1
|
Kim J, Daadi EW, Oh T, Daadi ES, Daadi MM. Human Induced Pluripotent Stem Cell Phenotyping and Preclinical Modeling of Familial Parkinson's Disease. Genes (Basel) 2022; 13:1937. [PMID: 36360174 PMCID: PMC9689743 DOI: 10.3390/genes13111937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2022] Open
Abstract
Parkinson's disease (PD) is primarily idiopathic and a highly heterogenous neurodegenerative disease with patients experiencing a wide array of motor and non-motor symptoms. A major challenge for understanding susceptibility to PD is to determine the genetic and environmental factors that influence the mechanisms underlying the variations in disease-associated traits. The pathological hallmark of PD is the degeneration of dopaminergic neurons in the substantia nigra pars compacta region of the brain and post-mortem Lewy pathology, which leads to the loss of projecting axons innervating the striatum and to impaired motor and cognitive functions. While the cause of PD is still largely unknown, genome-wide association studies provide evidence that numerous polymorphic variants in various genes contribute to sporadic PD, and 10 to 15% of all cases are linked to some form of hereditary mutations, either autosomal dominant or recessive. Among the most common mutations observed in PD patients are in the genes LRRK2, SNCA, GBA1, PINK1, PRKN, and PARK7/DJ-1. In this review, we cover these PD-related mutations, the use of induced pluripotent stem cells as a disease in a dish model, and genetic animal models to better understand the diversity in the pathogenesis and long-term outcomes seen in PD patients.
Collapse
Affiliation(s)
- Jeffrey Kim
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Cell Systems and Anatomy, San Antonio, TX 78229, USA
| | - Etienne W. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Thomas Oh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Elyas S. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Marcel M. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Cell Systems and Anatomy, San Antonio, TX 78229, USA
- Department of Radiology, Long School of Medicine, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
2
|
Leduc-Gaudet JP, Hussain SN, Gouspillou G. Parkin: A potential target to promote healthy aging. J Physiol 2022; 600:3405-3421. [PMID: 35691026 DOI: 10.1113/jp282567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/08/2022] [Indexed: 11/08/2022] Open
Abstract
Parkin is an E3 ubiquitin ligase mostly known for its role in regulating the removal of defective mitochondria via mitophagy. However, increasing experimental evidence that Parkin regulates several other aspects of mitochondrial biology in addition to its role in mitophagy has emerged over the past two decades. Indeed, Parkin has been shown to regulate mitochondrial biogenesis and dynamics and mitochondrial-derived vesicle formation, suggesting that Parkin plays key roles in maintaining healthy mitochondria. While Parkin is commonly described as a cytosolic E3 ubiquitin ligase, Parkin was also detected in other cellular compartments, including the nucleus, where it regulates transcription factors and acts as a transcription factor itself. New evidence also suggests that Parkin overexpression can be leveraged to delay aging. In D. melanogaster, for example, Parkin overexpression extends lifespan. In mammals, Parkin overexpression delays hallmarks of aging in several tissues and cell types. Parkin overexpression also confers protection in various models of cellular senescence and neurological disorders closely associated with aging, such as Alzheimer's and Parkinson's diseases. Recently, Parkin overexpression has also been shown to suppress tumor growth. In this review, we discuss newly emerging biological roles of Parkin as a modulator of cellular homeostasis, survival, and healthy aging, and we explore potential mechanisms through which Parkin exerts its beneficial effects on cellular health. Abstract figure legend Parkin: A potential target to promote healthy aging Illustration of key aspects of Parkin biology, including Parkin function and cellular localization and key roles in the regulation of mitochondrial quality control. The organs and systems in which Parkin overexpression was shown to exert protective effects relevant to the promotion of healthy aging are highlighted in the black rectangle at the bottom of the Figure. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jean-Philippe Leduc-Gaudet
- Department of Biomedical Sciences, Veneto Institute of Molecular Medicine, University of Padova, Padova, Italy.,Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, QC, Canada.,Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,Département des sciences de l'activité physique, Faculté des sciences, Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Sabah Na Hussain
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, QC, Canada.,Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Gilles Gouspillou
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, QC, Canada.,Département des sciences de l'activité physique, Faculté des sciences, Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| |
Collapse
|
3
|
Ondaro J, Hernandez-Eguiazu H, Garciandia-Arcelus M, Loera-Valencia R, Rodriguez-Gómez L, Jiménez-Zúñiga A, Goikolea J, Rodriguez-Rodriguez P, Ruiz-Martinez J, Moreno F, Lopez de Munain A, Holt IJ, Gil-Bea FJ, Gereñu G. Defects of Nutrient Signaling and Autophagy in Neurodegeneration. Front Cell Dev Biol 2022; 10:836196. [PMID: 35419363 PMCID: PMC8996160 DOI: 10.3389/fcell.2022.836196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/21/2022] [Indexed: 12/27/2022] Open
Abstract
Neurons are post-mitotic cells that allocate huge amounts of energy to the synthesis of new organelles and molecules, neurotransmission and to the maintenance of redox homeostasis. In neurons, autophagy is not only crucial to ensure organelle renewal but it is also essential to balance nutritional needs through the mobilization of internal energy stores. A delicate crosstalk between the pathways that sense nutritional status of the cell and the autophagic processes to recycle organelles and macronutrients is fundamental to guarantee the proper functioning of the neuron in times of energy scarcity. This review provides a detailed overview of the pathways and processes involved in the balance of cellular energy mediated by autophagy, which when defective, precipitate the neurodegenerative cascade of Parkinson's disease, frontotemporal dementia, amyotrophic lateral sclerosis or Alzheimer's disease.
