1
|
Lu C, Lin C, Lu Y, Tsai H, Lin C, Wu C. CDDO regulates central and peripheral sensitization to attenuate post-herpetic neuralgia by targeting TRPV1/PKC-δ/p-Akt signals. J Cell Mol Med 2024; 28:e18131. [PMID: 38426931 PMCID: PMC10906387 DOI: 10.1111/jcmm.18131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/17/2023] [Accepted: 12/29/2023] [Indexed: 03/02/2024] Open
Abstract
Postherpetic neuralgia (PHN) is a notorious neuropathic pain featuring persistent profound mechanical hyperalgesia with significant negative impact on patients' life quality. CDDO can regulate inflammatory response and programmed cell death. Its derivative also protects neurons from damages by modulating microglia activities. As a consequence of central and peripheral sensitization, applying neural blocks may benefit to minimize the risk of PHN. This study aimed to explore whether CDDO could generate analgesic action in a PHN-rats' model. The behavioural test was determined by calibrated forceps testing. The number of apoptotic neurons and degree of glial cell reaction were assessed by immunofluorescence assay. Activation of PKC-δ and the phosphorylation of Akt were measured by western blots. CDDO improved PHN by decreasing TRPV1-positive nociceptive neurons, the apoptotic neurons, and reversed glial cell reaction in adult rats. It also suppressed the enhanced PKC-δ and p-Akt signalling in the sciatic nerve, dorsal root ganglia (DRG) and spinal dorsal horn. Our research is the promising report demonstrating the analgesic and neuroprotective action of CDDO in a PHN-rat's model by regulating central and peripheral sensitization targeting TRPV1, PKC-δ and p-Akt. It also is the first study to elucidate the role of oligodendrocyte in PHN.
Collapse
Affiliation(s)
- Chun‐Ching Lu
- Department of Orthopaedics and TraumatologyNational Yang Ming Chiao Tung University HospitalYilanTaiwan
- Department of Orthopaedics, School of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Department of Orthopaedics and TraumatologyTaipei Veterans General HospitalTaipeiTaiwan
| | - Chia‐Yang Lin
- Department of Nuclear MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Ying‐Yi Lu
- Department of DermatologyKaohsiung Veterans General HospitalKaohsiungTaiwan
- Department of Post‐Baccalaureate Medicine, School of Medicine, College of MedicineNational Sun Yat‐sen UniversityKaohsiungTaiwan
- Shu‐Zen Junior College of Medicine and ManagementKaohsiungTaiwan
| | - Hung‐Pei Tsai
- Division of Neurosurgery, Department of SurgeryKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Chih‐Lung Lin
- Division of Neurosurgery, Department of SurgeryKaohsiung Medical University HospitalKaohsiungTaiwan
- Department of Surgery, School of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Chieh‐Hsin Wu
- Division of Neurosurgery, Department of SurgeryKaohsiung Medical University HospitalKaohsiungTaiwan
- Department of Surgery, School of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Center for Big Data ResearchKaohsiung Medical UniversityKaohsiungTaiwan
- Drug Development and Value Creation Research CenterKaohsiung Medical UniversityKaohsiungTaiwan
| |
Collapse
|
2
|
Yeh TY, Chang MF, Kan YY, Chiang H, Hsieh ST. HSP27 Modulates Neuropathic Pain by Inhibiting P2X3 Degradation. Mol Neurobiol 2024; 61:707-724. [PMID: 37656312 DOI: 10.1007/s12035-023-03582-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
The role of heat shock protein 27 (HSP27), a chaperone, in neuropathic pain after nerve injury has not been systematically surveyed despite its neuroprotective and regeneration-promoting effects. In this study, we found that HSP27 expression in sensory neurons of the dorsal root ganglia (DRG) mediated nerve injury-induced neuropathic pain. Neuropathic pain behaviors were alleviated by silencing HSP27 in the DRG of a rat spinal nerve ligation (SNL) model. Local injection of an HSP27-overexpression construct into the DRG of naïve rats elicited neuropathic pain behaviors. HSP27 interacted with a purinergic receptor, P2X3, and their expression patterns corroborated the induction and reversal of neuropathic pain according to two lines of evidence: colocalization immunohistochemically and immunoprecipitation biochemically. In a cell model cotransfected with HSP27 and P2X3, the degradation rate of P2X3 was reduced in the presence of HSP27. Such an alteration was mediated by reducing P2X3 ubiquitination in SNL rats and was reversed after silencing HSP27 in the DRGs of SNL rats. In summary, the interaction of HSP27 with P2X3 provides a new mechanism of injury-induced neuropathic pain that could serve as an alternative therapeutic target.
