1
|
Perez S, Johnson AM, Xiang SH, Li J, Foley BT, Doyle-Meyers L, Panganiban A, Kaur A, Veazey RS, Wu Y, Ling B. Persistence of SIV in the brain of SIV-infected Chinese rhesus macaques with or without antiretroviral therapy. J Neurovirol 2017; 24:62-74. [PMID: 29181724 DOI: 10.1007/s13365-017-0594-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/27/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
Abstract
Persistence of HIV-1 reservoirs in the central nervous system (CNS) is an obstacle to cure strategies. However, little is known about residual viral distribution, viral replication levels, and genetic diversity in different brain regions of HIV-infected individuals on combination antiretroviral therapy (cART). Because myeloid cells particularly microglia are likely major reservoirs in the brain, and more microglia exist in white matter than gray matter in a human brain, we hypothesized the major viral reservoirs in the brain are the white matter reflected by higher levels of viral DNA. To address the issue, we used the Chinese rhesus macaque (ChRM) model of SIV infection, and treated 11 SIVmac251-infected animals including long-term nonprogressors with cART for up to 24 weeks. SIV reservoirs were assessed by SIV DNA levels in 16 specific regions of the brain and 4 regions of spinal cord. We found relatively high frequencies of SIV in basal ganglia and brain stem compared to other regions. cART-receiving animals had significantly lower SIV DNA levels in the gray matter than white matter. Moreover, a shortened envelope gp120 with 21 nucleotide deletions and guanine-to-adenine hypermutations were observed. These results demonstrate that SIV enters the CNS in SIV-infected ChRM with a major reservoir in the white matter after cART; the SIV/ChRM/cART is an appropriate model for studying HIV CNS reservoirs and testing new eradication strategies. Further, examining multiple regions of the CNS may be needed when assessing whether an agent is successful in reducing the size of SIV reservoirs in the CNS.
Collapse
Affiliation(s)
- Stefanie Perez
- Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA.,Hayward Genetics Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Ann-Marie Johnson
- Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Shi-Hua Xiang
- Nebraska Center for Virology, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, 68583, USA
| | - Jian Li
- Department of Statistics, Tulane University School of Public Health and Tropic Medicine, New Orleans, LA, 70112, USA
| | - Brian T Foley
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Lara Doyle-Meyers
- Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Antonito Panganiban
- Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA.,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Amitinder Kaur
- Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA.,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Ronald S Veazey
- Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA.,Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Yuntao Wu
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, VA, 20110, USA
| | - Binhua Ling
- Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA. .,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
2
|
Pinto Y, Gabay O, Arbiza L, Sams AJ, Keinan A, Levanon EY. Clustered mutations in hominid genome evolution are consistent with APOBEC3G enzymatic activity. Genome Res 2016; 26:579-87. [PMID: 27056836 PMCID: PMC4864454 DOI: 10.1101/gr.199240.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 03/16/2016] [Indexed: 11/29/2022]
Abstract
The gradual accumulation of mutations by any of a number of mutational processes is a major driving force of divergence and evolution. Here, we investigate a potentially novel mutational process that is based on the activity of members of the AID/APOBEC family of deaminases. This gene family has been recently shown to introduce—in multiple types of cancer—enzyme-induced clusters of co-occurring somatic mutations caused by cytosine deamination. Going beyond somatic mutations, we hypothesized that APOBEC3—following its rapid expansion in primates—can introduce unique germline mutation clusters that can play a role in primate evolution. In this study, we tested this hypothesis by performing a comprehensive comparative genomic screen for APOBEC3-induced mutagenesis patterns across different hominids. We detected thousands of mutation clusters introduced along primate evolution which exhibit features that strongly fit the known patterns of APOBEC3G mutagenesis. These results suggest that APOBEC3G-induced mutations have contributed to the evolution of all genomes we studied. This is the first indication of site-directed, enzyme-induced genome evolution, which played a role in the evolution of both modern and archaic humans. This novel mutational mechanism exhibits several unique features, such as its higher tendency to mutate transcribed regions and regulatory elements and its ability to generate clusters of concurrent point mutations that all occur in a single generation. Our discovery demonstrates the exaptation of an anti-viral mechanism as a new source of genomic variation in hominids with a strong potential for functional consequences.
