1
|
Delint-Ramirez I, Madabhushi R. DNA damage and its links to neuronal aging and degeneration. Neuron 2025; 113:7-28. [PMID: 39788088 PMCID: PMC11832075 DOI: 10.1016/j.neuron.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/07/2024] [Accepted: 12/02/2024] [Indexed: 01/12/2025]
Abstract
DNA damage is a major risk factor for the decline of neuronal functions with age and in neurodegenerative diseases. While how DNA damage causes neurodegeneration is still being investigated, innovations over the past decade have provided significant insights into this issue. Breakthroughs in next-generation sequencing methods have begun to reveal the characteristics of neuronal DNA damage hotspots and the causes of DNA damage. Chromosome conformation capture-based approaches have shown that, while DNA damage and the ensuing cellular response alter chromatin topology, chromatin organization at damage sites also affects DNA repair outcomes in neurons. Additionally, neuronal activity results in the formation of programmed DNA breaks, which could burden DNA repair mechanisms and promote neuronal dysfunction. Finally, emerging evidence implicates DNA damage-induced inflammation as an important contributor to the age-related decline in neuronal functions. Together, these discoveries have ushered in a new understanding of the significance of genome maintenance for neuronal function.
Collapse
Affiliation(s)
- Ilse Delint-Ramirez
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Peter O' Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ram Madabhushi
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Peter O' Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Wu H, Wang LC, Sow BM, Leow D, Zhu J, Gallo KM, Wilsbach K, Gupta R, Ostrow LW, Yeo CJJ, Sobota RM, Li R. TDP43 aggregation at ER-exit sites impairs ER-to-Golgi transport. Nat Commun 2024; 15:9026. [PMID: 39424779 PMCID: PMC11489672 DOI: 10.1038/s41467-024-52706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024] Open
Abstract
Protein aggregation plays key roles in age-related degenerative diseases, but how different proteins coalesce to form inclusions that vary in composition, morphology, molecular dynamics and confer physiological consequences is poorly understood. Here we employ a general reporter based on mutant Hsp104 to identify proteins forming aggregates in human cells under common proteotoxic stress. We identify over 300 proteins that form different inclusions containing subsets of aggregating proteins. In particular, TDP43, implicated in Amyotrophic Lateral Sclerosis (ALS), partitions dynamically between two distinct types of aggregates: stress granule and a previously unknown non-dynamic (solid-like) inclusion at the ER exit sites (ERES). TDP43-ERES co-aggregation is induced by diverse proteotoxic stresses and observed in the motor neurons of ALS patients. Such aggregation causes retention of secretory cargos at ERES and therefore delays ER-to-Golgi transport, providing a link between TDP43 aggregation and compromised cellular function in ALS patients.
Collapse
Affiliation(s)
- Hongyi Wu
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Loo Chien Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Belle M Sow
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Damien Leow
- Department of Anatomy, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jin Zhu
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Kathryn M Gallo
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Kathleen Wilsbach
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Roshni Gupta
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Lyle W Ostrow
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Crystal J J Yeo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland, UK
| | - Radoslaw M Sobota
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Rong Li
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Pillai M, Jha SK. Conformational Enigma of TDP-43 Misfolding in Neurodegenerative Disorders. ACS OMEGA 2024; 9:40286-40297. [PMID: 39372031 PMCID: PMC11447851 DOI: 10.1021/acsomega.4c04119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/25/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024]
Abstract
Misfolding and aggregation of the protein remain some of the most common phenomena observed in neurodegeneration. While there exist multiple neurodegenerative disorders characterized by accumulation of distinct proteins, what remains particularly interesting is the ability of these proteins to undergo a conformational change to form aggregates. TDP-43 is one such nucleic acid binding protein whose misfolding is associated with many neurogenerative diseases including amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration (FTLD). TDP-43 protein assumes several different conformations and oligomeric states under the diseased condition. In this review, we explore the intrinsic relationship between the conformational variability of TDP-43 protein, with a particular focus on the RRM domains, and its propensity to undergo aggregation. We further emphasize the probable mechanism behind the formation of these conformations and suggest a potential diagnostic and therapeutic strategy in the context of these conformational states of the protein.
Collapse
Affiliation(s)
- Meenakshi Pillai
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Glineburg M, Yildirim E, Gomez N, Rodriguez G, Pak J, Li X, Altheim C, Waksmacki J, McInerney G, Barmada S, Todd P. Stress granule formation helps to mitigate neurodegeneration. Nucleic Acids Res 2024; 52:9745-9759. [PMID: 39106168 PMCID: PMC11381325 DOI: 10.1093/nar/gkae655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/28/2024] [Accepted: 07/17/2024] [Indexed: 08/09/2024] Open
Abstract
Cellular stress pathways that inhibit translation initiation lead to transient formation of cytoplasmic RNA/protein complexes known as stress granules. Many of the proteins found within stress granules and the dynamics of stress granule formation and dissolution are implicated in neurodegenerative disease. Whether stress granule formation is protective or harmful in neurodegenerative conditions is not known. To address this, we took advantage of the alphavirus protein nsP3, which selectively binds dimers of the central stress granule nucleator protein G3BP and markedly reduces stress granule formation without directly impacting the protein translational inhibitory pathways that trigger stress granule formation. In Drosophila and rodent neurons, reducing stress granule formation with nsP3 had modest impacts on lifespan even in the setting of serial stress pathway induction. In contrast, reducing stress granule formation in models of ataxia, amyotrophic lateral sclerosis and frontotemporal dementia largely exacerbated disease phenotypes. These data support a model whereby stress granules mitigate, rather than promote, neurodegenerative cascades.
Collapse
Affiliation(s)
- M Rebecca Glineburg
- Biological Sciences, Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA 92866, USA
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, BSRB48109-2200, Ann Arbor, MI 4005, USA
| | - Evrim Yildirim
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, BSRB48109-2200, Ann Arbor, MI 4005, USA
| | - Nicolas Gomez
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, BSRB48109-2200, Ann Arbor, MI 4005, USA
- Cell and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Genesis Rodriguez
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, BSRB48109-2200, Ann Arbor, MI 4005, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Jaclyn Pak
- Biological Sciences, Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA 92866, USA
| | - Xingli Li
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, BSRB48109-2200, Ann Arbor, MI 4005, USA
| | - Christopher Altheim
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, BSRB48109-2200, Ann Arbor, MI 4005, USA
| | - Jacob Waksmacki
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, BSRB48109-2200, Ann Arbor, MI 4005, USA
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 17165, Sweden
| | - Sami J Barmada
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, BSRB48109-2200, Ann Arbor, MI 4005, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, BSRB48109-2200, Ann Arbor, MI 4005, USA
- Veterans Affairs Medical Center, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Cui Q, Liu Z, Bai G. Friend or foe: The role of stress granule in neurodegenerative disease. Neuron 2024; 112:2464-2485. [PMID: 38744273 DOI: 10.1016/j.neuron.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/12/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
Stress granules (SGs) are dynamic membraneless organelles that form in response to cellular stress. SGs are predominantly composed of RNA and RNA-binding proteins that assemble through liquid-liquid phase separation. Although the formation of SGs is considered a transient and protective response to cellular stress, their dysregulation or persistence may contribute to various neurodegenerative diseases. This review aims to provide a comprehensive overview of SG physiology and pathology. It covers the formation, composition, regulation, and functions of SGs, along with their crosstalk with other membrane-bound and membraneless organelles. Furthermore, this review discusses the dual roles of SGs as both friends and foes in neurodegenerative diseases and explores potential therapeutic approaches targeting SGs. The challenges and future perspectives in this field are also highlighted. A more profound comprehension of the intricate relationship between SGs and neurodegenerative diseases could inspire the development of innovative therapeutic interventions against these devastating diseases.
Collapse
Affiliation(s)
- Qinqin Cui
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China.
| | - Zongyu Liu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ge Bai
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Yan X, Kuster D, Mohanty P, Nijssen J, Pombo-García K, Rizuan A, Franzmann TM, Sergeeva A, Passos PM, George L, Wang SH, Shenoy J, Danielson HL, Honigmann A, Ayala YM, Fawzi NL, Mittal J, Alberti S, Hyman AA. Intra-condensate demixing of TDP-43 inside stress granules generates pathological aggregates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576837. [PMID: 38328053 PMCID: PMC10849624 DOI: 10.1101/2024.01.23.576837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Cytosolic aggregation of the nuclear protein TDP-43 is associated with many neurodegenerative diseases, but the triggers for TDP-43 aggregation are still debated. Here, we demonstrate that TDP-43 aggregation requires a double event. One is up-concentration in stress granules beyond a threshold, and the other is oxidative stress. These two events collectively induce intra-condensate demixing, giving rise to a dynamic TDP-43 enriched phase within stress granules, which subsequently transitions into pathological aggregates. Mechanistically, intra-condensate demixing is triggered by local unfolding of the RRM1 domain for intermolecular disulfide bond formation and by increased hydrophobic patch interactions in the C-terminal domain. By engineering TDP-43 variants resistant to intra-condensate demixing, we successfully eliminate pathological TDP-43 aggregates in cells. We conclude that up-concentration inside condensates and simultaneous exposure to environmental stress could be a general pathway for protein aggregation, with intra-condensate demixing constituting a key intermediate step.
Collapse
Affiliation(s)
- Xiao Yan
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG); Dresden, Saxony, 01307; Germany
| | - David Kuster
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG); Dresden, Saxony, 01307; Germany
- These authors contributed equally
| | - Priyesh Mohanty
- Artie McFerrin Department of Chemical Engineering, Texas A&M University; College Station, TX 77843; USA
- These authors contributed equally
| | - Jik Nijssen
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG); Dresden, Saxony, 01307; Germany
- These authors contributed equally
| | - Karina Pombo-García
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG); Dresden, Saxony, 01307; Germany
- These authors contributed equally
| | - Azamat Rizuan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University; College Station, TX 77843; USA
| | - Titus M. Franzmann
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden; Dresden, Saxony, 01307; Germany
| | - Aleksandra Sergeeva
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG); Dresden, Saxony, 01307; Germany
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden; Dresden, Saxony, 01307; Germany
| | - Patricia M. Passos
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University; St. Louis, MO 63104; USA
| | - Leah George
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University; St. Louis, MO 63104; USA
| | - Szu-Huan Wang
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University; Providence, RI 02912; USA
| | - Jayakrishna Shenoy
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University; Providence, RI 02912; USA
| | - Helen L. Danielson
- Center for Biomedical Engineering, Brown University; Providence, RI 02912; USA
| | - Alf Honigmann
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden; Dresden, Saxony, 01307; Germany
| | - Yuna M. Ayala
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University; St. Louis, MO 63104; USA
| | - Nicolas L. Fawzi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University; Providence, RI 02912; USA
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University; College Station, TX 77843; USA
- Department of Chemistry, Texas A&M University; College Station, TX 77843; USA
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University; College Station, TX 77843; USA
| | - Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden; Dresden, Saxony, 01307; Germany
| | - Anthony A. Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG); Dresden, Saxony, 01307; Germany
- Lead contact
| |
Collapse
|
7
|
Glineburg MR, Yildirim E, Gomez N, Li X, Pak J, Altheim C, Waksmacki J, McInerney G, Barmada SJ, Todd PK. Stress granule formation helps to mitigate neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566060. [PMID: 37986813 PMCID: PMC10659376 DOI: 10.1101/2023.11.07.566060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Cellular stress pathways that inhibit translation initiation lead to transient formation of cytoplasmic RNA/protein complexes known as stress granules. Many of the proteins found within stress granules and the dynamics of stress granule formation and dissolution are implicated in neurodegenerative disease. Whether stress granule formation is protective or harmful in neurodegenerative conditions is not known. To address this, we took advantage of the alphavirus protein nsP3, which selectively binds dimers of the central stress granule nucleator protein G3BP (rin in Drosophila) and markedly reduces stress granule formation without directly impacting the protein translational inhibitory pathways that trigger stress granule formation. In Drosophila and rodent neurons, reducing stress granule formation with nsP3 had modest impacts on lifespan even in the setting of serial stress pathway induction. In contrast, reducing stress granule formation in models of ataxia, amyotrophic lateral sclerosis and frontotemporal dementia largely exacerbated disease phenotypes. These data support a model whereby stress granules mitigate, rather than promote, neurodegenerative cascades.