Collapse
Affiliation(s)
- Ti-Yen Yeh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Ming-Fong Chang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Yu-Yu Kan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | | | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
- Department of Neurology, National Taiwan University Hospital, Taipei, 10002, Taiwan.
| |
Collapse
|
3
|
Ruiz-Cantero MC, Cortés-Montero E, Jain A, Montilla-García Á, Bravo-Caparrós I, Shim J, Sánchez-Blázquez P, Woolf CJ, Baeyens JM, Cobos EJ. The sigma-1 receptor curtails endogenous opioid analgesia during sensitization of TRPV1 nociceptors. Br J Pharmacol 2023; 180:1148-1167. [PMID: 36478100 DOI: 10.1111/bph.16003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Peripheral sensitization contributes to pathological pain. While prostaglandin E2 (PGE2) and nerve growth factor (NGF) sensitize peptidergic C-nociceptors (TRPV1+), glial cell line-derived neurotrophic factor (GDNF) sensitizes non-peptidergic C-neurons (IB4+). The sigma-1 receptor (sigma-1R) is a Ca2+ -sensing chaperone known to modulate opoid analgesia. This receptor binds both to TRPV1 and the μ opioid receptor, although the functional repercussions of these physical interactions in peripheral sensitization are unknown. EXPERIMENTAL APPROACH We tested the effects of sigma-1 antagonism on PGE2-, NGF-, and GDNF-induced mechanical and heat hyperalgesia in mice. We used immunohistochemistry to determine the presence of endomorphin-2, an endogenous μ receptor agonist, on dorsal root ganglion (DRG) neurons. Recombinant proteins were used to study the interactions between sigma-1R, μ- receptor, and TRPV1. We used calcium imaging to study the effects of sigma-1 antagonism on PGE2-induced sensitization of TRPV1+ nociceptors. KEY RESULTS Sigma1 antagonists reversed PGE2- and NGF-induced hyperalgesia but not GDNF-induced hyperalgesia. Endomorphin-2 was detected on TRPV1+ but not on IB4+ neurons. Peripheral opioid receptor antagonism by naloxone methiodide or administration of an anti-endomorphin-2 antibody to a sensitized paw reversed the antihyperalgesia induced by sigma-1 antagonists. Sigma-1 antagonism transfers sigma-1R from TRPV1 to μ receptors, suggesting that sigma-1R participate in TRPV1-μ receptor crosstalk. Moreover, sigma-1 antagonism reversed, in a naloxone-sensitive manner, PGE2-induced sensitization of DRG neurons to the calcium flux elicited by capsaicin, the prototypic TRPV1 agonist. CONCLUSION AND IMPLICATIONS Sigma-1 antagonism harnesses endogenous opioids produced by TRPV1+ neurons to reduce hyperalgesia by increasing μ receptor activity.
