1
|
Sung YN, Stojanova M, Shin S, Cho H, Heaphy CM, Hong SM. Gradual telomere shortening in the tumorigenesis of pancreatic and hepatic mucinous cystic neoplasms. Hum Pathol 2024; 152:105653. [PMID: 39214240 DOI: 10.1016/j.humpath.2024.105653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Mucinous cystic neoplasm (MCN) is one of the precursor lesions of pancreatic ductal adenocarcinoma and intrahepatic cholangiocarcinoma. The aim of this study is to examine the presence of short telomeres in promoting the tumorigenesis of MCN by measuring telomere lengths in distinct components of MCN, including the mucinous lining epithelium, non-mucinous lining epithelium, and ovarian-type stroma. A total of 45 patients with MCN (30 pancreatic and 15 hepatic cases) were obtained. Quantitative telomere-specific fluorescent in situ hybridization was performed to measure the telomere length of specific cell types within MCNs, including mucinous lining epithelium, non-mucinous lining epithelium, and ovarian-type stroma, as well as normal ductal epithelium and adenocarcinoma. Relative telomere lengths tended to decrease between normal ductal epithelium, ovarian-type stroma, non-mucinous lining epithelium, mucinous lining epithelium, and adenocarcinoma regardless of the involved organs. Among the analyzed cell types, relative telomere lengths were significantly different between normal ductal epithelium (3.31 ± 0.78), ovarian-type stroma (2.90 ± 0.93), non-mucinous lining epithelium (2.84 ± 0.79), mucinous lining epithelium (2.49 ± 0.93), and adenocarcinoma (1.19 ± 0.59), respectively (P < 0.001, mixed-effects model). As expected, no difference in relative telomere lengths was observed between normal ductal epithelium and ovarian-type stroma; however, significant differences were observed in pair-wise comparisons between ovarian-type stroma vs. non-mucinous lining epithelium (P = 0.001), non-mucinous lining epithelium vs. mucinous lining epithelium (P = 0.005), and mucinous lining epithelium vs. adenocarcinoma (P < 0.001). These findings suggest gradual telomere shortening occurs in the tumorigenesis of MCN, which may have important implications for the progression of this disease.
Collapse
Affiliation(s)
- You-Na Sung
- Department of Pathology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Marija Stojanova
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Seungbeom Shin
- Department of Statistics, Korea University, Seoul, Republic of Korea
| | - HyungJun Cho
- Department of Statistics, Korea University, Seoul, Republic of Korea
| | - Christopher M Heaphy
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Yang X, Xu G, Liu X, Zhou G, Zhang B, Wang F, Wang L, Li B, Li L. Carbon nanomaterial-involved EMT and CSC in cancer. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:1-13. [PMID: 34619029 DOI: 10.1515/reveh-2021-0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Carbon nanomaterials (CNMs) are ubiquitous in our daily lives because of the outstanding physicochemical properties. CNMs play curial parts in industrial and medical fields, however, the risks of CNMs exposure to human health are still not fully understood. In view of, it is becoming extremely difficult to ignore the existence of the toxicity of CNMs. With the increasing exploitation of CNMs, it's necessary to evaluate the potential impact of these materials on human health. In recent years, more and more researches have shown that CNMs are contributed to the cancer formation and metastasis after long-term exposure through epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) which is associated with cancer progression and invasion. This review discusses CNMs properties and applications in industrial and medical fields, adverse effects on human health, especially the induction of tumor initiation and metastasis through EMT and CSCs procedure.
