation of various signaling pathways associated with normal cell homeostasis and disease conditions. Among cancer-related TFs, FOXM1 is a critical molecule that regulates multiple aspects of cancer cells, including growth, metastasis, recurrence, and stem cell features. FOXM1 also impact the outcomes of targeted therapies, chemotherapies, and immune checkpoint inhibitors (ICIs) in various cancer types. Recent advances in cancer research strengthen the cancer-specific role of FOXM1, providing a rationale to target FOXM1 for developing targeted therapies. This review compiles the recent studies describing the pivotal role of FOXM1 in promoting metastasis of various cancer types. It also implicates the contribution of FOXM1 in the modulation of chemotherapeutic resistance, antitumor immune response/immunotherapies, and the potential of small molecule inhibitors of FOXM1.
Collapse
Affiliation(s)
- Md Arafat Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aatiya Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mahek Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
3
|
Lee W, Song G, Bae H. Glucotropaeolin Promotes Apoptosis by Calcium Dysregulation and Attenuates Cell Migration with FOXM1 Suppression in Pancreatic Cancer Cells. Antioxidants (Basel) 2023; 12:antiox12020257. [PMID: 36829815 PMCID: PMC9952507 DOI: 10.3390/antiox12020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/25/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has naturally aggressive characteristics including postoperative recurrence, resistance to conventional treatment, and metastasis. Surgical resection with chemotherapeutic agents has been conducted as the major treatment for PDAC. However, surgical treatment is ineffective in the case of advanced cancer, and conventional adjuvant chemotherapy, including gemcitabine and 5-fluorouracil, show low effectiveness due to the high drug resistance of PDAC to this type of treatment. Therefore, the development of innovative therapeutic drugs is crucial to solving the present limitation of conventional drugs. Glucotropaeolin (GT) is a glucosinolate that can be isolated from the Brassicaceae family. GT has exhibited a growth-inhibitory effect against liver and colon cancer cells; however, there is no study regarding the anticancer effect of GT on PDAC. In our study, we determined the antiproliferative effect of GT in PANC-1 and MIA PaCa-2, representative of PDAC. We revealed the intracellular mechanisms underlying the anticancer effect of GT with respect to cell viability, reactive oxygen species (ROS) accumulation, alteration of mitochondrial membrane potential (MMP), calcium dysregulation, cell migration, and the induction of apoptosis. Moreover, GT regulated the signaling pathways related to anticancer in PDAC cells. Finally, the silencing of the forkhead box protein M, a key factor regulating PDAC progression, contributes to the anticancer property of GT in terms of the induction of apoptosis and cell migration. Therefore, GT may be a potential therapeutic drug against PDAC.
Collapse
Affiliation(s)
- Woonghee Lee
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
- Correspondence: (G.S.); (H.B.); Tel.: +82-2-3290-3881 (G.S.); +82-31-201-2686 (H.B.)
| | - Hyocheol Bae
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
- Correspondence: (G.S.); (H.B.); Tel.: +82-2-3290-3881 (G.S.); +82-31-201-2686 (H.B.)
| |
Collapse
|
4
|
Okuni N, Honma Y, Urano T, Tamura K. Romidepsin and tamoxifen cooperatively induce senescence of pancreatic cancer cells through downregulation of FOXM1 expression and induction of reactive oxygen species/lipid peroxidation. Mol Biol Rep 2022; 49:3519-3529. [PMID: 35099714 DOI: 10.1007/s11033-022-07192-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although improvement has been made in therapeutic strategies against pancreatic carcinoma, overall survival has not significantly enhanced over the past decade. Thus, the establishment of better therapeutic regimens remains a high priority. METHODS Pancreatic cancer cell lines were incubated with romidepsin, an inhibitor of histone deacetylase, and tamoxifen, and their effects on cell growth, signaling and gene expression were analyzed. Xenografts of human pancreatic cancer CFPAC1 cells were medicated with romidepsin and tamoxifen to evaluate their effects on tumor growth. RESULTS The inhibition of the growth of pancreatic cancer cells induced by romidepsin and tamoxifen was effectively reduced by N-acetyl cysteine and α-tocopherol, respectively. The combined treatment greatly induced reactive oxygen species production and mitochondrial lipid peroxidation, and these effects were prevented by N-acetyl cysteine and α-tocopherol. Tamoxifen enhanced romidepsin-induced cell senescence. FOXM1 expression was markedly downregulated in pancreatic cancer cells treated with romidepsin, and tamoxifen further reduced FOXM1 expression in cells treated with romidepsin. Siomycin A, an inhibitor of FOXM1, induced senescence in pancreatic cancer cells. Similar results were obtained in knockdown of FOXM1 expression by siRNA. CONCLUSION Since FOXM1 is used as a prognostic marker and therapeutic target for pancreatic cancer, a combination of the clinically available drugs romidepsin and tamoxifen might be considered for the treatment of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Noriko Okuni
- Innovative Cancer Center, Shimane University, Izumo, Shimane, 693-8501, Japan
| | - Yoshio Honma
- Innovative Cancer Center, Shimane University, Izumo, Shimane, 693-8501, Japan.
- Department of Biochemistry, Faculty of Medicine, Shimane University, Izumo, Shimane, 693-8501, Japan.
| | - Takeshi Urano
- Department of Biochemistry, Faculty of Medicine, Shimane University, Izumo, Shimane, 693-8501, Japan
| | - Kenji Tamura
- Innovative Cancer Center, Shimane University, Izumo, Shimane, 693-8501, Japan
| |
Collapse
|
5
|
Yan X, Liang C, Liang X, Li L, Huang Z, Yang H, Qin Y, Lu D, Ma Y, Luo Z. The Screening and Identification of Key Biomarkers in Adrenocortical Carcinoma: Evidence from a Bioinformatics Analysis. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
<sec> <title>Objective:</title> This study aimed to identify the potential key genes associated with the progression and prognosis of adrenocortical carcinoma (ACC). </sec> <sec> <title>Methods:</title> Differentially expressed
genes (DEGs) in ACC cells and normal adrenocortical cells were assessed by microarray from the Gene Expression Omnibus database. The biological functions of the classified DEGs were examined by Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses
and a protein–protein interaction (PPI) network was mapped using Cytoscape software. MCODE software was also used for the module analysis and then 4 algorithms of cytohubba software were used to screen hub genes. The overall survival (OS) examination of the hub genes was then performed
by the ualcan online tool. </sec> <sec> <title>Results:</title> Two GSEs (GSE12368, GSE33371) were downloaded from GEO including 18 and 43 cases, respectively. One hundred and sixty-nine DEGs were identified, including 57 upregulated genes and 112 downregulated
genes. The Gene Ontology (GO) analyses showed that the upregulated genes were significantly enriched in the mitotic cytokines is, nucleus and ATP binding, while the downregulated genes were involved in the positive regulation of cardiac muscle contraction, extracellular space, and heparin-binding
(P < 0.05). The Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) pathway examination showed significant pathways including the cell cycle and the complement and coagulation cascades. The protein– protein interaction (PPI) network consisted of 162 nodes and 847 edges, including
mitotic nuclear division, cytoplasmic, protein kinase binding, and cell cycle. All 4 identified hub genes (FOXM1, UBE2C, KIF11, and NDC80) were associated with the prognosis of adrenocortical carcinoma (ACC) by survival analysis. </sec> <sec> <title>Conclusions:</title>
The present study offered insights into the molecular mechanism of adrenocortical carcinoma (ACC) that may be beneficial in further analyses. </sec>
Collapse
Affiliation(s)
- Xin Yan
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Chunfeng Liang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xinghuan Liang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Li Li
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhenxing Huang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Haiyan Yang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yingfen Qin
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Decheng Lu
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yan Ma
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zuojie Luo
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
6
|
Meng RY, Jin H, Nguyen TV, Chai OH, Park BH, Kim SM. Ursolic Acid Accelerates Paclitaxel-Induced Cell Death in Esophageal Cancer Cells by Suppressing Akt/FOXM1 Signaling Cascade. Int J Mol Sci 2021; 22:11486. [PMID: 34768915 PMCID: PMC8584129 DOI: 10.3390/ijms222111486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 10/20/2021] [Indexed: 12/29/2022] Open
Abstract
Ursolic acid (UA), a pentacyclic triterpenoid extracted from various plants, inhibits cell growth, metastasis, and tumorigenesis in various cancers. Chemotherapy resistance and the side effects of paclitaxel (PTX), a traditional chemotherapy reagent, have limited the curative effect of PTX in esophageal cancer. In this study, we investigate whether UA promotes the anti-tumor effect of PTX and explore the underlying mechanism of their combined effect in esophageal squamous cell carcinoma (ESCC). Combination treatment with UA and PTX inhibited cell proliferation and cell growth more effectively than either treatment alone by inducing more significant apoptosis, as indicated by increased sub-G1 phase distribution and protein levels of cleaved-PARP and cleaved caspase-9. Similar to the cell growth suppressive effect, the combination of UA and PTX significantly inhibited cell migration by targeting uPA, MMP-9, and E-cadherin in ESCC cells. In addition, combination treatment with UA and PTX significantly activated p-GSK-3β and suppressed the activation of Akt and FOXM1 in ESCC cells. Those effects were enhanced by the Akt inhibitor LY2940002 and inverted by the Akt agonist SC79. In an in vivo evaluation of a murine xenograft model of esophageal cancer, combination treatment with UA and PTX suppressed tumor growth significantly better than UA or PTX treatment alone. Thus, UA effectively potentiates the anti-tumor efficacy of PTX by targeting the Akt/FOXM1 cascade since combination treatment shows significantly more anti-tumor potential than PTX alone both in vitro and in vivo. Combination treatment with UA and PTX could be a new strategy for curing esophageal cancer patients.
Collapse
Affiliation(s)
- Ruo Yu Meng
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54907, Korea;
| | - Hua Jin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China;
| | - Thi Van Nguyen
- Department of Anatomy, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54907, Korea; (T.V.N.); (O.-H.C.)
| | - Ok-Hee Chai
- Department of Anatomy, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54907, Korea; (T.V.N.); (O.-H.C.)
| | - Byung-Hyun Park
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54907, Korea;
| | - Soo Mi Kim
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54907, Korea;
| |
Collapse
|
7
|
Forkhead box M1 over-expression and dachshund homolog 1 down-regulation as novel biomarkers for progression of endometrial carcinoma in Egyptian patients. Contemp Oncol (Pozn) 2021; 25:107-117. [PMID: 34667437 PMCID: PMC8506436 DOI: 10.5114/wo.2021.106697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/23/2021] [Indexed: 02/06/2023] Open
Abstract
Introduction Forkhead box M1 (FOXM1) is considered as a novel anti-cancer target, because it has many essential functions such as mitosis regulation, cell cycle transition, and other carcinogenesis signaling pathways. Dachshund homolog 1 (DACH1) is a member of the Sno/Ski co-repressor family. Material and methods Expression of DACH1 has been detected in many cancers. Patients and pathologic specimens: 50 patients with endometrial cancer (EC) were included in the study: ten specimens of normal endometrium and twenty specimens of endometrial hyperplasia. All samples underwent processing to investigate FOXM1 and DACH1 expression using immunohistochemistry. Results FOXM1 expression was detected in EC tissues more than normal endometrium and endometrial hyperplasia tissues (p = 0.001) and 0.01. Increased FOXM1 expression was positively associated with larger tumor size (p = 0.002), high grade (p = 0.004), myometrial invasion, presence of lymph node metastases, higher Federation of Gynecology and Obstetrics (FIGO) stage (p < 0.001), and worse progression-free survival (PFS) and overall survival (OS) rates. The expression of DACH1 was lower in EC cells than normal endometrium and endometrial hyperplasia tissues (p = 0.071) and 0.252. Low DACH1 expression was associated with high grade (p = 0.001), presence of lymph node metastases (p = 0.49), higher FIGO stage (p = 0.022), and unfavorable PFS and OS rates (p = 0.037). We found an inverse association between expression of FOXM1 and DACH1 in EC tissues and in non-neoplastic endometrial tissues (p = 0.007). Conclusions FOXM1 over-expression and DACH1 down-regulation in EC were related to poor clinical and pathological parameters and unfavorable prognosis.
Collapse
|
8
|
Jingyang Z, Jinhui C, Lu X, Weizhong Y, Yunjiu L, Haihong W, Wuyuan Z. Mir-320b Inhibits Pancreatic Cancer Cell Proliferation by Targeting FOXM1. Curr Pharm Biotechnol 2021; 22:1106-1113. [PMID: 32942974 DOI: 10.2174/1389201021999200917144704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/20/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pancreatic Ductal Adenocarcinoma (PDAC) is the most common and deadly cancer. Surgical resection is the only possible cure for pancreatic cancer but often has a poor prognosis, and the role of adjuvant therapy is urgently explored. METHODS MicroRNAs (miRNAs) play a very important role in tumorigenesis by regulating the target genes. In this study, we identified miR-320b lower-expressed in human pancreatic cancer tissues but relatively higher-expressed in the adjacent non-tumor tissues. RESULTS Consistently, the expression of miR-320b in different pancreatic cancer cell lines was significantly lower than the normal pancreatic cells. In order to identify the effects of miR-320b on cell growth, we overexpressed miR-320b in PANC-1 and FG pancreatic cancer cell lines, CCK8 and BrdU incorporation assay results showed that miR-320b inhibited cell proliferation. DISCUSSION We next predicted miR-320b targeted FOXM1 (Forkhead box protein M1) and identified the negative relationship between miR-320b and FOXM1. We also demonstrated that elevated miR- 320b expression inhibited tumor growth in vivo. CONCLUSION All of these results showed that miR-320b suppressed pancreatic cancer cell proliferation by targeting FOXM1, which might provide a new diagnostic marker for pancreatic cancer.