Collapse
Affiliation(s)
- M Carmen Ruiz-Cantero
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain.,Biosanitary Research Institute ibs. GRANADA, Granada, Spain
| | - Elsa Cortés-Montero
- Department of Translational Neurosciences, Neuropharmacology, Cajal Institute, CSIC, Madrid, Spain
| | - Aakanksha Jain
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Ángeles Montilla-García
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
| | - Inmaculada Bravo-Caparrós
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
| | - Jaehoon Shim
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Pilar Sánchez-Blázquez
- Department of Translational Neurosciences, Neuropharmacology, Cajal Institute, CSIC, Madrid, Spain
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - José M Baeyens
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain.,Biosanitary Research Institute ibs. GRANADA, Granada, Spain
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain.,Biosanitary Research Institute ibs. GRANADA, Granada, Spain.,Teófilo Hernando Institute for Drug Discovery, Madrid, Spain
| |
Collapse
|
4
|
Chang CH, Chang YS, Hsieh YL. Transient receptor potential vanilloid subtype 1 depletion mediates mechanical allodynia through cellular signal alterations in small-fiber neuropathy. Pain Rep 2021; 6:e922. [PMID: 34585035 PMCID: PMC8462592 DOI: 10.1097/pr9.0000000000000922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/22/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022] Open
Abstract
Transient receptor potential vanilloid subtype 1 (TRPV1) is a polymodal nociceptor that monitors noxious thermal sensations. Few studies have addressed the role of TRPV1 in mechanical allodynia in small-fiber neuropathy (SFN) caused by sensory nerve damage. Accordingly, this article reviews the putative mechanisms of TRPV1 depletion that mediates mechanical allodynia in SFN. The intraepidermal nerve fibers (IENFs) degeneration and sensory neuronal injury are the primary characteristics of SFN. Intraepidermal nerve fibers are mainly C-polymodal nociceptors and Aδ-fibers, which mediated allodynic pain after neuronal sensitization. TRPV1 depletion by highly potent neurotoxins induces the upregulation of activating transcription factor 3 and IENFs degeneration which mimics SFN. TRPV1 is predominately expressed by the peptidergic than nonpeptidergic nociceptors, and these neurochemical discrepancies provided the basis of the distinct pathways of thermal analgesia and mechanical allodynia. The depletion of peptidergic nociceptors and their IENFs cause thermal analgesia and sensitized nonpeptidergic nociceptors respond to mechanical allodynia. These distinct pathways of noxious stimuli suggested determined by the neurochemical-dependent neurotrophin cognate receptors such as TrkA and Ret receptors. The neurogenic inflammation after TRPV1 depletion also sensitized Ret receptors which results in mechanical allodynia. The activation of spinal TRPV1(+) neurons may contribute to mechanical allodynia. Also, an imbalance in adenosinergic analgesic signaling in sensory neurons such as the downregulation of prostatic acid phosphatase and adenosine A1 receptors, which colocalized with TRPV1 as a membrane microdomain also correlated with the development of mechanical allodynia. Collectively, TRPV1 depletion-induced mechanical allodynia involves a complicated cascade of cellular signaling alterations.
Collapse
Affiliation(s)
- Chin-Hong Chang
- Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Ying-Shuang Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Wu CH, Wu MK, Lu CC, Tsai HP, Lu YY, Lin CL. Impact of Hepatoma-Derived Growth Factor Blockade on Resiniferatoxin-Induced Neuropathy. Neural Plast 2021; 2021:8854461. [PMID: 33727914 PMCID: PMC7937473 DOI: 10.1155/2021/8854461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/05/2021] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Resiniferatoxin is an ultrapotent capsaicin analog that mediates nociceptive processing; treatment with resiniferatoxin can cause an inflammatory response and, ultimately, neuropathic pain. Hepatoma-derived growth factor, a growth factor related to normal development, is associated with neurotransmitters surrounding neurons and glial cells. Therefore, the study aims to investigate how blocking hepatoma-derived growth factor affects the inflammatory response in neuropathic pain. Serum hepatoma-derived growth factor protein expression was measured via ELISA. Resiniferatoxin was administrated intraperitoneally to induce neuropathic pain in 36 male Sprague-Dawley rats which were divided into three groups (resiniferatoxin+recombinant hepatoma-derived growth factor antibody group, resiniferatoxin group, and control group) (n = 12/group). The mechanical threshold response was tested with calibration forceps. Cell apoptosis was measured by TUNEL assay. Immunofluorescence staining was performed to detect apoptosis of neuron cells and proliferation of astrocytes in the spinal cord dorsal horn. RT-PCR technique and western blot were used to measure detect inflammatory factors and protein expressions. Serum hepatoma-derived growth factor protein expression was higher in the patients with sciatica compared to controls. In resiniferatoxin-group rats, protein expression of hepatoma-derived growth factor was higher than controls. Blocking hepatoma-derived growth factor improved the mechanical threshold response in rats. In dorsal root ganglion, blocking hepatoma-derived growth factor inhibited inflammatory cytokines. In the spinal cord dorsal horn, blocking hepatoma-derived growth factor inhibited proliferation of astrocyte, apoptosis of neuron cells, and attenuated expressions of pain-associated proteins. The experiment showed that blocking hepatoma-derived growth factor can prevent neuropathic pain and may be a useful alternative to conventional analgesics.