Collapse
Affiliation(s)
- Jon Ondaro
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Haizea Hernandez-Eguiazu
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maddi Garciandia-Arcelus
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Raúl Loera-Valencia
- Department of Neurology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (KI), Stockholm, Sweden
| | - Laura Rodriguez-Gómez
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Andrés Jiménez-Zúñiga
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Julen Goikolea
- Department of Neurology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (KI), Stockholm, Sweden
| | - Patricia Rodriguez-Rodriguez
- Department of Neurology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (KI), Stockholm, Sweden
| | - Javier Ruiz-Martinez
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Donostia University Hospital, San Sebastian, Spain
| | - Fermín Moreno
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Donostia University Hospital, San Sebastian, Spain
| | - Adolfo Lopez de Munain
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Donostia University Hospital, San Sebastian, Spain
| | - Ian James Holt
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Francisco Javier Gil-Bea
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Gorka Gereñu
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country (UPV-EHU), Leioa, Spain
| |
Collapse
|
4
|
Klonarakis M, De Vos M, Woo E, Ralph L, Thacker JS, Gil-Mohapel J. The three sisters of fate: Genetics, pathophysiology and outcomes of animal models of neurodegenerative diseases. Neurosci Biobehav Rev 2022; 135:104541. [DOI: 10.1016/j.neubiorev.2022.104541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/28/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
|
5
|
Bastioli G, Regoni M, Cazzaniga F, De Luca CMG, Bistaffa E, Zanetti L, Moda F, Valtorta F, Sassone J. Animal Models of Autosomal Recessive Parkinsonism. Biomedicines 2021; 9:biomedicines9070812. [PMID: 34356877 PMCID: PMC8301401 DOI: 10.3390/biomedicines9070812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is the most common neurodegenerative movement disorder. The neuropathological hallmark of the disease is the loss of dopamine neurons of the substantia nigra pars compacta. The clinical manifestations of PD are bradykinesia, rigidity, resting tremors and postural instability. PD patients often display non-motor symptoms such as depression, anxiety, weakness, sleep disturbances and cognitive disorders. Although, in 90% of cases, PD has a sporadic onset of unknown etiology, highly penetrant rare genetic mutations in many genes have been linked with typical familial PD. Understanding the mechanisms behind the DA neuron death in these Mendelian forms may help to illuminate the pathogenesis of DA neuron degeneration in the more common forms of PD. A key step in the identification of the molecular pathways underlying DA neuron death, and in the development of therapeutic strategies, is the creation and characterization of animal models that faithfully recapitulate the human disease. In this review, we outline the current status of PD modeling using mouse, rat and non-mammalian models, focusing on animal models for autosomal recessive PD.
Collapse
Affiliation(s)
- Guendalina Bastioli
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; (G.B.); (M.R.); (L.Z.); (F.V.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Maria Regoni
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; (G.B.); (M.R.); (L.Z.); (F.V.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Federico Cazzaniga
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.C.); (C.M.G.D.L.); (E.B.); (F.M.)
| | - Chiara Maria Giulia De Luca
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.C.); (C.M.G.D.L.); (E.B.); (F.M.)
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Edoardo Bistaffa
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.C.); (C.M.G.D.L.); (E.B.); (F.M.)
| | - Letizia Zanetti
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; (G.B.); (M.R.); (L.Z.); (F.V.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Fabio Moda
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.C.); (C.M.G.D.L.); (E.B.); (F.M.)
| | - Flavia Valtorta
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; (G.B.); (M.R.); (L.Z.); (F.V.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Jenny Sassone
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; (G.B.); (M.R.); (L.Z.); (F.V.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Correspondence:
| |
Collapse
|
6
|
Early Dysfunction of Substantia Nigra Dopamine Neurons in the ParkinQ311X Mouse. Biomedicines 2021; 9:biomedicines9050514. [PMID: 34063112 PMCID: PMC8148213 DOI: 10.3390/biomedicines9050514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/27/2022] Open
Abstract
Mutations in the PARK2 gene encoding the protein parkin cause autosomal recessive juvenile parkinsonism (ARJP), a neurodegenerative disease characterized by early dysfunction and loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). No therapy is currently available to prevent or slow down the neurodegeneration in ARJP patients. Preclinical models are key to clarifying the early events that lead to neurodegeneration and reveal the potential of novel neuroprotective strategies. ParkinQ311X is a transgenic mouse model expressing in DA neurons a mutant parkin variant found in ARJP patients. This model was previously reported to show the neuropathological hallmark of the disease, i.e., the progressive loss of DA neurons. However, the early dysfunctions that precede neurodegeneration have never been investigated. Here, we analyzed SNc DA neurons in parkinQ311X mice and found early features of mitochondrial dysfunction, extensive cytoplasmic vacuolization, and dysregulation of spontaneous in vivo firing activity. These data suggest that the parkinQ311X mouse recapitulates key features of ARJP and provides a useful tool for studying the neurodegenerative mechanisms underlying the human disease and for screening potential neuroprotective drugs.