Collapse
Affiliation(s)
- Xiaotong Yang
- Tianjin Medical University General Hospital, Tianjin, China
| | - Gongquan Xu
- Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaolong Liu
- Tianjin Medical University General Hospital, Tianjin, China
| | - Guiming Zhou
- Tianjin Medical University General Hospital, Tianjin, China
| | - Bing Zhang
- Rushan Hospital of Traditional Chinese Medicine, Weihai, China
| | - Fan Wang
- Tianjin Medical University General Hospital, Tianjin, China
| | - Lingjuan Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Bin Li
- Tianjin Medical University General Hospital, Tianjin, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Liming Li
- Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
3
|
Carrasco-Garcia E, Lopez L, Moncho-Amor V, Carazo F, Aldaz P, Collado M, Bell D, Gaafar A, Karamitopoulou E, Tzankov A, Hidalgo M, Rubio Á, Serrano M, Lawrie CH, Lovell-Badge R, Matheu A. SOX9 Triggers Different Epithelial to Mesenchymal Transition States to Promote Pancreatic Cancer Progression. Cancers (Basel) 2022; 14:cancers14040916. [PMID: 35205666 PMCID: PMC8870732 DOI: 10.3390/cancers14040916] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Pancreatic cancers are lethal types of cancer. A majority of patients progress to an advanced and metastatic disease, which remains a major clinical problem. Therefore, it is crucial to identify critical regulators to help predict the disease progression and to develop more efficacious therapeutic approaches. In this work we found that an increased expression of the developmental factor SOX9 is associated with metastasis, a poor prognosis and resistance to therapy in pancreatic ductal adenocarcinoma patients and in cell cultures. We also found that this effect is at least in part due to the ability of SOX9 to regulate the activity of stem cell factors, such as BMI1, in addition to those involved in EMT and metastasis. Abstract Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers mainly due to spatial obstacles to complete resection, early metastasis and therapy resistance. The molecular events accompanying PDAC progression remain poorly understood. SOX9 is required for maintaining the pancreatic ductal identity and it is involved in the initiation of pancreatic cancer. In addition, SOX9 is a transcription factor linked to stem cell activity and is commonly overexpressed in solid cancers. It cooperates with Snail/Slug to induce epithelial-mesenchymal transition (EMT) during neural development and in diseases such as organ fibrosis or different types of cancer. Methods: We investigated the roles of SOX9 in pancreatic tumor cell plasticity, metastatic dissemination and chemoresistance using pancreatic cancer cell lines as well as mouse embryo fibroblasts. In addition, we characterized the clinical relevance of SOX9 in pancreatic cancer using human biopsies. Results: Gain- and loss-of-function of SOX9 in PDAC cells revealed that high levels of SOX9 increased migration and invasion, and promoted EMT and metastatic dissemination, whilst SOX9 silencing resulted in metastasis inhibition, along with a phenotypic reversion to epithelial features and loss of stemness potential. In both contexts, EMT factors were not altered. Moreover, high levels of SOX9 promoted resistance to gemcitabine. In contrast, overexpression of SOX9 was sufficient to promote metastatic potential in K-Ras transformed MEFs, triggering EMT associated with Snail/Slug activity. In clinical samples, SOX9 expression was analyzed in 198 PDAC cases by immunohistochemistry and in 53 patient derived xenografts (PDXs). SOX9 was overexpressed in primary adenocarcinomas and particularly in metastases. Notably, SOX9 expression correlated with high vimentin and low E-cadherin expression. Conclusions: Our results indicate that SOX9 facilitates PDAC progression and metastasis by triggering stemness and EMT.
Collapse
Affiliation(s)
- Estefania Carrasco-Garcia
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (L.L.); (V.M.-A.); (P.A.)
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), 28029 Madrid, Spain
- Correspondence: (E.C.-G.); (A.M.); Tel.: +34-943-006073 (E.C.-G. & A.M.); Fax: +34-943-006250 (E.C.-G. & A.M.)
| | - Lidia Lopez
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (L.L.); (V.M.-A.); (P.A.)
| | - Veronica Moncho-Amor
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (L.L.); (V.M.-A.); (P.A.)
- The Francis Crick Institute, London NW1 1AT, UK; (D.B.); (R.L.-B.)
| | - Fernando Carazo
- School of Engineering, University of Navarra, 20009 San Sebastian, Spain; (F.C.); (Á.R.)
| | - Paula Aldaz
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (L.L.); (V.M.-A.); (P.A.)
| | - Manuel Collado
- Health Research Institute of Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain;
| | - Donald Bell
- The Francis Crick Institute, London NW1 1AT, UK; (D.B.); (R.L.-B.)
| | - Ayman Gaafar
- Department of Pathology, Cruces University Hospital, 48903 Barakaldo, Spain;
| | | | - Alexandar Tzankov
- Institute of Pathology, University Hospital Basel, 4056 Basel, Switzerland;
| | - Manuel Hidalgo
- Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain;
- New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY 10065, USA
| | - Ángel Rubio
- School of Engineering, University of Navarra, 20009 San Sebastian, Spain; (F.C.); (Á.R.)
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain;
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Charles H. Lawrie
- Molecular Oncology Group, Biodonostia Institute, 20014 San Sebastian, Spain;
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | | | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (L.L.); (V.M.-A.); (P.A.)
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Correspondence: (E.C.-G.); (A.M.); Tel.: +34-943-006073 (E.C.-G. & A.M.); Fax: +34-943-006250 (E.C.-G. & A.M.)
| |
Collapse
|
4
|
van Roey R, Brabletz T, Stemmler MP, Armstark I. Deregulation of Transcription Factor Networks Driving Cell Plasticity and Metastasis in Pancreatic Cancer. Front Cell Dev Biol 2021; 9:753456. [PMID: 34888306 PMCID: PMC8650502 DOI: 10.3389/fcell.2021.753456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is a very aggressive disease with 5-year survival rates of less than 10%. The constantly increasing incidence and stagnant patient outcomes despite changes in treatment regimens emphasize the requirement of a better understanding of the disease mechanisms. Challenges in treating pancreatic cancer include diagnosis at already progressed disease states due to the lack of early detection methods, rapid acquisition of therapy resistance, and high metastatic competence. Pancreatic ductal adenocarcinoma, the most prevalent type of pancreatic cancer, frequently shows dominant-active mutations in KRAS and TP53 as well as inactivation of genes involved in differentiation and cell-cycle regulation (e.g. SMAD4 and CDKN2A). Besides somatic mutations, deregulated transcription factor activities strongly contribute to disease progression. Specifically, transcriptional regulatory networks essential for proper lineage specification and differentiation during pancreas development are reactivated or become deregulated in the context of cancer and exacerbate progression towards an aggressive phenotype. This review summarizes the recent literature on transcription factor networks and epigenetic gene regulation that play a crucial role during tumorigenesis.