Collapse
Affiliation(s)
- Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Kung Wu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chun-Ching Lu
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Ying-Yi Lu
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Shu-Zen Junior College of Medicine and Management, Kaohsiung 821, Taiwan
| | - Chih-Lung Lin
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
6
|
Cavalcanti MRM, Passos FRS, Monteiro BS, Gandhi SR, Heimfarth L, Lima BS, Nascimento YM, Duarte MC, Araujo AAS, Menezes IRA, Coutinho HDM, Zengin G, Ceylan R, Aktumsek A, Quintans-Júnior LJ, Quintans JSS. HPLC-DAD-UV analysis, anti-inflammatory and anti-neuropathic effects of methanolic extract of Sideritis bilgeriana (lamiaceae) by NF-κB, TNF-α, IL-1β and IL-6 involvement. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113338. [PMID: 32920137 DOI: 10.1016/j.jep.2020.113338] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Medicinal plants remain an invaluable source for therapeutics of diseases that affect humanity. Sideritis bilgeriana (Lamiaceae) is medicinal plant used in Turkey folk medicine to reduce inflammation and pain, but few studies scientific corroborates its medicinal use so creating a gap between popular use and scientific evidence. Thus, we aimed to evaluate the pharmacological effects of the methanolic extract of S. bilgeriana (MESB) in rodents nociception models and also performed its phytochemical analysis. Firstly, a screening was carried out that enabled the identification of the presence of phenolic compounds and flavonoids. In view of this, a chromatographic method by HPLC-DAD-UV was developed that made it possible to identify chlorogenic acid and its quantification in MESB. MESB-treated mice (MESB 50, 100 and 200 mg/kg, p.o.) reduced mechanical hyperalgesia and myeloperoxidase activity (p < 0.01), and also showed a reduced pain behavior in capsaicin test. In the carrageenan-induced pleurisy test, MESB (100 mg/kg p.o.) significantly reduced the leukocyte (polymorphonuclear) count in the pleural cavity and equally decreased the TNF-α and IL-1β levels (p < 0.001). In the PSNL model, mechanical hyperalgesia was reduced on the first evaluation day and during the 7 days of evaluation compared to the vehicle group (p < 0.001). Thermal hyperalgesia was also reduced 1 h after treatment compared to the vehicle group (p < 0.001) and reversed the loss of force initially displayed by the animals, thus inferring an analgesic effect in the muscle strength test. Analysis of the marrow of these animals showed a decrease in the level of pro-inflammatory cytokine IL-6 (p < 0.001) and factor NF-κB, in relation to the control group (p < 0.05). Moreover, the MESB treatment produced no noticeable side effects, no disturb in motor performance and no signs of gastric or hepatic injury. Together, the results suggests that MESB could be useful to management of inflammation and neuropathic pain mainly by the management of pro-inflammatory mediators (NF-κB, TNF-α, IL-1β and IL-6), so reinforcing its use in popular medicine and corroborating the need for further chemical and pharmacological studies for the species.
Collapse
Affiliation(s)
- Mariana R M Cavalcanti
- Department of Physiology, Brazil; Graduate Program of Health Sciences. Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Fabiolla R S Passos
- Department of Physiology, Brazil; Graduate Program of Health Sciences. Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | | | | | - Luana Heimfarth
- Department of Physiology, Brazil; Graduate Program of Health Sciences. Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | | | - Yuri M Nascimento
- Graduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Universidade Federal da Paraíba, João Pessoa, 58051-900, Paraíba, Brazil
| | | | - Adriano A S Araujo
- Department of Pharmacy, Brazil; Graduate Program of Health Sciences. Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Irwin R A Menezes
- Graduate Program of Biological Chemistry, Regional University of Cariri (URCA), Crato, Ceará, Brazil
| | - Henrique D M Coutinho
- Graduate Program of Biological Chemistry, Regional University of Cariri (URCA), Crato, Ceará, Brazil
| | - Gökhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Ramazan Ceylan
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Abdurrahman Aktumsek
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Lucindo J Quintans-Júnior
- Department of Physiology, Brazil; Graduate Program of Health Sciences. Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil.