Collapse
Affiliation(s)
- Zhou Jingyang
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330027, China
| | - Che Jinhui
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Xu Lu
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Yang Weizhong
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Li Yunjiu
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Wang Haihong
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Zhou Wuyuan
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| |
Collapse
|
9
|
Lee NR, Kim DY, Jin H, Meng R, Chai OH, Kim SH, Park BH, Kim SM. Inactivation of the Akt/FOXM1 Signaling Pathway by Panobinostat Suppresses the Proliferation and Metastasis of Gastric Cancer Cells. Int J Mol Sci 2021; 22:5955. [PMID: 34073071 PMCID: PMC8199011 DOI: 10.3390/ijms22115955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is the fifth most common cancer and the third leading cause of cancer-related deaths worldwide. Histone deacetylase (HDAC) inhibitors are a new class of cytostatic agents available for the treatment of various cancers and diseases. Although numerous clinical and pre-clinical trials on the anticancer effects of panobinostat have been conducted, only a few reports have investigated its efficacy in gastric cancer. The present study aimed to investigate the effects of panobinostat in gastric cancer cells. Panobinostat significantly inhibited the cell viability and proliferation of the gastric cancer cell lines SNU484 and SNU638 in a dose-dependent manner; it reduced the colony-forming ability of these cells. Moreover, it induced apoptosis as indicated by increased protein levels of cleaved poly ADP-ribose polymerase and cleaved caspase-3. Panobinostat induced the G2/M cell cycle arrest in SNU484 and SNU638 cells and subsequently decreased the G2/M phase regulatory-associated protein expression of p-Wee1, Myt1, and Cdc2. Furthermore, panobinostat significantly inhibited the metastasis of SNU484 and SNU638 cells by regulating the expression of MMP-9 and E-cadherin. Further, it decreased the protein levels of p-Akt and forkhead box protein M1 (FOXM1). These effects were reversed by the Akt agonist SC79 and were accelerated by the Akt inhibitor LY2940002. Moreover, tumor growth in xenograft animal experiments was suppressed by panobinostat. These results indicated that panobinostat inhibits the proliferation, metastasis, and cell cycle progression of gastric cancer cells by promoting apoptosis and inactivating Akt/FOXM1 signaling. Cumulatively, our present study suggests that panobinostat is a potential drug for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Na-Ri Lee
- Division of Hematology/Oncology, Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju 54907, Korea;
- Research Institute of Clinical Medicine, Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Da-Yeah Kim
- Department of Physiology, Institute of Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Korea; (D.-Y.K.); (R.M.)
| | - Hua Jin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China;
| | - Ruoyu Meng
- Department of Physiology, Institute of Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Korea; (D.-Y.K.); (R.M.)
| | - Ok Hee Chai
- Department of Anatomy, Institute of Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Korea;
| | - Seong-Hun Kim
- Research Institute of Clinical Medicine, Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea
- Department of Internal Medicine, Division of Gastroentrology, Jeonbuk National University Medical School, Jeonbuk National University Hospital, Jeonju 54907, Korea;
| | - Byung-Hyun Park
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54907, Korea;
| | - Soo Mi Kim
- Department of Physiology, Institute of Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Korea; (D.-Y.K.); (R.M.)
| |
Collapse
|
10
|
Curcio C, Brugiapaglia S, Bulfamante S, Follia L, Cappello P, Novelli F. The Glycolytic Pathway as a Target for Novel Onco-Immunology Therapies in Pancreatic Cancer. Molecules 2021; 26:1642. [PMID: 33804240 PMCID: PMC7998946 DOI: 10.3390/molecules26061642] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal forms of human cancer, characterized by unrestrained progression, invasiveness and treatment resistance. To date, there are limited curative options, with surgical resection as the only effective strategy, hence the urgent need to discover novel therapies. A platform of onco-immunology targets is represented by molecules that play a role in the reprogrammed cellular metabolism as one hallmark of cancer. Due to the hypoxic tumor microenvironment (TME), PDA cells display an altered glucose metabolism-resulting in its increased uptake-and a higher glycolytic rate, which leads to lactate accumulation and them acting as fuel for cancer cells. The consequent acidification of the TME results in immunosuppression, which impairs the antitumor immunity. This review analyzes the genetic background and the emerging glycolytic enzymes that are involved in tumor progression, development and metastasis, and how this represents feasible therapeutic targets to counteract PDA. In particular, as the overexpressed or mutated glycolytic enzymes stimulate both humoral and cellular immune responses, we will discuss their possible exploitation as immunological targets in anti-PDA therapeutic strategies.
Collapse
Affiliation(s)
- Claudia Curcio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Centro Ricerche Medicina Sperimentale, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Silvia Brugiapaglia
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Centro Ricerche Medicina Sperimentale, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Sara Bulfamante
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Centro Ricerche Medicina Sperimentale, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Laura Follia
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Computer Science Department, University of Turin, 10126 Turin, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Centro Ricerche Medicina Sperimentale, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Centro Ricerche Medicina Sperimentale, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| |
Collapse
|
11
|
Long J, Huang S, Bai Y, Mao J, Wang A, Lin Y, Yang X, Wang D, Lin J, Bian J, Yang X, Sang X, Wang X, Zhao H. Transcriptional landscape of cholangiocarcinoma revealed by weighted gene coexpression network analysis. Brief Bioinform 2020; 22:5923107. [PMID: 33051665 DOI: 10.1093/bib/bbaa224] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a type of cancer with limited treatment options and a poor prognosis. Although some important genes and pathways associated with CCA have been identified, the relationship between coexpression and phenotype in CCA at the systems level remains unclear. In this study, the relationships underlying the molecular and clinical characteristics of CCA were investigated by employing weighted gene coexpression network analysis (WGCNA). The gene expression profiles and clinical features of 36 patients with CCA were analyzed to identify differentially expressed genes (DEGs). Subsequently, the coexpression of DEGs was determined by using the WGCNA method to investigate the correlations between pairs of genes. Network modules that were significantly correlated with clinical traits were identified. In total, 1478 mRNAs were found to be aberrantly expressed in CCA. Seven coexpression modules that significantly correlated with clinical characteristics were identified and assigned representative colors. Among the 7 modules, the green and blue modules were significantly related to tumor differentiation. Seventy-eight hub genes that were correlated with tumor differentiation were found in the green and blue modules. Survival analysis showed that 17 hub genes were prognostic biomarkers for CCA patients. In addition, we found five new targets (ISM1, SULT1B1, KIFC1, AURKB and CCNB1) that have not been studied in the context of CCA and verified their differential expression in CCA through experiments. Our results not only promote our understanding of the relationship between the transcriptome and clinical data in CCA but will also guide the development of targeted molecular therapy for CCA.
Collapse
Affiliation(s)
- Junyu Long
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shan Huang
- Department of Immunology, School of Basic Medical Sciences; Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory for Cancer Invasion and Metastasis, Department of Oncology, Capital Medical University, Beijing, China
| | - Yi Bai
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinzhu Mao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Anqiang Wang
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, China
| | - Yu Lin
- Shenzhen Withsum Technology Limited, Shenzhen, China
| | - Xu Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dongxu Wang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianzhen Lin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jin Bian
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaobo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xi Wang
- Department of Immunology, School of Basic Medical Sciences; Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory for Cancer Invasion and Metastasis, Department of Oncology, Capital Medical University, Beijing, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Tabatabaei Dakhili SA, Pérez DJ, Gopal K, Haque M, Ussher JR, Kashfi K, Velázquez-Martínez CA. SP1-independent inhibition of FOXM1 by modified thiazolidinediones. Eur J Med Chem 2020; 209:112902. [PMID: 33069434 DOI: 10.1016/j.ejmech.2020.112902] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 11/25/2022]
Abstract
This research article describes an approach to modify the thiazolidinedione scaffold to produce test drugs capable of binding to, and inhibit, the in vitro transcriptional activity of the oncogenic protein FOXM1. This approach allowed us to obtain FOXM1 inhibitors that bind directly to the FOXM1-DNA binding domain without targeting the expression levels of Sp1, an upstream transcription factor protein known to activate the expression of FOXM1. Briefly, we modified the chemical structure of the thiazolidinedione scaffold present in anti-diabetic medications such as pioglitazone, rosiglitazone and the former anti-diabetic drug troglitazone, because these drugs have been reported to exert inhibition of FOXM1 but hit other targets as well. After the chemical synthesis of 11 derivatives possessing a modified thiazolidinedione moiety, we screened all test compounds using in vitro protocols to measure their ability to (a) dissociate a FOXM1-DNA complex (EMSA assay); (b) decrease the expression of FOXM1 in triple negative-breast cancer cells (WB assay); (c) downregulate the expression of FOXM1 downstream targets (luciferase reporter assays and qPCR); and inhibit the formation of colonies of MDA-MB-231 cancer cells (colony formation assay). We also identified a potential binding mode associated with these compounds in which compound TFI-10, one of the most active molecules, exerts binding interactions with Arg289, Trp308, and His287. Unlike the parent drug, troglitazone, compound TFI-10 does not target the in vitro expression of Sp1, suggesting that it is possible to design FOXM1 inhibitors with a better selectivity profile.
Collapse
Affiliation(s)
| | - David J Pérez
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Unidad Radiofarmacia-Ciclotrón, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Moinul Haque
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada; Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Khosrow Kashfi
- Department of Molecular, Cellular, & Biomedical Sciences, City University of New York School of Medicine, New York, USA; Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, USA
| | | |
Collapse
|
13
|
Dey P, Wang A, Ziegler Y, Kim SH, El-Ashry D, Katzenellenbogen JA, Katzenellenbogen BS. Suppression of Tumor Growth, Metastasis, and Signaling Pathways by Reducing FOXM1 Activity in Triple Negative Breast Cancer. Cancers (Basel) 2020; 12:cancers12092677. [PMID: 32961773 PMCID: PMC7565743 DOI: 10.3390/cancers12092677] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Triple negative breast cancer is an aggressive subtype of breast cancer that frequently metastasizes. Because the transcription factor FOXM1 is highly upregulated in triple negative breast cancer and controls many cell activities that lead to cancer progression and metastasis, we sought to determine if FOXM1 inhibitory compounds could effectively suppress the invasiveness and progression of triple negative breast cancer cells and tumors. Our findings show that these compounds inhibit cell motility, invasiveness, and the expression of important proteins associated with epithelial to mesenchymal transition. These compounds also suppressed the proliferation and metastatic outgrowth of triple negative breast tumors. Thus, these findings highlight the crucial role of FOXM1 in promoting the progression and metastasis of these cancers, and suggest that FOXM1 inhibitory compounds may have therapeutic potential and prove beneficial in intervention against triple negative breast cancer. Abstract Metastasis-related complications account for the overwhelming majority of breast cancer mortalities. Triple negative breast cancer (TNBC), the most aggressive breast cancer subtype, has a high propensity to metastasize to distant organs, leading to poor patient survival. The forkhead transcription factor, FOXM1, is especially upregulated and overexpressed in TNBC and is known to regulate multiple signaling pathways that control many key cancer properties, including proliferation, invasiveness, stem cell renewal, and therapy resistance, making FOXM1 a critical therapeutic target for TNBC. In this study, we test the effectiveness of a novel class of 1,1-diarylethylene FOXM1 inhibitory compounds in suppressing TNBC cell migration, invasion, and metastasis using in vitro cell culture and in vivo tumor models. We show that these compounds inhibit the motility and invasiveness of TNBC MDA-MB-231 and DT28 cells, along with reducing the expression of important epithelial to mesenchymal transition (EMT) associated genes. Further, orthotopic tumor studies in NOD-SCID-gamma (NSG) mice demonstrate that these compounds reduce FOXM1 expression and suppress TNBC tumor growth as well as distant metastasis. Gene expression and protein analyses confirm the decreased levels of EMT factors and FOXM1-regulated target genes in tumors and metastatic lesions in the inhibitor-treated animals. The findings suggest that these FOXM1 suppressive compounds may have therapeutic potential in treating triple negative breast cancer, with the aim of reducing tumor progression and metastatic outgrowth.
Collapse
Affiliation(s)
- Parama Dey
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (P.D.); (A.W.); (Y.Z.)
| | - Alexander Wang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (P.D.); (A.W.); (Y.Z.)
| | - Yvonne Ziegler
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (P.D.); (A.W.); (Y.Z.)
| | - Sung Hoon Kim
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (S.H.K.); (J.A.K.)
| | - Dorraya El-Ashry
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - John A. Katzenellenbogen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (S.H.K.); (J.A.K.)
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Benita S. Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (P.D.); (A.W.); (Y.Z.)