Collapse
Affiliation(s)
- M. Rebecca Glineburg
- Biological Sciences, Schmid College of Science and Technology, Chapman University, 450 N. Center St, Orange, CA 92866
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 4005 BSRB48109-2200, USA
| | - Evrim Yildirim
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 4005 BSRB48109-2200, USA
| | - Nicolas Gomez
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Xingli Li
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 4005 BSRB48109-2200, USA
| | - Jaclyn Pak
- Biological Sciences, Schmid College of Science and Technology, Chapman University, 450 N. Center St, Orange, CA 92866
| | - Christopher Altheim
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 4005 BSRB48109-2200, USA
| | - Jacob Waksmacki
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 4005 BSRB48109-2200, USA
| | - Gerald McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Sami J. Barmada
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 4005 BSRB48109-2200, USA
| | - Peter K. Todd
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 4005 BSRB48109-2200, USA
- Veterans Affairs Medical Center, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Xu X, Sun B, Zhao C. Poly (ADP-Ribose) polymerase 1 and parthanatos in neurological diseases: From pathogenesis to therapeutic opportunities. Neurobiol Dis 2023; 187:106314. [PMID: 37783233 DOI: 10.1016/j.nbd.2023.106314] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023] Open
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) is the most extensively studied member of the PARP superfamily, with its primary function being the facilitation of DNA damage repair processes. Parthanatos is a type of regulated cell death cascade initiated by PARP-1 hyperactivation, which involves multiple subroutines, including the accumulation of ADP-ribose polymers (PAR), binding of PAR and apoptosis-inducing factor (AIF), release of AIF from the mitochondria, the translocation of the AIF/macrophage migration inhibitory factor (MIF) complex, and massive MIF-mediated DNA fragmentation. Over the past few decades, the role of PARP-1 in central nervous system health and disease has received increasing attention. In this review, we discuss the biological functions of PARP-1 in neural cell proliferation and differentiation, memory formation, brain ageing, and epigenetic regulation. We then elaborate on the involvement of PARP-1 and PARP-1-dependant parthanatos in various neuropathological processes, such as oxidative stress, neuroinflammation, mitochondrial dysfunction, excitotoxicity, autophagy damage, and endoplasmic reticulum (ER) stress. Additional highlight contains PARP-1's implications in the initiation, progression, and therapeutic opportunities for different neurological illnesses, including neurodegenerative diseases, stroke, autism spectrum disorder (ASD), multiple sclerosis (MS), epilepsy, and neuropathic pain (NP). Finally, emerging insights into the repurposing of PARP inhibitors for the management of neurological diseases are provided. This review aims to summarize the exciting advancements in the critical role of PARP-1 in neurological disorders, which may open new avenues for therapeutic options targeting PARP-1 or parthanatos.
Collapse
Affiliation(s)
- Xiaoxue Xu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, China.
| | - Bowen Sun
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, China
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, China.
| |
Collapse
|
9
|
Nag S, Schneider JA. Limbic-predominant age-related TDP43 encephalopathy (LATE) neuropathological change in neurodegenerative diseases. Nat Rev Neurol 2023; 19:525-541. [PMID: 37563264 PMCID: PMC10964248 DOI: 10.1038/s41582-023-00846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 08/12/2023]
Abstract
TAR DNA-binding protein 43 (TDP43) is a focus of research in late-onset dementias. TDP43 pathology in the brain was initially identified in amyotrophic lateral sclerosis and frontotemporal lobar degeneration, and later in Alzheimer disease (AD), other neurodegenerative diseases and ageing. Limbic-predominant age-related TDP43 encephalopathy (LATE), recognized as a clinical entity in 2019, is characterized by amnestic dementia resembling AD dementia and occurring most commonly in adults over 80 years of age. Neuropathological findings in LATE, referred to as LATE neuropathological change (LATE-NC), consist of neuronal and glial cytoplasmic TDP43 localized predominantly in limbic areas with or without coexisting hippocampal sclerosis and/or AD neuropathological change and without frontotemporal lobar degeneration or amyotrophic lateral sclerosis pathology. LATE-NC is frequently associated with one or more coexisting pathologies, mainly AD neuropathological change. The focus of this Review is the pathology, genetic risk factors and nature of the cognitive impairments and dementia in pure LATE-NC and in LATE-NC associated with coexisting pathologies. As the clinical and cognitive profile of LATE is currently not easily distinguishable from AD dementia, it is important to develop biomarkers to aid in the diagnosis of this condition in the clinic. The pathogenesis of LATE-NC should be a focus of future research to form the basis for the development of preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Sukriti Nag
- Rush Alzheimer's Disease Center, Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL, USA.
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
10
|
De Marchi F, Franjkic T, Schito P, Russo T, Nimac J, Chami AA, Mele A, Vidatic L, Kriz J, Julien JP, Apic G, Russell RB, Rogelj B, Cannon JR, Baralle M, Agosta F, Hecimovic S, Mazzini L, Buratti E, Munitic I. Emerging Trends in the Field of Inflammation and Proteinopathy in ALS/FTD Spectrum Disorder. Biomedicines 2023; 11:1599. [PMID: 37371694 PMCID: PMC10295684 DOI: 10.3390/biomedicines11061599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Proteinopathy and neuroinflammation are two main hallmarks of neurodegenerative diseases. They also represent rare common events in an exceptionally broad landscape of genetic, environmental, neuropathologic, and clinical heterogeneity present in patients. Here, we aim to recount the emerging trends in amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD) spectrum disorder. Our review will predominantly focus on neuroinflammation and systemic immune imbalance in ALS and FTD, which have recently been highlighted as novel therapeutic targets. A common mechanism of most ALS and ~50% of FTD patients is dysregulation of TAR DNA-binding protein 43 (TDP-43), an RNA/DNA-binding protein, which becomes depleted from the nucleus and forms cytoplasmic aggregates in neurons and glia. This, in turn, via both gain and loss of function events, alters a variety of TDP-43-mediated cellular events. Experimental attempts to target TDP-43 aggregates or manipulate crosstalk in the context of inflammation will be discussed. Targeting inflammation, and the immune system in general, is of particular interest because of the high plasticity of immune cells compared to neurons.
Collapse
Affiliation(s)
- Fabiola De Marchi
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy; (F.D.M.); (A.M.)
| | - Toni Franjkic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia;
- Metisox, Cambridge CB24 9NL, UK;
| | - Paride Schito
- Department of Neurology & Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (P.S.); (T.R.)
| | - Tommaso Russo
- Department of Neurology & Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (P.S.); (T.R.)
| | - Jerneja Nimac
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia; (J.N.); (B.R.)
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Anna A. Chami
- CERVO Research Centre, Laval University, Quebec City, QC G1J 2G3, Canada; (A.A.C.); (J.K.); (J.-P.J.)
| | - Angelica Mele
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy; (F.D.M.); (A.M.)
| | - Lea Vidatic
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (L.V.); (S.H.)
| | - Jasna Kriz
- CERVO Research Centre, Laval University, Quebec City, QC G1J 2G3, Canada; (A.A.C.); (J.K.); (J.-P.J.)
| | - Jean-Pierre Julien
- CERVO Research Centre, Laval University, Quebec City, QC G1J 2G3, Canada; (A.A.C.); (J.K.); (J.-P.J.)
| | | | | | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia; (J.N.); (B.R.)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Jason R. Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | | | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Silva Hecimovic
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (L.V.); (S.H.)
| | - Letizia Mazzini
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy; (F.D.M.); (A.M.)
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia;
| |
Collapse
|
11
|
Keating SS, Bademosi AT, San Gil R, Walker AK. Aggregation-prone TDP-43 sequesters and drives pathological transitions of free nuclear TDP-43. Cell Mol Life Sci 2023; 80:95. [PMID: 36930291 PMCID: PMC10023653 DOI: 10.1007/s00018-023-04739-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023]
Abstract
Aggregation of the RNA-binding protein, TDP-43, is the unifying hallmark of amyotrophic lateral sclerosis and frontotemporal dementia. TDP-43-related neurodegeneration involves multiple changes to normal physiological TDP-43, which undergoes nuclear depletion, cytoplasmic mislocalisation, post-translational modification, and aberrant liquid-liquid phase separation, preceding inclusion formation. Along with toxic cytoplasmic aggregation, concurrent depletion and dysfunction of normal nuclear TDP-43 in cells with TDP-43 pathology is likely a key potentiator of neurodegeneration, but is not well understood. To define processes driving TDP-43 dysfunction, we used CRISPR/Cas9-mediated fluorescent tagging to investigate how disease-associated stressors and pathological TDP-43 alter abundance, localisation, self-assembly, aggregation, solubility, and mobility dynamics of normal nuclear TDP-43 over time in live cells. Oxidative stress stimulated liquid-liquid phase separation of endogenous TDP-43 into droplet-like puncta, or spherical shell-like anisosomes. Further, nuclear RNA-binding-ablated or acetylation-mimicking TDP-43 readily sequestered and depleted free normal nuclear TDP-43 into dynamic anisosomes, in which recruited endogenous TDP-43 proteins remained soluble and highly mobile. Large, phosphorylated inclusions formed by nuclear or cytoplasmic aggregation-prone TDP-43 mutants also caused sequestration, but rendered endogenous TDP-43 immobile and insoluble, indicating pathological transition. These findings suggest that RNA-binding deficiency and post-translational modifications including acetylation exacerbate TDP-43 aggregation and dysfunction by driving sequestration, mislocalisation, and depletion of normal nuclear TDP-43 in neurodegenerative diseases.
Collapse
Affiliation(s)
- Sean S Keating
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Adekunle T Bademosi
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Rebecca San Gil
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Adam K Walker
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
12
|
Staderini T, Bigi A, Mongiello D, Cecchi C, Chiti F. Biophysical characterization of full-length TAR DNA-binding protein (TDP-43) phase separation. Protein Sci 2022; 31:e4509. [PMID: 36371546 PMCID: PMC9703588 DOI: 10.1002/pro.4509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/17/2022] [Accepted: 11/05/2022] [Indexed: 11/15/2022]
Abstract
Amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions are associated with deposition of cytosolic inclusion bodies of TAR DNA-binding protein 43 (TDP-43) in brain and motor neurons. We induced phase separation of purified full-length TDP-43 devoid of large tags using a solution-jump method, and monitored it with an array of biophysical techniques. The tetramethylrhodamine-5-maleimide- or Alexa488-labeled protein formed rapidly (<1 min) apparently round, homogeneous and 0.5-1.0 μm wide assemblies, when imaged using confocal fluorescence, bright-field, and stimulated emission depletion microscopy. The assemblies, however, had limited internal diffusion, as assessed with fluorescence recovery after photobleaching, and did not coalesce, but rather clustered into irregular bunches, unlike those formed by the C-terminal domain. They were enriched with α-helical structure, with minor contributions of β-sheet/random structure, had a red-shifted tryptophan fluorescence and did not bind thioflavin T. By monitoring with turbidimetry both the formation of the spherical species and their further clustering under different experimental conditions, we carried out a multiparametric analysis of the two phenomena. In particular, both processes were found to be promoted by high protein concentrations, salts, crowding agents, weakly by reducing agents, as the pH approached a value of 6.0 from either side (corresponding to the TDP-43 isoionic point), and as the temperature approached a value of 31°C from either side. Important differences were found with respect to the TDP-43 C-terminal domain. Our multiparametric results also provide explanations to some of the solubility data obtained on full-length TDP-43 that were difficult to explain following the multiparametric analysis acquired on the C-terminal domain.
