1
|
Masset C, Drillaud N, Ternisien C, Degauque N, Gerard N, Bruneau S, Branchereau J, Blancho G, Mesnard B, Brouard S, Giral M, Cantarovich D, Dantal J. The concept of immunothrombosis in pancreas transplantation. Am J Transplant 2025; 25:650-668. [PMID: 39709128 DOI: 10.1016/j.ajt.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/06/2024] [Accepted: 11/23/2024] [Indexed: 12/23/2024]
Abstract
Early failure of a pancreatic allograft due to complete thrombosis has an incidence of approximately 10% and is the main cause of comorbidity in pancreas transplantation. Although several risk factors have been identified, the exact mechanisms leading to this serious complication are still unclear. In this review, we define the roles of the individual components involved during sterile immunothrombosis-namely endothelial cells, platelets, and innate immune cells. Further, we review the published evidence linking the main risk factors for pancreatic thrombosis to cellular activation and vascular modifications. We also explore the unique features of the pancreas itself: the vessel endothelium, specific vascularization, and relationship to other organs-notably the spleen and adipose tissue. Finally, we summarize the therapeutic possibilities for the prevention of pancreatic thrombosis depending on the different mechanisms such as anticoagulation, anti-inflammatory molecules, endothelium protectors, antagonism of damage-associated molecular patterns, and use of machine perfusion.
Collapse
Affiliation(s)
- Christophe Masset
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.
| | - Nicolas Drillaud
- Laboratory of Hemostasis, Nantes University Hospital, Nantes, France
| | | | - Nicolas Degauque
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Nathalie Gerard
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Sarah Bruneau
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Julien Branchereau
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Gilles Blancho
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Benoit Mesnard
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Sophie Brouard
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Magali Giral
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Diego Cantarovich
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Jacques Dantal
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| |
Collapse
|
2
|
Xu Y, Song J, Gao J, Zhang H. Identification of Biomarkers Associated with Oxidative Stress and Immune Cells in Acute Pancreatitis. J Inflamm Res 2024; 17:4077-4091. [PMID: 38948197 PMCID: PMC11214539 DOI: 10.2147/jir.s459044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose Oxidative stress promotes disease progression by stimulating the humoral and cellular immune responses. However, the molecular mechanisms underlying oxidative stress and immune responses in acute pancreatitis (AP) have not been extensively studied. Patients and Methods We analyzed the GSE194331 dataset and oxidative stress-related genes (OSRGs). We identified differentially expressed immune cell-associated OSRGs (DE-ICA-OSRGs) by overlapping key module genes from weighted gene co-expression network analysis, OSRGs, and DEGs between AP and normal samples. Functional enrichment analysis was performed to investigate the functions of DE-ICA-OSRGs. We then filtered diagnostic genes using receiver operating characteristic curves and investigated their molecular mechanisms using single-gene set enrichment analysis (GSEA). We also explored the correlation between diagnostic genes and differential immune cells. Finally, we constructed a transcription factor-microRNA-messenger RNA (TF-miRNA-mRNA) network of biomarkers. Results In this study, three DE-ICA-OSRGs (ARG1, NME8 and VNN1) were filtered by overlapping key module genes, OSRGs and DEGs. Functional enrichment results revealed that DE-ICA-OSRGs were involved in the cellular response to reactive oxygen species and arginine biosynthesis. Latterly, a total of two diagnostic genes (ARG1 and VNN1) were derived and their expression was higher in the AP group than in the normal group. The single-gene GSEA enrichment results revealed that diagnostic genes were mainly enriched in macroautophagy and Toll-like receptor signaling pathways. Correlation analysis revealed that CD8 T cells, resting memory T CD4 cells, and resting NK cells were negatively correlated with ARG1, and neutrophils were positively correlated with ARG1, which was consistent with that of VNN1. The TF-miRNA-mRNA regulatory network included 11 miRNAs, 2 mRNAs, 10 transcription factors (TFs), and 26 pairs of regulatory relationships, like NFKB1-has-miR-2909-VNN1. Conclusion In this study, two immune cell oxidative stress-related AP diagnostic genes (ARG1 and VNN1) were screened to offer a new reference for the diagnosis of patients with AP.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Gastroenterology, Dongying People’s Hospital(Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, People’s Republic of China
| | - Jie Song
- Department of Gastroenterology, Dongying People’s Hospital(Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, People’s Republic of China
| | - Jie Gao
- Department of Gastroenterology, Dongying People’s Hospital(Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, People’s Republic of China
| | - Hongjing Zhang
- Community Health Service Center in Hekou District, Dongying, Shandong, People’s Republic of China
| |
Collapse
|
3
|
Coavoy-Sanchez SA, da Costa Marques LA, Costa SKP, Muscara MN. Role of Gasotransmitters in Inflammatory Edema. Antioxid Redox Signal 2024; 40:272-291. [PMID: 36974358 DOI: 10.1089/ars.2022.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Significance: Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are, to date, the identified members of the gasotransmitter family, which consists of gaseous signaling molecules that play central roles in the regulation of a wide variety of physiological and pathophysiological processes, including inflammatory edema. Recent Advances: Recent studies show the potential anti-inflammatory and antiedematogenic effects of NO-, CO-, and H2S-donors in vivo. In general, it has been observed that the therapeutical effects of NO-donors are more relevant when administered at low doses at the onset of the inflammatory process. Regarding CO-donors, their antiedematogenic effects are mainly associated with inhibition of proinflammatory mediators (such as inducible NO synthase [iNOS]-derived NO), and the observed protective effects of H2S-donors seem to be mediated by reducing some proinflammatory enzyme activities. Critical Issues: The most recent investigations focus on the interactions among the gasotransmitters under different pathophysiological conditions. However, the biochemical/pharmacological nature of these interactions is neither general nor fully understood, although specifically dependent on the site where the inflammatory edema occurs. Future Directions: Considering the nature of the involved mechanisms, a deeper knowledge of the interactions among the gasotransmitters is mandatory. In addition, the development of new pharmacological tools, either donors or synthesis inhibitors of the three gasotransmitters, will certainly aid the basic investigations and open new strategies for the therapeutic treatment of inflammatory edema. Antioxid. Redox Signal. 40, 272-291.