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence: ; Tel.: +1-217-333-9769
| |
Collapse
|
14
|
Ziegler Y, Laws MJ, Sanabria Guillen V, Kim SH, Dey P, Smith BP, Gong P, Bindman N, Zhao Y, Carlson K, Yasuda MA, Singh D, Li Z, El-Ashry D, Madak-Erdogan Z, Katzenellenbogen JA, Katzenellenbogen BS. Suppression of FOXM1 activities and breast cancer growth in vitro and in vivo by a new class of compounds. NPJ Breast Cancer 2019; 5:45. [PMID: 31815181 PMCID: PMC6884575 DOI: 10.1038/s41523-019-0141-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
The transcription factor FOXM1 is upregulated and overexpressed in aggressive, therapy-resistant forms of hormone receptor-positive and triple negative breast cancers, and is associated with less good patient survival. FOXM1 signaling is also a key driver in many other cancers. Here, we identify a new class of compounds effective in suppressing FOXM1 activity in breast cancers, and displaying good potency for antitumor efficacy. The compounds bind directly to FOXM1 and alter its proteolytic sensitivity, reduce the cellular level of FOXM1 protein by a proteasome- dependent process, and suppress breast cancer cell proliferation and cell cycle progression and increase apoptosis. RNA-seq and gene set enrichment analyses indicate that the compounds decrease expression of FOXM1-regulated genes and suppress gene ontologies under FOXM1 regulation. Several compounds have favorable pharmacokinetic properties and show good tumor suppression in preclinical breast tumor models. These compounds may be suitable for further clinical evaluation in targeting aggressive breast cancers driven by FOXM1.
Collapse
Affiliation(s)
- Yvonne Ziegler
- Departments of Molecular and Integrative Physiology, Urbana, IL 61801 USA
| | - Mary J. Laws
- Departments of Molecular and Integrative Physiology, Urbana, IL 61801 USA
| | | | | | - Parama Dey
- Departments of Molecular and Integrative Physiology, Urbana, IL 61801 USA
| | - Brandi P. Smith
- Illinois Informatics Institute and Department of Food Science and Human Nutrition, Urbana, IL 61801 USA
| | - Ping Gong
- Departments of Molecular and Integrative Physiology, Urbana, IL 61801 USA
| | | | - Yuechao Zhao
- Departments of Molecular and Integrative Physiology, Urbana, IL 61801 USA
| | | | - Mayuri A. Yasuda
- Departments of Molecular and Integrative Physiology, Urbana, IL 61801 USA
| | - Divya Singh
- Departments of Molecular and Integrative Physiology, Urbana, IL 61801 USA
| | - Zhong Li
- Metabolomics Center of the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Dorraya El-Ashry
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455 USA
| | - Zeynep Madak-Erdogan
- Illinois Informatics Institute and Department of Food Science and Human Nutrition, Urbana, IL 61801 USA
| | | | | |
Collapse
|
15
|
Yang K, Jiang B, Lu Y, Shu Q, Zhai P, Zhi Q, Li Q. FOXM1 promotes the growth and metastasis of colorectal cancer via activation of β-catenin signaling pathway. Cancer Manag Res 2019; 11:3779-3790. [PMID: 31118796 PMCID: PMC6501701 DOI: 10.2147/cmar.s185438] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose Our previous study proved that FOXM1 regulates colorectal cancer (CRC) cell metastasis through epithelial–mesenchymal transition program. The aim of this study is to further explore the underlying mechanism of FOXM1 in CRC. Materials and methods In this study, we detected the mRNA and protein expressions of FOXM1 and β-catenin in CRC tissues and their corresponding normal-appearing tissues (NATs) by quantitative reverse transcription-PCR and western blot analysis, respectively. Then the potential link between FOXM1 and β-catenin in CRC tissues was analyzed. Furthermore, we systematically analyzed the biological functions of FOXM1 in CRC cells after reconstitution of FOXM1 expression in vitro. Moreover, the mechanism of FOXM1-promoted CRC progression by improving β-catenin nuclear translocation was also discussed. Results Our data demonstrated that FOXM1 and β-catenin were upregulated in CRC tissues compared with the corresponding NATs (P<0.05). Clinicopathologic analysis revealed that increased FOXM1 (or β-catenin) expression positively correlated with some clinicopathologic features, such as tumor size, TNM stage, lymphatic metastasis, and distant metastasis (P<0.05). Meanwhile, the possible relationships between FOXM1 and β-catenin in CRC samples were evaluated using SPSS software, and a significant positive correlation was found (P<0.05). In vitro data demonstrate that elevated FOXM1 expression exerted oncogenic effects on CRC via activation of β-catenin signaling pathway. The inhibition of β-catenin by siRNAs significantly attenuates FOXM1-induced malignant activities. Conclusion The data suggested that FOXM1/β-catenin is critical for malignancy of CRC, which may constitute a potential therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Kankan Yang
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, China,
| | - Bing Jiang
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, China,
| | - Yecai Lu
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, China,
| | - Qingbing Shu
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, China,
| | - Pan Zhai
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, China,
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China,
| | - Qixin Li
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, China,
| |
Collapse
|
16
|
STAT1-mediated inhibition of FOXM1 enhances gemcitabine sensitivity in pancreatic cancer. Clin Sci (Lond) 2019; 133:645-663. [PMID: 30782607 PMCID: PMC6395369 DOI: 10.1042/cs20180816] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/01/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
Abstract
Forkhead box protein M1 (FOXM1) was identified as an oncogenic transcription factor and master regulator of tumor progression and metastasis. FOXM1 expression often correlates with poor prognosis and chemotherapy resistance. In the present study, we investigated the association of FOXM1 expression and chemoresistance in pancreatic cancer. Elevated FOXM1 protein levels were associated with gemcitabine chemoresistance in patients with pancreatic cancer. In gemcitabine resistance cell line models of pancreatic cancer, FOXM1 expression increased, which induced gemcitabine chemoresistance in vitro. In pancreatic cancer cells treated with gemcitabine, FOXM1 affected nuclear factor κB (NF-κB) signaling activity. Immunohistochemical analysis demonstrated a negative association of FOXM1 expression and the level of phosphorylated signal transducer and activator of transcription 1 (pSTAT1) in human pancreatic cancer tissues. Dual-luciferase reporter assays and chromatin-immunoprecipitation assays demonstrated that pSTAT1 directly binds to the FOXM1 promoter to down-regulate its transcription. Interferon γ (IFNγ) promoted gemcitabine-induced cell apoptosis and inhibited cell proliferation in vitro and in vivo by FOXM1 inhibition. These data suggested that FOXM1 enhances chemoresistance to gemcitabine in pancreatic cancer. IFNγ could be used to down-regulate the expression of FOXM1 through STAT1 phosphorylation, thereby increasing the sensitivity of pancreatic cancer cells to gemcitabine. These studies suggested the sensitization by IFNγ in pancreatic ductal adenocarcinoma (PDAC) chemotherapy, which requires further clinical studies.
Collapse
|
17
|
Follia L, Ferrero G, Mandili G, Beccuti M, Giordano D, Spadi R, Satolli MA, Evangelista A, Katayama H, Hong W, Momin AA, Capello M, Hanash SM, Novelli F, Cordero F. Integrative Analysis of Novel Metabolic Subtypes in Pancreatic Cancer Fosters New Prognostic Biomarkers. Front Oncol 2019; 9:115. [PMID: 30873387 PMCID: PMC6400843 DOI: 10.3389/fonc.2019.00115] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/07/2019] [Indexed: 12/25/2022] Open
Abstract
Background: Most of the patients with Pancreatic Ductal Adenocarcinoma (PDA) are not eligible for a curative surgical resection. For this reason there is an urgent need for personalized therapies. PDA is the result of complex interactions between tumor molecular profile and metabolites produced by its microenvironment. Despite recent studies identified PDA molecular subtypes, its metabolic classification is still lacking. Methods: We applied an integrative analysis on transcriptomic and genomic data of glycolytic genes in PDA. Data were collected from public datasets and molecular glycolytic subtypes were defined using hierarchical clustering. The grade of purity of the cancer samples was assessed estimating the different amount of stromal and immunological infiltrate among the identified PDA subtypes. Analyses of metabolomic data from a subset of PDA cell lines allowed us to identify the different metabolites produced by the metabolic subtypes. Sera of a cohort of 31 PDA patients were analyzed using Q-TOF mass spectrometer to measure the amount of metabolic circulating proteins present before and after chemotherapy. Results: Our integrative analysis of glycolytic genes identified two glycolytic and two non-glycolytic metabolic PDA subtypes. Glycolytic patients develop disease earlier, have poor prognosis, low immune-infiltrated tumors, and are characterized by a gain in chr12p13 genomic region. This gain results in the over-expression of GAPDH, TPI1, and FOXM1. PDA cell lines with the gain of chr12p13 are characterized by an higher lipid uptake and sensitivity to drug targeting the fatty acid metabolism. Our sera proteomic analysis confirms that TPI1 serum levels increase in poor prognosis gemcitabine-treated patients. Conclusions: We identify four metabolic PDA subtypes with different prognosis outcomes which may have pivotal role in setting personalized treatments. Moreover, our data suggest TPI1 as putative prognostic PDA biomarker.
Collapse
Affiliation(s)
- Laura Follia
- Center for Experimental Research and Medical Studies, Azienda Universitaria Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Department of Computer Sciences, University of Turin, Turin, Italy
| | - Giulio Ferrero
- Department of Computer Sciences, University of Turin, Turin, Italy
| | - Giorgia Mandili
- Center for Experimental Research and Medical Studies, Azienda Universitaria Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Marco Beccuti
- Department of Computer Sciences, University of Turin, Turin, Italy
| | - Daniele Giordano
- Center for Experimental Research and Medical Studies, Azienda Universitaria Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy
| | - Rosella Spadi
- Centro Oncologico Ematologico Subalpino, Azienda Universitaria Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy
| | - Maria Antonietta Satolli
- Centro Oncologico Ematologico Subalpino, Azienda Universitaria Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy
| | - Andrea Evangelista
- Servizio di Epidemiologia dei Tumori, Azienda Universitaria Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention Research, MD Anderson Cancer Center, Houston, TX, United States
| | - Wang Hong
- Department of Clinical Cancer Prevention Research, MD Anderson Cancer Center, Houston, TX, United States
| | - Amin A. Momin
- Department of Clinical Cancer Prevention Research, MD Anderson Cancer Center, Houston, TX, United States
| | - Michela Capello
- Department of Clinical Cancer Prevention Research, MD Anderson Cancer Center, Houston, TX, United States
| | - Samir M. Hanash
- Department of Clinical Cancer Prevention Research, MD Anderson Cancer Center, Houston, TX, United States
| | - Francesco Novelli
- Center for Experimental Research and Medical Studies, Azienda Universitaria Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center, University of Turin, Turin, Italy
| | | |
Collapse
|
18
|
Yao Y, Wang X, Jiang L, Shao X, Zhu X, He S. Prognostic and clinicopathological value of FoxM1 expression in colorectal cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2018; 97:e13899. [PMID: 30593202 PMCID: PMC6314739 DOI: 10.1097/md.0000000000013899] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The study aims to assess the relationship between FoxM1 expression and clinicopathological parameters and prognosis of patients diagnosed with colorectal cancer (CRC) by summarizing the studies included. METHODS PubMed, EMBASE, The Cochrane Library and other sources were searched for relative studies. Odds ratio (OR) and confidence interval (CI) were used to assess association between FoxM1 expression and clinical parameters and prognosis of CRC patients. RESULTS Eight studies were included in the final analysis, with 1149 CRC patients. The outcome revealed that expression of FoxM1 was associated with lymph node metastasis (OR = 0.33, 95%CI = 0.19-0.62, P < .001), distant metastasis (OR = 0.35, 95%CI = 0.24-0.46, P < .001) and tumor node metastasis (TNM) stage (OR = 0.45, 95%CI = 0.29-0.72, P < .001). Meanwhile, reduced FoxM1 expression indicated higher 5-year survival rate (OR = 0.38, 95%CI = 0.18-0.78, P = .01). Expression of FoxM1 was also increased obviously in CRC tissues (OR = 13.04, 95%CI = 4.07-41.71, P < .001). CONCLUSION This pooled analysis indicated that FoxM1 expression related to lymph node metastasis, distant metastasis, TNM stage and poor prognosis of the CRC patients.
Collapse
Affiliation(s)
- Yizhou Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University
| | - Xuchao Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University
| | - Linhua Jiang
- Department of General Surgery, The First Affiliated Hospital of Soochow University
| | - Xinyu Shao
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University
| | - Songbing He
- Department of General Surgery, The First Affiliated Hospital of Soochow University
| |
Collapse
|
19
|
Shen Q, Yu M, Jia JK, Li WX, Tian YW, Xue HZ. Possible Molecular Markers for the Diagnosis of Pancreatic Ductal Adenocarcinoma. Med Sci Monit 2018; 24:2368-2376. [PMID: 29671412 PMCID: PMC5928849 DOI: 10.12659/msm.906313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/17/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND We aimed to identify pivotal genes and pathways involved in pancreatic ductal adenocarcinoma (PDAC), and explore possible molecular markers for the early diagnosis of the disease. MATERIAL AND METHODS The array data of GSE74629, including 34 PDAC samples and 16 healthy samples, was downloaded from GEO (Gene Expression Omnibus) database. Then, the DEGs (differentially expressed genes) in PDAC samples were compared with healthy samples using limma (linear models for microarray). Gene functional interaction networks were analyzed with Cytoscape and ReactomeFIViz. PPI networks were constructed with Cytoscape software. In addition, PPI (protein-protein interaction) network clustering modules were analyzed with ClusterONE, and the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analyses for modules were performed. RESULTS A total of 630 upregulated and 1,002 downregulated DEGs were identified in PDAC samples compared with healthy samples. Some ribosomal protein genes with higher average correlation in module 0 were enriched in the ribosome pathway. NUP107 (nucleoporin 107 kDa) and NUP160 (nucleoporin 160 kDa) were enriched in module 3. HNRNPU (heterogeneous nuclear ribonucleoprotein U) with higher average correlation in module 8 was enriched in the spliceosome pathway. The ribosome pathway and the spliceosome pathway were significantly enriched in cluster 1 and cluster 2, respectively. CONCLUSIONS Ribosomal protein genes Nup170, Nup160, and HNRNPU, and the ribosome pathway as well as the spliceosome pathway may play important roles in PDAC progression. In addition, ribosomal protein genes Nup170, Nup160, and HNRNPU may be used as possible molecular markers for the early diagnosis of the disease.
