1
|
Ramadan W, Monir R, El-Emam O, Diab M, Shaheen D. Polymorphisms of PPARα and ACTN3 Among Adolescent Egyptian Athletes: A Case-Control Study. Life (Basel) 2025; 15:477. [PMID: 40141820 PMCID: PMC11943583 DOI: 10.3390/life15030477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Athletic performance is a complex phenotype affected by individual traits, environmental conditions, training, and genetics. The peroxisome proliferator-activated receptor-alpha (PPARα) and alpha-actinin-3 (ACTN3) are two genes with the potential to influence human performance. The objective of the present study was to assess the genotype frequencies of ACTN3 (R/X) and PPARα (G/C) and to conduct a comparison of these frequencies among Egyptian adolescent athletes. METHODS This case-control study involved 228 individuals (118 elite-level athletes and 110 sedentary controls). RESULTS This study identified a statistically significant increase in the frequencies of the ACTN3 'R' allele (77.5% compared to 55.9%; p < 0.001) and the PPARα 'C' allele (86.4% compared to 14.1%; p < 0.001) among athletes relative to the control groups. A similar pattern was noted for adolescent athletes in comparison to the control group in terms of both the R/R genotype (61.9% compared to 27.3%; p < 0.001) and the C/C genotype (80.5% compared to 2.7%; p < 0.001). In conclusion, these results imply that polymorphisms in ACTN3 and PPARα could be significant predictors for assessing the performance of adolescent Egyptian athletes.
Collapse
Affiliation(s)
- Wael Ramadan
- Department of Sports Training, Faculty of Physical Education, Mansoura University, Mansura 35516, Egypt;
| | - Rehan Monir
- Department of Medical Biochemistry, Faculty of Medicine, King Khalid University, Abha 62521, Saudi Arabia;
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansura 35516, Egypt;
| | - Ola El-Emam
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansura 35516, Egypt;
| | - Mohamed Diab
- Department of Sports Training, Faculty of Physical Education, Mansoura University, Mansura 35516, Egypt;
| | - Dalia Shaheen
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansura 35516, Egypt;
| |
Collapse
|
2
|
Guilherme JPLF, Oliveira EM. Increased prevalence of the null allele of the p.Arg577Ter variant in the ACTN3 gene in Brazilian long-distance athletes: A retrospective study. Ann Hum Genet 2024; 88:414-422. [PMID: 38949054 DOI: 10.1111/ahg.12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION The phenotypic consequences of the p.Arg577Ter variant in the α-actinin-3 (ACTN3) gene are suggestive of a trade-off between performance traits for speed and endurance sports. Although there is a consistent association of the c.1729C allele (aka R allele) with strength/power traits, there is still a debate on whether the null allele (c.1729T allele; aka X allele) influences endurance performance. The present study aimed to test the association of the ACTN3 p.Arg577Ter variant with long-distance endurance athlete status, using previously published data with the Brazilian population. METHODS Genotypic data from 203 long-distance athletes and 1724 controls were analysed in a case-control approach. RESULTS The frequency of the X allele was significantly higher in long-distance athletes than in the control group (51.5% vs. 41.4%; p = 0.000095). The R/X and X/X genotypes were overrepresented in the athlete group. Individuals with the R/X genotype instead of the R/R genotype had a 1.6 increase in the odds of being a long-distance athlete (p = 0.012), whereas individuals with the X/X genotype instead of the R/R genotype had a 2.2 increase in the odds of being a long-distance athlete (p = 0.00017). CONCLUSION The X allele, mainly the X/X genotype, was associated with long-distance athlete status in Brazilians.
Collapse
Affiliation(s)
- João Paulo Limongi França Guilherme
- Laboratory of Biochemistry and Molecular Biology of Exercise, Department of Biodynamics of Human Movement, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Edilamar Menezes Oliveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, Department of Biodynamics of Human Movement, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Ahmetov II, John G, Semenova EA, Hall ECR. Genomic predictors of physical activity and athletic performance. ADVANCES IN GENETICS 2024; 111:311-408. [PMID: 38908902 DOI: 10.1016/bs.adgen.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Physical activity and athletic performance are complex phenotypes influenced by environmental and genetic factors. Recent advances in lifestyle and behavioral genomics led to the discovery of dozens of DNA polymorphisms (variants) associated with physical activity and allowed to use them as genetic instruments in Mendelian randomization studies for identifying the causal links between physical activity and health outcomes. On the other hand, exercise and sports genomics studies are focused on the search for genetic variants associated with athlete status, sports injuries and individual responses to training and supplement use. In this review, the findings of studies investigating genetic markers and their associations with physical activity and athlete status are reported. As of the end of September 2023, a total of 149 variants have been associated with various physical activity traits (of which 42 variants are genome-wide significant) and 253 variants have been linked to athlete status (115 endurance-related, 96 power-related, and 42 strength-related).
Collapse
Affiliation(s)
- Ildus I Ahmetov
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, St. Petersburg, Russia; Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, Kazan, Russia; Department of Physical Education, Plekhanov Russian University of Economics, Moscow, Russia.
| | - George John
- Transform Specialist Medical Centre, Dubai, United Arab Emirates
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia; Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, Kazan, Russia
| | - Elliott C R Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
4
|
Remmel L, Ben-Zaken S, Meckel Y, Nemet D, Eliakim A, Jürimäe J. The Genetic Basis of Decathlon Performance: An Exploratory Study. J Strength Cond Res 2023; 37:1660-1666. [PMID: 37494118 DOI: 10.1519/jsc.0000000000004439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
ABSTRACT Remmel, L, Ben-Zaken, S, Meckel, Y, Nemet, D, Eliakim, A, and Jürimäe, J. The genetic basis of decathlon performance: an exploratory study. J Strength Cond Res 37(8): 1660-1666, 2023-Decathlon is a combined track and field competition consisting of 10 different events, most of which are anaerobic-type events. Therefore, it is assumed that an anaerobic genetic predisposition might be prevalent among decathletes. Yet, to the best of our knowledge, the genetic basis of decathlon performance had not been studied. Therefore, the aim of this study was to assess the prevalence genetic polymorphisms associated with power performance (AGT, rs699, Met235Thr T/C), speed (ACTN3, rs1815739 C1747T), aerobic endurance (PPARD, rs2016520 T294C), and lactate clearance (MCT1, rs1049434 A1470T) among decathletes. One hundred thirty-seven male track and field athletes (51 sprinters and jumpers, 59 long distance runners, and 27 decathletes) participated in the study. Genomic DNA was extracted from buccal epithelial cells. Genotypes were determined using the Taqman allelic discrimination assay. Decathletes had a higher prevalence of the ACTN3 RR genotype, which is associated with speed ability, and a lower prevalence of the PPARD CC genotype, which is associated with endurance performance compared with long-distance runners. Decathletes had a higher prevalence of the AGT CC genotype associated with strength performance and a higher prevalence of the MCT1 TT genotype, which is associated with improved lactate transport compared with both sprinters and jumpers and long-distance runners. The results suggest that a favorable genetic polymorphism for strength-related capability might be advantageous for decathletes, whereas a genetic makeup favoring aerobic performance is not necessary.