Collapse
Affiliation(s)
- Tommaso Staderini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Daniele Mongiello
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| |
Collapse
|
13
|
Zhang N, Chen X. PAIP1 is a novel oncogene in human hepatocellular carcinoma. Discov Oncol 2022; 13:132. [PMID: 36436074 PMCID: PMC9702235 DOI: 10.1007/s12672-022-00530-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Poly(A)-binding protein interacting protein 1 (PAIP1) is a translational initiation regulatory factor that has been reported as oncogene in multiple malignant diseases. However, its role in hepatocellular carcinoma (HCC) and the potential mechanisms have not been explored. METHODS PAIP1 expression level in HCC cell lines were detected by real-time quantitative PCR and western blotting. The proliferation and colony formation of HCC cell lines were detected by MTT and colony formation assay. The apoptosis and cell cycle were detected by flow cytometry. The volume and growth rate of the xenograft tumors were observed. The potential mechanism of PAIP1 was analyzed by miRNA Microarray Analysis and TargetScan analysis. RESULTS PAIP1 is significantly upregulated in HCC cell lines. PAIP1 knockdown dramatically inhibits cell proliferation and colony formation, induces apoptosis and alters the cell cycle distribution by increasing the G2/M cell percentage. Moreover, PAIP1 knockdown significantly reduces tumorigenesis in a murine transplantation model. Bioinformatics and immunoblotting analysis reveal that PAIP1 knockdown dysregulates cyclin D pathway-related proteins. CONCLUSION PAIP1 plays an oncogenic role in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Nuobei Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Xin Chen
- Department of Nuclear Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
14
|
Molecular interaction of stress granules with Tau and autophagy in Alzheimer's disease. Neurochem Int 2022; 157:105342. [DOI: 10.1016/j.neuint.2022.105342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/09/2022] [Accepted: 04/10/2022] [Indexed: 11/23/2022]
|
15
|
Chavda V, Patel C, Modh D, Ertas YN, Sonak SS, Munshi NK, Anand K, Soni A, Pandey S. Therapeutic Approaches to Amyotrophic Lateral Sclerosis from the Lab to the Clinic. Curr Drug Metab 2022; 23:200-222. [PMID: 35272595 DOI: 10.2174/1389200223666220310113110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 01/07/2022] [Accepted: 02/02/2022] [Indexed: 11/22/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a terminal neuro-degenerative disorder that is clinically recognized as a gradual degeneration of the upper and lower motor neurons, with an average duration of 3 to 5 years from initiation of symptoms to death. The mechanisms underlying the pathogenesis and progression of the disease are multifactorial. Therefore, to find effective treatments, it is necessary to understand this heterogeneity underlying the progression of ALS. Recent developments in gene therapy have opened a new avenue to treat this condition, especially for the characterized genetic types. Gene therapy methods have been studied in a variety of pre-clinical settings and clinical trials, and they may be a promising path for developing an effective and safe ALS cure. A growing body of evidence demonstrates abnormalities in energy metabolism at the cellular and whole-body level in animal models and in people living with ALS. The use and incorporation of high-throughput "omics" methods has radically transformed our thought about ALS, strengthening our understanding of the disease's dynamic molecular architecture, differentiating distinct patient subtypes, and creating a reasonable basis for the identification of biomarkers and novel individualised treatments. Future clinical and laboratory trials would also focus on the diverse relationships between metabolism and ALS to address the issue of whether targeting deficient metabolism in ALS is an effective way to change disease progression. In this review, we focus on the detailed pathogenesis of ALS and highlight principal genes, i.e., SOD1, TDP-43, C9orf72, and FUS, targeted therapeutic approaches of ALS. An attempt is made to provide up-to-date information on clinical outcomes, including various biomarkers which are thought to be important players in early ALS detection.
Collapse
Affiliation(s)
- Vivek Chavda
- Department of Pharmaceutic, L M College of Pharmacy, Ahmedabad - 380009 (India)
| | - Chirag Patel
- Department of Pharmacology, L M College of Pharmacy, Ahmedabad - 380009 (India)
| | - Dharti Modh
- Department of pharmaceutical chemistry, Poona college of pharmacy, Bharti vidhyapith, Pune - 411030 (India)
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering at Erciyes University, Kayseri, Turkey
- ERNAM - Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Shreya S Sonak
- Department of pharmaceutical chemistry, Poona college of pharmacy, Bharti vidhyapith, Pune - 411030 (India)
| | - Nafisa K Munshi
- Department of pharmaceutical chemistry, Poona college of pharmacy, Bharti vidhyapith, Pune - 411030 (India)
| | - Krishna Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein 9300, South Africa
| | - Arun Soni
- Department of Pharmacology, SSR College of Pharmacy, Silvassa, Dadra and Nagar Haveli - 396230(India)
| | - Sonal Pandey
- Research and Development, Meril Diagnostic Pvt. Ltd, Vapi - 396191 (India)
| |
Collapse
|
16
|
Shadfar S, Brocardo M, Atkin JD. The Complex Mechanisms by Which Neurons Die Following DNA Damage in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23052484. [PMID: 35269632 PMCID: PMC8910227 DOI: 10.3390/ijms23052484] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023] Open
Abstract
Human cells are exposed to numerous exogenous and endogenous insults every day. Unlike other molecules, DNA cannot be replaced by resynthesis, hence damage to DNA can have major consequences for the cell. The DNA damage response contains overlapping signalling networks that repair DNA and hence maintain genomic integrity, and aberrant DNA damage responses are increasingly described in neurodegenerative diseases. Furthermore, DNA repair declines during aging, which is the biggest risk factor for these conditions. If unrepaired, the accumulation of DNA damage results in death to eliminate cells with defective genomes. This is particularly important for postmitotic neurons because they have a limited capacity to proliferate, thus they must be maintained for life. Neuronal death is thus an important process in neurodegenerative disorders. In addition, the inability of neurons to divide renders them susceptible to senescence or re-entry to the cell cycle. The field of cell death has expanded significantly in recent years, and many new mechanisms have been described in various cell types, including neurons. Several of these mechanisms are linked to DNA damage. In this review, we provide an overview of the cell death pathways induced by DNA damage that are relevant to neurons and discuss the possible involvement of these mechanisms in neurodegenerative conditions.
Collapse
Affiliation(s)
- Sina Shadfar
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.S.); (M.B.)
| | - Mariana Brocardo
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.S.); (M.B.)
| | - Julie D. Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.S.); (M.B.)
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia
- Correspondence:
| |
Collapse
|
17
|
Chou SC, Aggarwal A, Dawson VL, Dawson TM, Kam TI. Recent advances in preventing neurodegenerative diseases. Fac Rev 2022; 10:81. [PMID: 35028646 PMCID: PMC8725650 DOI: 10.12703/r/10-81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The worldwide health-care burden of neurodegenerative diseases is on the rise-a crisis created through a combination of increased caseload and lack of effective treatments. The limitations of pharmacotherapy in these disorders have led to an urgent shift toward research and clinical trials for the development of novel compounds, interventions, and methods that target shared features across the spectrum of neurodegenerative diseases. Research targets include neuronal cell death, mitochondrial dysfunction, protein aggregation, and neuroinflammation. In the past few years, there has been a growth in understanding of the pathophysiologic mechanisms of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and Huntington's disease. This increase in knowledge has led to the discovery of numerous novel neuroprotective therapeutic targets. In this context, we reviewed and summarized recent advancements in neuroprotective strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Shih-Ching Chou
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, 733 North Broadway, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, 725 North Wolfe St., Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Akanksha Aggarwal
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, 733 North Broadway, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biological Chemistry, 725 North Wolfe St., Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, 733 North Broadway, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, 725 North Wolfe St., Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, 228 St. Charles Avenue, New Orleans, LA 70130-2685, USA
- Diana Helis Henry Medical Research Foundation, 228 St. Charles Avenue, New Orleans, LA 70130-2685, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, 733 North Broadway, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, 725 North Wolfe St., Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, 725 North Wolfe St., Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, 228 St. Charles Avenue, New Orleans, LA 70130-2685, USA
- Diana Helis Henry Medical Research Foundation, 228 St. Charles Avenue, New Orleans, LA 70130-2685, USA
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, 733 North Broadway, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, 725 North Wolfe St., Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, 228 St. Charles Avenue, New Orleans, LA 70130-2685, USA
- Diana Helis Henry Medical Research Foundation, 228 St. Charles Avenue, New Orleans, LA 70130-2685, USA
| |
Collapse
|
18
|
Asadi MR, Sadat Moslehian M, Sabaie H, Jalaiei A, Ghafouri-Fard S, Taheri M, Rezazadeh M. Stress Granules and Neurodegenerative Disorders: A Scoping Review. Front Aging Neurosci 2021; 13:650740. [PMID: 34248597 PMCID: PMC8261063 DOI: 10.3389/fnagi.2021.650740] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Cytoplasmic ribonucleoproteins called stress granules (SGs) are considered as one of the main cellular solutions against stress. Their temporary presence ends with stress relief. Any factor such as chronic stress or mutations in the structure of the components of SGs that lead to their permanent presence can affect their interactions with pathological aggregations and increase the degenerative effects. SGs involved in RNA mechanisms are important factors in the pathophysiology of neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), frontotemporal degeneration (FTD), and Alzheimer's diseases (AD). Although many studies have been performed in the field of SGs and neurodegenerative disorders, so far, no systematic studies have been executed in this field. The purpose of this study is to provide a comprehensive perspective of all studies about the role of SGs in the pathogenesis of neurodegenerative disorders with a focus on the protein ingredients of these granules. This scoping review is based on a six-stage methodology structure and the PRISMA guideline. A systematic search of seven databases for qualified articles was conducted until December 2020. Publications were screened independently by two reviewers and quantitative and qualitative analysis was performed on the extracted data. Bioinformatics analysis was used to plot the network and predict interprotein interactions. In addition, GO analysis was performed. A total of 48 articles were identified that comply the inclusion criteria. Most studies on neurodegenerative diseases have been conducted on ALS, AD, and FTD using human post mortem tissues. Human derived cell line studies have been used only in ALS. A total 29 genes of protein components of SGs have been studied, the most important of which are TDP-43, TIA-1, PABP-1. Bioinformatics studies have predicted 15 proteins to interact with the protein components of SGs, which may be the constituents of SGs. Understanding the interactions between SGs and pathological aggregations in neurodegenerative diseases can provide new targets for treatment of these disorders.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Sadat Moslehian
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hani Sabaie
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Jalaiei
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezazadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Hayashi Y, Ford LK, Fioriti L, McGurk L, Zhang M. Liquid-Liquid Phase Separation in Physiology and Pathophysiology of the Nervous System. J Neurosci 2021; 41:834-844. [PMID: 33472825 PMCID: PMC7880275 DOI: 10.1523/jneurosci.1656-20.2020] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Molecules within cells are segregated into functional domains to form various organelles. While some of those organelles are delimited by lipid membranes demarcating their constituents, others lack a membrane enclosure. Recently, liquid-liquid phase separation (LLPS) revolutionized our view of how segregation of macromolecules can produce membraneless organelles. While the concept of LLPS has been well studied in the areas of soft matter physics and polymer chemistry, its significance has only recently been recognized in the field of biology. It occurs typically between macromolecules that have multivalent interactions. Interestingly, these features are present in many molecules that exert key functions within neurons. In this review, we cover recent topics of LLPS in different contexts of neuronal physiology and pathology.