Collapse
|
7
|
Bortolozzi A, Manashirov S, Chen A, Artigas F. Oligonucleotides as therapeutic tools for brain disorders: Focus on major depressive disorder and Parkinson's disease. Pharmacol Ther 2021; 227:107873. [PMID: 33915178 DOI: 10.1016/j.pharmthera.2021.107873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/05/2021] [Indexed: 12/25/2022]
Abstract
Remarkable advances in understanding the role of RNA in health and disease have expanded considerably in the last decade. RNA is becoming an increasingly important target for therapeutic intervention; therefore, it is critical to develop strategies for therapeutic modulation of RNA function. Oligonucleotides, including antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA mimic (miRNA), and anti-microRNA (antagomir) are perhaps the most direct therapeutic strategies for addressing RNA. Among other mechanisms, most oligonucleotide designs involve the formation of a hybrid with RNA that promotes its degradation by activation of endogenous enzymes such as RNase-H (e.g., ASO) or the RISC complex (e.g. RNA interference - RNAi for siRNA and miRNA). However, the use of oligonucleotides for the treatment of brain disorders is seriously compromised by two main limitations: i) how to deliver oligonucleotides to the brain compartment, avoiding the action of peripheral RNAses? and once there, ii) how to target specific neuronal populations? We review the main molecular pathways in major depressive disorder (MDD) and Parkinson's disease (PD), and discuss the challenges associated with the development of novel oligonucleotide therapeutics. We pay special attention to the use of conjugated ligand-oligonucleotide approach in which the oligonucleotide sequence is covalently bound to monoamine transporter inhibitors (e.g. sertraline, reboxetine, indatraline). This strategy allows their selective accumulation in the monoamine neurons of mice and monkeys after their intranasal or intracerebroventricular administration, evoking preclinical changes predictive of a clinical therapeutic action after knocking-down disease-related genes. In addition, recent advances in oligonucleotide therapeutic clinical trials are also reviewed.
Collapse
Affiliation(s)
- Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain.
| | - Sharon Manashirov
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain; miCure Therapeutics LTD., Tel-Aviv, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Francesc Artigas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| |
Collapse
|
8
|
Petiet A. Current and Emerging MR Methods and Outcome in Rodent Models of Parkinson's Disease: A Review. Front Neurosci 2021; 15:583678. [PMID: 33897339 PMCID: PMC8058186 DOI: 10.3389/fnins.2021.583678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/05/2021] [Indexed: 12/03/2022] Open
Abstract
Parkinson’s disease (PD) is a major neurodegenerative disease characterized by massive degeneration of the dopaminergic neurons in the substantia nigra pars compacta, α-synuclein-containing Lewy bodies, and neuroinflammation. Magnetic resonance (MR) imaging plays a crucial role in the diagnosis and monitoring of disease progression and treatment. A variety of MR methods are available to characterize neurodegeneration and other disease features such as iron accumulation and metabolic changes in animal models of PD. This review aims at giving an overview of how those physiopathological features of PD have been investigated using various MR methods in rodent models. Toxin-based and genetic-based models of PD are first described. MR methods for neurodegeneration evaluation, iron load, and metabolism alterations are then detailed, and the main findings are provided in those models. Ultimately, future directions are suggested for neuroinflammation and neuromelanin evaluations in new animal models.