Collapse
Affiliation(s)
- Ruthger van Roey
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Isabell Armstark
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Panda M, Tripathi SK, Biswal BK. SOX9: An emerging driving factor from cancer progression to drug resistance. Biochim Biophys Acta Rev Cancer 2021; 1875:188517. [PMID: 33524528 DOI: 10.1016/j.bbcan.2021.188517] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023]
Abstract
Dysregulation of transcription factors is one of the common problems in the pathogenesis of human cancer. Among them, SOX9 is one of the critical transcription factors involved in various diseases, including cancer. The expression of SOX9 is regulated by microRNAs (miRNAs), methylation, phosphorylation, and acetylation. Interestingly, SOX9 acts as a proto-oncogene or tumor suppressor gene, relying upon kinds of cancer. Recent studies have reported the critical role of SOX9 in the regulation of the tumor microenvironment (TME). Additionally, activation of SOX9 signaling or SOX9 regulated signaling pathways play a crucial role in cancer development and progression. Accumulating evidence also suggests that SOX9 acquires stem cell features to induce epithelial-mesenchymal transition (EMT). Moreover, SOX9 has been broadly studied in the field of cancer stem cell (CSC) and EMT in the last decades. However, the link between SOX9 and cancer drug resistance has only recently been discovered. Furthermore, its differential expression could be a potential biomarker for tumor prognosis and progression. This review outlined the various biological implications of SOX9 in cancer progression and cancer drug resistance and elucidated its signaling network, which could be a potential target for designing novel anticancer drugs.
Collapse
Affiliation(s)
- Munmun Panda
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Surya Kant Tripathi
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Bijesh K Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
6
|
Turner K, Gnerlich JL. ASO Author Reflections: Role of SOX9 Transcription Factor in Pancreatic Neoplasms. Ann Surg Oncol 2019; 26:567-568. [PMID: 30680476 DOI: 10.1245/s10434-019-07154-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Indexed: 11/18/2022]
Affiliation(s)
- Kevin Turner
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Jennifer L Gnerlich
- Department of Surgery, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
7
|
Gnerlich JL, Ding X, Joyce C, Turner K, Johnson CD, Chen H, Abood GJ, Pappas SG, Aranha GV. Increased SOX9 Expression in Premalignant and Malignant Pancreatic Neoplasms. Ann Surg Oncol 2018; 26:628-634. [PMID: 30357576 DOI: 10.1245/s10434-018-6925-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND SOX9, a progenitor cell marker, is important for pancreatic ductal development. Our goal was to examine SOX9 expression differences in intraductal papillary mucinous neoplasms (IPMNs) and ductal adenocarcinoma (PDAC) compared with benign pancreatic duct (BP). METHODS SOX9 expression was evaluated by immunohistochemistry performed on 93 specimens: 37 BP, 24 low grade (LG) IPMN, 12 high grade (HG) IPMN, and 20 PDAC. A linear mixed-effects model was used to compare the percentage of cells expressing SOX9 by specimen type. A separate linear mixed-effects model evaluated differences in SOX9 expression by staining intensity in pancreatic epithelial cells. RESULTS Nuclear SOX9 expression was detected in the epithelial cells of 98% HG IPMN, 93% LG IPMN, 83% PDAC, and 60% BP. Compared with BP, SOX9 was expressed from a significantly greater percentage of cells in LG IMPN, HG IMPN, and PDAC (p < 0.001 for each). BP and PDAC showed greater variability in SOX9 expression in epithelial cells compared with IPMNs which showed strong, homogenous SOX9 expression in almost all cells. Compared with BP, both LG and HG IPMN showed significantly greater SOX9 expression (p < 0.001 for each), but there was no significant difference in SOX9 expression between LG and HG IPMN (p > 0.05). PDAC had significantly higher expression of SOX9 compared with BP but significantly lower SOX9 expression compared with LG or HG IPMN (p < 0.001 for each). CONCLUSIONS IPMNs demonstrated the highest expression levels of SOX9. SOX9 expression in BP and PDAC demonstrated much more heterogeneity compared with the strong, uniform expression in IPMN.