Collapse
Affiliation(s)
| | - Sigal Ben-Zaken
- Genetics and Molecular Biology Laboratory, The Academic College at Wingate, Netanya, Israel; and
| | - Yoav Meckel
- Genetics and Molecular Biology Laboratory, The Academic College at Wingate, Netanya, Israel; and
| | - Dan Nemet
- Child Health and Sports Center, Pediatric Department, Meir Medical Center, Kfar-Saba, Israel
| | - Alon Eliakim
- Child Health and Sports Center, Pediatric Department, Meir Medical Center, Kfar-Saba, Israel
| | | |
Collapse
|
5
|
Semenova EA, Hall ECR, Ahmetov II. Genes and Athletic Performance: The 2023 Update. Genes (Basel) 2023; 14:1235. [PMID: 37372415 PMCID: PMC10298527 DOI: 10.3390/genes14061235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Phenotypes of athletic performance and exercise capacity are complex traits influenced by both genetic and environmental factors. This update on the panel of genetic markers (DNA polymorphisms) associated with athlete status summarises recent advances in sports genomics research, including findings from candidate gene and genome-wide association (GWAS) studies, meta-analyses, and findings involving larger-scale initiatives such as the UK Biobank. As of the end of May 2023, a total of 251 DNA polymorphisms have been associated with athlete status, of which 128 genetic markers were positively associated with athlete status in at least two studies (41 endurance-related, 45 power-related, and 42 strength-related). The most promising genetic markers include the AMPD1 rs17602729 C, CDKN1A rs236448 A, HFE rs1799945 G, MYBPC3 rs1052373 G, NFIA-AS2 rs1572312 C, PPARA rs4253778 G, and PPARGC1A rs8192678 G alleles for endurance; ACTN3 rs1815739 C, AMPD1 rs17602729 C, CDKN1A rs236448 C, CPNE5 rs3213537 G, GALNTL6 rs558129 T, IGF2 rs680 G, IGSF3 rs699785 A, NOS3 rs2070744 T, and TRHR rs7832552 T alleles for power; and ACTN3 rs1815739 C, AR ≥21 CAG repeats, LRPPRC rs10186876 A, MMS22L rs9320823 T, PHACTR1 rs6905419 C, and PPARG rs1801282 G alleles for strength. It should be appreciated, however, that elite performance still cannot be predicted well using only genetic testing.
Collapse
Affiliation(s)
- Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Elliott C. R. Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling FK9 4UA, UK
| | - Ildus I. Ahmetov
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, 191040 St. Petersburg, Russia
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| |
Collapse
|
6
|
Abstract
Sports genomics is the scientific discipline that focuses on the organization and function of the genome in elite athletes, and aims to develop molecular methods for talent identification, personalized exercise training, nutritional need and prevention of exercise-related diseases. It postulates that both genetic and environmental factors play a key role in athletic performance and related phenotypes. This update on the panel of genetic markers (DNA polymorphisms) associated with athlete status and soft-tissue injuries covers advances in research reported in recent years, including one whole genome sequencing (WGS) and four genome-wide association (GWAS) studies, as well as findings from collaborative projects and meta-analyses. At end of 2020, the total number of DNA polymorphisms associated with athlete status was 220, of which 97 markers have been found significant in at least two studies (35 endurance-related, 24 power-related, and 38 strength-related). Furthermore, 29 genetic markers have been linked to soft-tissue injuries in at least two studies. The most promising genetic markers include HFE rs1799945, MYBPC3 rs1052373, NFIA-AS2 rs1572312, PPARA rs4253778, and PPARGC1A rs8192678 for endurance; ACTN3 rs1815739, AMPD1 rs17602729, CPNE5 rs3213537, CKM rs8111989, and NOS3 rs2070744 for power; LRPPRC rs10186876, MMS22L rs9320823, PHACTR1 rs6905419, and PPARG rs1801282 for strength; and COL1A1 rs1800012, COL5A1 rs12722, COL12A1 rs970547, MMP1 rs1799750, MMP3 rs679620, and TIMP2 rs4789932 for soft-tissue injuries. It should be appreciated, however, that hundreds and even thousands of DNA polymorphisms are needed for the prediction of athletic performance and injury risk.
Collapse
|
7
|
Wei Q. ACE and ACTN3 Gene Polymorphisms and Genetic Traits of Rowing Athletes in the Northern Han Chinese Population. Front Genet 2021; 12:736876. [PMID: 34721527 PMCID: PMC8551674 DOI: 10.3389/fgene.2021.736876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/20/2021] [Indexed: 01/12/2023] Open
Abstract
This investigation aimed to explore the effects of ACE I/D and ACTN3 R577X gene polymorphisms on specific quantitative variables, including height, weight, arm span, biacromial breadth, forced vital capacity (FVC), FVC/weight, maximal oxygen uptake (VO2max), prone bench pull (PBP), loaded barbell squat (LBS), and 3,000-m run, in 243 Chinese rowing athletes. The ACE and ACTN3 genotypes were obtained for each athlete via polymerase chain reaction on saliva samples, and the genotype frequency was analyzed. The ACE genotype frequency of rowing athletes were 45.8% II, 42.2% ID, and 12% DD for males and 33.6% II, 48% ID, and 18.4% DD for females. There were significant differences in weight in male athletes, PBP in female athletes, and ACE genotypes. A linear regression analysis using PBP and LBS as different dependent variables and ACE genotypes as independent variables based on the ACE I allele additive genetic effect showed a statistical significance in female athletes (p < 0.05). There was a significant difference in the distribution of the three genotypes among male athletes (36.7% XX, 38.5% RX, and 24.8% RR, χ2 = 5.191, df = 2, p = 0.022 < 0.05). There were no significant differences in the distribution of the three genotypes among female athletes (23.8% XX, 47.8% RX, 28.4% RR, χ 2 = 0.24, df = 2, p = 0.619 > 0.05). The ACTN3 gene polymorphism of male rowing athletes was dominated by the ACTN3 577X allele. There were significant differences in the χ 2 test between groups of male athletes. The ACTN3 R577 allele was dominant in female athletes. There were significant differences between PBP and FVC/body weight and ACTN3 genotypes in male athletes by ANOVA, respectively (p < 0.05). A linear regression analysis using FVC and FVC/body weight as dependent variables and ACTN3 genotypes as independent variables based on the ACTN3 577X allele recessive genetic effect showed statistical significance in male athletes (p < 0.05). These results suggested that ACE and ACTN3 gene polymorphisms may be used as biomarkers of genetic traits in Chinese rowing athletes.
Collapse
Affiliation(s)
- Qi Wei
- Key Laboratory of General Administration of Sport of China, Wuhan, China
- Hubei Institute of Sports Science, Wuhan, China
| |
Collapse
|
8
|
Pimenta I, Mateus H, Rodrigues-Manica S, Pinheiro-Torres R, Neto A, Domingues L, Lage Crespo C, Sardoo A, Machado P, Branco JC, Silva SN, Pimentel-Santos FM. The Effect of ACTN3 and VDR Polymorphisms on Skeletal Muscle Performance in Axial Spondyloarthropathies. Front Genet 2021; 12:688984. [PMID: 34456969 PMCID: PMC8385750 DOI: 10.3389/fgene.2021.688984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
Background Spondyloarthritis (SpA) are the most common group of chronic inflammatory rheumatic diseases affecting about 1.5% of the adult Caucasian population. Low back pain is the most common symptom. The aetiopathogenesis of SpA is multifactorial, with well-known genetic and environmental contributions. Furthermore, muscle properties might also be involved in the pathophysiological process and these could be modulated by the genetic background. Alpha-actinin-3 (ACTN3) and Vitamin D receptor (VDR) genes are well-known genes related with muscle performance. Our aim was to analyze four SNPs of these genes and to evaluate their influence in axial SpA (axSpA) susceptibility, phenotype and muscle properties. Methods We performed a pilot study based on case-control approach involving 56 participants: 28 axSpA patients and 28 healthy controls matched by age, gender and levels of physical activity. Clinical, epidemiological and muscle characterization data—muscle physical properties (stiffness, tone, and elasticity), strength, mass, and performance, were collected. Two different muscles were considered for analysis, the Multifidus and Gastrocnemius. Four SNPs of ACTN3 (rs1815739) and VDR (rs2228570, rs731236, and rs7975232), were selected, analyzed and correlated with clinical, epidemiological and muscle characterization data. Results In total, 51 individuals (27 axSpA patients and 24 matched controls) were eligible for further genetic analysis, 66.7% being male and with a mean age of 36 years. Muscle physical properties, muscle strength and muscle mass were similar in both groups; however, axSpA patients showed a decrease in muscle performance. None of the studied SNPs were associated with disease susceptibility/phenotype, muscle physical properties, muscle strength or muscle mass. However, ACTN3 rs1815739 and VDR rs2228570 were shown to be associated with muscle performance. Conclusion Our results suggest an association between ACTN3 and VDR polymorphisms and muscle performance in axSpA.