Collapse
Affiliation(s)
- Alexandra Petiet
- Centre de Neuroimagerie de Recherche, Institut du Cerveau, Paris, France.,Inserm U1127, CNRS UMR 7225, Sorbonne Universités, Paris, France
| |
Collapse
|
9
|
Xu Y, Zhi F, Mao J, Peng Y, Shao N, Balboni G, Yang Y, Xia Y. δ-opioid receptor activation protects against Parkinson's disease-related mitochondrial dysfunction by enhancing PINK1/Parkin-dependent mitophagy. Aging (Albany NY) 2020; 12:25035-25059. [PMID: 33197884 PMCID: PMC7803568 DOI: 10.18632/aging.103970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/31/2020] [Indexed: 04/11/2023]
Abstract
Our previous studies have shown that the δ-opioid receptor (DOR) is an important neuroprotector via the regulation of PTEN-induced kinase 1 (PINK1), a mitochondria-related molecule, under hypoxic and MPP+ insults. Since mitochondrial dysfunctions are observed in both hypoxia and MPP+ insults, this study further investigated whether DOR is cytoprotective against these insults by targeting mitochondria. Through comparing DOR-induced responses to hypoxia versus MPP+-induced parkinsonian insult in PC12 cells, we found that both hypoxia and MPP+ caused a collapse of mitochondrial membrane potential and severe mitochondrial dysfunction. In sharp contrast to its inappreciable effect on mitochondria in hypoxic conditions, DOR activation with UFP-512, a specific agonist, significantly attenuated the MPP+-induced mitochondrial injury. Mechanistically, DOR activation effectively upregulated PINK1 expression and promoted Parkin's mitochondrial translocation and modification, thus enhancing the PINK1-Parkin mediated mitophagy. Either PINK1 knockdown or DOR knockdown largely interfered with the DOR-mediated mitoprotection in MPP+ conditions. Moreover, there was a major difference between hypoxia versus MPP+ in terms of the regulation of mitophagy with hypoxia-induced mitophagy being independent from DOR-PINK1 signaling. Taken together, our novel data suggest that DOR activation is neuroprotective against parkinsonian injury by specifically promoting mitophagy in a PINK1-dependent pathway and thus attenuating mitochondrial damage.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Neurosurgery, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
- Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Department of Aeronautics and Astronautics, Fudan University, Shanghai, China
| | - Feng Zhi
- Department of Neurosurgery, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
- Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jiahao Mao
- Department of Neurosurgery, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
- Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ya Peng
- Department of Neurosurgery, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Naiyuan Shao
- Department of Neurosurgery, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Gianfranco Balboni
- Department of Life and Environment Sciences, University of Cagliari, Cagliari, Italy
| | - Yilin Yang
- Department of Neurosurgery, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
- Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Department of Aeronautics and Astronautics, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Quinn PMJ, Moreira PI, Ambrósio AF, Alves CH. PINK1/PARKIN signalling in neurodegeneration and neuroinflammation. Acta Neuropathol Commun 2020; 8:189. [PMID: 33168089 PMCID: PMC7654589 DOI: 10.1186/s40478-020-01062-w] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
Mutations in the PTEN-induced kinase 1 (PINK1) and Parkin RBR E3 ubiquitin-protein ligase (PARKIN) genes are associated with familial forms of Parkinson’s disease (PD). PINK1, a protein kinase, and PARKIN, an E3 ubiquitin ligase, control the specific elimination of dysfunctional or superfluous mitochondria, thus fine-tuning mitochondrial network and preserving energy metabolism. PINK1 regulates PARKIN translocation in impaired mitochondria and drives their removal via selective autophagy, a process known as mitophagy. As knowledge obtained using different PINK1 and PARKIN transgenic animal models is being gathered, growing evidence supports the contribution of mitophagy impairment to several human pathologies, including PD and Alzheimer’s diseases (AD). Therefore, therapeutic interventions aiming to modulate PINK1/PARKIN signalling might have the potential to treat these diseases. In this review, we will start by discussing how the interplay of PINK1 and PARKIN signalling helps mediate mitochondrial physiology. We will continue by debating the role of mitochondrial dysfunction in disorders such as amyotrophic lateral sclerosis, Alzheimer’s, Huntington’s and Parkinson’s diseases, as well as eye diseases such as age-related macular degeneration and glaucoma, and the causative factors leading to PINK1/PARKIN-mediated neurodegeneration and neuroinflammation. Finally, we will discuss PINK1/PARKIN gene augmentation possibilities with a particular focus on AD, PD and glaucoma.
Collapse
|
11
|
Pingale T, Gupta GL. Classic and evolving animal models in Parkinson's disease. Pharmacol Biochem Behav 2020; 199:173060. [PMID: 33091373 DOI: 10.1016/j.pbb.2020.173060] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease with motor and non-motor symptoms. PD is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and deficiency of dopamine in the striatal region. The primary objective in PD research is to understand the pathogenesis, targets, and development of therapeutic interventions to control the progress of the disease. The anatomical and physiological resemblances between humans and animals gathered the researcher's attention towards the use of animals in PD research. Due to varying age of onset, symptoms, and progression rate, PD becomes heterogeneous which demands the variety of animal models to study diverse features of the disease. Parkinson is a multifactorial disorder, selection of models become important as not a single model shows all the biochemical features of the disease. Currently, conventional pharmacological, neurotoxin-induced, genetically modified and cellular models are available for PD research, but none of them recapitulate all the biochemical characteristics of the disease. In this review, we included the updated knowledge on the main features of currently available in vivo and in vitro models as well as their strengths and weaknesses.