Collapse
Affiliation(s)
| | - Xianzhong Ding
- Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Cara Joyce
- Department of Public Health Sciences, Loyola University Medical Center, Maywood, IL, USA
| | - Kevin Turner
- Department of Surgery, Loyola University Medical Center, Maywood, IL, USA
| | | | - Haiyan Chen
- Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Gerard J Abood
- Department of Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Samuel G Pappas
- Department of Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Gerard V Aranha
- Department of Surgery, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
8
|
Kondratyeva LG, Chernov IP, Zinovyeva MV, Egorov VI, Kopantzev EP, Sverdlov ED. Heterogeneous Expression of Embryonal Development Master Regulator SOX9 in Patients with Pancreatic Cancer. DOKL BIOCHEM BIOPHYS 2018; 481:208-211. [PMID: 30168061 DOI: 10.1134/s1607672918040087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Indexed: 01/06/2023]
Abstract
The expression levels of the SOX9 gene in fetal, postnatal, and neoplastic pancreatic tissues were compared. In the fetal pancreatic samples, the mean relative level of the SOX9 gene expression was 8 times greater than the normal level. The tumor samples were divided into three groups depending on the SOX9 expression level. The first group showed a 6.5-fold increased expression level of SOX9 with respect to the normal one. The second and normal groups had approximately equal levels expression. The third group showed a 25-fold decreased expression level of SOX9. The discrepancy in the SOX9 expression, associated with the predominance of different functions of this master gene, depends on the poorly predictable individual factors and indicates that SOX9 should be excluded from the potential diagnostic biomarkers of pancreatic cancer.
Collapse
Affiliation(s)
- L G Kondratyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - I P Chernov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - M V Zinovyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - V I Egorov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - E P Kopantzev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - E D Sverdlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
9
|
Sex Determining Region Y Box 9 Induces Chemoresistance in Pancreatic Cancer Cells by Induction of Putative Cancer Stem Cell Characteristics and Its High Expression Predicts Poor Prognosis. Pancreas 2017; 46:1296-1304. [PMID: 28984791 DOI: 10.1097/mpa.0000000000000945] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Pancreatic cancer is a highly chemoresistant tumor and underlying mechanisms are not well understood. Sex determining region Y box 9 (Sox9) is a transcription factor playing important roles on maintenance of pluripotent cells during pancreatic organogenesis. The purpose of this study is to evaluate the roles of Sox9 in pancreatic cancer. METHODS The Sox9 expression was evaluated by immunohistochemical analysis. Effects of Sox9 inhibition by siRNA or shRNA on chemosensitivity, sphere formation, stem cell markers expression, and in vivo tumor formation rate were examined using pancreatic cancer cell lines. RESULTS High expression of Sox9 in pancreatic cancer tissue is correlated with poor prognosis (P = 0.011). Cells with high Sox9 expression (PANC-1, Capan-1) showed stronger chemoresistance to Gemcitabine than cells with low Sox9 expression (BxPC-3, MIA PaCa-2). The chemosensitivity in PANC-1 was recovered by suppressing Sox9 using siRNA (P < 0.05). Both sphere formation rate and the proportion of CD44CD24 cells were decreased by Sox9 inhibition. Tumor formation rate of Tet-on inducible Sox9 shRNA-transfected PANC-1 cells in KSN/Slc nude mice was decreased by induction of shRNA with doxycycline feeding (P < 0.05). CONCLUSION Sox9 plays an important role in chemoresistance by the induction of stemness in pancreatic cancer cells.
Collapse
|
10
|
Prévostel C, Blache P. The dose-dependent effect of SOX9 and its incidence in colorectal cancer. Eur J Cancer 2017; 86:150-157. [DOI: 10.1016/j.ejca.2017.08.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/24/2017] [Accepted: 08/30/2017] [Indexed: 10/18/2022]
|
11
|
Mello SS, Sinow C, Raj N, Mazur PK, Bieging-Rolett K, Broz DK, Imam JFC, Vogel H, Wood LD, Sage J, Hirose T, Nakagawa S, Rinn J, Attardi LD. Neat1 is a p53-inducible lincRNA essential for transformation suppression. Genes Dev 2017; 31:1095-1108. [PMID: 28698299 PMCID: PMC5538433 DOI: 10.1101/gad.284661.116] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 05/26/2017] [Indexed: 12/12/2022]
Abstract
Mello et al. identify Neat1, a ncRNA constituent of paraspeckles, as a p53 target gene that plays a crucial role in suppressing transformation in response to oncogenic signals. The p53 gene is mutated in over half of all cancers, reflecting its critical role as a tumor suppressor. Although p53 is a transcriptional activator that induces myriad target genes, those p53-inducible genes most critical for tumor suppression remain elusive. Here, we leveraged p53 ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) and RNA-seq (RNA sequencing) data sets to identify new p53 target genes, focusing on the noncoding genome. We identify Neat1, a noncoding RNA (ncRNA) constituent of paraspeckles, as a p53 target gene broadly induced by mouse and human p53 in different cell types and by diverse stress signals. Using fibroblasts derived from Neat1−/− mice, we examined the functional role of Neat1 in the p53 pathway. We found that Neat1 is dispensable for cell cycle arrest and apoptosis in response to genotoxic stress. In sharp contrast, Neat1 plays a crucial role in suppressing transformation in response to oncogenic signals. Neat1 deficiency enhances transformation in oncogene-expressing fibroblasts and promotes the development of premalignant pancreatic intraepithelial neoplasias (PanINs) and cystic lesions in KrasG12D-expressing mice. Neat1 loss provokes global changes in gene expression, suggesting a mechanism by which its deficiency promotes neoplasia. Collectively, these findings identify Neat1 as a p53-regulated large intergenic ncRNA (lincRNA) with a key role in suppressing transformation and cancer initiation, providing fundamental new insight into p53-mediated tumor suppression.