Collapse
Affiliation(s)
| | | | - Soraia Katia Pereira Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Marcelo Nicolas Muscara
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| |
Collapse
|
4
|
Ergashev A, Shi F, Liu Z, Pan Z, Xie H, Kong L, Wu L, Sun H, Jin Y, Kong H, Geng D, Ibrohimov A, Obeng E, Wang Y, Ma F, Chen G, Zhang T. KAN0438757, a novel PFKFB3 inhibitor, prevent the progression of severe acute pancreatitis via the Nrf2/HO-1 pathway in infiltrated macrophage. Free Radic Biol Med 2024; 210:130-145. [PMID: 37984751 DOI: 10.1016/j.freeradbiomed.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Acute pancreatitis (AP) is a non-infectious pancreatic enzyme-induced disorder, a life-threatening inflammatory condition that can cause multi-organ dysfunction, characterized by high morbidity and mortality. Several therapies have been employed to target this disorder; however, few happen to be effectively employable even in the early phase. PFKFB3(6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-3) is a critical regulator of glycolysis and is upregulated under inflammatory, mitogenic, and hypoxia conditions. Essential information on the targeting of the inflammatory pathway will present the termination of the disorder and recovery. Herein we investigated the protective function of KAN0438757, a potent inhibitor of PFKFB3, and its mechanism of impeding AP induced in mice. KAN0438757 was confirmed to activate the Nrf2/HO-1 inflammatory signaling pathways in response to caerulein induced acute pancreatitis (CAE-AP) and fatty acid ethyl ester induced severe acute pancreatitis (FAEE-SAP). Additionally, KAN0438757 alleviated the inflammatory process in infiltrated macrophage via the Nrf2/HO-1 inflammatory signaling pathway and demonstrated a significant effect on the growth of mice with induced AP. And more importantly, KAN0438757 displayed negligible toxicity in vivo. Taken together our data suggest KAN0438757 directly suppresses the inflammatory role of PFKFB3 and induces a protective role via the Nrf2/HO-1 pathway, which could prove as an excellent therapeutic platform for SAP amelioration.
Collapse
Affiliation(s)
- Akmal Ergashev
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Fengyu Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Zhu Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Zhenyan Pan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Haonan Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Lingming Kong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Lijun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Hongwei Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
| | - Yuepeng Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
| | - Hongru Kong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
| | - Dandan Geng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Alisherjon Ibrohimov
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Enoch Obeng
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Feng Ma
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, China.
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China.
| | - Tan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
5
|
Mancuso C. Biliverdin as a disease-modifying agent: An integrated viewpoint. Free Radic Biol Med 2023; 207:133-143. [PMID: 37459935 DOI: 10.1016/j.freeradbiomed.2023.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
Biliverdin is one of the three by-products of heme oxygenase (HO) activity, the others being ferrous iron and carbon monoxide. Under physiological conditions, once formed in the cell, BV is reduced to bilirubin (BR) by the biliverdin reductase (BVR). However, if BVR is inhibited by either genetic variants, as occurs in the Inuit ethnicity, or dioxin intoxication, BV accumulates in cells giving rise to a clinical syndrome known as green jaundice. Preclinical studies have demonstrated that BV not only has a direct antioxidant effect by scavenging free radicals, but also targets many signal transduction pathways, such as BVR, soluble guanylyl cyclase, and the aryl hydrocarbon receptor. Through these direct and indirect mechanisms, BV has shown beneficial roles in ischemia/reperfusion-related diseases, inflammatory diseases, graft-versus-host disease, viral infections and cancer. Unfortunately, no clinical data are available to confirm these potential therapeutic effects and the kinetics of exogenous BV in humans is unknown. These limitations have so far excluded the possibility of transforming BV from a mere by-product of heme degradation into a disease-modifying agent. A closer collaboration between basic and clinical researchers would be advantageous to overcome these issues and promote translational research on BV in free radical-induced diseases.
Collapse
Affiliation(s)
- Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica Del Sacro Cuore, Largo F. Vito, 1, 00168, Rome, Italy.
| |
Collapse
|
6
|
Damasceno ROS, Soares PMG, Barbosa ALDR, Nicolau LAD, Medeiros JVR, Souza MHLP. Modulatory Role of Carbon Monoxide on the Inflammatory Response and Oxidative Stress Linked to Gastrointestinal Disorders. Antioxid Redox Signal 2022; 37:98-114. [PMID: 34806398 DOI: 10.1089/ars.2020.8223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Carbon monoxide (CO) is an endogenous gaseous mediator that plays an important role in maintaining gastrointestinal (GI) tract homeostasis, acting in mucosal defense, and providing negative modulation of pathophysiological markers of clinical conditions. Recent Advances: Preclinical studies using animal models and/or cell culture show that CO can modulate the inflammatory response and oxidative stress in GI mucosal injuries and pathological conditions, reducing proinflammatory cytokines and reactive oxygen species, while increasing antioxidant defense mechanisms. Critical Issues: CO has potent anti-inflammatory and antioxidant effects. The defense mechanisms of the GI tract are subject to aggression by different chemical agents (e.g., drugs and ethanol) as well as complex and multifactorial diseases, with inflammation and oxidative stress as strong triggers for the deleterious effects. Thus, it is possible that CO acts on a variety of molecules involved in the inflammatory and oxidative signaling cascades, as well as reinforcing several defense mechanisms that maintain GI homeostasis. Future Directions: CO-based therapies are promising tools for the treatment of GI disorders, such as gastric and intestinal injuries, inflammatory bowel disease, and pancreatitis. Therefore, it is necessary to develop safe and selective CO-releasing agents and/or donor drugs to facilitate effective treatments and methods for analysis of CO levels that are simple and inexpensive. Antioxid. Redox Signal. 37, 98-114.