Collapse
Affiliation(s)
- Yishay Pinto
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Orshay Gabay
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Leonardo Arbiza
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853, USA
| | - Aaron J Sams
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853, USA
| | - Alon Keinan
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853, USA
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
3
|
Fourati S, Lambert-Niclot S, Soulie C, Wirden M, Malet I, Valantin MA, Tubiana R, Simon A, Katlama C, Carcelain G, Calvez V, Marcelin AG. Differential impact of APOBEC3-driven mutagenesis on HIV evolution in diverse anatomical compartments. AIDS 2014; 28:487-91. [PMID: 24401644 DOI: 10.1097/qad.0000000000000182] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Previous studies on HIV quasispecies have revealed HIV compartmentalization in various tissues within an infected individual. Such HIV variation is a result of a combination of factors including high replication and mutation rates, recombination, and APOBEC3-host selective pressure. METHODS To evaluate the differential impact of APOBEC3 editing in HIV-1 compartments, we analyzed the level of G-to-A hypermutation in HIV-1 protease and reverse transcriptase sequences among 30 HAART-treated patients for whom peripheral blood mononuclear cells and body tissues or fluids [cerebral spinal fluid (CSF), rectal tissue, or renal tissue] were collected on the same day. RESULTS APOBEC3-mediated hypermutation was identified in 36% (11/30) of participants in at least one viral reservoir. HIV hypermutated sequences were often observed in viral sanctuaries (total n = 10; CSF, n = 6; renal tissue, n = 1; rectal tissue n = 3) compared with peripheral blood (total n = 4). Accordingly, APOBEC3 editing generated more G-to-A drug resistance mutations in sanctuaries: three patients' CSF (i.e. G73S in protease; M184I, M230I in reverse transcriptase) and two other patients' rectal tissues (M184I, M230I in reverse transcriptase) while such mutations were absent from paired peripheral blood mononuclear cells. CONCLUSION APOBEC3-induced mutations observed in peripheral blood underestimate the overall proportion of hypermutated viruses in anatomical compartments. The resulting mutations may favor escape to antiretrovirals in these compartments in conjunction with a lower penetration of drugs in some sanctuaries. On the other side, because hypermutated sequences often harbor inactivating mutations, our results suggest that accumulation of defective viruses may be more dominant in sanctuaries than in peripheral blood of patients on effective HAART.
Collapse
Affiliation(s)
- Slim Fourati
- aInserm UMR S-943 bVirology Department cInfectious Disease Department dInternal Medicine Department, Pitie-Salpetriere Hospital eUniversité Pierre and Marie Curie fInserm UMR S945 gAP-HP hImmunology Department, Pitie-Salpetriere Hospital, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Laser capture microdissection assessment of virus compartmentalization in the central nervous systems of macaques infected with neurovirulent simian immunodeficiency virus. J Virol 2013; 87:8896-908. [PMID: 23720733 DOI: 10.1128/jvi.00874-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonhuman primate-simian immunodeficiency virus (SIV) models are powerful tools for studying the pathogenesis of human immunodeficiency virus type 1 (HIV-1) in the brain. Our laboratory recently isolated a neuropathogenic viral swarm, SIVsmH804E, a derivative of SIVsmE543-3, which was the result of sequential intravenous passages of viruses isolated from the brains of rhesus macaques with SIV encephalitis. Animals infected with SIVsmH804E or its precursor (SIVsmH783Br) developed SIV meningitis and/or encephalitis at high frequencies. Since we observed macaques with a combination of meningitis and encephalitis, as well as animals in which meningitis or encephalitis was the dominant component, we hypothesized that distinct mechanisms could be driving the two pathological states. Therefore, we assessed viral populations in the meninges and the brain parenchyma by laser capture microdissection. Viral RNAs were isolated from representative areas of the meninges, brain parenchyma, terminal plasma, and cerebrospinal fluid (CSF) and from the inoculum, and the SIV envelope fragment was amplified by PCR. Phylogenetic analysis of envelope sequences from the conventional progressors revealed compartmentalization of viral populations between the meninges and the parenchyma. In one of these animals, viral populations in meninges were closely related to those from CSF and shared signature truncations in the cytoplasmic domain of gp41, consistent with a common origin. Apart from magnetic resonance imaging (MRI) and positron-emission tomography (PET) imaging, CSF is the most accessible assess to the central nervous system for HIV-1-infected patients. However, our results suggest that the virus in the CSF may not always be representative of viral populations in the brain and that caution should be applied in extrapolating between the properties of viruses in these two compartments.