Collapse
Affiliation(s)
- Stephano S Mello
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Carolyn Sinow
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Nitin Raj
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Pawel K Mazur
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Kathryn Bieging-Rolett
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Daniela Kenzelmann Broz
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jamie F Conklin Imam
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Laura D Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Tetsuro Hirose
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - John Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Laura D Attardi
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
12
|
Popp FC, Popp MC, Zhao Y, Betzler C, Kropf S, Garlipp B, Benckert C, Kalinski T, Lippert H, Bruns CJ. Protocol of the PANCALYZE trial: a multicenter, prospective study investigating the tumor biomarkers CXCR4, SMAD4, SOX9 and IFIT3 in patients with resected pancreatic adenocarcinoma to predict the pattern of recurrence of the disease. BMC Cancer 2017; 17:229. [PMID: 28356064 PMCID: PMC5371262 DOI: 10.1186/s12885-017-3186-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 03/09/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies today with an urgent need for novel therapeutic strategies. Biomarker analysis helps to better understand tumor biology and might emerge as a tool to develop personalized therapies. The aim of the study is to investigate four promising biomarkers to predict the clinical course and particularly the pattern of tumor recurrence after surgical resection. DESIGN Patients undergoing surgery for PDAC can be enrolled into the PANCALYZE trial. Biomarker expression of CXCR4, SMAD4, SOX9 and IFIT3 will be prospectively assessed by immunohistochemistry and verified by rt.-PCR from tumor and adjacent healthy pancreatic tissue of surgical specimen. Immunohistochemistry expression pattern of all four biomarkers will be combined into a single score. Beginning with the hospital stay clinical data from enrolled patients will be collected and followed. Different adjuvant chemotherapy protocols will be used to create subgroups. The combined biomarker expression score will be correlated with the further clinical course of the patients to test the hypothesis if CXCR4 positive, SMAD4 negative, SOX9 positive, IFIT3 positive tumors will predominantly develop metastatic spread. DISCUSSION Pancreatic cancer is associated with different patterns of progression requiring personalized therapeutic strategies. Biomarker expression analysis might be a tool to predict the pattern of tumor recurrence and discriminate patients that develop systemic metastatic disease from those with tumors that rather develop local recurrence over time. This data might lead to personalized adjuvant treatment decisions as patients with tumors that stay localized might benefit from adjuvant local therapies like radiochemotherapy as compared to those with systemic recurrence who would benefit exclusively from chemotherapy. Moreover, the pattern of propagation might be a predefined characteristic of pancreatic cancer determined by the genetic signature of the tumor. In the future, biomarker expression analysis could be performed on tumor biopsies to develop personalized therapeutic pathways right after diagnosis of cancer. TRIAL REGISTRATION German Clinical Trials Register, DRKS00006179 .
Collapse
Affiliation(s)
- Felix C. Popp
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Marie Christine Popp
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Yue Zhao
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Christopher Betzler
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Siegfried Kropf
- Institute for Biometrics and Medical Informatics, Otto-von-Guericke University, Magdeburg, Germany
| | - Benjamin Garlipp
- Clinic for General, Visceral and Vascular Surgery, University Clinic Magdeburg, Magdeburg, Germany
| | - Christoph Benckert
- Department of General and Visceral Surgery, Vivantes Klinikum im Friedrichshain, Berlin, Germany
| | - Thomas Kalinski
- Department of Pathology, Otto von Guericke University, Magdeburg, Germany
| | - Hans Lippert
- Institute for Quality Control in Operative Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Christiane J. Bruns
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| |
Collapse
|
13
|
Abstract
Sex-determining region Y (SRY)-box 9 (SOX9) is a member of the SOX transcription factor family. Increasing evidence has reported that SOX9 plays different roles in various types of malignancies. However, the role of SOX9 in papillary thyroid cancer (PTC) is still unclear. The aim of this study was to investigate the role of SOX9 in PTC. Our results showed that SOX9 was upregulated in PTC tissues and cell lines. In addition, knockdown of SOX9 significantly inhibited PTC proliferation, colony formation, migration, and invasion, as well as epithelial-mesenchymal transition (EMT) phenotype in TPC-1 and BCPAP cells. Moreover, knockdown of SOX9 significantly inhibited the expression levels of β-catenin, cyclin D1, and c-Myc in PTC cells. In conclusion, this is the first report demonstrating that knockdown of SOX9 inhibited PTC cell proliferation, invasion, and the EMT process via suppressing Wnt/β-catenin signaling pathway. Thus, SOX9 may act as a novel molecular target for the prevention and treatment of PTC.