Collapse
Affiliation(s)
- Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Lenzie K Ford
- Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, New York 10027
| | - Luana Fioriti
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Istituto Di Ricovero e Cura a Carattere Scientifico, Milan 20156, Italy
| | - Leeanne McGurk
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Mingjie Zhang
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
20
|
Smeltzer S, Quadri Z, Miller A, Zamudio F, Hunter J, Stewart NJF, Saji S, Lee DC, Chaput D, Selenica MLB. Hypusination of Eif5a regulates cytoplasmic TDP-43 aggregation and accumulation in a stress-induced cellular model. Biochim Biophys Acta Mol Basis Dis 2021; 1867:165939. [PMID: 32882370 DOI: 10.1016/j.bbadis.2020.165939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/27/2020] [Accepted: 08/17/2020] [Indexed: 11/23/2022]
Abstract
TAR DNA-binding protein 43 (TDP-43) is a nuclear RNA/DNA binding protein involved in mRNA metabolism. Aberrant mislocalization to the cytoplasm and formation of phosphorylated/aggregated TDP-43 inclusions remains the hallmark pathology in a spectrum of neurodegenerative diseases, including frontotemporal disorders and Alzheimer's disease. Eukaryotic Translation Initiation Factor 5A undergoes a unique post-translation modification of lysine to hypusine (K50), which determines eIF5A binding partners. We used a sodium arsenite-induced cellular stress model to investigate the role of hypusinated eIF5A (eIF5AHypK50) in governing TDP-43 cytoplasmic mislocalization and accumulation in stress granule. Our proteomics and functional data provide evidence that eIF5A interacts with TDP-43 in a hypusine-dependent manner. Additionally, we showed that following stress TDP-43 interactions with eIF5AHypK50 were induced both in the cytoplasm and stress granules. Pharmacological reduction of hypusination or mutations of lysine residues within the hypusine loop decreased phosphorylated and insoluble TDP-43 levels. The proteomic and biochemical analysis also identified nuclear pore complex importins KPNA1/2, KPNB1, and RanGTP as interacting partners of eIF5AHypK50. These findings are the first to provide a novel pathway and potential therapeutic targets that require further investigation in models of TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Shayna Smeltzer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA
| | - Zainuddin Quadri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA; Sanders-Brown Center on Aging, Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, KY, USA
| | - Abraian Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA
| | - Frank Zamudio
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA
| | - Jordan Hunter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA
| | - Nicholas J F Stewart
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA
| | - Sheba Saji
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA
| | - Daniel C Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA; Sanders-Brown Center on Aging, Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, KY, USA
| | - Dale Chaput
- Proteomics and Mass Spectrometry Core Facility, Florida Center of Excellence for Drug Discovery and Innovation (CDDI), University of South Florida, 3720 Spectrum Blvd, Suite 303, Tampa, FL 33612, USA
| | - Maj-Linda B Selenica
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA; Sanders-Brown Center on Aging, Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, KY, USA.
| |
Collapse
|
21
|
Human ALS/FTD brain organoid slice cultures display distinct early astrocyte and targetable neuronal pathology. Nat Neurosci 2021; 24:1542-1554. [PMID: 34675437 PMCID: PMC8553627 DOI: 10.1038/s41593-021-00923-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/16/2021] [Indexed: 12/09/2022]
Abstract
Amyotrophic lateral sclerosis overlapping with frontotemporal dementia (ALS/FTD) is a fatal and currently untreatable disease characterized by rapid cognitive decline and paralysis. Elucidating initial cellular pathologies is central to therapeutic target development, but obtaining samples from presymptomatic patients is not feasible. Here, we report the development of a cerebral organoid slice model derived from human induced pluripotent stem cells (iPSCs) that recapitulates mature cortical architecture and displays early molecular pathology of C9ORF72 ALS/FTD. Using a combination of single-cell RNA sequencing and biological assays, we reveal distinct transcriptional, proteostasis and DNA repair disturbances in astroglia and neurons. We show that astroglia display increased levels of the autophagy signaling protein P62 and that deep layer neurons accumulate dipeptide repeat protein poly(GA), DNA damage and undergo nuclear pyknosis that could be pharmacologically rescued by GSK2606414. Thus, patient-specific iPSC-derived cortical organoid slice cultures are a reproducible translational platform to investigate preclinical ALS/FTD mechanisms as well as novel therapeutic approaches.
Collapse
|
22
|
Fernandes N, Nero L, Lyons SM, Ivanov P, Mittelmeier TM, Bolger TA, Buchan JR. Stress Granule Assembly Can Facilitate but Is Not Required for TDP-43 Cytoplasmic Aggregation. Biomolecules 2020; 10:biom10101367. [PMID: 32992901 PMCID: PMC7650667 DOI: 10.3390/biom10101367] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/21/2020] [Indexed: 01/08/2023] Open
Abstract
Stress granules (SGs) are hypothesized to facilitate TAR DNA-binding protein 43 (TDP-43) cytoplasmic mislocalization and aggregation, which may underly amyotrophic lateral sclerosis pathology. However, much data for this hypothesis is indirect. Additionally, whether P-bodies (PBs; related mRNA-protein granules) affect TDP-43 phenotypes is unclear. Here, we determine that induction of TDP-43 expression in yeast results in the accumulation of SG-like foci that in >90% of cases become the sites where TDP-43 cytoplasmic foci first appear. Later, TDP-43 foci associate less with SGs and more with PBs, though independent TDP-43 foci also accumulate. However, depleting or over-expressing yeast SG and PB proteins reveals no consistent trend between SG or PB assembly and TDP-43 foci formation, toxicity or protein abundance. In human cells, immunostaining endogenous TDP-43 with different TDP-43 antibodies reveals distinct localization and aggregation behaviors. Following acute arsenite stress, all phospho-TDP-43 foci colocalize with SGs. Interestingly, in SG assembly mutant cells (G3BP1/2ΔΔ), TDP-43 is enriched in nucleoli. Finally, formation of TDP-43 cytoplasmic foci following low-dose chronic arsenite stress is impaired, but not completely blocked, in G3BP1/2ΔΔ cells. Collectively, our data suggest that SG and PB assembly may facilitate TDP-43 cytoplasmic localization and aggregation but are likely not essential for these events.
Collapse
Affiliation(s)
- Nikita Fernandes
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; (N.F.); (L.N.); (T.M.M.); (T.A.B.)
| | - Luke Nero
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; (N.F.); (L.N.); (T.M.M.); (T.A.B.)
| | - Shawn M. Lyons
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; (S.M.L.); (P.I.)
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Pavel Ivanov
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; (S.M.L.); (P.I.)
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Telsa M. Mittelmeier
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; (N.F.); (L.N.); (T.M.M.); (T.A.B.)
| | - Timothy A. Bolger
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; (N.F.); (L.N.); (T.M.M.); (T.A.B.)
| | - J. Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; (N.F.); (L.N.); (T.M.M.); (T.A.B.)
- Correspondence: ; Tel.: +1-520-626-1881
| |
Collapse
|
23
|
Arsović A, Halbach MV, Canet-Pons J, Esen-Sehir D, Döring C, Freudenberg F, Czechowska N, Seidel K, Baader SL, Gispert S, Sen NE, Auburger G. Mouse Ataxin-2 Expansion Downregulates CamKII and Other Calcium Signaling Factors, Impairing Granule-Purkinje Neuron Synaptic Strength. Int J Mol Sci 2020; 21:E6673. [PMID: 32932600 PMCID: PMC7555182 DOI: 10.3390/ijms21186673] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is caused by polyglutamine expansion in Ataxin-2 (ATXN2). This factor binds RNA/proteins to modify metabolism after stress, and to control calcium (Ca2+) homeostasis after stimuli. Cerebellar ataxias and corticospinal motor neuron degeneration are determined by gain/loss in ATXN2 function, so we aimed to identify key molecules in this atrophic process, as potential disease progression markers. Our Atxn2-CAG100-Knock-In mouse faithfully models features observed in patients at pre-onset, early and terminal stages. Here, its cerebellar global RNA profiling revealed downregulation of signaling cascades to precede motor deficits. Validation work at mRNA/protein level defined alterations that were independent of constant physiological ATXN2 functions, but specific for RNA/aggregation toxicity, and progressive across the short lifespan. The earliest changes were detected at three months among Ca2+ channels/transporters (Itpr1, Ryr3, Atp2a2, Atp2a3, Trpc3), IP3 metabolism (Plcg1, Inpp5a, Itpka), and Ca2+-Calmodulin dependent kinases (Camk2a, Camk4). CaMKIV-Sam68 control over alternative splicing of Nrxn1, an adhesion component of glutamatergic synapses between granule and Purkinje neurons, was found to be affected. Systematic screening of pre/post-synapse components, with dendrite morphology assessment, suggested early impairment of CamKIIα abundance together with the weakening of parallel fiber connectivity. These data reveal molecular changes due to ATXN2 pathology, primarily impacting excitability and communication.
Collapse
Affiliation(s)
- Aleksandar Arsović
- Experimental Neurology, Medical Faculty, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (A.A.); (M.V.H.); (J.C.-P.); (S.G.)
| | - Melanie Vanessa Halbach
- Experimental Neurology, Medical Faculty, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (A.A.); (M.V.H.); (J.C.-P.); (S.G.)
| | - Júlia Canet-Pons
- Experimental Neurology, Medical Faculty, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (A.A.); (M.V.H.); (J.C.-P.); (S.G.)
| | - Dilhan Esen-Sehir
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Medical Faculty, Goethe University, Heinrich-Hoffmann-Str. 10, 60528 Frankfurt am Main, Germany; (D.E.-S.); (F.F.)
- Faculty of Biosciences, Goethe-University, Max von Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany;
| | - Florian Freudenberg
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Medical Faculty, Goethe University, Heinrich-Hoffmann-Str. 10, 60528 Frankfurt am Main, Germany; (D.E.-S.); (F.F.)
| | - Nicoletta Czechowska
- Institute of Anatomy, Anatomy and Cell Biology, University of Bonn, Nussallee 10, 53115 Bonn, Germany; (N.C.); (K.S.); (S.L.B.)
| | - Kay Seidel
- Institute of Anatomy, Anatomy and Cell Biology, University of Bonn, Nussallee 10, 53115 Bonn, Germany; (N.C.); (K.S.); (S.L.B.)
| | - Stephan L. Baader
- Institute of Anatomy, Anatomy and Cell Biology, University of Bonn, Nussallee 10, 53115 Bonn, Germany; (N.C.); (K.S.); (S.L.B.)
| | - Suzana Gispert
- Experimental Neurology, Medical Faculty, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (A.A.); (M.V.H.); (J.C.-P.); (S.G.)
| | - Nesli-Ece Sen
- Experimental Neurology, Medical Faculty, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (A.A.); (M.V.H.); (J.C.-P.); (S.G.)