Collapse
Affiliation(s)
- Tanvi Pingale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, India
| | - Girdhari Lal Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, India; School of Pharmacy & Technology Management, SVKM'S NMIMS, Shirpur, Maharashtra, India.
| |
Collapse
|
12
|
Mohamed NV, Larroquette F, Beitel LK, Fon EA, Durcan TM. One Step Into the Future: New iPSC Tools to Advance Research in Parkinson's Disease and Neurological Disorders. JOURNAL OF PARKINSONS DISEASE 2020; 9:265-281. [PMID: 30741685 PMCID: PMC6597965 DOI: 10.3233/jpd-181515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Studying Parkinson’s disease (PD) in the laboratory presents many challenges, the main one being the limited availability of human cells and tissue from affected individuals. As PD is characterized by a loss of dopaminergic (DA) neurons in the brain, it is nearly impossible for researchers to access and extract these cells from living patients. Thus, in the past PD research has focused on the use of patients’ post-mortem tissues, animal models, or immortalized cell lines to dissect cellular pathways of interest. While these strategies deepened our knowledge of pathological mechanisms in PD, they failed to faithfully capture key mechanisms at play in the human brain. The emergence of induced pluripotent stem cell (iPSC) technology is revolutionizing PD research, as it allows for the differentiation and growth of human DA neurons in vitro, holding immense potential not only for modelling PD, but also for identifying novel therapies. However, to reproduce the complexity of the brain’s environment, researchers are recognizing the need to further develop and refine iPSC-based tools. In this review, we provide an overview of different systems now available for the study of PD, with a particular emphasis on the potential and limitations of iPSC as research tools to generate more relevant models of PD pathophysiology and advance the drug discovery process.
Collapse
Affiliation(s)
- Nguyen-Vi Mohamed
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Frédérique Larroquette
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Lenore K Beitel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Edward A Fon
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Thomas M Durcan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
13
|
Grünewald A, Kumar KR, Sue CM. New insights into the complex role of mitochondria in Parkinson’s disease. Prog Neurobiol 2019; 177:73-93. [DOI: 10.1016/j.pneurobio.2018.09.003] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/09/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
|
14
|
McWilliams TG, Barini E, Pohjolan-Pirhonen R, Brooks SP, Singh F, Burel S, Balk K, Kumar A, Montava-Garriga L, Prescott AR, Hassoun SM, Mouton-Liger F, Ball G, Hills R, Knebel A, Ulusoy A, Di Monte DA, Tamjar J, Antico O, Fears K, Smith L, Brambilla R, Palin E, Valori M, Eerola-Rautio J, Tienari P, Corti O, Dunnett SB, Ganley IG, Suomalainen A, Muqit MMK. Phosphorylation of Parkin at serine 65 is essential for its activation in vivo. Open Biol 2018; 8:rsob.180108. [PMID: 30404819 PMCID: PMC6282074 DOI: 10.1098/rsob.180108] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mutations in PINK1 and Parkin result in autosomal recessive Parkinson's disease (PD). Cell culture and in vitro studies have elaborated the PINK1-dependent regulation of Parkin and defined how this dyad orchestrates the elimination of damaged mitochondria via mitophagy. PINK1 phosphorylates ubiquitin at serine 65 (Ser65) and Parkin at an equivalent Ser65 residue located within its N-terminal ubiquitin-like domain, resulting in activation; however, the physiological significance of Parkin Ser65 phosphorylation in vivo in mammals remains unknown. To address this, we generated a Parkin Ser65Ala (S65A) knock-in mouse model. We observe endogenous Parkin Ser65 phosphorylation and activation in mature primary neurons following mitochondrial depolarization and reveal this is disrupted in Parkin S65A/S65A neurons. Phenotypically, Parkin S65A/S65A mice exhibit selective motor dysfunction in the absence of any overt neurodegeneration or alterations in nigrostriatal mitophagy. The clinical relevance of our findings is substantiated by the discovery of homozygous PARKIN (PARK2) p.S65N mutations in two unrelated patients with PD. Moreover, biochemical and structural analysis demonstrates that the ParkinS65N/S65N mutant is pathogenic and cannot be activated by PINK1. Our findings highlight the central role of Parkin Ser65 phosphorylation in health and disease.