Collapse
Affiliation(s)
- Jie Huang
- Department of General Surgery, Weifang People's Hospital, Weifang, P.R. China
| | | |
Collapse
|
14
|
Sox9 expression in carcinogenesis and its clinical significance in intrahepatic cholangiocarcinoma. Dig Liver Dis 2015; 47:1067-75. [PMID: 26341967 DOI: 10.1016/j.dld.2015.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 07/24/2015] [Accepted: 08/07/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Intrahepatic cholangiocarcinomas develop through a multi-step carcinogenesis. Precancerous lesions are defined as biliary intraepithelial neoplasia. Sex determining region Y-box9 (Sox9) is required for the normal differentiation of the biliary tract. AIMS To evaluate the Sox9 expression in carcinogenesis and its correlation with clinicopathological features in intrahepatic cholangiocarcinoma. METHODS Sox9 expression in normal epithelium, biliary intraepithelial neoplasia, and intrahepatic cholangiocarcinoma were investigated immunohistochemically using 43 specimens of intrahepatic cholangiocarcinoma. Sox9 expression in intrahepatic cholangiocarcinoma was compared with the clinicopathological features. The molecular effects of Sox9 were investigated by gene transfection to intrahepatic cholangiocarcinoma cell lines. RESULTS Sox9 expression was decreased from the normal epithelium to the biliary intraepithelial neoplasia in a stepwise fashion. In 51.2% (22/43) of the patients with intrahepatic cholangiocarcinoma, Sox9 expression was positive, and Sox9 expression was significantly associated with the biliary infiltration (P=0.034) and poor overall survival (P=0.039). Upregulation of Sox9 promoted the cell migration and invasion, and decreased the E-cadherin expression and increased the vimentin and α-SMA expression in cell lines. CONCLUSIONS Decreased Sox9 expression may be related to the early stage of the carcinogenesis of intrahepatic cholangiocarcinoma. Sox9 overexpression in intrahepatic cholangiocarcinoma is related to biliary infiltration and poorer prognosis, and it promotes cell migration and invasion, via the epithelial-to-mesenchymal transition.
Collapse
|
15
|
Carpino G, Renzi A, Cardinale V, Franchitto A, Onori P, Overi D, Rossi M, Berloco PB, Alvaro D, Reid LM, Gaudio E. Progenitor cell niches in the human pancreatic duct system and associated pancreatic duct glands: an anatomical and immunophenotyping study. J Anat 2015; 228:474-86. [PMID: 26610370 DOI: 10.1111/joa.12418] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2015] [Indexed: 12/13/2022] Open
Abstract
Pancreatic duct glands (PDGs) are tubule-alveolar glands associated with the pancreatic duct system and can be considered the anatomical counterpart of peribiliary glands (PBGs) found within the biliary tree. Recently, we demonstrated that endodermal precursor niches exist fetally and postnatally and are composed functionally of stem cells and progenitors within PBGs and of committed progenitors within PDGs. Here we have characterized more extensively the anatomy of human PDGs as novel niches containing cells with multiple phenotypes of committed progenitors. Human pancreata (n = 15) were obtained from cadaveric adult donors. Specimens were processed for histology, immunohistochemistry and immunofluorescence. PDGs were found in the walls of larger pancreatic ducts (diameters > 300 μm) and constituted nearly 4% of the duct wall area. All of the cells identified were negative for nuclear expression of Oct4, a pluripotency gene, and so are presumably committed progenitors and not stem cells. In the main pancreatic duct and in large interlobular ducts, Sox9(+) cells represented 5-30% of the cells within PDGs and were located primarily at the bottom of PDGs, whereas rare and scattered Sox9(+) cells were present within the surface epithelium. The expression of PCNA, a marker of cell proliferation, paralleled the distribution of Sox9 expression. Sox9(+) PDG cells proved to be Pdx1(+) /Ngn3(+/-) /Oct4A(-) . Nearly 10% of PDG cells were positive for insulin or glucagon. Intercalated ducts contained Sox9(+) /Pdx1(+) /Ngn3(+) cells, a phenotype that is presumptive of committed endocrine progenitors. Some intercalated ducts appeared in continuity with clusters of insulin-positive cells organized in small pancreatic islet-like structures. In summary, PDGs represent niches of a population of Sox9(+) cells exhibiting a pattern of phenotypic traits implicating a radial axis of maturation from the bottoms of the PDGs to the surface of pancreatic ducts. Our results complete the anatomical background that links biliary and pancreatic tracts and could have important implications for the common patho-physiology of biliary tract and pancreas.