- Faculty of Biosciences, Goethe-University, Max von Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Medical Faculty, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (A.A.); (M.V.H.); (J.C.-P.); (S.G.)
| |
Collapse
|
24
|
Chronic stress induces formation of stress granules and pathological TDP-43 aggregates in human ALS fibroblasts and iPSC-motoneurons. Neurobiol Dis 2020; 145:105051. [PMID: 32827688 DOI: 10.1016/j.nbd.2020.105051] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/18/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative diseases characterized by the presence of neuropathological aggregates of phosphorylated TDP-43 (P-TDP-43) protein. The RNA-binding protein TDP-43 participates also to cell stress response by forming stress granules (SG) in the cytoplasm to temporarily arrest translation. The hypothesis that TDP-43 pathology directly arises from SG has been proposed but is still under debate because only sub-lethal stress conditions have been tested experimentally so far. In this study we reproduced a mild and chronic oxidative stress by sodium arsenite to better mimic the persistent and subtle alterations occurring during the neurodegenerative process in primary fibroblasts and induced pluripotent stem cell-derived motoneurons (iPSC-MN) from ALS patients carrying mutations in TARDBP and C9ORF72 genes. We found that not only the acute sub-lethal stress usually used in literature, but also the chronic oxidative insult was able to induce SG formation in both primary fibroblasts and iPSC-MN. We also observed the recruitment of TDP-43 into SG only upon chronic stress in association to the formation of distinct cytoplasmic P-TDP-43 aggregates and a significant increase of the autophagy marker p62. A quantitative analysis revealed differences in both the number of cells forming SG in mutant ALS and healthy control fibroblasts, suggesting a specific genetic contribution to cell stress response, and in SG size, suggesting a different composition of these cytoplasmic foci in the two stress conditions. Upon removal of arsenite, the recovery from chronic stress was complete for SG and P-TDP-43 aggregates at 72 h with the exception of p62, which was reduced but still persistent, supporting the hypothesis that autophagy impairment may drive pathological TDP-43 aggregates formation. The gene-specific differences observed in fibroblasts in response to oxidative stress were not present in iPSC-MN, which showed a similar formation of SG and P-TDP-43 aggregates regardless their genotype. Our results show that SG and P-TDP-43 aggregates may be recapitulated in patient-derived neuronal and non-neuronal cells exposed to prolonged oxidative stress, which may be therefore exploited to study TDP-43 pathology and to develop individualized therapeutic strategies for ALS/FTD.
Collapse
|
25
|
Suk TR, Rousseaux MWC. The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Mol Neurodegener 2020; 15:45. [PMID: 32799899 PMCID: PMC7429473 DOI: 10.1186/s13024-020-00397-1] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Since its discovery as a primary component in cytoplasmic aggregates in post-mortem tissue of patients with Amyotrophic Lateral Sclerosis (ALS), TAR DNA Binding Protein 43 kDa (TDP-43) has remained a central focus to understand the disease. TDP-43 links both familial and sporadic forms of ALS as mutations are causative for disease and cytoplasmic aggregates are a hallmark of nearly all cases, regardless of TDP-43 mutational status. Research has focused on the formation and consequences of cytosolic protein aggregates as drivers of ALS pathology through both gain- and loss-of-function mechanisms. Not only does aggregation sequester the normal function of TDP-43, but these aggregates also actively block normal cellular processes inevitably leading to cellular demise in a short time span. Although there may be some benefit to therapeutically targeting TDP-43 aggregation, this step may be too late in disease development to have substantial therapeutic benefit. However, TDP-43 pathology appears to be tightly linked with its mislocalization from the nucleus to the cytoplasm, making it difficult to decouple the consequences of nuclear-to-cytoplasmic mislocalization from protein aggregation. Studies focusing on the effects of TDP-43 mislocalization have demonstrated both gain- and loss-of-function consequences including altered splicing regulation, over responsiveness to cellular stressors, increases in DNA damage, and transcriptome-wide changes. Additionally, mutations in TARDBP confer a baseline increase in cytoplasmic TDP-43 thus suggesting that small changes in the subcellular localization of TDP-43 could in fact drive early pathology. In this review, we bring forth the theme of protein mislocalization as a key mechanism underlying ALS, by highlighting the importance of maintaining subcellular proteostasis along with the gain- and loss-of-functional consequences when TDP-43 localization is dysregulated. Additional research, focusing on early events in TDP-43 pathogenesis (i.e. to the protein mislocalization stage) will provide insight into disease mechanisms, therapeutic targets, and novel biomarkers for ALS.
Collapse
Affiliation(s)
- Terry R. Suk
- University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Maxime W. C. Rousseaux
- University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| |
Collapse
|
26
|
Park H, Kam TI, Dawson TM, Dawson VL. Poly (ADP-ribose) (PAR)-dependent cell death in neurodegenerative diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 353:1-29. [PMID: 32381174 DOI: 10.1016/bs.ircmb.2019.12.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Disruption of cellular functions with aging-induced accumulation of neuronal stressors causes cell death which is a common feature of neurodegenerative diseases. Studies in a variety of neurodegenerative disease models demonstrate that poly (ADP-ribose) (PAR)-dependent cell death, also named parthanatos, is responsible for neuronal loss in neurological diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). Parthanatos has distinct features that differ from caspase-dependent apoptosis, necrosis or autophagic cell death. Parthanatos can be triggered by the accumulation of PAR due to overactivation of PAR polymerase-1 (PARP-1). Excess PAR, induces the mitochondrial release apoptosis-inducing factor (AIF), which binds to macrophage migration inhibitory factor (MIF) carrying MIF into the nucleus where it cleaves genomic DNA into large fragments. In this review, we will discuss the molecular mechanisms of parthanatos and their role in neurodegenerative diseases. Furthermore, we will discuss promising therapeutic interventions within the pathological PAR signaling cascade that could be designed to halt the progression of neurodegeneration.
Collapse
Affiliation(s)
- Hyejin Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
27
|
Ng JSW, Hanspal MA, Matharu NS, Barros TP, Esbjörner EK, Wilson MR, Yerbury JJ, Dobson CM, Kumita JR. Using Tetracysteine-Tagged TDP-43 with a Biarsenical Dye To Monitor Real-Time Trafficking in a Cell Model of Amyotrophic Lateral Sclerosis. Biochemistry 2019; 58:4086-4095. [PMID: 31529970 PMCID: PMC6775541 DOI: 10.1021/acs.biochem.9b00592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
TAR DNA-binding protein
43 (TDP-43) has been identified as the
major constituent of the proteinaceous inclusions that are characteristic
of most forms of amyotrophic lateral sclerosis (ALS) and ubiquitin
positive frontotemporal lobar degeneration (FTLD). Wild type TDP-43
inclusions are a pathological hallmark of >95% of patients with
sporadic
ALS and of the majority of familial ALS cases, and they are also found
in a significant proportion of FTLD cases. ALS is the most common
form of motor neuron disease, characterized by progressive weakness
and muscular wasting, and typically leads to death within a few years
of diagnosis. To determine how the translocation and misfolding of
TDP-43 contribute to ALS pathogenicity, it is crucial to define the
dynamic behavior of this protein within the cellular environment.
It is therefore necessary to develop cell models that allow the location
of the protein to be defined. We report the use of TDP-43 with a tetracysteine
tag for visualization using fluorogenic biarsenical compounds and
show that this model displays features of ALS observed in other cell
models. We also demonstrate that this labeling procedure enables live-cell
imaging of the translocation of the protein from the nucleus into
the cytosol.
Collapse
Affiliation(s)
- Janice S W Ng
- Centre for Misfolding Diseases, Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Maya A Hanspal
- Centre for Misfolding Diseases, Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Naunehal S Matharu
- Centre for Misfolding Diseases, Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Teresa P Barros
- Centre for Misfolding Diseases, Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Elin K Esbjörner
- Department of Biology and Biological Engineering, Division of Chemical Biology , Chalmers University of Technology , Kemivägen 10 , 412 96 Gothenburg , Sweden
| | - Mark R Wilson
- Illawarra Health and Medical Research Institute , Wollongong , NSW 2522 , Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science Medicine and Health , University of Wollongong , Northfields Avenue , Wollongong , NSW 2522 , Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute , Wollongong , NSW 2522 , Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science Medicine and Health , University of Wollongong , Northfields Avenue , Wollongong , NSW 2522 , Australia
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Janet R Kumita
- Centre for Misfolding Diseases, Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| |
Collapse
|
28
|
Abstract
The discovery that repeat expansions in the C9orf72 gene are a frequent cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) has revolutionized our understanding of these diseases. Substantial headway has been made in characterizing C9orf72-mediated disease and unravelling its underlying aetiopathogenesis. Three main disease mechanisms have been proposed: loss of function of the C9orf72 protein and toxic gain of function from C9orf72 repeat RNA or from dipeptide repeat proteins produced by repeat-associated non-ATG translation. Several downstream processes across a range of cellular functions have also been implicated. In this article, we review the pathological and mechanistic features of C9orf72-associated FTD and ALS (collectively termed C9FTD/ALS), the model systems used to study these conditions, and the probable initiators of downstream disease mechanisms. We suggest that a combination of upstream mechanisms involving both loss and gain of function and downstream cellular pathways involving both cell-autonomous and non-cell-autonomous effects contributes to disease progression.
Collapse
Affiliation(s)
- Rubika Balendra
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, UCL, London, UK
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK. .,UK Dementia Research Institute at UCL, UCL Institute of Neurology, London, UK.
| |
Collapse
|
29
|
McGurk L, Rifai OM, Bonini NM. Poly(ADP-Ribosylation) in Age-Related Neurological Disease. Trends Genet 2019; 35:601-613. [PMID: 31182245 DOI: 10.1016/j.tig.2019.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
A central and causative feature of age-related neurodegenerative disease is the deposition of misfolded proteins in the brain. To devise novel approaches to treatment, regulatory pathways that modulate these aggregation-prone proteins must be defined. One such pathway is post-translational modification by the addition of poly(ADP-ribose) (PAR), which promotes protein recruitment and localization in several cellular contexts. Mounting evidence implicates PAR in seeding the abnormal localization and accumulation of proteins that are causative of neurodegenerative disease. Inhibitors of PAR polymerase (PARP) activity have been developed as cancer therapeutics, raising the possibility that they could be used to treat neurodegenerative disease. We focus on pathways regulated by PAR in neurodegenerative disease, with emphasis on amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD).