Collapse
Affiliation(s)
- Isabel Pimenta
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal.,Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Hugo Mateus
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal.,Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Santiago Rodrigues-Manica
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal.,Centro Hospitalar de Lisboa Ocidental, Hospital de Egas Moniz, Serviço de Reumatologia, Lisboa, Portugal
| | - Rita Pinheiro-Torres
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal.,Centro Hospitalar de Lisboa Ocidental, Hospital de Egas Moniz, Serviço de Reumatologia, Lisboa, Portugal
| | - Agna Neto
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal.,Centro Hospitalar de Lisboa Ocidental, Hospital de Egas Moniz, Serviço de Reumatologia, Lisboa, Portugal
| | - Lúcia Domingues
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal.,Instituto Politécnico de Setúbal, Escola Superior de Saúde, Setúbal, Portugal
| | - Carolina Lage Crespo
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Atlas Sardoo
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal.,Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Pedro Machado
- Centre for Rheumatology and Department of Neuromuscular Diseases, University College London, London, United Kingdom
| | - Jaime C Branco
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal.,Centro Hospitalar de Lisboa Ocidental, Hospital de Egas Moniz, Serviço de Reumatologia, Lisboa, Portugal
| | - Susana N Silva
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Fernando M Pimentel-Santos
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal.,Centro Hospitalar de Lisboa Ocidental, Hospital de Egas Moniz, Serviço de Reumatologia, Lisboa, Portugal
| |
Collapse
|
9
|
Moreno-Pérez V, Machar R, Sanz-Rivas D, Del Coso J. ACTN3 R577X Genotype in Professional and Amateur Tennis Players. J Strength Cond Res 2020; 34:952-956. [PMID: 31917734 DOI: 10.1519/jsc.0000000000003501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Moreno-Pérez, V, Machar, R, Sanz-Rivas, D, and Del Coso, J. ACTN3 R577X genotype in professional and amateur tennis players. J Strength Cond Res 34(4): 952-956, 2020-Several investigations have concluded that the RR genotype in the ACTN3 R577X polymorphism is overrepresented in elite athletes of strength- and power-based sports when compared with nonelite populations, suggesting a positive role of this genotype on physical performance. However, no investigation has been geared to determine the distribution of this polymorphism in elite tennis players. The aim of this study was to compare the frequency distribution of the ACTN3 R577X genotype in professional and nonprofessional tennis players to determine whether this polymorphism has an association with tennis performance. A total of 128 tennis players volunteered to participate in this study. From the total, 56 were professional tennis players (16 were top 10 in Women Tennis Association/Association of Tennis Professionals [WTA/ATP] rankings, 22 were top 100 in WTA/ATP rankings, and 18 were ranked > top 100 in the WTA/ATP rankings), and the remaining 72 were categorized as nonprofessional. Chi-squared tests were used to assess differences in the distribution of RR, RX, and XX genotypes between the different performance categories. The distribution of the RR, RX, and XX genotypes was similar in professional (33.9, 48.2, and 17.9%) and nonprofessional tennis players (37.5, 40.3, and 22.2%; p = 0.650). Furthermore, the distribution of the ACTN3 R577X polymorphism was not different in top 10 (25.0, 50.0, and 25.0%), top 100 (31.8, 50.0, and 18.2%), and WTA/ATP-ranked players (44.4, 44.4, and 11.2%; p = 0.847). These results indicate that the distribution of the ACTN3 R577X genotype is similar in tennis players of very different performance levels. This outcome suggests that the ACTN3 genotype was not associated with elite tennis performance.
Collapse
Affiliation(s)
- Victor Moreno-Pérez
- Department of Pathology and Surgery, Miguel Hernandez University, San Juan de Alicante, Spain.,Sports Research Center, Miguel Hernandez University of Elche, Alicante, Spain
| | - Reid Machar
- Department of Innovation, Tennis Australia, Melbourne, Victoria, Australia
| | - David Sanz-Rivas
- Tennis Performance Research Group, Madrid, Spain.,Royal Spanish Tennis Federation (RFET), Madrid, Spain; and
| | - Juan Del Coso
- Center for Sport Studies, Rey Juan Carlos University, Fuenlabrada, Spain
| |
Collapse
|
10
|
Nicot R, Chung K, Vieira AR, Raoul G, Ferri J, Sciote JJ. Condyle modeling stability, craniofacial asymmetry and ACTN3 genotypes: Contribution to TMD prevalence in a cohort of dentofacial deformities. PLoS One 2020; 15:e0236425. [PMID: 32726330 PMCID: PMC7390436 DOI: 10.1371/journal.pone.0236425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/06/2020] [Indexed: 01/01/2023] Open
Abstract
Craniofacial asymmetry, mandibular condylar modeling and temporomandibular joint disorders are common comorbidities of skeletally disproportionate malocclusions, but etiology of occurrence together is poorly understood. We compared asymmetry, condyle modeling stability and temporomandibular health in a cohort of 128 patients having orthodontics and orthognathic surgery to correct dentofacial deformity malocclusions. We also compared ACTN3 and ENPP1 genotypes for association to clinical conditions. Pre-surgical posterior-anterior cephalometric and panometric radiographic analyses; jaw pain and function questionnaire and clinical examination of TMD; and SNP-genotype analysis from saliva samples were compared to assess interrelationships. Almost half had asymmetries in need of surgical correction, which could be subdivided into four distinct morphological patterns. Asymmetric condyle modeling between sides was significantly greater in craniofacial asymmetry, but most commonly had an unanticipated pattern. Often, longer or larger condyles occurred on the shorter mandibular ramus side. Subjects with longer ramus but dimensionally smaller condyles were more likely to have self-reported TMD symptoms (p = 0.023) and significantly greater clinical diagnosis of TMD (p = 0 .000001), with masticatory myalgia most prominent. Genotyping found two significant genotype associations for ACTN3 rs1671064 (Q523R missense) p = 0.02; rs678397 (intronic SNP) p = 0.04 and one significant allele association rs1815739 (R577X nonsense) p = 0.00. Skeletal asymmetry, unusual condyle modeling and TMD are common and interrelated components of many dentofacial deformities. Imbalanced musculoskeletal functional adaptations and genetic or epigenetic influences contribute to the etiology, and require further investigation.
