1
|
Raut P, Nimmakayala RK, Batra SK, Ponnusamy MP. Clinical and Molecular Attributes and Evaluation of Pancreatic Cystic Neoplasm. Biochim Biophys Acta Rev Cancer 2023; 1878:188851. [PMID: 36535512 PMCID: PMC9898173 DOI: 10.1016/j.bbcan.2022.188851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Intraductal papillary mucinous neoplasms (IPMNs) and mucinous cystic neoplasms (MCNs) are all considered "Pancreatic cystic neoplasms (PCNs)" and show a varying risk of developing into pancreatic ductal adenocarcinoma (PDAC). These lesions display different molecular characteristics, mutations, and clinical manifestations. A lack of detailed understanding of PCN subtype characteristics and their molecular mechanisms limits the development of efficient diagnostic tools and therapeutic strategies for these lesions. Proper in vivo mouse models that mimic human PCNs are also needed to study the molecular mechanisms and for therapeutic testing. A comprehensive understanding of the current status of PCN biology, mechanisms, current diagnostic methods, and therapies will help in the early detection and proper management of patients with these lesions and PDAC. This review aims to describe all these aspects of PCNs, specifically IPMNs, by describing the future perspectives.
Collapse
Affiliation(s)
- Pratima Raut
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
2
|
van Roey R, Brabletz T, Stemmler MP, Armstark I. Deregulation of Transcription Factor Networks Driving Cell Plasticity and Metastasis in Pancreatic Cancer. Front Cell Dev Biol 2021; 9:753456. [PMID: 34888306 PMCID: PMC8650502 DOI: 10.3389/fcell.2021.753456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is a very aggressive disease with 5-year survival rates of less than 10%. The constantly increasing incidence and stagnant patient outcomes despite changes in treatment regimens emphasize the requirement of a better understanding of the disease mechanisms. Challenges in treating pancreatic cancer include diagnosis at already progressed disease states due to the lack of early detection methods, rapid acquisition of therapy resistance, and high metastatic competence. Pancreatic ductal adenocarcinoma, the most prevalent type of pancreatic cancer, frequently shows dominant-active mutations in KRAS and TP53 as well as inactivation of genes involved in differentiation and cell-cycle regulation (e.g. SMAD4 and CDKN2A). Besides somatic mutations, deregulated transcription factor activities strongly contribute to disease progression. Specifically, transcriptional regulatory networks essential for proper lineage specification and differentiation during pancreas development are reactivated or become deregulated in the context of cancer and exacerbate progression towards an aggressive phenotype. This review summarizes the recent literature on transcription factor networks and epigenetic gene regulation that play a crucial role during tumorigenesis.
Collapse
Affiliation(s)
- Ruthger van Roey
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Isabell Armstark
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
3
|
Aguilar-Medina M, Avendaño-Félix M, Lizárraga-Verdugo E, Bermúdez M, Romero-Quintana JG, Ramos-Payan R, Ruíz-García E, López-Camarillo C. SOX9 Stem-Cell Factor: Clinical and Functional Relevance in Cancer. JOURNAL OF ONCOLOGY 2019; 2019:6754040. [PMID: 31057614 PMCID: PMC6463569 DOI: 10.1155/2019/6754040] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/21/2019] [Indexed: 12/15/2022]
Abstract
Transcriptional and epigenetic embryonic programs can be reactivated in cancer cells. As result, a specific subset of undifferentiated cells with stem-cells properties emerges and drives tumorigenesis. Recent findings have shown that ectoderm- and endoderm-derived tissues continue expressing stem-cells related transcription factors of the SOX-family of proteins such as SOX2 and SOX9 which have been implicated in the presence of cancer stem-like cells (CSCs) in tumors. Currently, there is enough evidence suggesting an oncogenic role for SOX9 in different types of human cancers. This review provides a summary of the current knowledge about the involvement of SOX9 in development and progression of cancer. Understanding the functional roles of SOX9 and clinical relevance is crucial for developing novel treatments targeting CSCs in cancer.