Collapse
|
5
|
Mucosal and peripheral Lin- HLA-DR+ CD11c/123- CD13+ CD14- mononuclear cells are preferentially infected during acute simian immunodeficiency virus infection. J Virol 2011; 86:1069-78. [PMID: 22090100 DOI: 10.1128/jvi.06372-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Massive infection of memory CD4 T cells is a hallmark of early simian immunodeficiency virus (SIV) infection, with viral infection peaking at day 10 postinfection (p.i.), when a majority of memory CD4 T cells in mucosal and peripheral tissues are infected. It is not clear if mononuclear cells from the monocyte and macrophage lineages are similarly infected during this early phase of explosive HIV and SIV infections. Here we show that, at day 10 p.i., Lin(-) HLA-DR(+) CD11c/123(-) CD13(+) CD14(-) macrophages in the jejunal mucosa were infected, albeit at lower levels than CD4 memory T cells. Interestingly, Lin(-) HLA-DR(+) CD11c/123(-) CD13(+) CD14(-) macrophages in peripheral blood, like their mucosal counterparts, were preferentially infected compared to Lin(-) HLA-DR(+) CD11c/123(-) CD13(+) CD14(+) monocytes, suggesting that differentiated macrophages were selectively infected by SIV. CD13(+) CD14(-) macrophages expressed low levels of CD4 compared to CD4 T cells but expressed similar levels of CCR5 as lymphocytes. Interestingly, CD13(+) CD14(-) macrophages expressed Apobec3G at lower levels than CD13(+) CD14(+) monocytes, suggesting that intracellular restriction may contribute to the differential infection of mononuclear subsets. Taken together, our results suggest that CD13(+) CD14(-) macrophages in mucosal and peripheral tissues are preferentially infected very early during the course of SIV infection.
Collapse
|
6
|
Depboylu C, Weihe E, Eiden LE. COX1 and COX2 expression in non-neuronal cellular compartments of the rhesus macaque brain during lentiviral infection. Neurobiol Dis 2011; 42:108-15. [PMID: 21220019 PMCID: PMC3066154 DOI: 10.1016/j.nbd.2011.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/16/2010] [Accepted: 01/02/2011] [Indexed: 11/17/2022] Open
Abstract
Recent evidence suggests that cyclooxygenases COX1 and COX2 differentially affect brain immunity. Limited data exist about their expressional changes in neurodegenerative diseases such as neuro-AIDS. Here, we analyzed the regulation of non-neuronal COX1/2 expression in rhesus macaque brain during infection with SIV(δ670) and antiretroviral treatment. COX1 was constitutively expressed in microglia and endothelial cells and was not changed in early SIV infection. Late stage of disease was characterized by increased COX1 expression in globally activated microglia, macrophage nodules, infiltrates, and multinucleated giant cells. Endothelial COX1 expression was unaltered. In contrast, COX2 was not expressed in non-neuronal cells in the brain of uninfected and asymptomatically SIV-infected monkeys but was induced in nodule- and syncytium-forming macrophages and in endothelial cells in areas with infiltrates and SIV in monkeys with AIDS. Antiretroviral treatment of AIDS-diseased monkeys with 6-chloro-2',3'-dideoxyguanosine markedly reduced SIV burden, appearance of COX1-positive macrophage nodules, giant cells, and infiltrates, and COX2 induction in the brain. However, the number of COX1-positive diffuse microglia was still increased in antiretrovirally treated animals as compared to uninfected or asymptomatic SIV-infected monkeys. Our data imply that both COX isoforms are differentially regulated and may distinctly modulate local immune responses in the brain during lentiviral disease.
Collapse
Affiliation(s)
- Candan Depboylu
- Molecular Neuroscience, Department of Anatomy and Cell Biology, Philipps University, Marburg, Germany
- Experimental Neurology, Department of Neurology, Philipps University, Marburg, Germany
| | - Eberhard Weihe
- Molecular Neuroscience, Department of Anatomy and Cell Biology, Philipps University, Marburg, Germany
| | - Lee E. Eiden
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, USA
| |
Collapse
|