Collapse
Affiliation(s)
- Leeanne McGurk
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Olivia M Rifai
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
30
|
Grimaldi G, Catara G, Palazzo L, Corteggio A, Valente C, Corda D. PARPs and PAR as novel pharmacological targets for the treatment of stress granule-associated disorders. Biochem Pharmacol 2019; 167:64-75. [PMID: 31102582 DOI: 10.1016/j.bcp.2019.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022]
Abstract
Among the post-translational modifications, ADP-ribosylation has been for long time the least integrated in the scheme of the structural protein modifications affecting physiological functions. In spite of the original findings on bacterial-dependent ADP-ribosylation catalysed by toxins such as cholera and pertussis toxin, only with the discovery of the poly-ADP-ribosyl polymerase (PARP) family the field has finally expanded and the role of ADP-ribosylation has been recognised in both physiological and pathological processes, including cancer, infectious and neurodegenerative diseases. This is now a rapidly expanding field of investigation, centred on the role of the different PARPs and their substrates in various diseases, and on the potential of PARP inhibitors as novel pharmacological tools to be employed in relevant pathological context. In this review we analyse the role that members of the PARP family and poly-ADP-ribose (PAR; the product of PARP1 and PARP5a activity) play in the processes following the exposure of cells to different stresses. The cell response that arises following conditions such as heat, osmotic, oxidative stresses or viral infection relies on the formation of stress granules, which are transient cytoplasmic membrane-less structures, that include untranslated mRNA, specific proteins and PAR, this last one serving as the "collector" of all components (that bind to it in a non-covalent manner). The resulting phenotypes are cells in which translation, intracellular transport or pro-apoptotic pathways are reversibly inhibited, for the time the given stress holds. Interestingly, the formation of defective stress granules has been detected in diverse pathological conditions including neurological disorders and cancer. Analysing the molecular details of stress granule formation under these conditions offers a novel view on the pathogenesis of these diseases and, as a consequence, the possibility of identifying novel drug targets for their treatment.
Collapse
Affiliation(s)
- Giovanna Grimaldi
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy.
| | - Giuliana Catara
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy
| | - Luca Palazzo
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy
| | - Annunziata Corteggio
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy
| | - Carmen Valente
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy.
| |
Collapse
|
31
|
Gasset-Rosa F, Lu S, Yu H, Chen C, Melamed Z, Guo L, Shorter J, Da Cruz S, Cleveland DW. Cytoplasmic TDP-43 De-mixing Independent of Stress Granules Drives Inhibition of Nuclear Import, Loss of Nuclear TDP-43, and Cell Death. Neuron 2019; 102:339-357.e7. [PMID: 30853299 DOI: 10.1016/j.neuron.2019.02.038] [Citation(s) in RCA: 324] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 01/10/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
While cytoplasmic aggregation of TDP-43 is a pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia, how aggregates form and what drives its nuclear clearance have not been determined. Here we show that TDP-43 at its endogenous level undergoes liquid-liquid phase separation (LLPS) within nuclei in multiple cell types. Increased concentration of TDP-43 in the cytoplasm or transient exposure to sonicated amyloid-like fibrils is shown to provoke long-lived liquid droplets of cytosolic TDP-43 whose assembly and maintenance are independent of conventional stress granules. Cytosolic liquid droplets of TDP-43 accumulate phosphorylated TDP-43 and rapidly convert into gels/solids in response to transient, arsenite-mediated stress. Cytoplasmic TDP-43 droplets slowly recruit importin-α and Nup62 and induce mislocalization of RanGap1, Ran, and Nup107, thereby provoking inhibition of nucleocytoplasmic transport, clearance of nuclear TDP-43, and cell death. These findings identify a neuronal cell death mechanism that can be initiated by transient-stress-induced cytosolic de-mixing of TDP-43.
Collapse
Affiliation(s)
- Fatima Gasset-Rosa
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Shan Lu
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Haiyang Yu
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Cong Chen
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ze'ev Melamed
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Lin Guo
- Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | - James Shorter
- Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | - Sandrine Da Cruz
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
32
|
Chew J, Cook C, Gendron TF, Jansen-West K, Del Rosso G, Daughrity LM, Castanedes-Casey M, Kurti A, Stankowski JN, Disney MD, Rothstein JD, Dickson DW, Fryer JD, Zhang YJ, Petrucelli L. Aberrant deposition of stress granule-resident proteins linked to C9orf72-associated TDP-43 proteinopathy. Mol Neurodegener 2019; 14:9. [PMID: 30767771 PMCID: PMC6377782 DOI: 10.1186/s13024-019-0310-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/08/2019] [Indexed: 12/14/2022] Open
Abstract
Background A G4C2 hexanucleotide repeat expansion in the noncoding region of C9orf72 is the major genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis (c9FTD/ALS). Putative disease mechanisms underlying c9FTD/ALS include toxicity from sense G4C2 and antisense G2C4 repeat-containing RNA, and from dipeptide repeat (DPR) proteins unconventionally translated from these RNA products. Methods Intracerebroventricular injections with adeno-associated virus (AAV) encoding 2 or 149 G4C2 repeats were performed on postnatal day 0, followed by assessment of behavioral and neuropathological phenotypes. Results Relative to control mice, gliosis and neurodegeneration accompanied by cognitive and motor deficits were observed in (G4C2)149 mice by 6 months of age. Recapitulating key pathological hallmarks, we also demonstrate that sense and antisense RNA foci, inclusions of poly(GA), poly(GP), poly(GR), poly(PR), and poly(PA) DPR proteins, and inclusions of endogenous phosphorylated TDP-43 (pTDP-43) developed in (G4C2)149 mice but not control (G4C2)2 mice. Notably, proteins that play a role in the regulation of stress granules – RNA-protein assemblies that form in response to translational inhibition and that have been implicated in c9FTD/ALS pathogenesis – were mislocalized in (G4C2)149 mice as early as 3 months of age. Specifically, we observed the abnormal deposition of stress granule components within inclusions immunopositive for poly(GR) and pTDP-43, as well as evidence of nucleocytoplasmic transport defects. Conclusions Our in vivo model of c9FTD/ALS is the first to robustly recapitulate hallmark features derived from both sense and antisense C9orf72 repeat-associated transcripts complete with neurodegeneration and behavioral impairments. More importantly, the early appearance of persistent pathological stress granules prior to significant pTDP-43 deposition implicates an aberrant stress granule response as a key disease mechanism driving TDP-43 proteinopathy in c9FTD/ALS. Electronic supplementary material The online version of this article (10.1186/s13024-019-0310-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeannie Chew
- Department of Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Casey Cook
- Department of Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA.,Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, 4500 San Pablo Rd, Jacksonville, Florida, 32224, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA.,Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, 4500 San Pablo Rd, Jacksonville, Florida, 32224, USA
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Giulia Del Rosso
- Department of Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Lillian M Daughrity
- Department of Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Monica Castanedes-Casey
- Department of Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Jeannette N Stankowski
- Department of Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida, 33458, USA
| | - Jeffrey D Rothstein
- Department of Neurology, Brain Science Institute, Johns Hopkins University, 855 N Wolfe St, Baltimore, MD, 21205, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA.,Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, 4500 San Pablo Rd, Jacksonville, Florida, 32224, USA
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA.,Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, 4500 San Pablo Rd, Jacksonville, Florida, 32224, USA
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA. .,Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, 4500 San Pablo Rd, Jacksonville, Florida, 32224, USA.
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA. .,Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, 4500 San Pablo Rd, Jacksonville, Florida, 32224, USA.
| |
Collapse
|
33
|
TDP-43 extracted from frontotemporal lobar degeneration subject brains displays distinct aggregate assemblies and neurotoxic effects reflecting disease progression rates. Nat Neurosci 2018; 22:65-77. [PMID: 30559480 DOI: 10.1038/s41593-018-0294-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022]
Abstract
Accumulation of abnormally phosphorylated TDP-43 (pTDP-43) is the main pathology in affected neurons of people with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Morphological diversity and neuroanatomical distribution of pTDP-43 accumulations allowed classification of FTLD cases into at least four subtypes, which are correlated with clinical presentations and genetic causes. To understand the molecular basis of this heterogeneity, we developed SarkoSpin, a new method for biochemical isolation of pathological TDP-43. By combining SarkoSpin with mass spectrometry, we revealed proteins beyond TDP-43 that become abnormally insoluble in a disease subtype-specific manner. We show that pTDP-43 extracted from brain forms stable assemblies of distinct densities and morphologies that are associated with disease subtypes. Importantly, biochemically extracted pTDP-43 assemblies showed differential neurotoxicity and seeding that were correlated with disease duration of FTLD subjects. Our data are consistent with the notion that disease heterogeneity could originate from alternate pathological TDP-43 conformations, which are reminiscent of prion strains.
Collapse
|
34
|
McGurk L, Gomes E, Guo L, Mojsilovic-Petrovic J, Tran V, Kalb RG, Shorter J, Bonini NM. Poly(ADP-Ribose) Prevents Pathological Phase Separation of TDP-43 by Promoting Liquid Demixing and Stress Granule Localization. Mol Cell 2018; 71:703-717.e9. [PMID: 30100264 PMCID: PMC6128762 DOI: 10.1016/j.molcel.2018.07.002] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/18/2018] [Accepted: 06/29/2018] [Indexed: 12/27/2022]
Abstract
In amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD), cytoplasmic aggregates of hyperphosphorylated TDP-43 accumulate and colocalize with some stress granule components, but how pathological TDP-43 aggregation is nucleated remains unknown. In Drosophila, we establish that downregulation of tankyrase, a poly(ADP-ribose) (PAR) polymerase, reduces TDP-43 accumulation in the cytoplasm and potently mitigates neurodegeneration. We establish that TDP-43 non-covalently binds to PAR via PAR-binding motifs embedded within its nuclear localization sequence. PAR binding promotes liquid-liquid phase separation of TDP-43 in vitro and is required for TDP-43 accumulation in stress granules in mammalian cells and neurons. Stress granule localization initially protects TDP-43 from disease-associated phosphorylation, but upon long-term stress, stress granules resolve, leaving behind aggregates of phosphorylated TDP-43. Finally, small-molecule inhibition of Tankyrase-1/2 in mammalian cells inhibits formation of cytoplasmic TDP-43 foci without affecting stress granule assembly. Thus, Tankyrase inhibition antagonizes TDP-43-associated pathology and neurodegeneration and could have therapeutic utility for ALS and FTD.
Collapse
Affiliation(s)
- Leeanne McGurk
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward Gomes
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lin Guo
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jelena Mojsilovic-Petrovic
- Department of Neurology, Children's Hospital of Philadelphia, Joseph Stokes Jr. Research Institute, Philadelphia, PA 19104, USA
| | - Van Tran
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert G Kalb
- Department of Neurology, Children's Hospital of Philadelphia, Joseph Stokes Jr. Research Institute, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
McGurk L, Mojsilovic-Petrovic J, Van Deerlin VM, Shorter J, Kalb RG, Lee VM, Trojanowski JQ, Lee EB, Bonini NM. Nuclear poly(ADP-ribose) activity is a therapeutic target in amyotrophic lateral sclerosis. Acta Neuropathol Commun 2018; 6:84. [PMID: 30157956 PMCID: PMC6114235 DOI: 10.1186/s40478-018-0586-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/19/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating and fatal motor neuron disease. Diagnosis typically occurs in the fifth decade of life and the disease progresses rapidly leading to death within ~ 2–5 years of symptomatic onset. There is no cure, and the few available treatments offer only a modest extension in patient survival. A protein central to ALS is the nuclear RNA/DNA-binding protein, TDP-43. In > 95% of ALS patients, TDP-43 is cleared from the nucleus and forms phosphorylated protein aggregates in the cytoplasm of affected neurons and glia. We recently defined that poly(ADP-ribose) (PAR) activity regulates TDP-43-associated toxicity. PAR is a posttranslational modification that is attached to target proteins by PAR polymerases (PARPs). PARP-1 and PARP-2 are the major enzymes that are active in the nucleus. Here, we uncovered that the motor neurons of the ALS spinal cord were associated with elevated nuclear PAR, suggesting elevated PARP activity. Veliparib, a small-molecule inhibitor of nuclear PARP-1/2, mitigated the formation of cytoplasmic TDP-43 aggregates in mammalian cells. In primary spinal-cord cultures from rat, Veliparib also inhibited TDP-43-associated neuronal death. These studies uncover that PAR activity is misregulated in the ALS spinal cord, and a small-molecular inhibitor of PARP-1/2 activity may have therapeutic potential in the treatment of ALS and related disorders associated with abnormal TDP-43 homeostasis.