Collapse
Affiliation(s)
- Thomas G McWilliams
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK .,Research Programs Unit, Molecular Neurology, University of Helsinki, 00290 Helsinki, Finland
| | - Erica Barini
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Risto Pohjolan-Pirhonen
- Research Programs Unit, Molecular Neurology, University of Helsinki, 00290 Helsinki, Finland.,Neuroscience Center, University of Helsinki, 00290 Helsinki, Finland.,Helsinki University Hospital, 00290 Helsinki, Finland
| | - Simon P Brooks
- The Brain Repair Group, Division of Neuroscience, School of Biosciences, Cardiff University, Wales CF10 3AX, UK
| | - François Singh
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Sophie Burel
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kristin Balk
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Atul Kumar
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Lambert Montava-Garriga
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Alan R Prescott
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | - Graeme Ball
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Rachel Hills
- The Brain Repair Group, Division of Neuroscience, School of Biosciences, Cardiff University, Wales CF10 3AX, UK
| | - Axel Knebel
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Ayse Ulusoy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Jevgenia Tamjar
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Odetta Antico
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kyle Fears
- The Brain Repair Group, Division of Neuroscience, School of Biosciences, Cardiff University, Wales CF10 3AX, UK
| | - Laura Smith
- The Brain Repair Group, Division of Neuroscience, School of Biosciences, Cardiff University, Wales CF10 3AX, UK
| | - Riccardo Brambilla
- Neuroscience & Mental Health Institute, Neuroscience Division, School of Biosciences, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Eino Palin
- Research Programs Unit, Molecular Neurology, University of Helsinki, 00290 Helsinki, Finland.,Neuroscience Center, University of Helsinki, 00290 Helsinki, Finland.,Helsinki University Hospital, 00290 Helsinki, Finland
| | - Miko Valori
- Research Programs Unit, Molecular Neurology, University of Helsinki, 00290 Helsinki, Finland.,Neuroscience Center, University of Helsinki, 00290 Helsinki, Finland.,Helsinki University Hospital, 00290 Helsinki, Finland
| | - Johanna Eerola-Rautio
- Research Programs Unit, Molecular Neurology, University of Helsinki, 00290 Helsinki, Finland.,Neuroscience Center, University of Helsinki, 00290 Helsinki, Finland.,Helsinki University Hospital, 00290 Helsinki, Finland.,Department of Neurology, Helsinki University Hospital, Haartmaninkatu 4, Helsinki, FI 00290, Finland
| | - Pentti Tienari
- Research Programs Unit, Molecular Neurology, University of Helsinki, 00290 Helsinki, Finland.,Neuroscience Center, University of Helsinki, 00290 Helsinki, Finland.,Helsinki University Hospital, 00290 Helsinki, Finland
| | | | - Stephen B Dunnett
- The Brain Repair Group, Division of Neuroscience, School of Biosciences, Cardiff University, Wales CF10 3AX, UK
| | - Ian G Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Anu Suomalainen
- Research Programs Unit, Molecular Neurology, University of Helsinki, 00290 Helsinki, Finland.,Neuroscience Center, University of Helsinki, 00290 Helsinki, Finland.,Helsinki University Hospital, 00290 Helsinki, Finland
| | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK .,School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
15
|
Trigo-Damas I, del Rey NLG, Blesa J. Novel models for Parkinson’s disease and their impact on future drug discovery. Expert Opin Drug Discov 2018; 13:229-239. [DOI: 10.1080/17460441.2018.1428556] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ines Trigo-Damas
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Spain
- CIBERNED, Instituto Carlos III, Madrid, Spain
| | | | - Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Spain
- CIBERNED, Instituto Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Jiang P, Dickson DW. Parkinson's disease: experimental models and reality. Acta Neuropathol 2018; 135:13-32. [PMID: 29151169 PMCID: PMC5828522 DOI: 10.1007/s00401-017-1788-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a chronic, progressive movement disorder of adults and the second most common neurodegenerative disease after Alzheimer's disease. Neuropathologic diagnosis of PD requires moderate-to-marked neuronal loss in the ventrolateral substantia nigra pars compacta and α-synuclein (αS) Lewy body pathology. Nigrostriatal dopaminergic neurodegeneration correlates with the Parkinsonian motor features, but involvement of other peripheral and central nervous system regions leads to a wide range of non-motor features. Nigrostriatal dopaminergic neurodegeneration is shared with other parkinsonian disorders, including some genetic forms of parkinsonism, but many of these disorders do not have Lewy bodies. An ideal animal model for PD, therefore, should exhibit age-dependent and progressive dopaminergic neurodegeneration, motor dysfunction, and abnormal αS pathology. Rodent models of PD using genetic or toxin based strategies have been widely used in the past several decades to investigate the pathogenesis and therapeutics of PD, but few recapitulate all the major clinical and pathologic features of PD. It is likely that new strategies or better understanding of fundamental disease processes may facilitate development of better animal models. In this review, we highlight progress in generating rodent models of PD based on impairments of four major cellular functions: mitochondrial oxidative phosphorylation, autophagy-lysosomal metabolism, ubiquitin-proteasome protein degradation, and endoplasmic reticulum stress/unfolded protein response. We attempt to evaluate how impairment of these major cellular systems contribute to PD and how they can be exploited in rodent models. In addition, we review recent cell biological studies suggesting a link between αS aggregation and impairment of nuclear membrane integrity, as observed during cellular models of apoptosis. We also briefly discuss the role of incompetent phagocytic clearance and how this may be a factor to consider in developing new rodent models of PD.