Collapse
Affiliation(s)
- Romain Nicot
- Department of Oral and Maxillofacial Surgery, Univ. Lille, Inserm, CHU Lille, U1008—Controlled Drug Delivery Systems and Biomaterials, Lille, France
- * E-mail:
| | - Kay Chung
- Department of Orthodontics, Temple University, Philadelphia, PA, United States of America
| | - Alexandre R. Vieira
- Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States of America
| | - Gwénaël Raoul
- Department of Oral and Maxillofacial Surgery, Univ. Lille, Inserm, CHU Lille, U1008—Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - Joël Ferri
- Department of Oral and Maxillofacial Surgery, Univ. Lille, Inserm, CHU Lille, U1008—Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - James J. Sciote
- Department of Orthodontics, Temple University, Philadelphia, PA, United States of America
| |
Collapse
|
11
|
John R, Dhillon MS, Dhillon S. Genetics and the Elite Athlete: Our Understanding in 2020. Indian J Orthop 2020; 54:256-263. [PMID: 32399143 PMCID: PMC7205921 DOI: 10.1007/s43465-020-00056-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/17/2020] [Indexed: 02/04/2023]
Abstract
Modern competitive sport has evolved so much that athletes would go to great extremes to develop themselves into champions; medicine has also evolved to the point that many genetic elements have been identified to be associated with specific athletic traits, and genetic alterations are also possible. The current review examines the published literature and looks at three important factors: genetic polymorphism influencing sporting ability, gene doping and genetic tendency to injury. The ACTN3 gene has an influence on type II muscle fibres, with the R allele being advantageous to power sports like sprinting and the XX genotype being associated with lower muscle strength and sprinting ability. The ACE gene polymorphisms are associated with cardio-respiratory efficiency and could influence endurance athletes. Many other genes are being looked at, with specific focus on those that are potentially related to enhancement of athletic ability. Recognition of these specific gene polymorphisms brings into play the concept of genetic engineering in athletes, which constitutes gene doping and is outlawed. This has the potential to develop into the next big threat in elite sports; gene doping could have dangerous and even fatal outcomes, as the knowledge of gene therapy is still in its infancy. Genetic predisposition to injury is also being identified; recent publications have increased the awareness of gene polymorphisms predisposing to injuries of ligaments and tendons due to influence on collagen structure and extracellular matrix. Ongoing work is looking at identifying the same genes from different races and different sexes to see if there are quantitative racial or sexual differences. All of the above have led to serious ethical concerns; in the twenty-first century some sports associations and some countries are looking at genetic testing for their players. Unfortunately, the science is still developing, and the experience of its application is limited worldwide. Nevertheless, this field has caught the imagination of both the public and the sportsperson, and hence the concerned doctors should be aware of the potential problems and current issues involved in understanding genetic traits and polymorphisms, genetic testing and genetic engineering.
Collapse
Affiliation(s)
- Rakesh John
- Department of Trauma and Orthopaedics, Hull University Teaching Hospital, East Yorkshire, Hull, HU3 2JZ UK
| | - Mandeep Singh Dhillon
- Department of Orthopaedics, Post Graduate Institute of Medical Education and Research, Chandigarh, India 160012
| | | |
Collapse
|
12
|
Papadimitriou ID, Eynon N, Yan X, Munson F, Jacques M, Kuang J, Voisin S, North KN, Bishop DJ. A "human knockout" model to investigate the influence of the α-actinin-3 protein on exercise-induced mitochondrial adaptations. Sci Rep 2019; 9:12688. [PMID: 31481717 PMCID: PMC6722100 DOI: 10.1038/s41598-019-49042-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 08/06/2019] [Indexed: 11/09/2022] Open
Abstract
Research in α-actinin-3 knockout mice suggests a novel role for α-actinin-3 as a mediator of cell signalling. We took advantage of naturally-occurring human “knockouts” (lacking α-actinin-3 protein) to investigate the consequences of α-actinin-3 deficiency on exercise-induced changes in mitochondrial-related genes and proteins, as well as endurance training adaptations. At baseline, we observed a compensatory increase of α-actinin-2 protein in ACTN3 XX (α-actinin-3 deficient; n = 18) vs ACTN3 RR (expressing α-actinin-3; n = 19) participants but no differences between genotypes for markers of aerobic fitness or mitochondrial content and function. There was a main effect of genotype, without an interaction, for RCAN1-4 protein content (a marker of calcineurin activity). However, there was no effect of genotype on exercise-induced expression of genes associated with mitochondrial biogenesis, nor post-training physiological changes. In contrast to results in mice, loss of α-actinin-3 is not associated with higher baseline endurance-related phenotypes, or greater adaptations to endurance exercise training in humans.
Collapse
Affiliation(s)
- I D Papadimitriou
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.,Department of Physiology, Mahidol University, Bangkok, Thailand
| | - N Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.,Murdoch Children's Research Institute, Melbourne, Australia
| | - X Yan
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - F Munson
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - M Jacques
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - J Kuang
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - S Voisin
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - K N North
- Murdoch Children's Research Institute, Melbourne, Australia
| | - D J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia. .,School of Medical & Health Sciences, Edith Cowan University, Joondalup, Australia.
| |
Collapse
|
13
|
Jeremic D, Macuzic IZ, Vulovic M, Stevanovic J, Radovanovic D, Varjacic V, Djordjevic D. ACE/ACTN3 GENETIC POLYMORPHISMS AND ATHLETIC PERFORMANCE OF FEMALE SOCCER PLAYERS`. REV BRAS MED ESPORTE 2019. [DOI: 10.1590/1517-869220192501187684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Objective: Previous studies have shown controversial relationships between ACE and ACTN3 gene polymorphisms and sports performance. Thus, the aim of our study was to assess anaerobic and aerobic performance indicators of young female soccer players with different ACE/ACTN3 gene profiles. Methods: Twenty-seven female soccer players aged 16-18 underwent acceleration, speed, strength, anaerobic power and aerobic endurance tests and had their ACE and ACTN3 polymorphisms determined. Results: Based on genetic analysis, they were divided into the following groups: ACE II (n=2), ACE ID (n=11), ACE DD (n=14), ACTN3 XX (n=5), ACTN3 RR (n=7) and ACTN3 RX (n=15). ACE DD and ACE ID groups differed significantly in terms of results achieved on the 5 m sprint test (1.15±0.05 s vs 1.10±0.05 s, P=0.42). ACTN3 RR and RX achieved better results than the ACTN3 XX group in seven continuous vertical jumps (26.57±1.59 cm vs 25.77±2.51 cm vs 22.86±1.16 cm, respectively; P=0.007 for RR vs XX and P=0.021 for RX vs XX). Conclusion: High prevalence of ACE DD and ACTN3 RX genotypes in our subjects may suggest that faster and more powerful young females tend to perform better in soccer. Nevertheless, the absence of differences in most of the physical test results indicates that different genotypes are compatible with high-level soccer performance, meaning that it is the phenotype-genotype interaction that makes a successful female soccer player. Level of Evidence I, Prognostic studies — Investigating the effect of a patient characteristic on disease outcome.