Collapse
Affiliation(s)
- Guido Carpino
- Division of Health Sciences, Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| | - Anastasia Renzi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Rome, Italy
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Massimo Rossi
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, Rome, Italy
| | | | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Rome, Italy
| | - Lola M Reid
- Department of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, Lineberger Comprehensive Cancer Center, UNC School of Medicine, Chapel Hill, NC, USA
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Bai G, Wu C, Gao Y, Shu G. Exploring the Functional Disorder and Corresponding Key Transcription Factors in Intraductal Papillary Mucinous Neoplasms Progression. Int J Genomics 2015; 2015:197603. [PMID: 26425543 PMCID: PMC4573622 DOI: 10.1155/2015/197603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/11/2015] [Indexed: 12/18/2022] Open
Abstract
This study has analyzed the gene expression patterns of an IPMN microarray dataset including normal pancreatic ductal tissue (NT), intraductal papillary mucinous adenoma (IPMA), intraductal papillary mucinous carcinoma (IPMC), and invasive ductal carcinoma (IDC) samples. And eight clusters of differentially expressed genes (DEGs) with similar expression pattern were detected by k-means clustering. Then a survey map of functional disorder in IPMN progression was established by functional enrichment analysis of these clusters. In addition, transcription factors (TFs) enrichment analysis was used to detect the key TFs in each cluster of DEGs, and three TFs (FLI1, ERG, and ESR1) were found to significantly regulate DEGs in cluster 1, and expression of these three TFs was validated by qRT-PCR. All these results indicated that these three TFs might play key roles in the early stages of IPMN progression.
Collapse
Affiliation(s)
- Guiying Bai
- Department of Oncology, Tianjin Third Central Hospital, Tianjin 300179, China
- Key Laboratory of Artificial Cell Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin 300179, China
| | - Chenxuan Wu
- Department of Oncology, Tianjin Third Central Hospital, Tianjin 300179, China
| | - Yingtang Gao
- Key Laboratory of Artificial Cell Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin 300179, China
| | - Guiming Shu
- Department of Hepatobiliary Surgery, Tianjin Third Central Hospital, Tianjin 300179, China
| |
Collapse
|
17
|
Ding X, Zhou X, Jiang B, Zhao Q, Zhou G. Triptolide suppresses proliferation, hypoxia-inducible factor-1α and c-Myc expression in pancreatic cancer cells. Mol Med Rep 2015; 12:4508-4513. [PMID: 26094625 DOI: 10.3892/mmr.2015.3960] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 01/15/2015] [Indexed: 11/06/2022] Open
Abstract
Triptolide (TL) is known to suppress the proliferation of a number of pancreatic cancer cell lines in vitro. Marked antitumor effects were also observed in a xenograft model of pancreatic cancer. Hypoxia‑inducible factor‑1α (HIF‑1α) is highly expressed in pancreatic cancer cells lines. The present study therefore tested the hypothesis that suppression of HIF‑1α is associated with the antitumor activity of TL. Quantitative polymerase chain reaction and western blot analysis were used to determine the level of gene expression. A xenograft tumor model of pancreatic cancer was established in athymic nude mice and the tumor size was measured to evaluate the outcome of TL treatment. Immunohistochemistry was used to detect the expression of HIF‑1α and vascular endothelial growth factor (VEGF), and to assess microvessel density. Microarray was used to investigate gene expression in pancreatic cancer cells following TL treatment. The expression of HIF‑1α was shown to be reduced in pancreatic cell lines following treatment with TL, and this effect occurred in a dose‑dependent manner. In a xenograft model of pancreatic cancer, reduced levels of HIF‑1α were also observed in mice that were treated with TL. Furthermore, the expression of VEGF, which is a direct target of HIF‑1α, was also suppressed, and the microvessel density of tumor tissues was consequently reduced. A microarray analysis of gene expression was performed in order to investigate the potential mechanisms underlying the antitumor activity of TL. The results showed that 11 genes, including c‑Myc, SOX9 and Ets2, were downregulated at an early stage following treatment with TL. A recent study indicated that overexpression of c‑Myc in colon cancer cells promotes increased expression of HIF‑1α and VEGF. Therefore, TL may suppress HIF‑1α through a c‑Myc‑dependent mechanism, which is involved in antitumor effects in mouse models of pancreatic cancer.
Collapse
Affiliation(s)
- Xiaoling Ding
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaorong Zhou
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Bo Jiang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qun Zhao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Guoxiong Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
18
|
The chromatin regulator Brg1 suppresses formation of intraductal papillary mucinous neoplasm and pancreatic ductal adenocarcinoma. Nat Cell Biol 2014; 16:255-67. [PMID: 24561622 DOI: 10.1038/ncb2916] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/10/2014] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) develops through distinct precursor lesions, including pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasia (IPMN). However, genetic features resulting in IPMN-associated PDA (IPMN-PDA) versus PanIN-associated PDA (PanIN-PDA) are largely unknown. Here we find that loss of Brg1, a core subunit of SWI/SNF chromatin remodelling complexes, cooperates with oncogenic Kras to form cystic neoplastic lesions that resemble human IPMN and progress to PDA. Although Brg1-null IPMN-PDA develops rapidly, it possesses a distinct transcriptional profile compared with PanIN-PDA driven by mutant Kras and hemizygous p53 deletion. IPMN-PDA also is less lethal, mirroring prognostic trends in PDA patients. In addition, Brg1 deletion inhibits Kras-dependent PanIN development from adult acinar cells, but promotes Kras-driven preneoplastic transformation in adult duct cells. Therefore, this study implicates Brg1 as a determinant of context-dependent Kras-driven pancreatic tumorigenesis and suggests that chromatin remodelling may underlie the development of distinct PDA subsets.