Collapse
Affiliation(s)
- Peizhou Jiang
- Neuropathology Laboratory, Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Neuropathology Laboratory, Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
17
|
Martinez A, Lectez B, Ramirez J, Popp O, Sutherland JD, Urbé S, Dittmar G, Clague MJ, Mayor U. Quantitative proteomic analysis of Parkin substrates in Drosophila neurons. Mol Neurodegener 2017; 12:29. [PMID: 28399880 PMCID: PMC5387213 DOI: 10.1186/s13024-017-0170-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/30/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Parkin (PARK2) is an E3 ubiquitin ligase that is commonly mutated in Familial Parkinson's Disease (PD). In cell culture models, Parkin is recruited to acutely depolarised mitochondria by PINK1. PINK1 activates Parkin activity leading to ubiquitination of multiple proteins, which in turn promotes clearance of mitochondria by mitophagy. Many substrates have been identified using cell culture models in combination with depolarising drugs or proteasome inhibitors, but not in more physiological settings. METHODS Here we utilized the recently introduced BioUb strategy to isolate ubiquitinated proteins in flies. Following Parkin Wild-Type (WT) and Parkin Ligase dead (LD) expression we analysed by mass spectrometry and stringent bioinformatics analysis those proteins differentially ubiquitinated to provide the first survey of steady state Parkin substrates using an in vivo model. We further used an in vivo ubiquitination assay to validate one of those substrates in SH-SY5Y cells. RESULTS We identified 35 proteins that are more prominently ubiquitinated following Parkin over-expression. These include several mitochondrial proteins and a number of endosomal trafficking regulators such as v-ATPase sub-units, Syx5/STX5, ALiX/PDCD6IP and Vps4. We also identified the retromer component, Vps35, another PD-associated gene that has recently been shown to interact genetically with parkin. Importantly, we validated Parkin-dependent ubiquitination of VPS35 in human neuroblastoma cells. CONCLUSIONS Collectively our results provide new leads to the possible physiological functions of Parkin activity that are not overtly biased by acute mitochondrial depolarisation.
Collapse
Affiliation(s)
- Aitor Martinez
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.,Functional Genomics Unit, CIC bioGUNE, Derio, Spain.,Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Benoit Lectez
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Juanma Ramirez
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.,Functional Genomics Unit, CIC bioGUNE, Derio, Spain
| | - Oliver Popp
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Sylvie Urbé
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Gunnar Dittmar
- Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Michael J Clague
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain. .,Functional Genomics Unit, CIC bioGUNE, Derio, Spain. .,Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain.
| |
Collapse
|
18
|
Martinez-Vicente M. Neuronal Mitophagy in Neurodegenerative Diseases. Front Mol Neurosci 2017; 10:64. [PMID: 28337125 PMCID: PMC5340781 DOI: 10.3389/fnmol.2017.00064] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 02/24/2017] [Indexed: 01/01/2023] Open
Abstract
Neuronal homeostasis depends on the proper functioning of different quality control systems. All intracellular components are subjected to continuous turnover through the coordinated synthesis, degradation and recycling of their constituent elements. Autophagy is the catabolic mechanism by which intracellular cytosolic components, including proteins, organelles, aggregates and any other intracellular materials, are delivered to lysosomes for degradation. Among the different types of selective autophagy described to date, the process of mitophagy involves the selective autophagic degradation of mitochondria. In this way, mitophagy is responsible for basal mitochondrial turnover, but can also be induced under certain physiological or pathogenic conditions to eliminate unwanted or damaged mitochondria. Dysfunctional cellular proteolytic systems have been linked extensively to neurodegenerative diseases (ND) like Alzheimer’s disease (AD), Parkinson’s disease (PD), or Huntington’s disease (HD), with autophagic failure being one of the main factors contributing to neuronal cell death in these diseases. Neurons are particularly vulnerable to autophagic impairment as well as to mitochondrial dysfunction, due mostly to their particular high energy dependence and to their post-mitotic nature. The accurate and proper degradation of dysfunctional mitochondria by mitophagy is essential for maintaining control over mitochondrial quality and quantity in neurons. In this report, I will review the role of mitophagy in neuronal homeostasis and the consequences of its dysfunction in ND.
Collapse
Affiliation(s)
- Marta Martinez-Vicente
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research InstituteBarcelona, Spain; Autonomous University of Barcelona (UAB)Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Barcelona, Spain
| |
Collapse
|
19
|
Valdés P, Schneider BL. Gene Therapy: A Promising Approach for Neuroprotection in Parkinson's Disease? Front Neuroanat 2016; 10:123. [PMID: 28066194 PMCID: PMC5168434 DOI: 10.3389/fnana.2016.00123] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/06/2016] [Indexed: 01/22/2023] Open
Abstract
With the development of effective systems for gene delivery to the central nervous system (CNS), gene therapy has become a therapeutic option for the treatment of Parkinson’s disease (PD). Gene therapies that are the most advanced in the clinic have been designed to more effectively compensate for the lack of dopamine signaling in the basal ganglia and rescue the cardinal motor symptoms of PD. However, it remains essential to devise novel therapies to prevent neurodegeneration and disease progression. Since gene therapy has been initially proposed for the delivery of neurotrophins to support the survival and function of dopaminergic neurons, our understanding of PD etiology has changed dramatically. Genes implicated in familial forms of the disease and genetic risk factors associated with sporadic PD have been identified. The spreading of the α-synuclein pathology, as well as perturbations of the lysosomal and mitochondrial activities, appear to play critical roles in the pathogenesis. These findings provide novel targets for gene therapy against PD, but at the same time underline the complexity of this chronic disease. Here we review and discuss the successes and limitations of gene therapy approaches, which have been proposed to provide neuroprotection in PD.