Collapse
|
14
|
Houweling PJ, Papadimitriou ID, Seto JT, Pérez LM, Coso JD, North KN, Lucia A, Eynon N. Is evolutionary loss our gain? The role of
ACTN3
p.Arg577Ter (R577X) genotype in athletic performance, ageing, and disease. Hum Mutat 2018; 39:1774-1787. [DOI: 10.1002/humu.23663] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Peter J. Houweling
- Murdoch Children's Research Institute Melbourne, Victoria Australia
- Department of Paediatrics University of Melbourne The Royal Children's Hospital Melbourne, Victoria Australia
| | | | - Jane T. Seto
- Murdoch Children's Research Institute Melbourne, Victoria Australia
- Department of Paediatrics University of Melbourne The Royal Children's Hospital Melbourne, Victoria Australia
| | - Laura M. Pérez
- Universidad Europea de Madrid (Faculty of Sport Sciences) Madrid Spain
- Instituto de Investigación Hospital 12 de Octubre Madrid Spain
| | - Juan Del Coso
- Exercise Physiology Laboratory Camilo José Cela University Madrid Spain
| | - Kathryn N. North
- Murdoch Children's Research Institute Melbourne, Victoria Australia
- Department of Paediatrics University of Melbourne The Royal Children's Hospital Melbourne, Victoria Australia
| | - Alejandro Lucia
- Universidad Europea de Madrid (Faculty of Sport Sciences) Madrid Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable Madrid Spain
| | - Nir Eynon
- Institute for Health and Sport (iHeS) Victoria University Victoria Australia
| |
Collapse
|
15
|
The relationship between ACTN3 R577X gene polymorphism and physical performance in amateur soccer players and sedentary individuals. Biol Sport 2018; 36:9-16. [PMID: 30899134 PMCID: PMC6413569 DOI: 10.5114/biolsport.2018.78900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/02/2018] [Accepted: 07/02/2018] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to determine the distribution of ACTN3 R577X gene polymorphism in soccer players and sedentary individuals, and to investigate the relationship of this distribution with performance tests. A total of 100 soccer players and 101 sedentary individuals were enrolled in the study. Standing long jump and countermovement jump (with arm swing, without arm swing and repeated) scores were recorded, using a jump meter. Maximum VO2 levels were measured using a treadmill-connected cardiopulmonary exercise device, Masterscreen CPX. ACTN3 R577X polymorphism was evaluated by real-time PCR. ACTN3 R577X genotype distribution was found to be similar in soccer players and controls (p>0.05). The only statistically significant finding was a shorter countermovement jump with arm swing scores in the RR-genotyped soccer players, compared with their RX genotyped counterparts (p<0.05). In the soccer player group, RX-genotyped subjects were observed to have lower respiratory threshold values compared with RR-genotyped subjects (p<0.05). No significant correlation was detected between this distribution and performance test results. ACTN3 R577X genotype distribution was found to have no effect on sprint and endurance characteristics in amateur soccer players. The ACTN3 R577X polymorphism may not be a specific enough genetic marker to determine athletic performance in soccer.
Collapse
|
16
|
Moraes V, Trapé A, Ferezin L, Gonçalves T, Monteiro C, Bueno Junior C. Association of ACE ID and ACTN3 C>T genetic polymorphisms with response to a multicomponent training program in physical performance in women from 50 to 70 years. Sci Sports 2018. [DOI: 10.1016/j.scispo.2018.03.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Papadimitriou ID, Lockey SJ, Voisin S, Herbert AJ, Garton F, Houweling PJ, Cieszczyk P, Maciejewska-Skrendo A, Sawczuk M, Massidda M, Calò CM, Astratenkova IV, Kouvatsi A, Druzhevskaya AM, Jacques M, Ahmetov II, Stebbings GK, Heffernan S, Day SH, Erskine R, Pedlar C, Kipps C, North KN, Williams AG, Eynon N. No association between ACTN3 R577X and ACE I/D polymorphisms and endurance running times in 698 Caucasian athletes. BMC Genomics 2018; 19:13. [PMID: 29298672 PMCID: PMC5753575 DOI: 10.1186/s12864-017-4412-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/22/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Studies investigating associations between ACTN3 R577X and ACE I/D genotypes and endurance athletic status have been limited by small sample sizes from mixed sport disciplines and lack quantitative measures of performance. AIM To examine the association between ACTN3 R577X and ACE I/D genotypes and best personal running times in a large homogeneous cohort of endurance runners. METHODS We collected a total of 1064 personal best 1500, 3000, 5000 m and marathon running times of 698 male and female Caucasian endurance athletes from six countries (Australia, Greece, Italy, Poland, Russia and UK). Athletes were genotyped for ACTN3 R577X and ACE ID variants. RESULTS There was no association between ACTN3 R577X or ACE I/D genotype and running performance at any distance in men or women. Mean (SD) marathon times (in s) were for men: ACTN3 RR 9149 (593), RX 9221 (582), XX 9129 (582) p = 0.94; ACE DD 9182 (665), ID 9214 (549), II 9155 (492) p = 0.85; for women: ACTN3 RR 10796 (818), RX 10667 (695), XX 10675 (553) p = 0.36; ACE DD 10604 (561), ID 10766 (740), II 10771 (708) p = 0.21. Furthermore, there were no associations between these variants and running time for any distance in a sub-analysis of athletes with personal records within 20% of world records. CONCLUSIONS Thus, consistent with most case-control studies, this multi-cohort quantitative analysis demonstrates it is unlikely that ACTN3 XX genotype provides an advantage in competitive endurance running performance. For ACE II genotype, some prior studies show an association but others do not. Our data indicate it is also unlikely that ACE II genotype provides an advantage in endurance running.
Collapse
Affiliation(s)
- Ioannis D Papadimitriou
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia
| | - Sarah J Lockey
- Sports Genomics Laboratory, Manchester Metropolitan University, Crewe, UK
| | - Sarah Voisin
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia
| | - Adam J Herbert
- Sports Genomics Laboratory, Manchester Metropolitan University, Crewe, UK
| | - Fleur Garton
- Institute for Molecular Bioscience, University of Queensland, Queensland, Australia
| | | | - Pawel Cieszczyk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | | | - Marek Sawczuk
- Faculty of Tourism and Recreation, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - Myosotis Massidda
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Carla Maria Calò
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Irina V Astratenkova
- Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, St Petersburg, Russia
| | - Anastasia Kouvatsi
- Department of Genetics Development and Molecular Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasiya M Druzhevskaya
- Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, St Petersburg, Russia
| | - Macsue Jacques
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia
| | - Ildus I Ahmetov
- Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, St Petersburg, Russia.,Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia
| | | | - Shane Heffernan
- Sports Genomics Laboratory, Manchester Metropolitan University, Crewe, UK
| | - Stephen H Day
- Sports Genomics Laboratory, Manchester Metropolitan University, Crewe, UK
| | - Robert Erskine
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute of Sport, Exercise and Health, University College London, London, UK
| | - Charles Pedlar
- School of Sport, Health and Applied Science, St Mary's University College, Twickenham, UK
| | - Courtney Kipps
- Institute of Sport, Exercise and Health, University College London, London, UK
| | - Kathryn N North
- Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Victoria, Australia
| | - Alun G Williams
- Sports Genomics Laboratory, Manchester Metropolitan University, Crewe, UK.,Institute of Sport, Exercise and Health, University College London, London, UK
| | - Nir Eynon
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia. .,Murdoch Children's Research Institute, Melbourne, Australia.
| |
Collapse
|
18
|
Ben-Zaken S, Eliakim A, Nemet D, Rabinovich M, Kassem E, Meckel Y. ACTN3 Polymorphism: Comparison Between Elite Swimmers and Runners. SPORTS MEDICINE-OPEN 2015; 1:13. [PMID: 26284168 PMCID: PMC4532721 DOI: 10.1186/s40798-015-0023-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 05/20/2015] [Indexed: 11/25/2022]
Abstract
Background The human ACTN3 gene encodes α-actinin-3, an actin-binding protein with a pivotal role in muscle structure and metabolism. A common genetic single nucleotide polymorphism (SNP) at codon 577 of the ACTN3 results in the replacement of an arginine (R) with a stop codon (X). The R allele is a normal functional version of the gene, whereas the X allele contains a sequence change that completely stops production of functional α-actinin-3 protein. The ACTN3 R577X polymorphism was found to be associated with power athletic performance especially among track and field athletes. The aim of the current study was to compare allelic and genotype frequencies of the ACTN3 R577X polymorphism among runners and swimmers specializing in different distances, and >non-athletic controls. Methods One hundred and thirty-seven runners, 91 swimmers and 217 controls, participated in the study. Runners were assigned to two subgroups according to their event specialty—long-distance runners (LDR) and short-distance runners (SDR). Swimmers were also assigned to two subgroups according to their main swimming event—long-distance swimmers (LDS) and short-distance swimmers (SDS). Genomic DNA was extracted from peripheral EDTA-treated anti-coagulated blood using a standard protocol. Genotypes were determined using the Taqman allelic discrimination assay. Results Runners’ genotype and allele differed significantly between LDR, SDR, and controls, with the lowest prevalence of RR genotype and R allele among LDR. XX genotype and X allele prevalence was significantly higher among LDR compared to the other groups (p < 0.01 for all). On the other hand, swimmers’ genotype and allele frequencies did not differ significantly between subgroups (LDS and SDS). Yet, LDS had significantly higher RR genotype and R allele frequencies compared to LDR. Conclusions The findings suggest that while ACTN3 R577X polymorphism is a genetic polymorphism that may distinguish between SDR and LDR, it cannot differentiate significantly between SDS and LDS. Trial Registration ClinicalTrials.gov: NCT01319032 Key Points ACTN3 R577X polymorphism is largely associated with running events specialization, with high prevalence of RR genotype and R allele frequency among short-distance runners compare to long-distance runners. Unlike in running, ACTN3 R577X polymorphism is not associated with swimming specialization. The inability of the ACTN3 R577X polymorphism to distinguish between swimmers specializing in different events, presumably since other factors such as body physique, technique, tactics, etc., are more likely to determine such a distinction.