| | - Jullyana S S Quintans
- Department of Physiology, Brazil; Graduate Program of Health Sciences. Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil.
| |
Collapse
|
7
|
Yeh TY, Luo IW, Hsieh YL, Tseng TJ, Chiang H, Hsieh ST. Peripheral Neuropathic Pain: From Experimental Models to Potential Therapeutic Targets in Dorsal Root Ganglion Neurons. Cells 2020; 9:cells9122725. [PMID: 33371371 PMCID: PMC7767346 DOI: 10.3390/cells9122725] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain exerts a global burden caused by the lesions in the somatosensory nerve system, including the central and peripheral nervous systems. The mechanisms of nerve injury-induced neuropathic pain involve multiple mechanisms, various signaling pathways, and molecules. Currently, poor efficacy is the major limitation of medications for treating neuropathic pain. Thus, understanding the detailed molecular mechanisms should shed light on the development of new therapeutic strategies for neuropathic pain. Several well-established in vivo pain models were used to investigate the detail mechanisms of peripheral neuropathic pain. Molecular mediators of pain are regulated differentially in various forms of neuropathic pain models; these regulators include purinergic receptors, transient receptor potential receptor channels, and voltage-gated sodium and calcium channels. Meanwhile, post-translational modification and transcriptional regulation are also altered in these pain models and have been reported to mediate several pain related molecules. In this review, we focus on molecular mechanisms and mediators of neuropathic pain with their corresponding transcriptional regulation and post-translational modification underlying peripheral sensitization in the dorsal root ganglia. Taken together, these molecular mediators and their modification and regulations provide excellent targets for neuropathic pain treatment.
Collapse
Affiliation(s)
- Ti-Yen Yeh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
| | - I-Wei Luo
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan;
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hostpital, Kaohsiung 80708, Taiwan
| | - To-Jung Tseng
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | | | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
- Department of Neurology, National Taiwan University Hospital, Taipei 10002, Taiwan
- Graduate Institute of Brian and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
- Correspondence: ; Tel.: +886-2-23123456 (ext. 88182); Fax: +886-223915292
| |
Collapse
|
8
|
Downregulation of adenosine and adenosine A1 receptor contributes to neuropathic pain in resiniferatoxin neuropathy. Pain 2019; 159:1580-1591. [PMID: 29672450 PMCID: PMC6085133 DOI: 10.1097/j.pain.0000000000001246] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study demonstrates that functional prostatic acid phosphatase is required for maintaining the balance of cellular adenosine analgesia in systemic small-fiber neuropathy. The neurochemical effects of adenosine signaling in small-fiber neuropathy leading to neuropathic pain are yet to be explored in a direct manner. This study examined this system at the level of ligand (through the ectonucleotidase activity of prostatic acid phosphatase [PAP]) and adenosine A1 receptors (A1Rs) in resiniferatoxin (RTX) neuropathy, a peripheral neurodegenerative disorder that specifically affects nociceptive nerves expressing transient receptor potential vanilloid type 1 (TRPV1). We conducted immunohistochemistry on dorsal root ganglion (DRG) neurons, high-performance liquid chromatography for functional assays, and pharmacological interventions to alter PAP and A1Rs in mice with RTX neuropathy. In DRG of RTX neuropathy, PAP(+) neurons were reduced compared with vehicle-treated mice (P = 0.002). Functionally, PAP ectonucleotidase activity was consequently reduced (ie, the content of adenosine in DRG, P = 0.012). PAP(+) neuronal density was correlated with the degree of mechanical allodynia, which was reversed by intrathecal (i.t.) lumbar puncture injection of recombinant PAP with a dose-dependent effect. Furthermore, A1Rs were downregulated (P = 0.002), and this downregulation was colocalized with the TRPV1 receptor (31.0% ± 2.8%). Mechanical allodynia was attenuated in a dose-dependent response by i.t. injection of the A1R ligand, adenosine; however, no analgesia was evident when an exogenous adenosine was blocked by A1R antagonist. This study demonstrated dual mechanisms of neuropathic pain in TRPV1-induced neuropathy, involving a reduced adenosine system at both the ligand (adenosine) and receptor (A1Rs) levels.