Collapse
Affiliation(s)
- Pamela Valdés
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Switzerland
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Switzerland
| |
Collapse
|
20
|
Jagmag SA, Tripathi N, Shukla SD, Maiti S, Khurana S. Evaluation of Models of Parkinson's Disease. Front Neurosci 2016; 9:503. [PMID: 26834536 PMCID: PMC4718050 DOI: 10.3389/fnins.2015.00503] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/21/2015] [Indexed: 12/01/2022] Open
Abstract
Parkinson's disease is one of the most common neurodegenerative diseases. Animal models have contributed a large part to our understanding and therapeutics developed for treatment of PD. There are several more exhaustive reviews of literature that provide the initiated insights into the specific models; however a novel synthesis of the basic advantages and disadvantages of different models is much needed. Here we compare both neurotoxin based and genetic models while suggesting some novel avenues in PD modeling. We also highlight the problems faced and promises of all the mammalian models with the hope of providing a framework for comparison of various systems.
Collapse
Affiliation(s)
- Shail A Jagmag
- Department of Biology, Indian Institute of Science Education and Research Kolkata, India
| | - Naveen Tripathi
- Department of Biology, Indian Institute of Science Education and Research Kolkata, India
| | - Sunil D Shukla
- Department of Zoology, Government Meera Girl's College Udaipur, India
| | - Sankar Maiti
- Department of Biology, Indian Institute of Science Education and Research Kolkata, India
| | - Sukant Khurana
- Department of Biology, Indian Institute of Science Education and Research Kolkata, India
| |
Collapse
|
21
|
Hang L, Thundyil J, Lim KL. Mitochondrial dysfunction and Parkinson disease: a Parkin-AMPK alliance in neuroprotection. Ann N Y Acad Sci 2015; 1350:37-47. [DOI: 10.1111/nyas.12820] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Liting Hang
- Neurodegeneration Research Laboratory; National Neuroscience Institute; Singapore
- NUS Graduate School for Integrative Sciences and Engineering; Singapore
| | - John Thundyil
- Neurodegeneration Research Laboratory; National Neuroscience Institute; Singapore
| | - Kah-Leong Lim
- Neurodegeneration Research Laboratory; National Neuroscience Institute; Singapore
- NUS Graduate School for Integrative Sciences and Engineering; Singapore
- Neuroscience and Behavioral Disorders Program; Duke-NUS Graduate Medical School; Singapore
- Department of Physiology; National University of Singapore; Singapore
| |
Collapse
|
22
|
Blesa J, Przedborski S. Parkinson's disease: animal models and dopaminergic cell vulnerability. Front Neuroanat 2014; 8:155. [PMID: 25565980 PMCID: PMC4266040 DOI: 10.3389/fnana.2014.00155] [Citation(s) in RCA: 354] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/27/2014] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects about 1.5% of the global population over 65 years of age. A hallmark feature of PD is the degeneration of the dopamine (DA) neurons in the substantia nigra pars compacta (SNc) and the consequent striatal DA deficiency. Yet, the pathogenesis of PD remains unclear. Despite tremendous growth in recent years in our knowledge of the molecular basis of PD and the molecular pathways of cell death, important questions remain, such as: (1) why are SNc cells especially vulnerable; (2) which mechanisms underlie progressive SNc cell loss; and (3) what do Lewy bodies or α-synuclein reveal about disease progression. Understanding the variable vulnerability of the dopaminergic neurons from the midbrain and the mechanisms whereby pathology becomes widespread are some of the primary objectives of research in PD. Animal models are the best tools to study the pathogenesis of PD. The identification of PD-related genes has led to the development of genetic PD models as an alternative to the classical toxin-based ones, but does the dopaminergic neuronal loss in actual animal models adequately recapitulate that of the human disease? The selection of a particular animal model is very important for the specific goals of the different experiments. In this review, we provide a summary of our current knowledge about the different in vivo models of PD that are used in relation to the vulnerability of the dopaminergic neurons in the midbrain in the pathogenesis of PD.
Collapse
Affiliation(s)
- Javier Blesa
- Department of Pathology and Cell Biology, Center for Motor Neuron Biology and Disease, College of Physicians and Surgeons, Columbia UniversityNew York, NY, USA
| | | |
Collapse
|
23
|
Summerson SR, Aazhang B, Kemere CT. Characterizing Motor and Cognitive Effects Associated With Deep Brain Stimulation in the GPi of Hemi-Parkinsonian Rats. IEEE Trans Neural Syst Rehabil Eng 2014; 22:1218-27. [DOI: 10.1109/tnsre.2014.2330515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|