Collapse
Affiliation(s)
- Maribel Aguilar-Medina
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - Mariana Avendaño-Félix
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - Erik Lizárraga-Verdugo
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - Mercedes Bermúdez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | | | - Rosalío Ramos-Payan
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - Erika Ruíz-García
- Laboratorio de Medicina Traslacional y Departamento de Tumores Gastro-Intestinales, Instituto Nacional de Cancerología. CDMX, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX, Mexico
| |
Collapse
|
4
|
Turner K, Gnerlich JL. ASO Author Reflections: Role of SOX9 Transcription Factor in Pancreatic Neoplasms. Ann Surg Oncol 2019; 26:567-568. [PMID: 30680476 DOI: 10.1245/s10434-019-07154-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Indexed: 11/18/2022]
Affiliation(s)
- Kevin Turner
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Jennifer L Gnerlich
- Department of Surgery, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
5
|
Gnerlich JL, Ding X, Joyce C, Turner K, Johnson CD, Chen H, Abood GJ, Pappas SG, Aranha GV. Increased SOX9 Expression in Premalignant and Malignant Pancreatic Neoplasms. Ann Surg Oncol 2018; 26:628-634. [PMID: 30357576 DOI: 10.1245/s10434-018-6925-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND SOX9, a progenitor cell marker, is important for pancreatic ductal development. Our goal was to examine SOX9 expression differences in intraductal papillary mucinous neoplasms (IPMNs) and ductal adenocarcinoma (PDAC) compared with benign pancreatic duct (BP). METHODS SOX9 expression was evaluated by immunohistochemistry performed on 93 specimens: 37 BP, 24 low grade (LG) IPMN, 12 high grade (HG) IPMN, and 20 PDAC. A linear mixed-effects model was used to compare the percentage of cells expressing SOX9 by specimen type. A separate linear mixed-effects model evaluated differences in SOX9 expression by staining intensity in pancreatic epithelial cells. RESULTS Nuclear SOX9 expression was detected in the epithelial cells of 98% HG IPMN, 93% LG IPMN, 83% PDAC, and 60% BP. Compared with BP, SOX9 was expressed from a significantly greater percentage of cells in LG IMPN, HG IMPN, and PDAC (p < 0.001 for each). BP and PDAC showed greater variability in SOX9 expression in epithelial cells compared with IPMNs which showed strong, homogenous SOX9 expression in almost all cells. Compared with BP, both LG and HG IPMN showed significantly greater SOX9 expression (p < 0.001 for each), but there was no significant difference in SOX9 expression between LG and HG IPMN (p > 0.05). PDAC had significantly higher expression of SOX9 compared with BP but significantly lower SOX9 expression compared with LG or HG IPMN (p < 0.001 for each). CONCLUSIONS IPMNs demonstrated the highest expression levels of SOX9. SOX9 expression in BP and PDAC demonstrated much more heterogeneity compared with the strong, uniform expression in IPMN.
Collapse
Affiliation(s)
| | - Xianzhong Ding
- Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Cara Joyce
- Department of Public Health Sciences, Loyola University Medical Center, Maywood, IL, USA
| | - Kevin Turner
- Department of Surgery, Loyola University Medical Center, Maywood, IL, USA
| | | | - Haiyan Chen
- Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Gerard J Abood
- Department of Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Samuel G Pappas
- Department of Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Gerard V Aranha
- Department of Surgery, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
6
|
Popp FC, Popp MC, Zhao Y, Betzler C, Kropf S, Garlipp B, Benckert C, Kalinski T, Lippert H, Bruns CJ. Protocol of the PANCALYZE trial: a multicenter, prospective study investigating the tumor biomarkers CXCR4, SMAD4, SOX9 and IFIT3 in patients with resected pancreatic adenocarcinoma to predict the pattern of recurrence of the disease. BMC Cancer 2017; 17:229. [PMID: 28356064 PMCID: PMC5371262 DOI: 10.1186/s12885-017-3186-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 03/09/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies today with an urgent need for novel therapeutic strategies. Biomarker analysis helps to better understand tumor biology and might emerge as a tool to develop personalized therapies. The aim of the study is to investigate four promising biomarkers to predict the clinical course and particularly the pattern of tumor recurrence after surgical resection. DESIGN Patients undergoing surgery for PDAC can be enrolled into the PANCALYZE trial. Biomarker expression of CXCR4, SMAD4, SOX9 and IFIT3 will be prospectively assessed by immunohistochemistry and verified by rt.-PCR from tumor and adjacent healthy pancreatic tissue of surgical specimen. Immunohistochemistry expression pattern of all four biomarkers will be combined into a single score. Beginning with the hospital stay clinical data from enrolled patients will be collected and followed. Different adjuvant chemotherapy protocols will be used to create subgroups. The combined biomarker expression score will be correlated with the further clinical course of the patients to test the hypothesis if CXCR4 positive, SMAD4 negative, SOX9 positive, IFIT3 positive tumors will predominantly develop metastatic spread. DISCUSSION Pancreatic cancer is associated with different patterns of progression requiring personalized therapeutic strategies. Biomarker expression analysis might be a tool to predict the pattern of tumor recurrence and discriminate patients that develop systemic metastatic disease from those with tumors that rather develop local recurrence over time. This data might lead to personalized adjuvant treatment decisions as patients with tumors that stay localized might benefit from adjuvant local therapies like radiochemotherapy as compared to those with systemic recurrence who would benefit exclusively from chemotherapy. Moreover, the pattern of propagation might be a predefined characteristic of pancreatic cancer determined by the genetic signature of the tumor. In the future, biomarker expression analysis could be performed on tumor biopsies to develop personalized therapeutic pathways right after diagnosis of cancer. TRIAL REGISTRATION German Clinical Trials Register, DRKS00006179 .
Collapse
Affiliation(s)
- Felix C. Popp
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Marie Christine Popp
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Yue Zhao
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Christopher Betzler
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Siegfried Kropf
- Institute for Biometrics and Medical Informatics, Otto-von-Guericke University, Magdeburg, Germany
| | - Benjamin Garlipp
- Clinic for General, Visceral and Vascular Surgery, University Clinic Magdeburg, Magdeburg, Germany
| | - Christoph Benckert
- Department of General and Visceral Surgery, Vivantes Klinikum im Friedrichshain, Berlin, Germany
| | - Thomas Kalinski
- Department of Pathology, Otto von Guericke University, Magdeburg, Germany
| | - Hans Lippert
- Institute for Quality Control in Operative Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Christiane J. Bruns
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Clinical implication of Sox9 and activated Akt expression in pancreatic ductal adenocarcinoma. Med Oncol 2014; 32:358. [DOI: 10.1007/s12032-014-0358-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 11/12/2014] [Indexed: 10/24/2022]
|