Collapse
|
36
|
Abstract
Eukaryotic cells organize their intracellular components into organelles that can be membrane-bound or membraneless. A large number of membraneless organelles, including nucleoli, Cajal bodies, P-bodies, and stress granules, exist as liquid droplets within the cell and arise from the condensation of cellular material in a process termed liquid-liquid phase separation (LLPS). Beyond a mere organizational tool, concentrating cellular components into membraneless organelles tunes biochemical reactions and improves cellular fitness during stress. In this review, we provide an overview of the molecular underpinnings of the formation and regulation of these membraneless organelles. This molecular understanding explains emergent properties of these membraneless organelles and shines new light on neurodegenerative diseases, which may originate from disturbances in LLPS and membraneless organelles.
Collapse
Affiliation(s)
- Edward Gomes
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - James Shorter
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
37
|
Gao J, Wang L, Huntley ML, Perry G, Wang X. Pathomechanisms of TDP-43 in neurodegeneration. J Neurochem 2018; 146:10.1111/jnc.14327. [PMID: 29486049 PMCID: PMC6110993 DOI: 10.1111/jnc.14327] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/08/2018] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
Abstract
Neurodegeneration, a term that refers to the progressive loss of structure and function of neurons, is a feature of many neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). There is no cure or treatment available that can prevent or reverse neurodegenerative conditions. The causes of neurodegeneration in these diseases remain largely unknown; yet, an extremely small proportion of these devastating diseases are associated with genetic mutations in proteins involved in a wide range of cellular pathways and processes. Over the past decade, it has become increasingly clear that the most notable neurodegenerative diseases, such as ALS, FTLD, and AD, share a common prominent pathological feature known as TAR DNA-binding protein 43 (TDP-43) proteinopathy, which is usually characterized by the presence of aberrant phosphorylation, ubiquitination, cleavage and/or nuclear depletion of TDP-43 in neurons and glial cells. The role of TDP-43 as a neurotoxicity trigger has been well documented in different in vitro and in vivo experimental models. As such, the investigation of TDP-43 pathomechanisms in various major neurodegenerative diseases is on the rise. Here, after a discussion of stages of TDP-43 proteinopathy during disease progression in various major neurodegenerative diseases, we review previous and most recent studies about the potential pathomechanisms with a particular emphasis on ALS, FTLD, and AD, and discuss the possibility of targeting TDP-43 as a common therapeutic approach to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Ju Gao
- Departments of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Luwen Wang
- Departments of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mikayla L. Huntley
- Departments of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Xinglong Wang
- Departments of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
38
|
Liu YJ, Tsai PY, Chern Y. Energy Homeostasis and Abnormal RNA Metabolism in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2017; 11:126. [PMID: 28522961 PMCID: PMC5415567 DOI: 10.3389/fncel.2017.00126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease that is clinically characterized by progressive muscle weakness and impaired voluntary movement due to the loss of motor neurons in the brain, brain stem and spinal cord. To date, no effective treatment is available. Ample evidence suggests that impaired RNA homeostasis and abnormal energy status are two major pathogenesis pathways in ALS. In the present review article, we focus on recent studies that report molecular insights of both pathways, and discuss the possibility that energy dysfunction might negatively regulate RNA homeostasis via the impairment of cytoplasmic-nuclear shuttling in motor neurons and subsequently contribute to the development of ALS.
Collapse
Affiliation(s)
- Yu-Ju Liu
- Division of Neuroscience, Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Po-Yi Tsai
- Division of Neuroscience, Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Yijuang Chern
- Division of Neuroscience, Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| |
Collapse
|
39
|
Guerrero EN, Wang H, Mitra J, Hegde PM, Stowell SE, Liachko NF, Kraemer BC, Garruto RM, Rao KS, Hegde ML. TDP-43/FUS in motor neuron disease: Complexity and challenges. Prog Neurobiol 2016; 145-146:78-97. [PMID: 27693252 PMCID: PMC5101148 DOI: 10.1016/j.pneurobio.2016.09.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/19/2016] [Accepted: 09/20/2016] [Indexed: 01/05/2023]
Abstract
Amyotrophic lateral sclerosis (ALS), a common motor neuron disease affecting two per 100,000 people worldwide, encompasses at least five distinct pathological subtypes, including, ALS-SOD1, ALS-C9orf72, ALS-TDP-43, ALS-FUS and Guam-ALS. The etiology of a major subset of ALS involves toxicity of the TAR DNA-binding protein-43 (TDP-43). A second RNA/DNA binding protein, fused in sarcoma/translocated in liposarcoma (FUS/TLS) has been subsequently associated with about 1% of ALS patients. While mutations in TDP-43 and FUS have been linked to ALS, the key contributing molecular mechanism(s) leading to cell death are still unclear. One unique feature of TDP-43 and FUS pathogenesis in ALS is their nuclear clearance and simultaneous cytoplasmic aggregation in affected motor neurons. Since the discoveries in the last decade implicating TDP-43 and FUS toxicity in ALS, a majority of studies have focused on their cytoplasmic aggregation and disruption of their RNA-binding functions. However, TDP-43 and FUS also bind to DNA, although the significance of their DNA binding in disease-affected neurons has been less investigated. A recent observation of accumulated genomic damage in TDP-43 and FUS-linked ALS and association of FUS with neuronal DNA damage repair pathways indicate a possible role of deregulated DNA binding function of TDP-43 and FUS in ALS. In this review, we discuss the different ALS disease subtypes, crosstalk of etiopathologies in disease progression, available animal models and their limitations, and recent advances in understanding the specific involvement of RNA/DNA binding proteins, TDP-43 and FUS, in motor neuron diseases.
Collapse
Affiliation(s)
- Erika N. Guerrero
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
- Centre for Neuroscience, Institute for Scientific Research and Technology Services (INDICASAT-AIP), City of Knowledge, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Haibo Wang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Pavana M. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Sara E. Stowell
- Department of Anthropology, Binghamton University, State University of New York, Binghamton, New York
| | - Nicole F Liachko
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Brian C. Kraemer
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Ralph M. Garruto
- Department of Anthropology, Binghamton University, State University of New York, Binghamton, New York
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, New York
| | - K. S. Rao
- Centre for Neuroscience, Institute for Scientific Research and Technology Services (INDICASAT-AIP), City of Knowledge, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
- Houston Methodist Neurological Institute, Houston, Texas 77030 USA
- Weill Medical College of Cornell University, New York
| |
Collapse
|
40
|
Schipper LJ, Raaphorst J, Aronica E, Baas F, de Haan R, de Visser M, Troost D. Prevalence of brain and spinal cord inclusions, including dipeptide repeat proteins, in patients with the C9ORF72 hexanucleotide repeat expansion: a systematic neuropathological review. Neuropathol Appl Neurobiol 2016; 42:547-60. [DOI: 10.1111/nan.12284] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 08/27/2015] [Indexed: 12/12/2022]
Affiliation(s)
- L. J. Schipper
- Department of Neurology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - J. Raaphorst
- Department of Neurology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
- Department of Neurology; Radboud University Medical Center; Nijmegen The Netherlands
| | - E. Aronica
- Department of Neuropathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - F. Baas
- Department of Genome Analysis; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - R. de Haan
- Clinical Research Unit; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - M. de Visser
- Department of Neurology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - D. Troost
- Department of Neuropathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
41
|
Boeynaems S, Bogaert E, Van Damme P, Van Den Bosch L. Inside out: the role of nucleocytoplasmic transport in ALS and FTLD. Acta Neuropathol 2016; 132:159-173. [PMID: 27271576 PMCID: PMC4947127 DOI: 10.1007/s00401-016-1586-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/27/2016] [Accepted: 05/28/2016] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases are characterized by the presence of protein inclusions with a different protein content depending on the type of disease. Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are no exceptions to this common theme. In most ALS and FTLD cases, the predominant pathological species are RNA-binding proteins. Interestingly, these proteins are both depleted from their normal nuclear localization and aggregated in the cytoplasm. This key pathological feature has suggested a potential dual mechanism with both nuclear loss of function and cytoplasmic gain of function being at play. Yet, why and how this pathological cascade is initiated in most patients, and especially sporadic cases, is currently unresolved. Recent breakthroughs in C9orf72 ALS/FTLD disease models point at a pivotal role for the nuclear transport system in toxicity. To address whether defects in nuclear transport are indeed implicated in the disease, we reviewed two decades of ALS/FTLD literature and combined this with bioinformatic analyses. We find that both RNA-binding proteins and nuclear transport factors are key players in ALS/FTLD pathology. Moreover, our analyses suggest that disturbances in nucleocytoplasmic transport play a crucial initiating role in the disease, by bridging both nuclear loss and cytoplasmic gain of functions. These findings highlight this process as a novel and promising therapeutic target for ALS and FTLD.