Collapse
|
20
|
Li L, Wu D, Yu Q, Li L, Wu P. Prognostic value of FOXM1 in solid tumors: a systematic review and meta-analysis. Oncotarget 2018; 8:32298-32308. [PMID: 28427178 PMCID: PMC5458285 DOI: 10.18632/oncotarget.15764] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
Accumulated studies have provided controversial evidences of the association between Forkhead Box M1 (FOXM1) expression and survival of human solid tumors. To address this inconsistency, we performed a meta-analysis with 23 studies identified from PubMed and Medline. We found elevated FOXM1-protein expression was significantly associated with worse 3-year overall survival (OS) (OR = 3.30, 95% CI = 2.56 to 4.25, P < 0.00001) 5-year OS (OR =3.35, 95% CI = 2.64 to 4.26, P < 0.00001) and 10-year OS (OR = 5.24, 95% CI = 2.61 to 10.52, P < 0.00001) of human solid tumors. Similar results were observed when disease free survival (DFS) were analyzed. Subgroup analysis showed that FOXM1 overexpression was associated with poor prognosis of colorectal cancer, gastric cancer, hepatic cancer, lung cancer and ovarian cancer. High expression level of FOXM1 was also associated with advanced tumor stage. In conclusion, elevated FOXM1 expression is associated with poor survival in most solid tumors. FOXM1 is a potential biomarker for prognosis prediction and a promising therapeutic target in human solid tumors.
Collapse
Affiliation(s)
- Lijun Li
- Department of Surgery, Hangzhou Xixi Hospital, Hangzhou, China
| | - Dang Wu
- Department of Radiation Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Qun Yu
- Fourth Ward of Neurosurgery, Division of Nursing, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Lingdi Li
- Department of Oncology, Hangzhou Cancer Hospital, Hangzhou, China
| | - Pin Wu
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Wang Y, Yun Y, Wu B, Wen L, Wen M, Yang H, Zhao L, Liu W, Huang S, Wen N, Li Y. FOXM1 promotes reprogramming of glucose metabolism in epithelial ovarian cancer cells via activation of GLUT1 and HK2 transcription. Oncotarget 2018; 7:47985-47997. [PMID: 27351131 PMCID: PMC5216994 DOI: 10.18632/oncotarget.10103] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/12/2016] [Indexed: 02/07/2023] Open
Abstract
Cancer cells exhibit the reprogrammed metabolism mainly via aerobic glycolysis, a phenomenon known historically as the Warburg effect; however, the underlying mechanisms remain largely unknown. In this study, we characterized the critical role of transcription factor Forkhead box protein M1 (FOXM1) in aerobic glycolysis of human epithelial ovarian cancer (EOC) and its molecular mechanisms. Our data showed that aberrant expression of FOXM1 significantly contributed to the reprogramming of glucose metabolism in EOC cells. Aerobic glycolysis and cell proliferation were down-regulated in EOC cells when FOXM1 gene expression was suppressed by RNA interference. Moreover, knockdown of FOXM1 in EOC cells significantly reduced glucose transporter 1 (GLUT1) and hexokinase 2 (HK2) expression. FOXM1 bound directly to the GLUT1 and HK2 promoter regions and regulated the promoter activities and the expression of the genes at the transcriptional level. This reveals a novel mechanism by which glucose metabolism is regulated by FOXM1. Importantly, we further demonstrated that the expression levels of FOXM1, GLUT1 and HK2 were significantly increased in human EOC tissues relative to normal ovarian tissues, and that FOXM1 expression was positively correlated with GLUT1 and HK2 expression. Taken together, our results show that FOXM1 promotes reprogramming of glucose metabolism in EOC cells via activation of GLUT1 and HK2 transcription, suggesting that FOXM1 may be an important target in aerobic glycolysis pathway for developing novel anticancer agents.
Collapse
Affiliation(s)
- Yu Wang
- Department of Oncology, State Key Discipline of Cell Biology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.,Institute of Stomatology, Chinese PLA General Hospital, Beijing, China
| | - Yuyu Yun
- State Key Laboratory of Cancer Biology, Cell Engineering Research Center & Department of Cell Biology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bo Wu
- State Key Laboratory of Cancer Biology, Cell Engineering Research Center & Department of Cell Biology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Li Wen
- Institute of Stomatology, Chinese PLA General Hospital, Beijing, China
| | - Mingling Wen
- Department of Pharmacy, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Huiling Yang
- Institute of Stomatology, Chinese PLA General Hospital, Beijing, China
| | - Lisheng Zhao
- Institute of Stomatology, Chinese PLA General Hospital, Beijing, China
| | - Wenchao Liu
- Department of Oncology, State Key Discipline of Cell Biology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Suyun Huang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| | - Ning Wen
- Institute of Stomatology, Chinese PLA General Hospital, Beijing, China
| | - Yu Li
- State Key Laboratory of Cancer Biology, Cell Engineering Research Center & Department of Cell Biology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
22
|
Abdeljaoued S, Bettaieb L, Nasri M, Adouni O, Goucha A, Bouzaiene H, Boussen H, Rahal K, Gamoudi A. Forkhead box M1 (FOXM1) expression predicts disease free survival and may mediate resistance to chemotherapy and hormonotherapy in male breast cancer. Breast Dis 2018; 37:109-114. [PMID: 29504520 DOI: 10.3233/bd-170315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND Male breast cancer (MBC) is a rare and neglected disease. Prognostic and predictive factors in MBC are extrapoled from trials conducted on its female counterpart. OBJECTIVE Since the relationship between the transcription factor Forkhead box M1 (FOXM1) expression and the clinical response to chemotherapy and hormonotherapy in MBC remains unknown, we sought to investigate the predictive value of FOXM1 in MBC. METHODS FOXM1 expression was assessed in 130 MBC cases. Clinical significance was analyzed by Kaplan Meier curves, log-rank test and multivariate Cox regression analyses. RESULTS Patients with high FOXM1 expression had a significantly lower response rate to chemotherapy (P = 0.045) and hormonotherapy (P = 0.029) than those with low FOXM1 expression. Multivariate analyses indicated that FOXM1 was an independent prognostic factor for disease free survival in MBC patients (P < 0.001). CONCLUSIONS FOXM1 may have a reliable predictive significance in male breast cancer and thus may become an important target for male breast cancer therapy in the near future.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents, Hormonal/therapeutic use
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms, Male/drug therapy
- Breast Neoplasms, Male/genetics
- Breast Neoplasms, Male/pathology
- Breast Neoplasms, Male/surgery
- Disease-Free Survival
- Drug Resistance, Neoplasm/genetics
- Forkhead Box Protein M1/genetics
- Forkhead Box Protein M1/metabolism
- Gene Expression Regulation, Neoplastic
- Genetic Association Studies
- Humans
- Kaplan-Meier Estimate
- Male
- Middle Aged
- Prognosis
- Tamoxifen/therapeutic use
- Tunisia
Collapse
Affiliation(s)
- Syrine Abdeljaoued
- Department of Immuno-Histo-Cytology, Salah Azaïz Cancer Institute, Bab Saadoun, 1006 Tunis, Tunisia
| | - Lhem Bettaieb
- Department of Immuno-Histo-Cytology, Salah Azaïz Cancer Institute, Bab Saadoun, 1006 Tunis, Tunisia
| | - Meher Nasri
- Department of Medical Oncology, Salah Azaïz Cancer Institute, Bab Saadoun, 1006 Tunis, Tunisia
| | - Olfa Adouni
- Department of Immuno-Histo-Cytology, Salah Azaïz Cancer Institute, Bab Saadoun, 1006 Tunis, Tunisia
| | - Aida Goucha
- Department of Immuno-Histo-Cytology, Salah Azaïz Cancer Institute, Bab Saadoun, 1006 Tunis, Tunisia
| | - Hatem Bouzaiene
- Department of Surgical Oncology, Salah Azaïz Cancer Institute, Bab Saadoun, 1006 Tunis, Tunisia
| | - Hamouda Boussen
- Department of Oncology, Abderrahmen Mami Hospital, 2080 Ariana, Tunisia
| | - Khaled Rahal
- Department of Surgical Oncology, Salah Azaïz Cancer Institute, Bab Saadoun, 1006 Tunis, Tunisia
| | - Amor Gamoudi
- Department of Immuno-Histo-Cytology, Salah Azaïz Cancer Institute, Bab Saadoun, 1006 Tunis, Tunisia
| |
Collapse
|
23
|
Pratheeshkumar P, Divya SP, Parvathareddy SK, Alhoshani NM, Al-Badawi IA, Tulbah A, Al-Dayel F, Siraj AK, Al-Kuraya KS. FoxM1 and β-catenin predicts aggressiveness in Middle Eastern ovarian cancer and their co-targeting impairs the growth of ovarian cancer cells. Oncotarget 2017; 9:3590-3604. [PMID: 29423068 PMCID: PMC5790485 DOI: 10.18632/oncotarget.23338] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/26/2017] [Indexed: 01/12/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is a highly lethal disease with poor prognosis especially in advanced stage tumor. Emerging evidence has reported that aberrant upregulation of FoxM1 and β-catenin are closely associated with aggressiveness of human cancer. However, interplay between these factors in the aggressiveness of EOC is not fully illustrated. In this study, we show that FoxM1 is frequently increased in Middle Eastern EOC and associated with high proliferative index (p = 0.0007) and high grade tumor (p = 0.0024). Interestingly, FoxM1 is significantly associated with elevated nuclear β-catenin and the concomitant increase of FoxM1 and β-catenin is associated with advanced stage of EOC by immunohistochemical analysis of 261 samples of Saudi patients with EOC. Functional analysis showed that β-catenin is a direct transcriptional target of FoxM1 in EOC cell lines. FoxM1 inhibition either by specific inhibitor, thiostrepton or siRNA suppressed β-catenin expression, whereas overexpression of FoxM1 increased nuclear β-catenin expression. We identified two FoxM1 binding sites in the β-catenin promoter that specifically bound to FoxM1 protein. Down-regulation of FoxM1 using thiostrepton induced apoptosis and inhibited cell migration/invasion in EOC cells. Moreover, co-inhibition of FoxM1 by thiostrepton and β-catenin by FH535 significantly and synergistically inhibited EOC cell growth in vitro and in vivo. Collectively, our findings confer that co-targeting FoxM1/β-catenin signaling cascade may be a promising molecular therapeutic choice in advanced EOC.
Collapse
Affiliation(s)
- Poyil Pratheeshkumar
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sasidharan Padmaja Divya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Norah M Alhoshani
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ismail A Al-Badawi
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Asma Tulbah
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Abdul K Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
24
|
Hamurcu Z, Ashour A, Kahraman N, Ozpolat B. FOXM1 regulates expression of eukaryotic elongation factor 2 kinase and promotes proliferation, invasion and tumorgenesis of human triple negative breast cancer cells. Oncotarget 2017; 7:16619-35. [PMID: 26918606 PMCID: PMC4941339 DOI: 10.18632/oncotarget.7672] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 01/06/2016] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K), an emerging molecular target for cancer therapy, contributes to cancer proliferation, cell survival, tumorigenesis, and invasion, disease progression and drug resistance. Although eEF2K is highly up-regulated in various cancers, the mechanism of gene regulation has not been elucidated. In this study, we examined the role of Forkhead Box M1 (FOXM1) proto-oncogenic transcription factor in triple negative breast cancer (TNBC) cells and the regulation of eEF2K. We found that FOXM1 is highly upregulated in TNBC and its knockdown by RNA interference (siRNA) significantly inhibited eEF2K expression and suppressed cell proliferation, colony formation, migration, invasion and induced apoptotic cell death, recapitulating the effects of eEF2K inhibition. Knockdown of FOXM1 inhibited regulators of cell cycle, migration/invasion and survival, including cyclin D1, Src and MAPK-ERK signaling pathways, respectively. We also demonstrated that FOXM1 (1B and 1C isoforms) directly binds to and transcriptionally regulates eEF2K gene expression by chromatin immunoprecipitation (ChIP) and luciferase gene reporter assays. Furthermore, in vivo inhibition of FOXM1 by liposomal siRNA-nanoparticles suppressed growth of MDA-MB-231 TNBC tumor xenografts in orthotopic models. In conclusion, our study provides the first evidence about the transcriptional regulation of eEF2K in TNBC and the role of FOXM1 in mediating breast cancer cell proliferation, survival, migration/invasion, progression and tumorgenesis and highlighting the potential of FOXM1/eEF2K axis as a molecular target in breast and other cancers.