Collapse
Affiliation(s)
| | | | | | | | - Jand-Venes Rolim Medeiros
- Biotechnology and Biodiversity Center Research, Federal University of the Parnaíba Delta, Parnaíba, Brazil
| | | |
Collapse
|
7
|
Ahn YJ, Lim JW, Kim H. Docosahexaenoic Acid Induces Expression of NAD(P)H: Quinone Oxidoreductase and Heme Oxygenase-1 through Activation of Nrf2 in Cerulein-Stimulated Pancreatic Acinar Cells. Antioxidants (Basel) 2020; 9:antiox9111084. [PMID: 33158207 PMCID: PMC7694300 DOI: 10.3390/antiox9111084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress is a major risk factor for acute pancreatitis. Reactive oxygen species (ROS) mediate expression of inflammatory cytokines such as interleukin-6 (IL-6) which reflects the severity of acute pancreatitis. The nuclear factor erythroid-2-related factor 2 (Nrf2) pathway is activated to induce the expression of antioxidant enzymes such as NAD(P)H: quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1) as a cytoprotective response to oxidative stress. In addition, binding of Kelch-like ECH-associated protein 1 (Keap1) to Nrf2 promotes degradation of Nrf2. Docosahexaenoic acid (DHA)—an omega-3 fatty acid—exerts anti-inflammatory and antioxidant effects. Oxidized omega-3 fatty acids react with Keap1 to induce Nrf2-regulated gene expression. In this study, we investigated whether DHA reduces ROS levels and inhibits IL-6 expression via Nrf2 signaling in pancreatic acinar (AR42J) cells stimulated with cerulein, as an in vitro model of acute pancreatitis. The cells were pretreated with or without DHA for 1 h and treated with cerulein (10−8 M) for 1 (ROS levels, protein levels of NQO1, HO-1, pNrf2, Nrf2, and Keap1), 6 (IL-6 mRNA expression), and 24 h (IL-6 protein level in the medium). Our results showed that DHA upregulates the expression of NQO1 and HO-1 in cerulein-stimulated AR42J cells by promoting phosphorylation and nuclear translocation of Nrf2. DHA increased interaction between Keap1 and Nrf2 in AR42J cells, which may increase Nrf2 activity by inhibiting Keap1-mediated sequestration of Nrf2. In addition, DHA-induced expression of NQO1 and HO-1 is related to reduction of ROS and IL-6 levels in cerulein-stimulated AR42J cells. In conclusion, DHA inhibits ROS-mediated IL-6 expression by upregulating Nrf2-mediated expression of NQO1 and HO-1 in cerulein-stimulated pancreatic acinar cells. DHA may exert positive modulatory effects on acute pancreatitis by inhibiting oxidative stress and inflammatory cytokine production by activating Nrf2 signaling in pancreatic acinar cells.
Collapse
Affiliation(s)
| | | | - Hyeyoung Kim
- Correspondence: ; Tel.: +82-2-2123-3125; Fax: +82-2-364-5781
| |
Collapse
|
8
|
Jimenez-Luna C, Martin-Blazquez A, Dieguez-Castillo C, Diaz C, Martin-Ruiz JL, Genilloud O, Vicente F, del Palacio JP, Prados J, Caba O. Novel Biomarkers to Distinguish between Type 3c and Type 2 Diabetes Mellitus by Untargeted Metabolomics. Metabolites 2020; 10:423. [PMID: 33105675 PMCID: PMC7690399 DOI: 10.3390/metabo10110423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 01/05/2023] Open
Abstract
Pancreatogenic diabetes mellitus (T3cDM) is a highly frequent complication of pancreatic disease, especially chronic pancreatitis, and it is often misdiagnosed as type 2 diabetes mellitus (T2DM). A correct diagnosis allows the appropriate treatment of these patients, improving their quality of life, and various technologies have been employed over recent years to search for specific biomarkers of each disease. The main aim of this metabolomic project was to find differential metabolites between T3cDM and T2DM. Reverse-phase liquid chromatography coupled to high-resolution mass spectrometry was performed in serum samples from patients with T3cDM and T2DM. Multivariate Principal Component and Partial Least Squares-Discriminant analyses were employed to evaluate between-group variations. Univariate and multivariate analyses were used to identify potential candidates and the area under the receiver-operating characteristic (ROC) curve was calculated to evaluate their diagnostic value. A panel of five differential metabolites obtained an area under the ROC curve of 0.946. In this study, we demonstrate the usefulness of untargeted metabolomics for the differential diagnosis between T3cDM and T2DM and propose a panel of five metabolites that appear altered in the comparison between patients with these diseases.
Collapse
Affiliation(s)
- Cristina Jimenez-Luna
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18012 Granada, Spain; (C.J.-L.); (J.P.); (O.C.)
| | - Ariadna Martin-Blazquez
- Fundación MEDINA, Centro de Excelencia para la Investigación en Medicamentos Innovadores en Andalucía, 18012 Granada, Spain; (A.M.-B.); (C.D.); (O.G.); (F.V.)
| | - Carmelo Dieguez-Castillo
- Department of Gastroenterology, San Cecilio University Hospital, 18012 Granada, Spain; (C.D.-C.), (J.L.M.-R.)
| | - Caridad Diaz
- Fundación MEDINA, Centro de Excelencia para la Investigación en Medicamentos Innovadores en Andalucía, 18012 Granada, Spain; (A.M.-B.); (C.D.); (O.G.); (F.V.)
| | - Jose Luis Martin-Ruiz
- Department of Gastroenterology, San Cecilio University Hospital, 18012 Granada, Spain; (C.D.-C.), (J.L.M.-R.)
| | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia para la Investigación en Medicamentos Innovadores en Andalucía, 18012 Granada, Spain; (A.M.-B.); (C.D.); (O.G.); (F.V.)