Collapse
Affiliation(s)
- Sigal Ben-Zaken
- Genetics and Molecular Biology Laboratory, The Zinman College of Physical Education and Sports Sciences at the Wingate Institute, Netanya, 42902 Israel
| | - Alon Eliakim
- Child Health and Sports Center, Pediatric Department, Meir Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dan Nemet
- Child Health and Sports Center, Pediatric Department, Meir Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Moran Rabinovich
- Genetics and Molecular Biology Laboratory, The Zinman College of Physical Education and Sports Sciences at the Wingate Institute, Netanya, 42902 Israel
| | - Eias Kassem
- Pediatric Department, Hillel-Yafe Medical Center, Hadera, Israel
| | - Yoav Meckel
- Genetics and Molecular Biology Laboratory, The Zinman College of Physical Education and Sports Sciences at the Wingate Institute, Netanya, 42902 Israel
| |
Collapse
|
19
|
Abstract
Understanding the genetic architecture of athletic performance is an important step in the development of methods for talent identification in sport. Research concerned with molecular predictors has highlighted a number of potentially important DNA polymorphisms contributing to predisposition to success in certain types of sport. This review summarizes the evidence and mechanistic insights on the associations between DNA polymorphisms and athletic performance. A literature search (period: 1997-2014) revealed that at least 120 genetic markers are linked to elite athlete status (77 endurance-related genetic markers and 43 power/strength-related genetic markers). Notably, 11 (9%) of these genetic markers (endurance markers: ACE I, ACTN3 577X, PPARA rs4253778 G, PPARGC1A Gly482; power/strength markers: ACE D, ACTN3 Arg577, AMPD1 Gln12, HIF1A 582Ser, MTHFR rs1801131 C, NOS3 rs2070744 T, PPARG 12Ala) have shown positive associations with athlete status in three or more studies, and six markers (CREM rs1531550 A, DMD rs939787 T, GALNT13 rs10196189 G, NFIA-AS1 rs1572312 C, RBFOX1 rs7191721 G, TSHR rs7144481 C) were identified after performing genome-wide association studies (GWAS) of African-American, Jamaican, Japanese, and Russian athletes. On the other hand, the significance of 29 (24%) markers was not replicated in at least one study. Future research including multicenter GWAS, whole-genome sequencing, epigenetic, transcriptomic, proteomic, and metabolomic profiling and performing meta-analyses in large cohorts of athletes is needed before these findings can be extended to practice in sport.
Collapse
Affiliation(s)
- Ildus I Ahmetov
- Sport Technology Research Center, Volga Region State Academy of Physical Culture, Sport and Tourism, Kazan, Russia; Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia.
| | - Olga N Fedotovskaya
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Schadock I, Schneider A, Silva ED, Buchweitz MRD, Correa MN, Pesquero JB, Paredes-Gamero EJ, Araujo RC, Barros CC. Simple Method to Genotype the ACTN3 r577x Polymorphism. Genet Test Mol Biomarkers 2015; 19:253-7. [PMID: 25831089 DOI: 10.1089/gtmb.2014.0299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The alpha-actinin-3 r577x polymorphism (rs1815739) is one of the most important polymorphisms associated with athletic performance. This single-nucleotide mutation leads to a premature stop codon, resulting in a nonfunctional protein product. The presence of the dominant R allele is associated with full power skeletal muscle contraction. Homozygosity for the X allele is correlated with more efficient energy disposure. Restriction fragment length polymorphism and real-time polymerase chain reaction (PCR) are the standard methods used to genotype this polymorphism, but they are expensive and require special equipments. Here, we present a simple and cost-efficient method to genotype the ACTN3 r577x polymorphism by a single PCR. External primers yield a 690-bp product that indicates the template quality. Internal primers produce a 413-bp product if the R allele is present and a 318-bp product if the X allele is present. Our four-primer genotyping PCR was validated by the standard real-time PCR, generally used to genotype this single-nucleotide polymorphism, demonstrating the accuracy of this method. This protocol is perfect for small- or large-scale cohort genotyping of the ACTN3 r577x polymorphism.
Collapse
Affiliation(s)
- Ines Schadock
- 1 Laboratory of Nutrigenomics and Metabology, Federal University of Pelotas , Pelotas, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kim K, Ahn N, Cheun W, Byun J, Joo Y. Association of Angiotensin Converting Enzyme I/D and α-actinin-3 R577X Genotypes with Growth Factors and Physical Fitness in Korean Children. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:131-9. [PMID: 25729275 PMCID: PMC4342733 DOI: 10.4196/kjpp.2015.19.2.131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 01/01/2023]
Abstract
This study analyzed the differences in aerobic and anaerobic exercise ability and growth-related indicators, depending on the polymorphism of the ACE and the ACTN3 genes, to understand the genetic influence of exercise ability in the growth process of children. The subjects of the study consisted of elementary school students (n=856, age 10.32±0.07 yr). The anthropometric parameters, physical fitness and growth factors were compared among groups of the ACE I/D or the ACTN3 R577X polymorphisms. There were no significant differences between the anthropometric parameters, physical fitness and growth factors for the ACE gene ID or the ACTN3 gene R577X polymorphism. However, the DD type of ACE gene was highest in the side step test (p<0.05), and the DD type was significantly higher than the II+ID type (p<0.05) in the early bone age. The combined group of the ACE gene II+ID and the ACTN3 gene XX type significantly showed lower early bone age (p< 0.05). This study did not find any individual or compounding effects of the polymorphism in the ACE I/D or the ACTN3 R577X polymorphisms on the anthropometric parameters, physical fitness and growth factors of Korean children. However, the exercise experience and the DD type of the ACE gene may affect the early maturity of the bones.
Collapse
Affiliation(s)
- Kijin Kim
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu 704-701, Korea
| | - Nayoung Ahn
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu 704-701, Korea
| | - Wookwang Cheun
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu 704-701, Korea
| | - Jayoung Byun
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu 704-701, Korea
| | - Youngsik Joo
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu 704-701, Korea
| |
Collapse
|
22
|
Abstract
A common polymorphism in the α
-actinin-3
(
ACTN3
R577X) gene represents one of the most widely examined variations in terms of performance and genetic predisposition to certain sports. The aim of the present study was to examine the
ACTN3
R577X polymorphism in elite Turkish wind surfers. The genotyping procedure was carried out by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Five male and three female wind surfers, eight elite wind surfers in total, were enrolled in the study. Five of the surfers had RX, two had XX and one had RR genotypes. Previous findings indicated that the X allele was the endurance allele. Our findings were in agreement with the previous reports. Seven of our subjects had at least one copy of the X allele that was considered to have a tendency to prolong endurance. Our preliminary results must be supported with further studies in greater numbers of subjects to clarify the effect of gene polymorphism.