Collapse
Affiliation(s)
- Zuhal Hamurcu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Faculty of Medicine, Department of Medical Biology, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Ahmed Ashour
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nermin Kahraman
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
25
|
Westhoff GL, Chen Y, Teng NNH. Targeting FOXM1 Improves Cytotoxicity of Paclitaxel and Cisplatinum in Platinum-Resistant Ovarian Cancer. Int J Gynecol Cancer 2017; 27:1602-1609. [PMID: 28692634 DOI: 10.1097/igc.0000000000001063] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Aberrantly activated FOXM1 (forkhead box protein M1) leading to uncontrolled cell proliferation and dysregulation of FOXM1 transcription network occurs in 84% of ovarian cancer cases. It was demonstrated that thiostrepton, a thiazole antibiotic, decreases FOXM1 expression. We aimed to determine if targeting the FOXM1 pathway with thiostrepton could improve the efficacy of paclitaxel and cisplatin in human ovarian cancer ascites cells ex vivo. METHODS Human ovarian cancer cell lines and patients' ascites cells were treated with paclitaxel, cisplatin, and thiostrepton or a combination for 48 hours, and cytotoxicity was assessed. Drug combination effects were determined by calculating the combination index values using the Chou and Talalay method. Quantitative reverse transcriptase-polymerase chain reaction was performed to determine changes in FOXM1 expression and its downstream targets. RESULTS Ovarian cancer cell lines and the patients' ascites cancer cells had an overexpression of FOXM1 expression levels. Targeting FOXM1 with thiostrepton decreased FOXM1 mRNA expression and its downstream targets such as CCNB1 and CDC25B, leading to cell death in both cell lines and patients' ascites cancer cells. Furthermore, addition of thiostrepton to paclitaxel and cisplatin showed synergistic effects in chemoresistant ovarian cancer patients' ascites cells ex vivo. CONCLUSION Targeting FOXM1 may lead to novel therapeutics for chemoresistant epithelial ovarian cancer.
Collapse
Affiliation(s)
- Gina L Westhoff
- *Division of Gynecologic Oncology, Legacy Health, Portland, OR; and †Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stanford University, Stanford, CA
| | | | | |
Collapse
|
26
|
Fei BY, He X, Ma J, Zhang M, Chai R. FoxM1 is associated with metastasis in colorectal cancer through induction of the epithelial-mesenchymal transition. Oncol Lett 2017; 14:6553-6561. [PMID: 29163688 PMCID: PMC5686434 DOI: 10.3892/ol.2017.7022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 02/03/2017] [Indexed: 01/28/2023] Open
Abstract
The aim of the present study was to investigate the role of forkhead box M1 (FoxM1) in epithelial-mesenchymal transition (EMT) and metastasis in colorectal cancer (CRC). Immunohistochemical assays were performed to detect FoxM1 and epithelial (E-) cadherin protein expression in 92 CRC, 61 colonic adenoma and 32 wild-type colonic tissue samples. Quantitative polymerase chain reaction (qPCR) assays were performed to determine the expression levels of FoxM1 and E-cadherin mRNAs in 30 CRC and adjacent normal mucosal tissues. RNA interference was used to knock down endogenous FoxM1 expression in CRC cell lines, and the migratory and invasive capacity of the CRC cells was analyzed. The expression of FoxM1, E-cadherin and neuronal (N-) cadherin in the CRC cell lines was evaluated using qPCR and Western blot analysis. The relative expression levels of FoxM1 mRNA and protein were significantly increased in the CRC tissues compared with those in the colonic adenoma and wild-type mucosal tissue samples (P<0.01). In contrast, the relative expression levels of E-cadherin mRNA and protein were significantly decreased in the CRC tissues compared with in the colonic adenoma and normal mucosal tissues (P<0.01). FoxM1 overexpression and decreased E-cadherin expression were significantly associated with poor colonic tissue differentiation, lymph node metastasis and an advanced tumor-node-metastasis stage. Additionally, the increased expression of FoxM1 was associated with a decrease in E-cadherin expression (P<0.01). Furthermore, RNA interference-mediated FoxM1 knockdown significantly inhibited the proliferation, migration and invasion of CRC cells. Downregulation of FoxM1 expression significantly increased E-cadherin expression and decreased N-cadherin expression. The results of the present study suggest that FoxM1 overexpression in tumor tissues is significantly associated with metastasis in CRC through the induction of EMT.
Collapse
Affiliation(s)
- Bao-Ying Fei
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Xujun He
- Key Laboratory of Gastroenterology of Zhejiang, Zhejiang Province People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Jie Ma
- Department of Pathology, Zhejiang Province People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Mei Zhang
- Department of Pathology, Zhejiang Province People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Rui Chai
- Department of Anorectal Surgery, Zhejiang Province People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
27
|
Chen Y, Liu Y, Ni H, Ding C, Zhang X, Zhang Z. FoxM1 overexpression promotes cell proliferation and migration and inhibits apoptosis in hypopharyngeal squamous cell carcinoma resulting in poor clinical prognosis. Int J Oncol 2017; 51:1045-1054. [PMID: 28848994 PMCID: PMC5592873 DOI: 10.3892/ijo.2017.4094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/21/2017] [Indexed: 01/08/2023] Open
Abstract
Forkhead box M1 (FoxM1), a member of the Fox family of transcriptional factors, is involved in the development of various human malignancies. However, the expression level of FoxM1 and its functional role in hypopharyngeal squamous cell carcinoma (HSCC) remained unclear to date. The aim of the present study was to investigate the FoxM1 expression in 63 HSCC and 20 adjacent normal tissues, as well as to evaluate its association with the clinicopathological parameters and its diagnostic value in HSCC. To further explore the biological function of FoxM1 in vitro, siRNAs were used to knockdown the expression of FoxM1 in the HSCC cell line Fadu. The results revealed that FoxM1 protein was highly expressed in HSCC tissues and that its high expression was closely associated with HSCC tumor differentiation (P=0.004), tumor size (P=0.002), clinical stage (P=0.001), lymph node metastasis (P=0.002), treatment (P=0.045) and expression of the proliferation marker Ki-67 (P<0.001). Additionally, the elevated expression of FoxM1 in HSCC patients consistently predicted a poor survival time. Knockdown of FoxM1 expression blocked Fadu cell proliferation and promoted apoptosis, and also led to the down-regulation of cyclin A1 expression. Furthermore, decreased expression of FoxM1 markedly impeded cell migration and reversed the epithelial-mesenchymal transition phenotype, as indicated by decreased expression of vimentin and increased expression of E-cadherin in Fadu cells. These results indicate that FoxM1 may act as an oncogene and serve as a therapeutic target against malignant progression in HSCC.
Collapse
Affiliation(s)
- Yan Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Haosheng Ni
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Chuanjin Ding
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaobo Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhenxin Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
28
|
Zhang W, Duan N, Song T, Li Z, Zhang C, Chen X. The Emerging Roles of Forkhead Box (FOX) Proteins in Osteosarcoma. J Cancer 2017; 8:1619-1628. [PMID: 28775781 PMCID: PMC5535717 DOI: 10.7150/jca.18778] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/27/2017] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma is the most common bone cancer primarily occurring in children and young adults. Over the past few years, the deregulation of a superfamily transcription factors, known as forkhead box (FOX) proteins, has been demonstrated to contribute to the pathogenesis of osteosarcoma. Molecular mechanism studies have demonstrated that FOX family proteins participate in a variety of signaling pathways and that their expression can be regulated by multiple factors. The dysfunction of FOX genes can alter osteosarcoma cell differentiation, metastasis and progression. In this review, we summarized the evidence that FOX genes play direct or indirect roles in the development and progression of osteosarcoma, and evaluated the emerging role of FOX proteins as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Wentao Zhang
- Department of Orthopaedics, Xi'an Hong-Hui Hospital affiliated to medical college of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710054
| | - Ning Duan
- Department of Orthopaedics, Xi'an Hong-Hui Hospital affiliated to medical college of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710054
| | - Tao Song
- Department of Orthopaedics, Xi'an Hong-Hui Hospital affiliated to medical college of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710054
| | - Zhong Li
- Department of Orthopaedics, Xi'an Hong-Hui Hospital affiliated to medical college of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710054
| | - Caiguo Zhang
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Xun Chen
- Department of Orthopaedics, Xi'an Hong-Hui Hospital affiliated to medical college of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710054
| |
Collapse
|
29
|
Westhoff GL, Chen Y, Teng NNH. Targeting Foxm1 Improves Cytotoxicity of Paclitaxel and Cisplatinum in Platinum-Resistant Ovarian Cancer. Int J Gynecol Cancer 2017; 27:887-894. [PMID: 28498253 DOI: 10.1097/igc.0000000000000969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Aberrantly activated FOXM1 (forkhead box protein M1) leading to uncontrolled cell proliferation and dysregulation of FOXM1 transcription network occurs in 84% of ovarian cancer cases. It was demonstrated that thiostrepton, a thiazole antibiotic, decreases FOXM1 expression. We aimed to determine if targeting the FOXM1 pathway with thiostrepton could improve the efficacy of paclitaxel and cisplatin in human ovarian cancer ascites cells ex vivo. METHODS Human ovarian cancer cell lines and patients' ascites cells were treated with paclitaxel, cisplatin, and thiostrepton or a combination for 48 hours, and cytotoxicity was assessed. Drug combination effects were determined by calculating the combination index values using the Chou and Talalay method. Quantitative real-time polymerase chain reaction was performed to determine changes in FOXM1 expression and its downstream targets. RESULTS Ovarian cancer cell lines and the patients' ascites cancer cells had an overexpression of FOXM1 expression levels. Targeting FOXM1 with thiostrepton decreased FOXM1 mRNA expression and its downstream targets such as CCNB1, CDC25B, leading to cell death in both cell lines and patients' ascites cancer cells. Furthermore, addition of thiostrepton to paclitaxel and cisplatin showed synergistic effects in chemoresistant ovarian cancer patients' ascites cells ex vivo. CONCLUSION Targeting FOXM1 may lead to novel therapeutics for chemoresistant epithelial ovarian cancer.
Collapse
Affiliation(s)
- Gina L Westhoff
- *Division of Gynecologic Oncology, Legacy Health, Portland, OR; and †Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stanford University, Stanford, CA
| | | | | |
Collapse
|
30
|
Diarylheptanoids suppress proliferation of pancreatic cancer PANC-1 cells through modulating shh-Gli-FoxM1 pathway. Arch Pharm Res 2017; 40:509-517. [PMID: 28258481 DOI: 10.1007/s12272-017-0905-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 02/22/2017] [Indexed: 12/18/2022]
Abstract
Pancreatic cancer is one of the leading causes of cancer, and it has the lowest 5-year survival rates. It is necessary to develop more potent anti-pancreatic cancer drugs to overcome the fast metastasis and resistance to surgery, radiotherapy, chemotherapy, and combinations of these. We have identified several diarylheptanoids as anti-pancreatic cancer agents from Alpinia officinarum (lesser galangal) and Alnus japonica. These diarylheptanoids suppressed cell proliferation and induced the cell cycle arrest of pancreatic cancer cells (PANC-1). Among them, the most potent compounds 1 and 7 inhibited the shh-Gli-FoxM1 pathway and their target gene expression in PANC-1 cells. Furthermore, they suppressed the expression of the cell cycle associated genes that were rescued by the overexpression of exogenous FoxM1. Taken together, (E)-7-(4-hydroxy-3-methoxyphenyl)-1-phenylhept-4-en-3-one (1) from Alpinia officinarum (lesser galangal) and platyphyllenone (7) from Alnus japonica inhibit PANC-1 cell proliferation by suppressing the shh-Gli-FoxM1 pathway, and they can be potential candidates for anti-pancreatic cancer drug development.
Collapse
|
31
|
Wu M, Wang J, Tang W, Zhan X, Li Y, Peng Y, Huang X, Bai Y, Zhao J, Li A, Chen C, Chen Y, Peng H, Ren Y, Li G, Liu S, Wang J. FOXK1 interaction with FHL2 promotes proliferation, invasion and metastasis in colorectal cancer. Oncogenesis 2016; 5:e271. [PMID: 27892920 PMCID: PMC5141290 DOI: 10.1038/oncsis.2016.68] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/25/2016] [Accepted: 09/29/2016] [Indexed: 12/31/2022] Open
Abstract
The transcriptional factor Forkhead box k1 (FOXK1) is a member of the FOX family. The abnormal expression of FOXK1 may have an important role in tumour development. Our previous studies showed that four-and-a-half LIM protein 2 (FHL2) is a critical inducer of the epithelial-to-mesenchymal transition (EMT) and invasion. However, the molecular mechanism by which FOXK1 synergizes with FHL2 tumour proliferation, EMT and metastasis is not well defined. We evaluated that messenger RNA (mRNA) and protein expression levels by quantitative RT–PCR, western blot, immunofluorescence and immunohistochemistry (IHC) assays. The migration and invasive abilities of colorectal cancer (CRC) cells were evaluated using short hairpin RNA (shRNA)-mediated inhibition in vitro and in vivo. We showed that FOXK1 expression was upregulated in CRC compared with matched normal tissues. FOXK1 physically interacts with FHL2 in CRC. Moreover, higher expression levels of the two proteins were significantly associated with differentiation, lymph node metastasis, AJCC stage and poorer prognosis. Furthermore, the overexpression of FOXK1 in CRC cells is associated with EMT, invasion and metastasis. However, the siRNA-mediated repression of FHL2 in FOXK1-overexpressing cells reversed EMT and both the proliferative and metastatic phenotypes in vitro and in vivo. These data identified that the co-expression of FOXK1 and FHL2 enhances cell proliferation and metastasis through the induction of EMT. Thus, FOXK1 and FHL2 may serve as putative targets in the combined therapy of CRC.