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia para la Investigación en Medicamentos Innovadores en Andalucía, 18012 Granada, Spain; (A.M.-B.); (C.D.); (O.G.); (F.V.)
| | - Jose Perez del Palacio
- Fundación MEDINA, Centro de Excelencia para la Investigación en Medicamentos Innovadores en Andalucía, 18012 Granada, Spain; (A.M.-B.); (C.D.); (O.G.); (F.V.)
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18012 Granada, Spain; (C.J.-L.); (J.P.); (O.C.)
| | - Octavio Caba
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18012 Granada, Spain; (C.J.-L.); (J.P.); (O.C.)
| |
Collapse
|
9
|
Fusco R, Cordaro M, Siracusa R, D’Amico R, Genovese T, Gugliandolo E, Peritore AF, Crupi R, Impellizzeri D, Cuzzocrea S, Di Paola R. Biochemical Evaluation of the Antioxidant Effects of Hydroxytyrosol on Pancreatitis-Associated Gut Injury. Antioxidants (Basel) 2020; 9:antiox9090781. [PMID: 32842687 PMCID: PMC7555523 DOI: 10.3390/antiox9090781] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Acute pancreatitis is a severe abdominal pathology often associated with several complications including gut dysfunction. Oxidative stress is one of the most important pathways involved in this pathology. Hydroxytyrosol (HT), a phenolic compound obtained from olive oil, has shown anti-inflammatory and antioxidant properties. We evaluated the effects of HT administration on pancreatic and intestinal injury induced by caerulein administration. CD1 female mice were administered caerulein (50 μg/kg) for 10 h. HT treatment (5 mg/kg) was performed 30 min after the first caerulein injection and for two consecutive hours afterwards. One hour after the last caerulein injection, mice were sacrificed and serum, colon and pancreatic tissue samples were collected. HT was able to reduce the serum hallmarks of pancreatitis (amylase and lipase), histological damage score in both pancreas and colon tissue, inflammatory cells recruitment (mast cells) in both injured tissues, intrapancreatic trypsin activity and overexpression of the adhesion molecules (Intercellular Adhesion Molecule-1 (ICAM-1) and P-selectin) in colon. Additionally, HT reduced cytokine (interleukin 1 beta (IL- 1β), interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α)) levels in serum, pancreas and colon tissue and chemokine release (monocyte chemotactic protein-1 (MCP1/CCL2)) in pancreas and colon tissue. HT decreased lipid peroxidation and oxidative stress (superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione S-transferase (GST) activity) by enhancing the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) in both injured tissues. Moreover, HT preserved intestinal barrier integrity, as shown by the diamine oxidase (DAO) serum levels and tight junction (zonula occludens (ZO) and occludin) expression in pancreas and colon. Our findings demonstrated that HT would be an important therapeutic tool against pancreatitis-induced injuries in the pancreas and gut.
Collapse
Affiliation(s)
- Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.A.); (T.G.); (E.G.); (A.F.P.); (R.D.P.)
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.A.); (T.G.); (E.G.); (A.F.P.); (R.D.P.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.A.); (T.G.); (E.G.); (A.F.P.); (R.D.P.)
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.A.); (T.G.); (E.G.); (A.F.P.); (R.D.P.)
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.A.); (T.G.); (E.G.); (A.F.P.); (R.D.P.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.A.); (T.G.); (E.G.); (A.F.P.); (R.D.P.)
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.A.); (T.G.); (E.G.); (A.F.P.); (R.D.P.)
- Correspondence: (D.I.); (S.C.); Tel.: +39-090-676-5208 (D.I. & S.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.A.); (T.G.); (E.G.); (A.F.P.); (R.D.P.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
- Correspondence: (D.I.); (S.C.); Tel.: +39-090-676-5208 (D.I. & S.C.)
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.A.); (T.G.); (E.G.); (A.F.P.); (R.D.P.)
| |
Collapse
|
10
|
Hansen TWR, Wong RJ, Stevenson DK. Molecular Physiology and Pathophysiology of Bilirubin Handling by the Blood, Liver, Intestine, and Brain in the Newborn. Physiol Rev 2020; 100:1291-1346. [PMID: 32401177 DOI: 10.1152/physrev.00004.2019] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bilirubin is the end product of heme catabolism formed during a process that involves oxidation-reduction reactions and conserves iron body stores. Unconjugated hyperbilirubinemia is common in newborn infants, but rare later in life. The basic physiology of bilirubin metabolism, such as production, transport, and excretion, has been well described. However, in the neonate, numerous variables related to nutrition, ethnicity, and genetic variants at several metabolic steps may be superimposed on the normal physiological hyperbilirubinemia that occurs in the first week of life and results in bilirubin levels that may be toxic to the brain. Bilirubin exists in several isomeric forms that differ in their polarities and is considered a physiologically important antioxidant. Here we review the chemistry of the bilirubin molecule and its metabolism in the body with a particular focus on the processes that impact the newborn infant, and how differences relative to older children and adults contribute to the risk of developing both acute and long-term neurological sequelae in the newborn infant. The final section deals with the interplay between the brain and bilirubin and its entry, clearance, and accumulation. We conclude with a discussion of the current state of knowledge regarding the mechanism(s) of bilirubin neurotoxicity.