Collapse
|
23
|
Grealy R, Smith CL, Chen T, Hiller D, Haseler LJ, Griffiths LR. The genetics of endurance: Frequency of the ACTN3 R577X variant in Ironman World Championship athletes. J Sci Med Sport 2013; 16:365-71. [DOI: 10.1016/j.jsams.2012.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 08/29/2012] [Accepted: 08/31/2012] [Indexed: 10/27/2022]
|
24
|
Friedlander SM, Herrmann AL, Lowry DP, Mepham ER, Lek M, North KN, Organ CL. ACTN3 allele frequency in humans covaries with global latitudinal gradient. PLoS One 2013; 8:e52282. [PMID: 23359641 PMCID: PMC3554748 DOI: 10.1371/journal.pone.0052282] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/16/2012] [Indexed: 11/29/2022] Open
Abstract
A premature stop codon in ACTN3 resulting in α-actinin-3 deficiency (the ACTN3 577XX genotype) is common in humans and reduces strength, muscle mass, and fast-twitch fiber diameter, but increases the metabolic efficiency of skeletal muscle. Linkage disequilibrium data suggest that the ACTN3 R577X allele has undergone positive selection during human evolution. The allele has been hypothesized to be adaptive in environments with scarce resources where efficient muscle metabolism would be selected. Here we test this hypothesis by using recently developed comparative methods that account for evolutionary relatedness and gene flow among populations. We find evidence that the ACTN3 577XX genotype evolved in association with the global latitudinal gradient. Our results suggest that environmental variables related to latitudinal variation, such as species richness and mean annual temperature, may have influenced the adaptive evolution of ACTN3 577XX during recent human history.
Collapse
Affiliation(s)
- Scott M. Friedlander
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
| | - Amanda L. Herrmann
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
| | - Daniel P. Lowry
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Emily R. Mepham
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
| | - Monkol Lek
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Discipline of Paediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Kathryn N. North
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Discipline of Paediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Chris L. Organ
- Department of Anthropology, University of Utah, Salt Lake City, Utah, United States of America
- Department of Paleontology, Natural History Museum of Utah, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
25
|
Ma F, Yang Y, Li X, Zhou F, Gao C, Li M, Gao L. The association of sport performance with ACE and ACTN3 genetic polymorphisms: a systematic review and meta-analysis. PLoS One 2013; 8:e54685. [PMID: 23358679 PMCID: PMC3554644 DOI: 10.1371/journal.pone.0054685] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 12/17/2012] [Indexed: 11/18/2022] Open
Abstract
Background Genetic polymorphism is suggested to be associated with human physical performance. The angiotensin I-converting enzyme insertion/deletion (ACE I/D) polymorphism and the α-actinin-3 gene (ACTN3) R577X polymorphism have been most widely studied for such association analysis. However, the findings are frequently heterogeneous. We aim to summarize the associations of ACE I/D and ACTN3 R577X with sport performance by means of meta-analysis. Methods We systematically reviewed and quantitatively summarized published studies, until October 31, 2012, on relationship between ACE/ACTN3 genetic polymorphisms and sports performance, respectively. Results A total of 366 articles on ACE and 88 articles on ACTN3 were achieved by literature search. A significant association was found for ACE II genotype compared to D allele carriage (DD+ID) with increased possibility of physical performance (OR, 1.23; 95% CI, 1.05–1.45). With respect to sport discipline, the II genotype was found to be associated with performance in endurance athletes (OR, 1.35; 95% CI, 1.17–1.55). On the other hand, no significant association was observed for ACTN3 RR genotype as compared to X allele carriage (XX+RX) (OR, 1.03; 95% CI, 0.92–1.15). However, when restricted the analyses to power events, a significant association was observed (OR, 1.21; 95% CI, 1.03–1.42). Conclusion Our results provide more solid evidence for the associations between ACE II genotype and endurance events and between ACTN3 R allele and power events. The findings suggest that the genetic profiles might influence human physical performance.
Collapse
Affiliation(s)
- Fang Ma
- The Kinesiology Laboratory, Physical Education Institute, Xinjiang Normal University, Urumqi, China
| | - Yu Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiangwei Li
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Feng Zhou
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Cong Gao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mufei Li
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lei Gao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|
26
|
Cieszczyk P, Sawczuk M, Maciejewska-Karlowska A, Ficek K. ACTN3 R577X polymorphism in top-level Polish rowers. J Exerc Sci Fit 2012. [DOI: 10.1016/j.jesf.2012.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
27
|
Alfred T, Ben-Shlomo Y, Cooper R, Hardy R, Cooper C, Deary IJ, Gunnell D, Harris SE, Kumari M, Martin RM, Moran CN, Pitsiladis YP, Ring SM, Sayer AA, Smith GD, Starr JM, Kuh D, Day INM. ACTN3 genotype, athletic status, and life course physical capability: meta-analysis of the published literature and findings from nine studies. Hum Mutat 2011; 32:1008-18. [PMID: 21542061 PMCID: PMC3174315 DOI: 10.1002/humu.21526] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 04/19/2011] [Indexed: 12/03/2022]
Abstract
The ACTN3 R577X (rs1815739) genotype has been associated with
athletic status and muscle phenotypes, although not consistently. Our objective
was to conduct a meta-analysis of the published literature on athletic status
and investigate its associations with physical capability in several new
population-based studies. Relevant data were extracted from studies in the
literature, comparing genotype frequencies between controls and sprint/power and
endurance athletes. For life course physical capability, data were used from two
studies of adolescents and seven studies in the Healthy Ageing across the Life
Course (HALCyon) collaborative research program, involving individuals aged
between 53 and 90+ years. We found evidence from the published literature
to support the hypothesis that in Europeans the RR genotype is more common among
sprint/power athletes compared with their controls. There is currently no
evidence that the X allele is advantageous to endurance athleticism. We found no
association between R577X and grip strength (P = 0.09,
n = 7,672 in males; P =
0.90, n = 7,839 in females), standing balance, timed get
up and go, or chair rises in our studies of physical capability. The
ACTN3 R577X genotype is associated with sprint/power
athletic status in Europeans, but does not appear to be associated with
objective measures of physical capability in the general population. Hum Mutat
32:1–11, 2011. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Tamuno Alfred
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Berman Y, North KN. A gene for speed: the emerging role of alpha-actinin-3 in muscle metabolism. Physiology (Bethesda) 2010; 25:250-9. [PMID: 20699471 DOI: 10.1152/physiol.00008.2010] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A common polymorphism (R577X) in the ACTN3 gene results in complete deficiency of alpha-actinin-3 protein in approximately 16% of humans worldwide. The presence of alpha-actinin-3 protein is associated with improved sprint/power performance in athletes and the general population. Despite this, there is evidence that the null genotype XX has been acted on by recent positive selection, likely due to its emerging role in the regulation of muscle metabolism. alpha-Actinin-3 deficiency reduces the activity of glycogen phosphorylase and results in a fundamental shift toward more oxidative pathways of energy utilization.