Collapse
|
9
|
Liu X, Yan D, Guo SW. Sensory nerve-derived neuropeptides accelerate the development and fibrogenesis of endometriosis. Hum Reprod 2019; 34:452-468. [PMID: 30689856 DOI: 10.1093/humrep/dey392] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/04/2018] [Accepted: 12/14/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Xishi Liu
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| | - Dingmin Yan
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, China
| | - Sun-Wei Guo
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Lin CL, Chang CH, Chang YS, Lu SC, Hsieh YL. Treatment with methyl-β-cyclodextrin prevents mechanical allodynia in resiniferatoxin neuropathy in a mouse model. Biol Open 2019; 8:bio.039511. [PMID: 30578250 PMCID: PMC6361210 DOI: 10.1242/bio.039511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Specialized microdomains which have cholesterol-rich membrane regions contain transient receptor potential vanilloid subtype 1 (TRPV1) are involved in pain development. Our previous studies have demonstrated that the depletion of prostatic acid phosphatase (PAP) – a membrane-bound ectonucleotidase – and disordered adenosine signaling reduce the antinociceptive effect. The role of membrane integrity in the PAP-mediated antinociceptive effect in small-fiber neuropathy remains unclear, especially with respect to whether TRPV1 and PAP are colocalized in the same microdomain which is responsible for PAP-mediated antinociception. Immunohistochemistry was conducted on the dorsal root ganglion to identify the membrane compositions, and pharmacological interventions were conducted using methyl-β-cyclodextrin (MβC) – a membrane integrity disruptor that works by depleting cholesterol – in pure small-fiber neuropathy with resiniferatoxin (RTX). Immunohistochemical evidence indicated that TRPV1 and PAP were highly colocalized with flotillin 1 (66.7%±9.7%) and flotillin 2 (73.7%±6.0%), which reside in part in the microdomain. MβC mildly depleted PAP, which maintained the ability to hydrolyze phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and delayed the development of mechanical allodynia. MβC treatment had no role in thermal transduction and neuronal injury following RTX neuropathy. In summary, this study demonstrated the following: (1) membrane cholesterol depletion preserves PAP-mediated antinociception through PI(4,5)P2 hydrolysis and (2) pain hypersensitivity that develops after TRPV1(+) neuron depletion-mediated neurodegeneration following RTX neuropathy is attributable to the downregulation of PAP analgesic signaling. Summary: The role and mechanism of cholesterol-rich membrane integrity in pain development for small-fiber neuropathy remains unclear. Depletion of membrane cholesterol contents preserves functional PAP profiles and the antinociceptive effect after RTX neuropathy.