Collapse
Affiliation(s)
- Thor W R Hansen
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Ronald J Wong
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - David K Stevenson
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
11
|
Korbut E, Brzozowski T, Magierowski M. Carbon Monoxide Being Hydrogen Sulfide and Nitric Oxide Molecular Sibling, as Endogenous and Exogenous Modulator of Oxidative Stress and Antioxidative Mechanisms in the Digestive System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5083876. [PMID: 32377300 PMCID: PMC7180415 DOI: 10.1155/2020/5083876] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 12/17/2022]
Abstract
Oxidative stress reflects an imbalance between oxidants and antioxidants in favor of the oxidants capable of evoking tissue damage. Like hydrogen sulfide (H2S) and nitric oxide (NO), carbon monoxide (CO) is an endogenous gaseous mediator recently implicated in the physiology of the gastrointestinal (GI) tract. CO is produced in mammalian tissues as a byproduct of heme degradation catalyzed by the heme oxygenase (HO) enzymes. Among the three enzymatic isoforms, heme oxygenase-1 (HO-1) is induced under conditions of oxidative stress or tissue injury and plays a beneficial role in the mechanism of protection against inflammation, ischemia/reperfusion (I/R), and many other injuries. According to recently published data, increased endogenous CO production by inducible HO-1, its delivery by novel pharmacological CO-releasing agents, or even the direct inhalation of CO has been considered a promising alternative in future experimental and clinical therapies against various GI disorders. However, the exact mechanisms underlying behind these CO-mediated beneficial actions are not fully explained and experimental as well as clinical studies on the mechanism of CO-induced protection are awaited. For instance, in a variety of experimental models related to gastric mucosal damage, HO-1/CO pathway and CO-releasing agents seem to prevent gastric damage mainly by reduction of lipid peroxidation and/or increased level of enzymatic antioxidants, such as superoxide dismutase (SOD) or glutathione peroxidase (GPx). Many studies have also revealed that HO-1/CO can serve as a potential defensive pathway against oxidative stress observed in the liver and pancreas. Moreover, increased CO levels after treatment with CO donors have been reported to protect the gut against formation of acute GI lesions mainly by the regulation of reactive oxygen species (ROS) production and the antioxidative activity. In this review, we focused on the role of H2S and NO molecular sibling, CO/HO pathway, and therapeutic potential of CO-releasing pharmacological tools in the regulation of oxidative stress-induced damage within the GI tract with a special emphasis on the esophagus, stomach, and intestines and also two solid and important metabolic abdominal organs, the liver and pancreas.
Collapse
Affiliation(s)
- Edyta Korbut
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Marcin Magierowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| |
Collapse
|
12
|
Xiong GF, Li DW, Zheng MB, Liu SC. The Effects of Lycium Barbarum Polysaccharide (LBP) in a Mouse Model of Cerulein-Induced Acute Pancreatitis. Med Sci Monit 2019; 25:3880-3886. [PMID: 31127077 PMCID: PMC6556067 DOI: 10.12659/msm.913820] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Acute pancreatitis is an inflammatory disease of the pancreas associated with high patient morbidity. Lycium barbarum polysaccharide (LBP), a traditional Chinese medicine with an active component extracted from the goji berry, has previously been reported to have anti-inflammatory effects. This study aimed to investigate the effects of LBP in a mouse model of cerulein-induced acute pancreatitis. MATERIAL AND METHODS Acute pancreatitis was induced by intraperitoneal injection of cerulein in C57BL/6 wild-type mice or nuclear factor erythroid-2-related factor 2 (NRF2) gene knockout mice. LBP or normal saline was administrated by gavage once daily for one week before the induction of acute pancreatitis. At 12 hours after the first intraperitoneal injection of cerulein, the mice were euthanized. Blood and pancreatic tissue were sampled for histology and for the measurement of pro-inflammatory cytokines, serum amylase, and lipase. RESULTS In the untreated mouse model of cerulein-induced acute pancreatitis, amylase and lipase levels were increased, and these levels were reduced by LBP treatment when compared with vehicle treatment. In the untreated mouse model, histology of the pancreas showed edema and inflammation, which were reduced in the LBP-treated mice. In the untreated mouse model, increased levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) were found, which were reduced in the LBP-treated mice. NRF2 gene knockout mice with cerulein-induced acute pancreatitis showed reduced anti-inflammatory effects of LBP treatment. LBP increased the expression of NRF2 and heme oxygenase-1 (HO-1). CONCLUSIONS In a mouse model of cerulein-induced acute pancreatitis, LBP reduced inflammation by upregulating NRF2 and HO-1.