Collapse
Affiliation(s)
- M Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - J Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - W Tang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - X Zhan
- Center for Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Y Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Y Peng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - X Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Y Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - J Zhao
- Department of Rheumatism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - A Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - C Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Y Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - H Peng
- Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | - Y Ren
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - G Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - S Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - J Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
32
|
DLX1 acts as a crucial target of FOXM1 to promote ovarian cancer aggressiveness by enhancing TGF-β/SMAD4 signaling. Oncogene 2016; 36:1404-1416. [PMID: 27593933 PMCID: PMC5348575 DOI: 10.1038/onc.2016.307] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 07/11/2016] [Accepted: 07/25/2016] [Indexed: 12/26/2022]
Abstract
Recent evidence from a comprehensive genome analysis and functional studies have revealed that FOXM1 is a crucial metastatic regulator that drives cancer progression. However, the regulatory mechanism by which FOXM1 exerts its metastatic functions in cancer cells remains obscure. Here, we report that DLX1 acts as a FOXM1 downstream target, exerting pro-metastatic function in ovarian cancers. Both FOXM1 isoforms (FOXM1B or FOXM1C) could transcriptionally upregulate DLX1 through two conserved binding sites, located at +61 to +69bp downstream (TFBS1) and −675 to −667bp upstream (TFBS2) of the DLX1 promoter, respectively. This regulation was further accentuated by the significant correlation between the nuclear expression of FOXM1 and DLX1 in high-grade serous ovarian cancers. Functionally, the ectopic expression of DLX1 promoted ovarian cancer cell growth, cell migration/invasion and intraperitoneal dissemination of ovarian cancer in mice, whereas small interfering RNA-mediated DLX1 knockdown in FOXM1-overexpressing ovarian cancer cells abrogated these oncogenic capacities. In contrast, depletion of FOXM1 by shRNAi only partially attenuated tumor growth and exerted almost no effect on cell migration/invasion and the intraperitoneal dissemination of DLX1-overexpressing ovarian cancer cells. Furthermore, the mechanistic studies showed that DLX1 positively modulates transforming growth factor-β (TGF-β) signaling by upregulating PAI-1 and JUNB through direct interaction with SMAD4 in the nucleus upon TGF-β1 induction. Taken together, these data strongly suggest that DLX1 has a pivotal role in FOXM1 signaling to promote cancer aggressiveness through intensifying TGF-β/SMAD4 signaling in high-grade serous ovarian cancer cells.
Collapse
|
33
|
Vorvis C, Hatziapostolou M, Mahurkar-Joshi S, Koutsioumpa M, Williams J, Donahue TR, Poultsides GA, Eibl G, Iliopoulos D. Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol 2016; 310:G1124-37. [PMID: 27151939 PMCID: PMC5005285 DOI: 10.1152/ajpgi.00035.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/27/2016] [Indexed: 01/31/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with low survival rates and limited therapeutic options. Thus elucidation of signaling pathways involved in PDAC pathogenesis is essential for identifying novel potential therapeutic gene targets. Here, we used a systems approach to elucidate those pathways by integrating gene and microRNA profiling analyses together with CRISPR/Cas9 technology to identify novel transcription factors involved in PDAC pathogenesis. FOXA2 transcription factor was found to be significantly downregulated in PDAC relative to control pancreatic tissues. Functional experiments revealed that FOXA2 has a tumor suppressor function through inhibition of pancreatic cancer cell growth, migration, invasion, and colony formation. In situ hybridization analysis revealed miR-199a to be significantly upregulated in pancreatic cancer. Bioinformatics and luciferase analyses showed that miR-199a negatively but directly regulates FOXA2 expression through binding in its 3'-untranslated region (UTR). Evaluation of the functional importance of miR-199a on pancreatic cancer revealed that miR-199a acts as an inhibitor of FOXA2 expression, inducing an increase in pancreatic cancer cell proliferation, migration, and invasion. Additionally, gene ontology and network analyses in PANC-1 cells treated with a small interfering RNA (siRNA) against FOXA2 revealed an enrichment for cell invasion mechanisms through PLAUR and ERK activation. FOXA2 deletion (FOXA2Δ) by using two CRISPR/Cas9 vectors in PANC-1 cells induced tumor growth in vivo resulting in upregulation of PLAUR and ERK pathways in FOXA2Δ xenograft tumors. We have identified FOXA2 as a novel tumor suppressor in pancreatic cancer and it is regulated directly by miR-199a, thereby enhancing our understanding of how microRNAs interplay with the transcription factors to affect pancreatic oncogenesis.
Collapse
Affiliation(s)
- Christina Vorvis
- 1Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California;
| | - Maria Hatziapostolou
- 2Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom;
| | - Swapna Mahurkar-Joshi
- 1Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California;
| | - Marina Koutsioumpa
- 1Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California;
| | - Jennifer Williams
- 3Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California; and
| | - Timothy R. Donahue
- 3Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California; and
| | - George A. Poultsides
- 4Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Guido Eibl
- 3Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California; and
| | - Dimitrios Iliopoulos
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California;
| |
Collapse
|
34
|
Vorvis C, Koutsioumpa M, Iliopoulos D. Developments in miRNA gene signaling pathways in pancreatic cancer. Future Oncol 2016; 12:1135-50. [PMID: 26984178 DOI: 10.2217/fon-2015-0050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is a devastating malignancy that ranks as the fourth leading cause of cancer-related deaths worldwide. Dismal prognosis is mainly attributable to limited knowledge of the molecular pathogenesis of the disease. miRNAs have been found to be deregulated in pancreatic cancer, affecting several steps of initiation and aggressiveness of the disease by regulating important signaling pathways, such as the KRAS and Notch pathways. Moreover, the effect of miRNAs on regulating cell cycle events and expression of transcription factors has gained a lot of attention. Recent studies have highlighted the application of miRNAs as biomarkers and therapeutic tools. The current review focuses on latest advances with respect to the roles of miRNAs in pancreatic ductal adenocarcinoma associated signaling pathways and miRNA-based therapeutics.
Collapse
Affiliation(s)
- Christina Vorvis
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Marina Koutsioumpa
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Dimitrios Iliopoulos
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| |
Collapse
|
35
|
LI YUNWEI, YU DONGYANG, SHENG WEIWEI, SONG HE, LI YUJI, DONG MING. Co-expression of FOXL1 and PP2A inhibits proliferation inducing apoptosis in pancreatic cancer cells via promoting TRAIL and reducing phosphorylated MYC. Oncol Rep 2016; 35:2198-206. [DOI: 10.3892/or.2016.4592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/17/2015] [Indexed: 11/05/2022] Open
|
36
|
Prognostic Value of FOXM1 in Patients with Malignant Solid Tumor: A Meta-Analysis and System Review. DISEASE MARKERS 2015; 2015:352478. [PMID: 26451068 PMCID: PMC4584221 DOI: 10.1155/2015/352478] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/23/2015] [Indexed: 01/18/2023]
Abstract
Forkhead box M1 (FOXM1), a member of the Fox transcription factors family, was closely related with cell cycle. FOXM1 played an important role in MST and prompted a poor prognosis for MST patients. However, there were also some studies revealing no significant association between the FOXM1 expression and prognosis of patients. Therefore, we conducted meta-analysis to investigate whether the expression of FOXM1 was associated with MST prognosis. We collected 36 relevant studies through PubMed database and obtained research data of 4946 patients. Stata 12.0 was used to express the results as hazard ratio (HR) for time-to-event outcomes with 95% confidence intervals (95% CI). It was shown that overexpression of FOXM1 was relevant to worse survival of MST patients (HR = 1.99, 95% CI = 1.79–2.21, P < 0.001; I2 = 26.4%, Ph = 0.076). Subgroup analysis suggested that overexpression of FOXM1 in breast cancer (BC), gastric cancer (GC), hepatocellular carcinoma (HCC), pancreatic ductal adenocarcinoma (PDA), and non-small-cell lung cancer (NSCLC) all predicted a worse survival (P < 0.05), in addition to ovarian cancer (OC) (P = 0.084). In conclusion, our research indicated that overexpression of FOXM1 was to the disadvantage of the prognosis for majority of MST and therefore can be used as an evaluation index of prognosis.
Collapse
|
37
|
Li Y, Xu M. Role of forkhead box M1 in pathogenesis of pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2015; 23:2234-2238. [DOI: 10.11569/wcjd.v23.i14.2234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Forkhead box M1 (FoxM1) is a transcription factor that can regulate cell cycle progression. Recently, increasing evidence has demonstrated that FoxM1 is significantly associated with the pathogenesis of pancreatic cancer. In this review, we focus on the roles of FoxM1 in the initiation, progression and metastasis of pancreatic cancer.
Collapse
|
38
|
Ahn H, Sim J, Abdul R, Chung MS, Paik SS, Oh YH, Park CK, Jang K. Increased expression of forkhead box M1 is associated with aggressive phenotype and poor prognosis in estrogen receptor-positive breast cancer. J Korean Med Sci 2015; 30:390-7. [PMID: 25829806 PMCID: PMC4366959 DOI: 10.3346/jkms.2015.30.4.390] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 11/12/2014] [Indexed: 11/20/2022] Open
Abstract
Fox transcription factors play a critical role in the regulation of a variety of biological processes. While FoxM1 behaves like the oncogenic transcription factor, FoxO3a is known as a tumor suppressor by inhibiting FoxM1. This study aimed to investigate the clinicopathological significance of FoxM1 and FoxO3a expression in breast cancer. Expression of FoxM1 and FoxO3a were analyzed by immunohistochemical staining on tissue microarray sections from 236 breast cancer patients, and correlated with various clinicopathological characteristics. Overexpression of FoxM1 correlated with adverse clinicopathological features, such as larger tumor size, lymph node metastasis, advanced tumor stage, and lymphovascular invasion. The Kaplan-Meier survival curves revealed no prognostic significance of FoxM1 expression. However, in subgroup analyses with patients of estrogen receptor (ER) positive breast cancers, FoxM1 overexpression associated with poor disease free and overall survival. No association was found between FoxO3a and FoxM1 expression. Regarding clinicopathological variables, the only association between histologic grade and FoxO3a was observed. In conclusion, FoxM1 overexpression was significantly associated with aggressive phenotypes and poor prognosis of ER-positive breast cancer. These findings suggest the possible role of FoxM1 as a prognostic biomarker and putative target of anti-cancer therapy.
Collapse
Affiliation(s)
- Hyein Ahn
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Korea
| | - Jongmin Sim
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Korea
| | - Rehman Abdul
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Korea
| | - Min Sung Chung
- Department of Surgery, College of Medicine, Hanyang University, Seoul, Korea
| | - Seung Sam Paik
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Korea
| | - Young-Ha Oh
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Korea
| | - Chan Kum Park
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Korea
| | - Kiseok Jang
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Korea
| |
Collapse
|
39
|
Wang JY, Jia XH, Xing HY, Li YJ, Fan WW, Li N, Xie SY. Inhibition of Forkhead box protein M1 by thiostrepton increases chemosensitivity to doxorubicin in T-cell acute lymphoblastic leukemia. Mol Med Rep 2015; 12:1457-64. [PMID: 25760224 DOI: 10.3892/mmr.2015.3469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/27/2015] [Indexed: 11/06/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive type of blood malignancy, deriving from T-cell progenitors in the thymus, and comprises 10-15% of pediatric and 25% of adult primary ALL cases. Despite advances, 20% of pediatric and the majority of adult patients with T-ALL succumb to mortality from resistant or relapsed disease, and the survival rate for patients with resistant or relapsed T-ALL remains poor. Alterations in the expression of Forkhead box protein M1 (FoxM1) have been detected in several types of cancer, and the inhibition of FoxM1 has been investigated as therapeutic strategy in cancer. The present study investigated the effects of the inhibition of FoxM1 by thiostrepton in human T-ALL Jurkat cells. The cells were treated with different concentrations of thiostrepton, either alone or in combination with doxorubicin. Cell viability was measured using CCK-8 assays and the cell cycle distribution, apoptosis and cell-associated mean fluorescence intensity of intracellular doxorubicin were assessed using flow cytometric analysis. The mRNA and protein expression levels were detected by reverse transcription-quantitative polymerase chain reaction and western blot analyses. The inhibition of FoxM1 by thiostrepton significantly decreased the proliferation of the Jurkat cells proliferation in a time- and dose-dependent manner. Cell arrest at the G2/M phase, and apoptosis was significantly increased in the thiostrepton-treated Jurkat cells. Thiostrepton reduced the half maximal inhibitory concentration of doxorubicin in the Jurkat cells, and significantly enhanced the cytotoxicity of doxorubicin within the Jurkat cells by enhancing doxorubicin-induced apoptosis and increasing the accumulation of intracellular doxorubicin. Furthermore, the inhibition of FoxM1 by thiostrepton enhanced doxorubicin-induced apoptosis, possibly through a caspase-3-dependent pathway, and increased the accumulation of intracellular doxorubicin, possibly through downregulating the expression of glutathione S-transferase pi. Collectively, the results of the present study suggested that targeting FoxM1 with thiostrepton resulted in potent antileukemia activity and chemosensitizing effects in human T-ALL Jurkat cells.