Collapse
Affiliation(s)
- Yemima Berman
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Westmead, Australia
| | | |
Collapse
|
29
|
Abstract
Skeletal muscle is an important link to an individual’s health and quality of life. The primary clinical interest in skeletal muscle is muscle strength. Muscle strength is a complex trait, influenced by biological, morphological, psychological, and environmental factors. Muscle strength is highly variable among individuals and has a strong genetic component. Though several genetic variants have been associated with muscle strength, genes comprising this genetic component are generally unknown. Research examining associations between genetic variants and muscle strength suffers from scientific challenges such as lack of replication, population stratification, and complexity of defining muscle phenotypes. Additionally, non-scientific challenges such as privacy and protection of genetic information and the questionable value of direct-to-consumer genetic marketing exist. How these challenges will influence research examining genetics and muscle strength is uncertain. Findings from this research may lead to improved treatment for muscle-related disease as well as improved health and quality of life. This may be realized through the development of genetic profiles that clinicians can implement into personalized treatment plans. This review will summarize the current literature regarding genetic variation and muscle strength. The authors’ focus will be on the muscle strength response to resistance training. Additionally, the authors discuss challenges and implications of this research.
Collapse
Affiliation(s)
- Matthew Kostek
- Department of Kinesiology, University of Connecticut, Storrs, CT,
| | - Monica J. Hubal
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC
| | - Linda S. Pescatello
- Department of Kinesiology & Human Performance Laboratory, NEAG School of Education, University of Connecticut, Storrs, CT
| |
Collapse
|
30
|
Massidda M, Vona G, Calò CM. Association Between the ACTN3 R577X Polymorphism and Artistic Gymnastic Performance in Italy. Genet Test Mol Biomarkers 2009; 13:377-80. [DOI: 10.1089/gtmb.2008.0157] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Myosotis Massidda
- Department of Experimental Biology, University of Cagliari, Cagliari, Italy
| | - Giuseppe Vona
- Department of Experimental Biology, University of Cagliari, Cagliari, Italy
| | - Carla M. Calò
- Department of Experimental Biology, University of Cagliari, Cagliari, Italy
| |
Collapse
|
31
|
Bray MS, Hagberg JM, Pérusse L, Rankinen T, Roth SM, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes: the 2006-2007 update. Med Sci Sports Exerc 2009; 41:35-73. [PMID: 19123262 DOI: 10.1249/mss.0b013e3181844179] [Citation(s) in RCA: 309] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This update of the human gene map for physical performance and health-related fitness phenotypes covers the research advances reported in 2006 and 2007. The genes and markers with evidence of association or linkage with a performance or a fitness phenotype in sedentary or active people, in responses to acute exercise, or for training-induced adaptations are positioned on the map of all autosomes and sex chromosomes. Negative studies are reviewed, but a gene or a locus must be supported by at least one positive study before being inserted on the map. A brief discussion on the nature of the evidence and on what to look for in assessing human genetic studies of relevance to fitness and performance is offered in the introduction, followed by a review of all studies published in 2006 and 2007. The findings from these new studies are added to the appropriate tables that are designed to serve as the cumulative summary of all publications with positive genetic associations available to date for a given phenotype and study design. The fitness and performance map now includes 214 autosomal gene entries and quantitative trait loci plus seven others on the X chromosome. Moreover, there are 18 mitochondrial genes that have been shown to influence fitness and performance phenotypes. Thus,the map is growing in complexity. Although the map is exhaustive for currently published accounts of genes and exercise associations and linkages, there are undoubtedly many more gene-exercise interaction effects that have not even been considered thus far. Finally, it should be appreciated that most studies reported to date are based on small sample sizes and cannot therefore provide definitive evidence that DNA sequence variants in a given gene are reliably associated with human variation in fitness and performance traits.
Collapse
Affiliation(s)
- Molly S Bray
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
De Moor MHM, Spector TD, Cherkas LF, Falchi M, Hottenga JJ, Boomsma DI, De Geus EJC. Genome-wide linkage scan for athlete status in 700 British female DZ twin pairs. Twin Res Hum Genet 2008; 10:812-20. [PMID: 18179392 DOI: 10.1375/twin.10.6.812] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Association studies, comparing elite athletes with sedentary controls, have reported a number of genes that may be related to athlete status. The present study reports the first genome wide linkage scan for athlete status. Subjects were 4488 adult female twins from the TwinsUK Adult Twin Registry (793 monozygotic [MZ] and 1000 dizygotic [DZ] complete twin pairs, and single twins). Athlete status was measured by asking the twins whether they had ever competed in sports and what was the highest level obtained. Twins who had competed at the county or national level were considered elite athletes. Using structural equation modeling in Mx, the heritability of athlete status was estimated at 66%. Seven hundred DZ twin pairs that were successfully genotyped for 1946 markers (736 microsatellites and 1210 SNPs) were included in the linkage analysis. Identical-by-descent probabilities were estimated in Merlin for a 1 cM grid, taking into account the linkage disequilibrium of correlated SNPs. The linkage scan was carried out in Mx using the [Formula: see text]-approach. Suggestive linkages were found on chromosomes 3q22-q24 and 4q31-q34. Both areas converge with findings from previous studies using exercise phenotypes. The peak on 3q22-q24 was found at the SLC9A9 gene. The region 4q31-q34 overlaps with the region for which suggestive linkages were found in two previous linkage studies for physical fitness (FABP2 gene; Bouchard et al., 2000) and physical activity (UCP1 gene; Simonen et al., 2003). Future association studies should further clarify the possible role of these genes in athlete status.
Collapse
Affiliation(s)
- Marleen H M De Moor
- Department of Biological Psychology, Vrije Universiteit Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
33
|
YANG NAN, MACARTHUR DANIELG, WOLDE BEZABHE, ONYWERA VINCENTO, BOIT MICHAELK, LAU SAUYINMARYANN, WILSON RICHARDH, SCOTT ROBERTA, PITSILADIS YANNISP, NORTH KATHRYN. The ACTN3 R577X Polymorphism in East and West African Athletes. Med Sci Sports Exerc 2007; 39:1985-8. [DOI: 10.1249/mss.0b013e31814844c9] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Williams AG, Folland JP. Similarity of polygenic profiles limits the potential for elite human physical performance. J Physiol 2007; 586:113-21. [PMID: 17901117 PMCID: PMC2375556 DOI: 10.1113/jphysiol.2007.141887] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human physical capability is influenced by many environmental and genetic factors, and it is generally accepted that physical capability phenotypes are highly polygenic. However, the ways in which relevant polymorphisms combine to influence the physical capability of individuals and populations are unknown. Initially, the literature was searched to identify associations between 23 genetic polymorphisms and human endurance phenotypes. Next, typical genotype frequencies of those polymorphisms in the general population were obtained from suitable literature. Using probability calculations, we found only a 0.0005% chance of a single individual in the world having the 'preferable' form of all 23 polymorphisms. As the number of DNA variants shown to be associated with human endurance phenotypes continues to increase, the probability of any single individual possessing the 'preferable' form of each polymorphism will become even lower. However, with population turnover, the chance of such genetically gifted individuals existing increases. To examine the polygenic endurance potential of a human population, a 'total genotype score' (for the 23 polymorphisms) was calculated for each individual within a hypothetical population of 1000 000. There was considerable homogeneity in terms of genetic predisposition to high endurance potential, with 99% of people differing by no more than seven genotypes from the typical profile. Consequently, with population turnover world and Olympic records should improve even without further enhancement of environmental factors, as more 'advantageous' polygenic profiles occasionally, though rarely, emerge. More broadly, human potential appears limited by the similarity of polygenic profiles at both the 'elite sport' and 'chronic disorder' ends of the performance continuum.
Collapse
Affiliation(s)
- Alun G Williams
- Institute for Biophysical and Clinical Research into Human Movement, Manchester Metropolitan University, Hassall Road, Alsager, Cheshire, UK.
| | | |
Collapse
|