Collapse
Affiliation(s)
- Gao-Fei Xiong
- Department of Gastroenterology, Dongguan Tungwah Affiliated Hospital of Sun Yat-sen University, Dongguan, Guangdong, China (mainland)
| | - Dong-Wei Li
- Department of General Surgery, Dongguan Tungwah Affiliated Hospital of Sun Yat-sen University, Dongguan, Guangdong, China (mainland)
| | - Ming-Bin Zheng
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, Guangdong, China (mainland)
| | - Si-Chun Liu
- Department of Gastroenterology, Dongguan Tungwah Affiliated Hospital of Sun Yat-sen University, Dongguan, Guangdong, China (mainland)
| |
Collapse
|
13
|
Valaskova P, Dvorak A, Lenicek M, Zizalova K, Kutinova-Canova N, Zelenka J, Cahova M, Vitek L, Muchova L. Hyperbilirubinemia in Gunn Rats is Associated with Decreased Inflammatory Response in LPS-Mediated Systemic Inflammation. Int J Mol Sci 2019; 20:ijms20092306. [PMID: 31075981 PMCID: PMC6539717 DOI: 10.3390/ijms20092306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 12/20/2022] Open
Abstract
Decreased inflammatory status has been reported in subjects with mild unconjugated hyperbilirubinemia. However, mechanisms of the anti-inflammatory actions of bilirubin (BR) are not fully understood. The aim of this study is to assess the role of BR in systemic inflammation using hyperbilirubinemic Gunn rats as well as their normobilirubinemic littermates and further in primary hepatocytes. The rats were treated with lipopolysaccharide (LPS, 6 mg/kg intraperitoneally) for 12 h, their blood and liver were collected for analyses of inflammatory and hepatic injury markers. Primary hepatocytes were treated with BR and TNF-α. LPS-treated Gunn rats had a significantly decreased inflammatory response, as evidenced by the anti-inflammatory profile of white blood cell subsets, and lower hepatic and systemic expressions of IL-6, TNF-α, IL-1β, and IL-10. Hepatic mRNA expression of LPS-binding protein was upregulated in Gunn rats before and after LPS treatment. In addition, liver injury markers were lower in Gunn rats as compared to in LPS-treated controls. The exposure of primary hepatocytes to TNF-α with BR led to a milder decrease in phosphorylation of the NF-κB p65 subunit compared to in cells without BR. In conclusion, hyperbilirubinemia in Gunn rats is associated with an attenuated systemic inflammatory response and decreased liver damage upon exposure to LPS.
Collapse
Affiliation(s)
- Petra Valaskova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 12108, Czech Republic.
| | - Ales Dvorak
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 12108, Czech Republic.
| | - Martin Lenicek
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 12108, Czech Republic.
| | - Katerina Zizalova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 12108, Czech Republic.
| | - Nikolina Kutinova-Canova
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800 Prague, Czech Republic.
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 16628 Prague, Czech Republic.
| | - Monika Cahova
- Department of Experimental Diabetology, Institute of Clinical and Experimental Medicine, 14021 Prague, Czech Republic.
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 12108, Czech Republic.
- 4th Department of Medicine-Department of Gastroenterology and Hepatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12808 Prague, Czech Republic.
| | - Lucie Muchova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 12108, Czech Republic.
| |
Collapse
|
14
|
Liu X, Zhu Q, Zhang M, Yin T, Xu R, Xiao W, Wu J, Deng B, Gao X, Gong W, Lu G, Ding Y. Isoliquiritigenin Ameliorates Acute Pancreatitis in Mice via Inhibition of Oxidative Stress and Modulation of the Nrf2/HO-1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7161592. [PMID: 29854090 PMCID: PMC5944199 DOI: 10.1155/2018/7161592] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/17/2018] [Accepted: 03/20/2018] [Indexed: 02/06/2023]
Abstract
Oxidative stress plays a crucial role in the pathogenesis of acute pancreatitis (AP). Isoliquiritigenin (ISL) is a flavonoid monomer with confirmed antioxidant activity. However, the specific effects of ISL on AP have not been determined. In this study, we aimed to investigate the protective effect of ISL on AP using two mouse models. In the caerulein-induced mild acute pancreatitis (MAP) model, dynamic changes in oxidative stress injury of the pancreatic tissue were observed after AP onset. We found that ISL administration reduced serum amylase and lipase levels and alleviated the histopathological manifestations of pancreatic tissue in a dose-dependent manner. Meanwhile, ISL decreased the oxidative stress injury and increased the protein expression of the Nrf2/HO-1 pathway. In addition, after administering a Nrf2 inhibitor (ML385) or HO-1 inhibitor (zinc protoporphyrin) to block the Nrf2/HO-1 pathway, we failed to observe the protective effects of ISL on AP in mice. Furthermore, we found that ISL mitigated the severity of pancreatic tissue injury and pancreatitis-associated lung injury in a severe acute pancreatitis model induced by L-arginine. Taken together, our data for the first time confirmed the protective effects of ISL on AP in mice via inhibition of oxidative stress and modulation of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Xinnong Liu
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of General Surgery, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Qingtian Zhu
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of General Surgery, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Min Zhang
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Tao Yin
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Rong Xu
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of General Surgery, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Weiming Xiao
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jian Wu
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Bin Deng
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xuefeng Gao
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Weijuan Gong
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Guotao Lu
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yanbing Ding
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
15
|
Basdeo SA, Campbell NK, Sullivan LM, Flood B, Creagh EM, Mantle TJ, Fletcher JM, Dunne A. Suppression of human alloreactive T cells by linear tetrapyrroles; relevance for transplantation. Transl Res 2016; 178:81-94.e2. [PMID: 27497182 DOI: 10.1016/j.trsl.2016.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/16/2016] [Accepted: 07/13/2016] [Indexed: 12/15/2022]
Abstract
The main limitation to successful transplantation is the antigraft response developed by the recipient immune system, and the adverse side effects of immunosuppressive agents which are associated with significant toxicity and counter indications such as infection and cancer. Furthermore, immunosuppressants do little to prevent ischemia-reperfusion injury during the transplantation procedure itself hence there is a growing need to develop novel immunosuppressive drugs specifically aimed at prolonging graft survival. Linear tetrapyrroles derived from the breakdown of mammalian heme have been shown in numerous studies to play a protective role in allograft transplantation and ischemia-reperfusion injury; however, commercial sources of these products have not been approved for use in humans. Plants and algae produce equivalent linear tetrapyrroles called bilins that serve as chromophores in light-sensing. One such marine-derived tetrapyrrole, phycocyanobilin (PCB), shows significant structural similarity to mammalian biliverdin (BV) and may prove to be a safer alternative for use in the clinic if it can exert direct effects on human immune cells. Using a mixed lymphocyte reaction, we quantified the allogeneic responses of recipient cells to donor cells and found that PCB, like BV, effectively suppressed proliferation and proinflammatory cytokine production. In addition, we found that BV and PCB can directly downregulate the proinflammatory responses of both innate dendritic cells and adaptive T cells. We therefore propose that PCB may be an effective therapeutic drug in the clinical setting of transplantation and may also have wider applications in regulating inappropriate inflammation.