Collapse
Affiliation(s)
- Jian-Yong Wang
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Xiu-Hong Jia
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Hai-Yan Xing
- Department of Respiration, Binzhou People's Hospital, Binzhou, Shandong 256603, P.R. China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumour Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Wen-Wen Fan
- Department of Pediatrics, Women and Children Hospital of Qingdao, Qingdao, Shandong 266011, P.R. China
| | - Na Li
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Shu-Yang Xie
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumour Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
40
|
Xu XS, Miao RC, Wan Y, Zhang LQ, Qu K, Liu C. FoxM1 as a Novel Therapeutic Target for Cancer Drug Therapy. Asian Pac J Cancer Prev 2015; 16:23-9. [DOI: 10.7314/apjcp.2015.16.1.23] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
41
|
The forkhead transcription factor FOXM1 promotes endocrine resistance and invasiveness in estrogen receptor-positive breast cancer by expansion of stem-like cancer cells. Breast Cancer Res 2014; 16:436. [PMID: 25213081 PMCID: PMC4303117 DOI: 10.1186/s13058-014-0436-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION The forkhead transcription factor FOXM1 coordinates expression of cell cycle-related genes and plays a pivotal role in tumorigenesis and cancer progression. We previously showed that FOXM1 acts downstream of 14-3-3ζ signaling, the elevation of which correlates with a more aggressive tumor phenotype. However, the role that FOXM1 might play in engendering resistance to endocrine treatments in estrogen receptor-positive (ER+) patients when tumor FOXM1 is high has not been clearly defined yet. METHODS We analyzed FOXM1 protein expression by immunohistochemistry in 501 ER-positive breast cancers. We also mapped genome-wide FOXM1, extracellular signal-regulated kinase 2 and ERα binding events by chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) in hormone-sensitive and resistant breast cancer cells after tamoxifen treatment. These binding profiles were integrated with gene expression data derived from cells before and after FOXM1 knockdown to highlight specific FOXM1 transcriptional networks. We also modulated the levels of FOXM1 and newly discovered FOXM1-regulated genes and examined their impact on the cancer stem-like cell population and on cell invasiveness and resistance to endocrine treatments. RESULTS FOXM1 protein expression was high in 20% of the tumors, which correlated with significantly reduced survival in these patients (P = 0.003 by logrank Mantel-Cox test). ChIP-seq analyses revealed that FOXM1 binding sites were enriched at the transcription start site of genes involved in cell-cycle progression, maintenance of stem cell properties, and invasion and metastasis, all of which are associated with a poor prognosis in ERα-positive patients treated with tamoxifen. Integration of binding profiles with gene expression highlighted FOXM1 transcriptional networks controlling cell proliferation, stem cell properties, invasion and metastasis. Increased expression of FOXM1 was associated with an expansion of the cancer stem-like cell population and with increased cell invasiveness and resistance to endocrine treatments. Use of a selective FOXM1 inhibitor proved very effective in restoring endocrine therapy sensitivity and decreasing breast cancer aggressiveness. CONCLUSIONS Collectively, our findings uncover novel roles for FOXM1 and FOXM1-regulated genes in promoting cancer stem-like cell properties and therapy resistance. They highlight the relevance of FOXM1 as a therapeutic target to be considered for reducing invasiveness and enhancing breast cancer response to endocrine treatments.
Collapse
|
42
|
Bilici A. Prognostic factors related with survival in patients with pancreatic adenocarcinoma. World J Gastroenterol 2014; 20:10802-10812. [PMID: 25152583 PMCID: PMC4138460 DOI: 10.3748/wjg.v20.i31.10802] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/27/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
The prognosis in patients with pancreatic cancer is poor and this cancer is the fourth leading cause of cancer-related death worldwide. Although surgical resection is the only curative treatment of choice for pancreatic cancer, the majority of patients are diagnosed at an advanced stage, thus only 10%-15% of them are suitable for curative resection and the overall survival is less than 5%. Chemotherapy for metastatic disease is to palliate symptoms of patients and to improve survival. Therefore, prognostic factors are important and a correct definition of poor prognostic factors may help to guide more aggressive adjuvant or aggressive treatment protocols in patients with pancreatic cancer. This article reviews the prognostic factors affecting survival of patients with pancreatic cancer in the light of recent advances in the literature.
Collapse
|
43
|
Li L, Li Z, Kong X, Xie D, Jia Z, Jiang W, Cui J, Du Y, Wei D, Huang S, Xie K. Down-regulation of microRNA-494 via loss of SMAD4 increases FOXM1 and β-catenin signaling in pancreatic ductal adenocarcinoma cells. Gastroenterology 2014; 147:485-97.e18. [PMID: 24859161 DOI: 10.1053/j.gastro.2014.04.048] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 04/15/2014] [Accepted: 04/23/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND & AIMS Dysregulation of β-catenin and the transcriptional activator FOXM1 mediate oncogenesis, but it is not clear how these proteins become dysregulated in tumors that do not typically carry mutations in adenomatous polyposis coli (APC) or β-catenin, such as pancreatic ductal adenocarcinomas (PDACs). We searched for microRNAs that regulate levels of FOXM1 in PDAC cells and samples from patients. METHODS We identified microRNAs that affect levels of FOXM1 in PDACs using bioinformatic, genetic, and pharmacologic approaches. We altered expression of the microRNA-494 (miR-494) in PDAC cell lines (AsPC-1 and PANC-1) and examined the effects on FOXM1 and β-catenin signaling and cell proliferation and colony formation. The cells were injected into immunocompromised mice and growth of xenograft tumors and liver metastases were measured. We performed immunohistochemical analyses of 10 paired PDAC and nontumor pancreatic tissue samples collected from untreated patients during surgery. RESULTS We identified miR-494 as a negative regulator of FOXM1 levels in PDAC cells, and found that levels of this microRNA were reduced in PDAC specimens, compared with nontumor tissues. Loss of response of PDAC cells to transforming growth factor β, owing to SMAD4 deficiency, reduced expression of miR-494. Transgenic expression of miR-494 in PDAC cells produced the same effects as reducing expression of FOXM1 or blocking nuclear translocation of β-catenin, reducing cell proliferation, migration, and invasion, and increasing their sensitivity to gemcitabine. Reduced expression of miR-494 correlated with PDAC metastasis and reduced survival times of patients. CONCLUSIONS Loss of SMAD4 in PDAC cells leads to reduced levels of miR-494, increased levels of FOXM1, and nuclear localization of β-catenin. miR-494 might be developed as a prognostic marker for patients with PDAC or a therapeutic target.
Collapse
Affiliation(s)
- Lei Li
- Department of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Zhaoshen Li
- Department of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China.
| | - Xiangyu Kong
- Department of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China; Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Dacheng Xie
- Shanghai Key Laboratory of Pancreatic Diseases Research and Department of Oncology, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, People's Republic of China
| | - Zhiliang Jia
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Weihua Jiang
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas; Shanghai Key Laboratory of Pancreatic Diseases Research and Department of Oncology, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, People's Republic of China
| | - Jiujie Cui
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas; Shanghai Key Laboratory of Pancreatic Diseases Research and Department of Oncology, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, People's Republic of China
| | - Yiqi Du
- Department of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Daoyan Wei
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Suyun Huang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keping Xie
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
44
|
Ning Z, Wang A, Liang J, Xie Y, Liu J, Feng L, Yan Q, Wang Z. USP22 promotes the G1/S phase transition by upregulating FoxM1 expression via β-catenin nuclear localization and is associated with poor prognosis in stage II pancreatic ductal adenocarcinoma. Int J Oncol 2014; 45:1594-608. [PMID: 24993031 DOI: 10.3892/ijo.2014.2531] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/02/2014] [Indexed: 11/05/2022] Open
Abstract
Ubiquitin-specific protease 22 (USP22), a newly discovered member of ubiquitin hydrolase family, exhibits a critical function in cell cycle progression and tumorigenesis. The forkhead box M1 (FoxM1) transcription factor plays a crucial role in cell proliferation, differentiation and transformation. However, the expression and functions of USP22 in pancreatic ductal adenocarcinoma (PDA) and whether FoxM1 is involved in USP22-mediated cell cycle regulation have not been studied. We examined the expression of USP22 and FoxM1 in 136 stage II PDA tissues by immunohistochemistry. Clinical significance was analyzed by multivariate Cox regression analysis, Kaplan-Meier curves and log-rank test. RT-PCR, western blot analysis, luciferase and immunofluorescence assays were used to investigate the molecular function of USP22 and FoxM1 in PDA fresh tissues and cell lines. USP22 and FoxM1 were significantly upregulated in PDA tissues compared with the paired normal carcinoma-adjacent tissues. A statistical correlation was observed between USP22 and FoxM1 expression. The expression of USP/FoxM1 and co-expression of both factors correlated with tumor size, lymph node metastasis and overall survival. Multivariate Cox regression analysis revealed that the expression of USP22/FoxM1, especially the co-expression of both factors, is an independent, unfavorable prognostic factor. USP22 overexpression is accompanied by an increase in FoxM1 expression and USP22 increases FoxM1 expression to promote G1/S transition and cell proliferation through promoting β-catenin nuclear translocation in PDA cell lines. USP22 promotes the G1/S phase transition by upregulating FoxM1 expression via promoting β-catenin nuclear localization. USP22 and FoxM1 may act as prognostic markers and potential targets for PDA.
Collapse
Affiliation(s)
- Zhen Ning
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, P.R. China
| | - Aman Wang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, P.R. China
| | - Jinxiao Liang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, P.R. China
| | - Yunpeng Xie
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, P.R. China
| | - Jiwei Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, P.R. China
| | - Lu Feng
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, P.R. China
| | - Qiu Yan
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, P.R. China
| | - Zhongyu Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, P.R. China
| |
Collapse
|
45
|
Cui J, Shi M, Xie D, Wei D, Jia Z, Zheng S, Gao Y, Huang S, Xie K. FOXM1 promotes the warburg effect and pancreatic cancer progression via transactivation of LDHA expression. Clin Cancer Res 2014; 20:2595-2606. [PMID: 24634381 PMCID: PMC4024335 DOI: 10.1158/1078-0432.ccr-13-2407] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE The transcription factor Forkhead box protein M1 (FOXM1) plays critical roles in cancer development and progression. However, the regulatory role and underlying mechanisms of FOXM1 in cancer metabolism are unknown. In this study, we characterized the regulation of aerobic glycolysis by FOXM1 and its impact on pancreatic cancer metabolism. EXPERIMENTAL DESIGN The effect of altered expression of FOXM1 on expression of glycolytic enzymes and tumor development and progression was examined using animal models of pancreatic cancer. Also, the underlying mechanisms of altered pancreatic cancer glycolysis were analyzed using in vitro molecular biology. The clinical relevance of aberrant metabolism caused by dysregulated FOXM1 signaling was determined using pancreatic tumor and normal pancreatic tissue specimens. RESULTS We found that FOXM1 did not markedly change the expression of most glycolytic enzymes except for phosphoglycerate kinase 1 (PGK-1) and lactate dehydrogenase A (LDHA). FOXM1 and LDHA were overexpressed concomitantly in pancreatic tumors and cancer cell lines. Increased expression of FOXM1 upregulated the expression of LDHA at both the mRNA and protein level and elevated LDH activity, lactate production, and glucose utilization, whereas reduced expression of FOXM1 did the opposite. Further studies demonstrated that FOXM1 bound directly to the LDHA promoter region and regulated the expression of the LDHA gene at the transcriptional level. Also, elevated FOXM1-LDHA signaling increased the pancreatic cancer cell growth and metastasis. CONCLUSIONS Dysregulated expression and activation of FOXM1 play important roles in aerobic glycolysis and tumorigenesis in patients with pancreatic cancer via transcriptional regulation of LDHA expression.