Collapse
Affiliation(s)
- Steven Boeynaems
- />Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven-University of Leuven, 3000 Leuven, Belgium
- />Laboratory of Neurobiology, Vesalius Research Center, VIB, Campus Gasthuisberg O&N4, PB912, Herestraat 49, 3000 Leuven, Belgium
| | - Elke Bogaert
- />Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven-University of Leuven, 3000 Leuven, Belgium
- />Laboratory of Neurobiology, Vesalius Research Center, VIB, Campus Gasthuisberg O&N4, PB912, Herestraat 49, 3000 Leuven, Belgium
| | - Philip Van Damme
- />Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven-University of Leuven, 3000 Leuven, Belgium
- />Laboratory of Neurobiology, Vesalius Research Center, VIB, Campus Gasthuisberg O&N4, PB912, Herestraat 49, 3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- />Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven-University of Leuven, 3000 Leuven, Belgium
- />Laboratory of Neurobiology, Vesalius Research Center, VIB, Campus Gasthuisberg O&N4, PB912, Herestraat 49, 3000 Leuven, Belgium
- />Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
42
|
Bowden HA, Dormann D. Altered mRNP granule dynamics in FTLD pathogenesis. J Neurochem 2016; 138 Suppl 1:112-33. [PMID: 26938019 DOI: 10.1111/jnc.13601] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 12/13/2022]
Abstract
In neurons, RNA-binding proteins (RBPs) play a key role in post-transcriptional gene regulation, for example alternative splicing, mRNA localization in neurites and local translation upon synaptic stimulation. There is increasing evidence that defective or mislocalized RBPs - and consequently altered mRNA processing - lead to neuronal dysfunction and cause neurodegeneration, including frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Cytosolic RBP aggregates containing TAR DNA-binding protein of 43 kDa (TDP-43) or fused in sarcoma (FUS) are a common hallmark of both disorders. There is mounting evidence that translationally silent mRNP granules, such as stress granules or transport granules, play an important role in the formation of these RBP aggregates. These granules are thought to be 'catalytic convertors' of RBP aggregation by providing a high local concentration of RBPs. As recently shown in vitro, RBPs that contain a so-called low-complexity domain start to 'solidify' and eventually aggregate at high protein concentrations. The same may happen in mRNP granules in vivo, leading to 'solidified' granules that lose their dynamic properties and ability to fulfill their physiological functions. This may result in a disturbed stress response, altered mRNA transport and local translation, and formation of pathological TDP-43 or FUS aggregates, all of which may contribute to neuronal dysfunction and neurodegeneration. Here, we discuss the general functional properties of these mRNP granules, how their dynamics may be disrupted in frontotemporal lobar degeneration/amyotrophic lateral sclerosis, for example by loss or gain of function of TDP-43 and FUS, and how this may contribute to the development of RBP aggregates and neurotoxicity. In this review, we discuss how dynamic mRNP granules, such as stress granules or neuronal transport granules, may be converted into pathological aggregates containing misfolded RNA-binding proteins (RBPs), such as TDP-43 and FUS. Abnormal interactions between low-complexity domains in RBPs may cause dynamic mRNP granules to solidify and become dysfunctional. This may result in a disturbed stress response, altered mRNA transport and local translation, as well as RBP aggregation, all of which may contribute to neuronal dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Hilary A Bowden
- Graduate School of Systemic Neurosciences (GSN), Planegg-Martinsried, Germany
| | - Dorothee Dormann
- BioMedical Center (BMC), Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany.,Graduate School of Systemic Neurosciences (GSN), Planegg-Martinsried, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
43
|
Monahan Z, Shewmaker F, Pandey UB. Stress granules at the intersection of autophagy and ALS. Brain Res 2016; 1649:189-200. [PMID: 27181519 DOI: 10.1016/j.brainres.2016.05.022] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/06/2016] [Accepted: 05/12/2016] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal disease caused by loss of upper and lower motor neurons. The majority of ALS cases are classified as sporadic (80-90%), with the remaining considered familial based on patient history. The last decade has seen a surge in the identification of ALS-causing genes - including TARDBP (TDP-43), FUS, MATR3 (Matrin-3), C9ORF72 and several others - providing important insights into the molecular pathways involved in pathogenesis. Most of the protein products of ALS-linked genes fall into two functional categories: RNA-binding/homeostasis and protein-quality control (i.e. autophagy and proteasome). The RNA-binding proteins tend to be aggregation-prone with low-complexity domains similar to the prion-forming domains of yeast. Many also incorporate into stress granules (SGs), which are cytoplasmic ribonucleoprotein complexes that form in response to cellular stress. Mutant forms of TDP-43 and FUS perturb SG dynamics, lengthening their cytoplasmic persistence. Recent evidence suggests that SGs are regulated by the autophagy pathway, suggesting a unifying connection between many of the ALS-linked genes. Persistent SGs may give rise to intractable aggregates that disrupt neuronal homeostasis, thus failure to clear SGs by autophagic processes may promote ALS pathogenesis. This article is part of a Special Issue entitled SI:Autophagy.
Collapse
Affiliation(s)
- Zachary Monahan
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Frank Shewmaker
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Udai Bhan Pandey
- Department of Pediatrics, Division of Child Neurology, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
44
|
C9ORF72 Regulates Stress Granule Formation and Its Deficiency Impairs Stress Granule Assembly, Hypersensitizing Cells to Stress. Mol Neurobiol 2016; 54:3062-3077. [DOI: 10.1007/s12035-016-9850-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/09/2016] [Indexed: 12/14/2022]
|
45
|
Aulas A, Vande Velde C. Alterations in stress granule dynamics driven by TDP-43 and FUS: a link to pathological inclusions in ALS? Front Cell Neurosci 2015; 9:423. [PMID: 26557057 PMCID: PMC4615823 DOI: 10.3389/fncel.2015.00423] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/06/2015] [Indexed: 12/12/2022] Open
Abstract
Stress granules (SGs) are RNA-containing cytoplasmic foci formed in response to stress exposure. Since their discovery in 1999, over 120 proteins have been described to be localized to these structures (in 154 publications). Most of these components are RNA binding proteins (RBPs) or are involved in RNA metabolism and translation. SGs have been linked to several pathologies including inflammatory diseases, cancer, viral infection, and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In ALS and FTD, the majority of cases have no known etiology and exposure to external stress is frequently proposed as a contributor to either disease initiation or the rate of disease progression. Of note, both ALS and FTD are characterized by pathological inclusions, where some well-known SG markers localize with the ALS related proteins TDP-43 and FUS. We propose that TDP-43 and FUS serve as an interface between genetic susceptibility and environmental stress exposure in disease pathogenesis. Here, we will discuss the role of TDP-43 and FUS in SG dynamics and how disease-linked mutations affect this process.
Collapse
Affiliation(s)
- Anaïs Aulas
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal Montréal, QC, Canada ; Department of Biochemistry, Université de Montréal Montréal, QC, Canada
| | - Christine Vande Velde
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal Montréal, QC, Canada ; Department of Neurosciences, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
46
|
McGurk L, Berson A, Bonini NM. Drosophila as an In Vivo Model for Human Neurodegenerative Disease. Genetics 2015; 201:377-402. [PMID: 26447127 PMCID: PMC4596656 DOI: 10.1534/genetics.115.179457] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/19/2015] [Indexed: 12/13/2022] Open
Abstract
With the increase in the ageing population, neurodegenerative disease is devastating to families and poses a huge burden on society. The brain and spinal cord are extraordinarily complex: they consist of a highly organized network of neuronal and support cells that communicate in a highly specialized manner. One approach to tackling problems of such complexity is to address the scientific questions in simpler, yet analogous, systems. The fruit fly, Drosophila melanogaster, has been proven tremendously valuable as a model organism, enabling many major discoveries in neuroscientific disease research. The plethora of genetic tools available in Drosophila allows for exquisite targeted manipulation of the genome. Due to its relatively short lifespan, complex questions of brain function can be addressed more rapidly than in other model organisms, such as the mouse. Here we discuss features of the fly as a model for human neurodegenerative disease. There are many distinct fly models for a range of neurodegenerative diseases; we focus on select studies from models of polyglutamine disease and amyotrophic lateral sclerosis that illustrate the type and range of insights that can be gleaned. In discussion of these models, we underscore strengths of the fly in providing understanding into mechanisms and pathways, as a foundation for translational and therapeutic research.
Collapse
Affiliation(s)
- Leeanne McGurk
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Amit Berson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
47
|
Abstract
The transactive response DNA binding protein (TDP-43) has long been characterized as a main hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U, also known as FTLD-TDP). Several studies have indicated TDP-43 deposits in Alzheimer's disease (AD) brains and have robust connection with AD clinical phenotype. FTLD-U, which was symptomatically connected with AD, may be predictable for the comprehension of the role TDP-43 in AD. TDP-43 may contribute to AD through both β-amyloid (Aβ)-dependent and Aβ-independent pathways. In this article, we summarize the latest studies concerning the role of TDP-43 in AD and explore TDP-43 modulation as a potential therapeutic strategy for AD. However, to date, little of pieces of the research on TDP-43 have been performed to investigate the role in AD; more investigations need to be confirmed in the future.
Collapse
|
48
|
Abstract
The degeneration of motor neurons in amyotrophic lateral sclerosis (ALS) inevitably causes paralysis and death within a matter of years. Mounting genetic and functional evidence suggest that abnormalities in RNA processing and metabolism underlie motor neuron loss in sporadic and familial ALS. Abnormal localization and aggregation of essential RNA-binding proteins are fundamental pathological features of sporadic ALS, and mutations in genes encoding RNA processing enzymes cause familial disease. Also, expansion mutations occurring in the noncoding region of C9orf72-the most common cause of inherited ALS-result in nuclear RNA foci, underscoring the link between abnormal RNA metabolism and neurodegeneration in ALS. This review summarizes the current understanding of RNA dysfunction in ALS, and builds upon this knowledge base to identify converging mechanisms of neurodegeneration in ALS. Potential targets for therapy development are highlighted, with particular emphasis on early and conserved pathways that lead to motor neuron loss in ALS.
Collapse
Affiliation(s)
- Sami J Barmada
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, 5015 Biomedical Sciences Research Building, SSPC 2200, Ann Arbor, MI, 48109, USA,
| |
Collapse
|
49
|
Rossi S, Serrano A, Gerbino V, Giorgi A, Di Francesco L, Nencini M, Bozzo F, Schininà ME, Bagni C, Cestra G, Carrì MT, Achsel T, Cozzolino M. Nuclear accumulation of mRNAs underlies G4C2-repeat-induced translational repression in a cellular model of C9orf72 ALS. J Cell Sci 2015; 128:1787-99. [PMID: 25788698 DOI: 10.1242/jcs.165332] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/09/2015] [Indexed: 01/13/2023] Open
Abstract
A common feature of non-coding repeat expansion disorders is the accumulation of RNA repeats as RNA foci in the nucleus and/or cytoplasm of affected cells. These RNA foci can be toxic because they sequester RNA-binding proteins, thus affecting various steps of post-transcriptional gene regulation. However, the precise step that is affected by C9orf72 GGGGCC (G4C2) repeat expansion, the major genetic cause of amyotrophic lateral sclerosis (ALS), is still poorly defined. In this work, we set out to characterise these mechanisms by identifying proteins that bind to C9orf72 RNA. Sequestration of some of these factors into RNA foci was observed when a (G4C2)31 repeat was expressed in NSC34 and HeLa cells. Most notably, (G4C2)31 repeats widely affected the distribution of Pur-alpha and its binding partner fragile X mental retardation protein 1 (FMRP, also known as FMR1), which accumulate in intra-cytosolic granules that are positive for stress granules markers. Accordingly, translational repression is induced. Interestingly, this effect is associated with a marked accumulation of poly(A) mRNAs in cell nuclei. Thus, defective trafficking of mRNA, as a consequence of impaired nuclear mRNA export, might affect translation efficiency and contribute to the pathogenesis of C9orf72 ALS.
Collapse
Affiliation(s)
- Simona Rossi
- Institute of Translational Pharmacology, CNR, 00133 Rome, Italy Laboratory of Neurochemistry, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Alessia Serrano
- Institute of Translational Pharmacology, CNR, 00133 Rome, Italy
| | - Valeria Gerbino
- Laboratory of Neurochemistry, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Alessandra Giorgi
- Department of Biochemical Sciences "A. Rossi Fanelli", University of Rome "Sapienza", Rome 00185, Italy
| | - Laura Di Francesco
- Department of Biochemical Sciences "A. Rossi Fanelli", University of Rome "Sapienza", Rome 00185, Italy
| | - Monica Nencini
- Laboratory of Neurochemistry, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy
| | - Francesca Bozzo
- Laboratory of Neurochemistry, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Maria Eugenia Schininà
- Department of Biochemical Sciences "A. Rossi Fanelli", University of Rome "Sapienza", Rome 00185, Italy
| | - Claudia Bagni
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium VIB Center for the Biology of Disease, 3000 Leuven, Belgium
| | - Gianluca Cestra
- Institute of Molecular Biology and Pathology, CNR, 00185 Rome, Italy Department of Biology and Biotechnology "Charles Darwin", University of Rome "Sapienza", 00185 Rome, Italy
| | - Maria Teresa Carrì
- Laboratory of Neurochemistry, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Tilmann Achsel
- Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium VIB Center for the Biology of Disease, 3000 Leuven, Belgium
| | - Mauro Cozzolino
- Institute of Translational Pharmacology, CNR, 00133 Rome, Italy Laboratory of Neurochemistry, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy
| |
Collapse
|