Collapse
Affiliation(s)
- Sharee A Basdeo
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Nicole K Campbell
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Louise M Sullivan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Brian Flood
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Emma M Creagh
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Timothy J Mantle
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Jean M Fletcher
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland; School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland; School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| |
Collapse
|
16
|
Xiong J, Wang K, Yuan C, Xing R, Ni J, Hu G, Chen F, Wang X. Luteolin protects mice from severe acute pancreatitis by exerting HO-1-mediated anti-inflammatory and antioxidant effects. Int J Mol Med 2016; 39:113-125. [PMID: 27878246 PMCID: PMC5179180 DOI: 10.3892/ijmm.2016.2809] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 10/27/2016] [Indexed: 12/16/2022] Open
Abstract
Reseda odorata L. has long been used in traditional Asian medicine for the treatment of diseases associated with oxidative injury and acute inflammation, such as endotoxemia, acute lung injury, acute myocardial infarction and hepatitis. Luteolin, the main component of Reseda odorata L., which is also widely found in many natural herbs and vege-tables, has been shown to induce heme oxygenase-1 (HO-1) expression to exert anti-inflammatory and antioxidant effects. In this study, we aimed to examine the effects of luteolin on mice with severe acute pancreatitis (SAP), and to explore the underlying mechanisms. Cerulein and lipopolysaccharide were used to induce SAP in male Institute of Cancer Research (ICR) mice in the SAP group. The SAP group was divided into 4 subgroups, as follows: the vehicle, luteolin, zinc protoporphyrin (ZnPP) only, and luteolin (Lut) + ZnPP (luteolin plus zinc protoporphyrin treatment) groups. The wet/dry weight ratios, hematoxylin and eosin staining and pathological scores of pancreatic tissues were assessed and compared to those of the control mice. Amylase, lipase, nuclear factor-κB (NF-κB) and myeloperoxidase activities, and malondialdehyde, tumor necrosis factor α (TNFα), interleukin (IL)-6, IL-10 and HO-1 levels, as well as the expression of HO-1 were determined in serum and/or pancreatic tissue samples. SAP was successfully induced in male mice compared to normal control mice. The wet/dry weight ratios, pathological scores, and amylase and lipase activity, as well as the levels of TNFα and IL-6 were significantly reduced in the pancreatic tissues of the mice in the Lut group compared with those of the mice in the vehicle group. The Lut group exhibited a significant increase in HO-1 expression in the pancreas and enhanced serum HO-1 and IL-10 levels compared with the vehicle group. The suppression of HO-1 activity in the ZnPP group significantly abolished the protective effects of luteolin. NF-κB expression in the pancreatic tissues from the mice in the Lut + ZnPP group was significantly increased following the suppression of HO-1 activity. On the whole, our findings demonstrate that luteolin protects mice from SAP by inducing HO-1-mediated anti-inflammatory and antioxidant activities, in association with the suppression of the activation of the NF-κB pathway.
Collapse
Affiliation(s)
- Jie Xiong
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Kezhou Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Chunxiao Yuan
- Department of Pathology and Pathophysiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Rong Xing
- Department of Nephrology, The Second Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Fengling Chen
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| | - Xingpeng Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
17
|
Wang L, Zhao B, Chen Y, Ma L, Chen EZ, Mao EQ. Biliary tract external drainage increases the expression levels of heme oxygenase-1 in rat livers. Eur J Med Res 2015; 20:61. [PMID: 26199001 PMCID: PMC4511237 DOI: 10.1186/s40001-015-0152-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 06/30/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Heme oxygenase-1 (HO-1) protects cells by anti-oxidation, maintaining normal microcirculation and anti-inflammatory under stress. This study investigated the effects of biliary tract external drainage (BTED) on the expression levels of HO-1 in rat livers. METHODS Biliary tract external drainage was performed by inserting a cannula into the bile duct. Sixty Sprague-Dawley rats were randomized to the following groups: sham 1 h group; BTED 1 h group; bile duct ligation (BDL) 1 h group; sham 6 h group and BTED 6 h group. The expression levels of HO-1 mRNA were analyzed using real-time RT-PCR. The expression levels of HO-1 were analyzed using immunohistochemistry. RESULTS The expression levels of HO-1 mRNA in the liver of the BTED group increased significantly compared with the sham group 1 and 6 h after surgery (p < 0.05).The expression levels of HO-1 in the BTED group increased significantly compared with the sham group 1 and 6 h after surgery. The expression levels of HO-1 mRNA in the liver in the BDL group decreased significantly compared with the sham group 1 h after surgery (p < 0.05).The expression levels of HO-1 in the BDL group decreased significantly compared with the sham group at this time. CONCLUSION Biliary tract external drainages increase the expression levels of HO-1 in the liver.