Collapse
Affiliation(s)
- Jiujie Cui
- Authors' Affiliations: Shanghai Key Laboratory of Pancreatic Diseases Research; Department of Oncology, Shanghai Jiaotong University Affiliated First People's Hospital; Department of General Surgery, Shanghai Jiaotong University Affiliated Ruijin Hospital; Department of Oncology and Tumor Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai; Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Pathology Department of Affiliated Hospital, Hainan Medical College, Haikou, People's Republic of China; Departments of Gastroenterology, Hepatology, and Nutrition; and Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TexasAuthors' Affiliations: Shanghai Key Laboratory of Pancreatic Diseases Research; Department of Oncology, Shanghai Jiaotong University Affiliated First People's Hospital; Department of General Surgery, Shanghai Jiaotong University Affiliated Ruijin Hospital; Department of Oncology and Tumor Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai; Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Pathology Department of Affiliated Hospital, Hainan Medical College, Haikou, People's Republic of China; Departments of Gastroenterology, Hepatology, and Nutrition; and Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TexasAuthors' Affiliations: Shanghai Key Laboratory of Pancreatic Diseases Research; Department of Oncology, Shanghai Jiaotong University Affiliated First People's Hospital; Department of General Surgery, Shanghai Jiaotong University Affiliated Ruijin Hospital; Department of Oncology and Tumor Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai; Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Pathology Department of Affiliated Hospital, Hainan Medical College, Haikou, People's Republic of China; Departments of Gastroenterology, Hepatology, and Nutrition; and Neurosurg
| | - Min Shi
- Authors' Affiliations: Shanghai Key Laboratory of Pancreatic Diseases Research; Department of Oncology, Shanghai Jiaotong University Affiliated First People's Hospital; Department of General Surgery, Shanghai Jiaotong University Affiliated Ruijin Hospital; Department of Oncology and Tumor Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai; Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Pathology Department of Affiliated Hospital, Hainan Medical College, Haikou, People's Republic of China; Departments of Gastroenterology, Hepatology, and Nutrition; and Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TexasAuthors' Affiliations: Shanghai Key Laboratory of Pancreatic Diseases Research; Department of Oncology, Shanghai Jiaotong University Affiliated First People's Hospital; Department of General Surgery, Shanghai Jiaotong University Affiliated Ruijin Hospital; Department of Oncology and Tumor Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai; Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Pathology Department of Affiliated Hospital, Hainan Medical College, Haikou, People's Republic of China; Departments of Gastroenterology, Hepatology, and Nutrition; and Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dacheng Xie
- Authors' Affiliations: Shanghai Key Laboratory of Pancreatic Diseases Research; Department of Oncology, Shanghai Jiaotong University Affiliated First People's Hospital; Department of General Surgery, Shanghai Jiaotong University Affiliated Ruijin Hospital; Department of Oncology and Tumor Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai; Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Pathology Department of Affiliated Hospital, Hainan Medical College, Haikou, People's Republic of China; Departments of Gastroenterology, Hepatology, and Nutrition; and Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TexasAuthors' Affiliations: Shanghai Key Laboratory of Pancreatic Diseases Research; Department of Oncology, Shanghai Jiaotong University Affiliated First People's Hospital; Department of General Surgery, Shanghai Jiaotong University Affiliated Ruijin Hospital; Department of Oncology and Tumor Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai; Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Pathology Department of Affiliated Hospital, Hainan Medical College, Haikou, People's Republic of China; Departments of Gastroenterology, Hepatology, and Nutrition; and Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daoyan Wei
- Authors' Affiliations: Shanghai Key Laboratory of Pancreatic Diseases Research; Department of Oncology, Shanghai Jiaotong University Affiliated First People's Hospital; Department of General Surgery, Shanghai Jiaotong University Affiliated Ruijin Hospital; Department of Oncology and Tumor Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai; Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Pathology Department of Affiliated Hospital, Hainan Medical College, Haikou, People's Republic of China; Departments of Gastroenterology, Hepatology, and Nutrition; and Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhiliang Jia
- Authors' Affiliations: Shanghai Key Laboratory of Pancreatic Diseases Research; Department of Oncology, Shanghai Jiaotong University Affiliated First People's Hospital; Department of General Surgery, Shanghai Jiaotong University Affiliated Ruijin Hospital; Department of Oncology and Tumor Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai; Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Pathology Department of Affiliated Hospital, Hainan Medical College, Haikou, People's Republic of China; Departments of Gastroenterology, Hepatology, and Nutrition; and Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shaojiang Zheng
- Authors' Affiliations: Shanghai Key Laboratory of Pancreatic Diseases Research; Department of Oncology, Shanghai Jiaotong University Affiliated First People's Hospital; Department of General Surgery, Shanghai Jiaotong University Affiliated Ruijin Hospital; Department of Oncology and Tumor Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai; Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Pathology Department of Affiliated Hospital, Hainan Medical College, Haikou, People's Republic of China; Departments of Gastroenterology, Hepatology, and Nutrition; and Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yong Gao
- Authors' Affiliations: Shanghai Key Laboratory of Pancreatic Diseases Research; Department of Oncology, Shanghai Jiaotong University Affiliated First People's Hospital; Department of General Surgery, Shanghai Jiaotong University Affiliated Ruijin Hospital; Department of Oncology and Tumor Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai; Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Pathology Department of Affiliated Hospital, Hainan Medical College, Haikou, People's Republic of China; Departments of Gastroenterology, Hepatology, and Nutrition; and Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Suyun Huang
- Authors' Affiliations: Shanghai Key Laboratory of Pancreatic Diseases Research; Department of Oncology, Shanghai Jiaotong University Affiliated First People's Hospital; Department of General Surgery, Shanghai Jiaotong University Affiliated Ruijin Hospital; Department of Oncology and Tumor Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai; Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Pathology Department of Affiliated Hospital, Hainan Medical College, Haikou, People's Republic of China; Departments of Gastroenterology, Hepatology, and Nutrition; and Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keping Xie
- Authors' Affiliations: Shanghai Key Laboratory of Pancreatic Diseases Research; Department of Oncology, Shanghai Jiaotong University Affiliated First People's Hospital; Department of General Surgery, Shanghai Jiaotong University Affiliated Ruijin Hospital; Department of Oncology and Tumor Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai; Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Pathology Department of Affiliated Hospital, Hainan Medical College, Haikou, People's Republic of China; Departments of Gastroenterology, Hepatology, and Nutrition; and Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
46
|
Huang C, Du J, Xie K. FOXM1 and its oncogenic signaling in pancreatic cancer pathogenesis. Biochim Biophys Acta Rev Cancer 2014; 1845:104-16. [PMID: 24418574 DOI: 10.1016/j.bbcan.2014.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 12/30/2013] [Accepted: 01/03/2014] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is a devastating disease with an overall 5-year survival rate less than 5%. Multiple signaling pathways are implicated in the pathogenesis of pancreatic cancer, such as Wnt/β-catenin, Notch, Hedgehog, hypoxia-inducible factor, signal transducer and activator of transcription, specificity proteins/Krüppel-like factors, and Forkhead box (FOX). Recently, increasing evidence has demonstrated that the transcription factor FOXM1 plays important roles in the initiation, progression, and metastasis of a variety of human tumors, including pancreatic cancer. In this review, we focus on the current understanding of the molecular pathogenesis of pancreatic cancer with a special focus on the function and regulation of FOXM1 and rationale for FOXM1 as a novel molecular target for pancreatic cancer prevention and treatment.
Collapse
Affiliation(s)
- Chen Huang
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, People's Republic of China; Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Jiawei Du
- Department of Laboratory Medicine, Zhenjiang Second People's Hospital, Jiangsu University College of Medicine, Zhenjiang, People's Republic of China
| | - Keping Xie
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
47
|
Shi M, Xie D, Gaod Y, Xie K. Targeting miRNAs for pancreatic cancer therapy. Curr Pharm Des 2014; 20:5279-5286. [PMID: 24479803 PMCID: PMC4113604 DOI: 10.2174/1381612820666140128210443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/28/2014] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer (PC) is the fourth leading cause of cancer-related deaths in the United States and has a median 5-year survival rate less than 5%. Although surgery offers the best chance for a cure for pancreatic cancer, less than 20% of patients are eligible for potentially curative resection, because in most cases, the cancer has already spread locally or to distant organs at diagnosis, precluding resection. MicroRNAs (miRNAs) are small noncoding, endogenous, single-stranded RNAs that are pivotal regulators of posttranscriptional gene expression. Extensive studies of miRNAs over the past several years have revealed that the expression of miRNAs is frequently deregulated in pancreatic cancer patients and that this deregulation contributes to the pathogenesis and aggressiveness of the disease. Currently, investigators are studying the use of miRNAs as diagnostic and/or prognostic biomarkers and therapeutic tools for pancreatic cancer. Rapid discovery of many miRNA targets and their relevant pathways has contributed to the development of miRNA-based therapeutics. In particular, the transcription factor Forkhead box M1 (FOXM1) is overexpressed in the majority of cancer patients, including those with pancreatic cancer. This overexpression is implicated to have a role in tumorigenesis, progression, and metastasis. This important role of FOXM1 affirms its usefulness in therapeutic interventions for pancreatic cancer. In this review, we summarize the current knowledge and concepts concerning the involvement of miRNAs and FOXM1 in pancreatic cancer development and describe the roles of the miRNA-FOXM1 signaling pathway in pancreatic cancer initiation and progression. Additionally, we describe some of the technical challenges in the use of the miRNA-FOXM1 signaling pathway in pancreatic cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Keping Xie
- Department of Gastroenterology, Hepatology & Nutrition, Unit 1466, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
48
|
Quan M, Wang P, Cui J, Gao Y, Xie K. The roles of FOXM1 in pancreatic stem cells and carcinogenesis. Mol Cancer 2013; 12:159. [PMID: 24325450 PMCID: PMC3924162 DOI: 10.1186/1476-4598-12-159] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/28/2013] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the poorest prognoses among all cancers. Over the past several decades, investigators have made great advances in the research of PDAC pathogenesis. Importantly, identification of pancreatic cancer stem cells (PCSCs) in pancreatic cancer cases has increased our understanding of PDAC biology and therapy. PCSCs are responsible for pancreatic tumorigenesis and tumor progression via a number of mechanisms, including extensive proliferation, self-renewal, high tumorigenic ability, high propensity for invasiveness and metastasis, and resistance to conventional treatment. Furthermore, emerging evidence suggests that PCSCs are involved in the malignant transformation of pancreatic intraepithelial neoplasia. The molecular mechanisms that control PCSCs are related to alterations of various signaling pathways, for instance, Hedgehog, Notch, Wnt, B-cell-specific Moloney murine leukemia virus insertion site 1, phosphoinositide 3-kinase/AKT, and Nodal/Activin. Also, authors have reported that the proliferation-specific transcriptional factor Forkhead box protein M1 is involved in PCSC self-renewal and proliferation. In this review, we describe the current knowledge about the signaling pathways related to PCSCs and the early stages of PDAC development, highlighting the pivotal roles of Forkhead box protein M1 in PCSCs and their impacts on the development and progression of pancreatic intraepithelial neoplasia.
Collapse
Affiliation(s)
| | | | | | | | - Keping Xie
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
49
|
Nnamani MC, Plaza S, Romero R, Wagner GP. Evidence for independent evolution of functional progesterone withdrawal in primates and guinea pigs. EVOLUTION MEDICINE AND PUBLIC HEALTH 2013; 2013:273-88. [PMID: 24481205 PMCID: PMC3875370 DOI: 10.1093/emph/eot022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Humans and guinea pigs differ from other mammals by maintaining high progesterone levels in pregnancy all the way through birth. Here we investigated the evolutionary history of this condition and conclude that it evolved independently in the human and the guinea pig lineages. Furthermore we investigated the gene expression during cervical re-modelling and found only a small number of gene regulatory events that seem to be common between humans and guinea pigs. Background and objectives: Cervix remodeling (CRM) is a critical process in preparation for parturition. Early cervix shortening is a powerful clinical predictor of preterm birth, and thus understanding how CRM is regulated is important for the prevention of prematurity. Humans and other primates differ from most other mammals by the maintenance of high levels of systemic progesterone concentrations. Humans have been hypothesized to perform functional progesterone withdrawal (FPW). Guinea pigs are similar to humans in maintaining high-progesterone concentrations through parturition, thus making them a prime model for studying CRM. Here, we analyze the phylogenetic history of FPW and document gene expression in the guinea pig uterine cervix. Methodology: Data on progesterone withdrawal were collected from the literature, and character evolution was analyzed. Uterine cervix samples were collected from non-pregnant, mid-pregnant and late pregnant guinea pigs. RNA was extracted and sequenced. Relative transcript levels were estimated and compared among sample groups. Results: The phylogenetic analysis shows that FPW evolved independently in primates and guinea pigs. The transcriptome data confirms that guinea pigs down-regulate progesterone receptor toward parturition, in contrast to humans. Some of the similarities between human and guinea pig are: down-regulation of estrogen receptor, up-regulation of VCAN and IGFBP4 as well as likely involvement of prostaglandins. Conclusions and implications: (i) FPW in guinea pigs evolved independently from that in primates. (ii) A small set of conserved gene regulatory changes has been detected.
Collapse
Affiliation(s)
- Mauris C Nnamani
- Yale Systems Biology Institute and Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA; Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA; Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | | | | | | |
Collapse
|
50
|
Wierstra I. The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res 2013; 118:97-398. [PMID: 23768511 DOI: 10.1016/b978-0-12-407173-5.00004-2] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor, which stimulates cell proliferation and exhibits a proliferation-specific expression pattern. Accordingly, both the expression and the transcriptional activity of FOXM1 are increased by proliferation signals, but decreased by antiproliferation signals, including the positive and negative regulation by protooncoproteins or tumor suppressors, respectively. FOXM1 stimulates cell cycle progression by promoting the entry into S-phase and M-phase. Moreover, FOXM1 is required for proper execution of mitosis. Accordingly, FOXM1 regulates the expression of genes, whose products control G1/S-transition, S-phase progression, G2/M-transition, and M-phase progression. Additionally, FOXM1 target genes encode proteins with functions in the execution of DNA replication and mitosis. FOXM1 is a transcriptional activator with a forkhead domain as DNA binding domain and with a very strong acidic transactivation domain. However, wild-type FOXM1 is (almost) inactive because the transactivation domain is repressed by three inhibitory domains. Inactive FOXM1 can be converted into a very potent transactivator by activating signals, which release the transactivation domain from its inhibition by the inhibitory domains. FOXM1 is essential for embryonic development and the foxm1 knockout is embryonically lethal. In adults, FOXM1 is important for tissue repair after injury. FOXM1 prevents premature senescence and interferes with contact inhibition. FOXM1 plays a role for maintenance of stem cell pluripotency and for self-renewal capacity of stem cells. The functions of FOXM1 in prevention of polyploidy and aneuploidy and in homologous recombination repair of DNA-double-strand breaks suggest an importance of FOXM1 for the maintenance of genomic stability and chromosomal integrity.
Collapse
|