Collapse
|
19
|
Zhu H, Tang J, Tang M, Cai H. Upregulation of SOX9 in osteosarcoma and its association with tumor progression and patients' prognosis. Diagn Pathol 2013; 8:183. [PMID: 24188461 PMCID: PMC3829210 DOI: 10.1186/1746-1596-8-183] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 10/23/2013] [Indexed: 12/18/2022] Open
Abstract
Objective SOX9 plays an important role in bone formation and tumorigenesis. However, its involvement in osteosarcoma is still unclear. The aim of this study was to investigate the expression pattern and the clinical significance of SOX9 in human osteosarcoma. Methods SOX9 mRNA and protein expression levels were detected by RT-PCR and Western blot assays, respectively, using 30 pairs of osteosarcoma and noncancerous bone tissues. Then, immunohistochemistry was performed to analyze the association of SOX9 expression in 166 osteosarcoma tissues with clinicopathological factors or survival of patients. Results SOX9 expression at mRNA and protein levels were both significantly higher in osteosarcoma tissues than those in corresponding noncancerous bone tissues (both P < 0.001). Immunohistochemical staining indicated that SOX9 localized to the nucleus and high SOX9 expression was observed in 120 of 166 (72.3%) osteosarcoma specimens. In addition, high SOX9 expression was more frequently occurred in osteosarcoma tissues with advanced clinical stage (P = 0.02), positive distant metastasis (P = 0.008) and poor response to chemotherapy (P = 0.02). Osteosarcoma patients with high SOX9 expression had shorter overall survival and disease-free survival (both P < 0.001). Furthermore, the multivariate analysis confirmed that upregulation of SOX9 was an independent and significant prognostic factor to predict poor overall survival and disease-free survival (both P = 0.006). Conclusions Our data show for the first time that SOX9 is upregulated in aggressive osteosarcoma tissues indicating that SOX9 may participate in the osteosarcoma progression. More importantly, SOX9 status is a useful prognostic factor for predicting the prognosis of osteosarcoma, suggesting that SOX9 may contribute to the optimization of clinical treatments for osteosarcoma patients. Virtual slides The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1318085636110837.
Collapse
Affiliation(s)
| | | | | | - Haikang Cai
- Orthopaedics Department, Xuhui central hospital, No, 966, Middle Huaihai Road, Shanghai 200031, China.
| |
Collapse
|
20
|
SOX9: a useful marker for pancreatic ductal lineage of pancreatic neoplasms. Hum Pathol 2013; 45:456-63. [PMID: 24418153 DOI: 10.1016/j.humpath.2013.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/19/2013] [Accepted: 10/02/2013] [Indexed: 11/23/2022]
Abstract
Previous studies showed that SOX9 plays a critical role in pancreatic ductal development. The aim of this study was to evaluate SOX9 as a marker for pancreatic ductal lineage. SOX9 expression was evaluated by immunohistochemistry in 146 benign pancreas (BP), 136 pancreatic ductal adenocarcinomas, 47 pancreatic intraepithelial neoplasia (PanIN), 21 intraductal papillary mucinous neoplasms (IPMNs), 14 mucinous cystic neoplasms, 10 serous cystadenomas, 39 pancreatic neuroendocrine tumors, 9 acinar cell carcinomas, and 23 solid pseudopapillary neoplasms. Nuclear expression of SOX9 was detected in the centroacinar cells and ductal cells, but not in acinar or endocrine cells in 100% BP. Focal or diffuse SOX9 expression was detected in 100% PanINs, 100% IPMNs, 100% mucinous cystic neoplasms, 100% serous cystadenomas, 89.0% pancreatic ductal adenocarcinomas, 2.6% pancreatic neuroendocrine tumors, 11.1% acinar cell carcinomas, and 0% solid pseudopapillary neoplasms. SOX9 expression was lower in PanIN2 and PanIN3 than in PanIN1 lesions (P < .01). Compared with BP, IPMN had lower SOX9 expression (P < .05). No correlation between SOX9 expression and other clinicopathologic parameters was identified. Our study showed that SOX9 is expressed in centroacinar and ductal epithelial cells of BP and is a useful marker for pancreatic ductal lineage of pancreatic neoplasms.
Collapse
|