Collapse
Affiliation(s)
- Lu Wang
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Bing Zhao
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Ying Chen
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Li Ma
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Er-Zhen Chen
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - En-Qiang Mao
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
18
|
Chang M, Xue J, Sharma V, Habtezion A. Protective role of hemeoxygenase-1 in gastrointestinal diseases. Cell Mol Life Sci 2015; 72:1161-73. [PMID: 25428780 PMCID: PMC4342274 DOI: 10.1007/s00018-014-1790-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/16/2014] [Accepted: 11/20/2014] [Indexed: 12/22/2022]
Abstract
Disorders and diseases of the gastrointestinal system encompass a wide array of pathogenic mechanisms as a result of genetic, infectious, neoplastic, and inflammatory conditions. Inflammatory diseases in general are rising in incidence and are emerging clinical problems in gastroenterology and hepatology. Hemeoxygenase-1 (HO-1) is a stress-inducible enzyme that has been shown to confer protection in various organ-system models. Its downstream effectors, carbon monoxide and biliverdin have also been shown to offer these beneficial effects. Many studies suggest that induction of HO-1 expression in gastrointestinal tissues and cells plays a critical role in cytoprotection and resolving inflammation as well as tissue injury. In this review, we examine the protective role of HO-1 and its downstream effectors in modulating inflammatory diseases of the upper (esophagus and stomach) and lower (small and large intestine) gastrointestinal tract, the liver, and the pancreas. Cytoprotective, anti-inflammatory, anti-proliferative, antioxidant, and anti-apoptotic activities of HO-1 make it a promising if not ideal therapeutic target for inflammatory diseases of the gastrointestinal system.
Collapse
Affiliation(s)
- Marisol Chang
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305 USA
| | - Jing Xue
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305 USA
| | - Vishal Sharma
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305 USA
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305 USA
| |
Collapse
|
19
|
Kambhampati S, Park W, Habtezion A. Pharmacologic therapy for acute pancreatitis. World J Gastroenterol 2014; 20:16868-16880. [PMID: 25493000 PMCID: PMC4258556 DOI: 10.3748/wjg.v20.i45.16868] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/23/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023] Open
Abstract
While conservative management such as fluid, bowel rest, and antibiotics is the mainstay of current acute pancreatitis management, there is a lot of promise in pharmacologic therapies that target various aspects of the pathogenesis of pancreatitis. Extensive review of preclinical studies, which include assessment of therapies such as anti-secretory agents, protease inhibitors, anti-inflammatory agents, and anti-oxidants are discussed. Many of these studies have shown therapeutic benefit and improved survival in experimental models. Based on available preclinical studies, we discuss potential novel targeted pharmacologic approaches that may offer promise in the treatment of acute pancreatitis. To date a variety of clinical studies have assessed the translational potential of animal model effective experimental therapies and have shown either failure or mixed results in human studies. Despite these discouraging clinical studies, there is a great clinical need and there exist several preclinical effective therapies that await investigation in patients. Better understanding of acute pancreatitis pathophysiology and lessons learned from past clinical studies are likely to offer a great foundation upon which to expand future therapies in acute pancreatitis.
Collapse
|
20
|
From nitric oxide to hyperbaric oxygen: invisible and subtle but nonnegligible gaseous signaling molecules in acute pancreatitis. Pancreas 2014; 43:511-7. [PMID: 24713669 DOI: 10.1097/mpa.0000000000000062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nitric oxide (NO), carbon monoxide, and hydrogen sulfide in addition to hydrogen are well established as gaseous signal molecules throughout the body. Although the role of gasotransmitters in acute pancreatitis (AP) has been explored for many years, many details remain to be elucidated. The physiologic effect of NO in AP mainly relies on induced NO synthase, which stimulates the production of cytokines in the blood. Carbon monoxide inhibits nuclear factor-κB activation, which leads to amelioration of the inflammatory response. Hydrogen sulfide displays a dual role in the mechanism of AP according to its concentration in the system. Hydrogen is a newly discovered gaseous signaling molecule, and currently, there is little evidence that it has any function in alleviating inflammation. We discovered that hyperbaric oxygen is a novel gasotransmitter that has potential use in the treatment of AP. The correlation among hyperbaric oxygen, hypoxia inducible factor 1α, and other signaling pathways should be further studied. We also discuss some prospects and issues that remain to be resolved in this review. In summary, the discovery of gaseous signal molecules has established a new platform for deep investigation of the mechanism of AP, and our knowledge of the role of gasotransmitters in AP will increase with further research.
Collapse
|
21
|
The Janus face of the heme oxygenase/biliverdin reductase system in Alzheimer disease: it's time for reconciliation. Neurobiol Dis 2013; 62:144-59. [PMID: 24095978 DOI: 10.1016/j.nbd.2013.09.018] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/24/2013] [Indexed: 12/23/2022] Open
Abstract
Alzheimer disease (AD) is the most common form of dementia among the elderly and is characterized by progressive loss of memory and cognition. These clinical features are due in part to the increase of reactive oxygen and nitrogen species that mediate neurotoxic effects. The up-regulation of the heme oxygenase-1/biliverdin reductase-A (HO-1/BVR-A) system is one of the earlier events in the adaptive response to stress. HO-1/BVR-A reduces the intracellular levels of pro-oxidant heme and generates equimolar amounts of the free radical scavengers biliverdin-IX alpha (BV)/bilirubin-IX alpha (BR) as well as the pleiotropic gaseous neuromodulator carbon monoxide (CO) and ferrous iron. Two main and opposite hypotheses for a role of the HO-1/BVR-A system in AD propose that this system mediates neurotoxic and neuroprotective effects, respectively. This apparent controversy was mainly due to the fact that for over about 20years HO-1 was the only player on which all the analyses were focused, excluding the other important and essential component of the entire system, BVR. Following studies from the Butterfield laboratory that reported alterations in BVR activity along with decreased phosphorylation and increased oxidative/nitrosative post-translational modifications in the brain of subjects with AD and amnestic mild cognitive impairment (MCI) subjects, a debate was opened on the real pathophysiological and clinical significance of BVR-A. In this paper we provide a review of the main discoveries about the HO/BVR system in AD and MCI, and propose a mechanism that reconciles these two hypotheses noted above of neurotoxic and the neuroprotective aspects of this important stress responsive system.
Collapse
|