Collapse
Affiliation(s)
- Chih-Lung Lin
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.,Faculty of Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chin-Hong Chang
- Department of Surgery, Chi Mei Medical Center, Tainan 71004, Taiwan
| | - Ying-Shuang Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shui-Chin Lu
- Department of Medical Research, Ultrastructural Laboratory, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
11
|
Chang YS, Kan HW, Hsieh YL. Activating transcription factor 3 modulates protein kinase C epsilon activation in diabetic peripheral neuropathy. J Pain Res 2019; 12:317-326. [PMID: 30679921 PMCID: PMC6338122 DOI: 10.2147/jpr.s186699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Skin denervation that develops in patients with diabetes mellitus as a neuropathic manifestation is known as diabetic peripheral neuropathy (DPN). Skin denervation is parallel to neuronal injuries that alter intracellular signaling. To date, the correlation between nerve injury and the activation of intracellular responses to neuropathic manifestations has not been elucidated; specifically, whether activating transcription factor 3 (ATF3) is responsible for neuronal injury and a critical molecule that modulates the activation of intracellular protein kinase C epsilon (p-PKCε) and pain development in DPN is a crucial question. Methods To address, ATF3 knockout (atf3−/− group, C57/B6 genetic background) and wild-type mice (atf3+/+ group) received a single dose of streptozotocin (200 mg/kg) to generate a mouse model of DPN. Results Both atf3+/+ and atf3−/− mice exhibited hyperglycemia and the same pathology of skin denervation at posttreatment month 2, but only atf3+/+ mice developed thermal hyperalgesia (P<0.001) and mechanical allodynia (P=0.002). The atf3+/+ group, but not the atf3−/− group, had preferential ATF3 upregulation on p-PKCε(+) neurons with a ratio of 37.7%±6.1% in p-PKCε(+):ATF3(+) neurons (P<0.001). In addition, B-cell lymphoma-extra large (Bcl-XL), an antiapoptotic Bcl2 family protein, exhibited parallel patterns to p-PKCε (ie, Bcl-XL upregulation was reversed in atf3−/− mice). These two molecules were colocalized and increased by approximately two-fold in the atf3+/+ group compared with the atf3−/− group (30.0%±3.4% vs 13.7% ± 6.2%, P=0.003). Furthermore, linear analysis results showed that the densities of p-PKCε and Bcl-XL had a reverse linear relationship with the degrees of thermal hyperalgesia and mechanical allodynia. Conclusion Collectively, this report suggested that ATF3 is a critical upstream molecule that modulates p-PKCε and Bcl-XL expression, which consequently mediated the development of neuropathic manifestation in DPN.
Collapse
Affiliation(s)
- Ying-Shuang Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan,
| | - Hung-Wei Kan
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan,
| |
Collapse
|
12
|
Lu SC, Chang YS, Kan HW, Hsieh YL. Tumor necrosis factor-α mediated pain hypersensitivity through Ret receptor in resiniferatoxin neuropathy. Kaohsiung J Med Sci 2019; 34:494-502. [PMID: 30173779 DOI: 10.1016/j.kjms.2018.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/30/2018] [Accepted: 04/26/2018] [Indexed: 12/29/2022] Open
Abstract
Neurogenic inflammation is an onset characteristic of small fiber neuropathy (SFN), which is attributed to neuropathic manifestations. Tumor necrosis factor-α (TNFα) is a cytokine that mainly mediates neurogenic inflammation through the ligand receptor TNF receptor 1 (TNFR1), and targeting TNFα/TNFR1 signaling is a direction toward treating inflammatory diseases and injury-induced neuropathy. However, the relationships between TNFα/TNFR1 signaling and Ret signaling, which mediates pain hypersensitivity, remains elusive. This study used resiniferatoxin (RTX), an ultrapotent analog of capsaicin, to generate a mouse model of SFN, leading to marked hindpaw edema (p = 0.013) and parallel the release of TNFα (p = 0.014), which was associated with the upregulation of Ret(+) neurons (p = 0.0043) and partial depletion of TNFR1 caused by colocalization with TRPV1 depleted by RTX. Pharmacological intervention of TNFα with etanercept (Enbrel®, Wyeth), a clinical application of TNFα blockers, relieved neurogenic inflammation and caused a reduction in hindpaw thickness (p = 0.03) and TNFα releases (p = 0.01), which were determined to be associated with the normalization of mechanical allodynia (p = 0.22). The extraction of either TNFR1(+) or Ret(+) neurons from total of TNFR1(+):Ret(+) neurons indicated that TNFR1(-)/Ret(+) neurons correlated with the mechanical threshold in an antiparallel fashion (r = -0.84, p < 0.0001) but had no relationship with thermal latencies. This study confirmed that TNFα rather than TNFα mediated neuropathic manifestation through the Ret receptor, specifically mechanical allodynia in RTX neuropathy.
Collapse
Affiliation(s)
- Shui-Chin Lu
- Department of Medical Research, Ultrastructural Laboratory, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ying-Shuang Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Wei Kan
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
13
|
Montilla-García Á, Perazzoli G, Tejada MÁ, González-Cano R, Sánchez-Fernández C, Cobos EJ, Baeyens JM. Modality-specific peripheral antinociceptive effects of μ-opioid agonists on heat and mechanical stimuli: Contribution of sigma-1 receptors. Neuropharmacology 2018; 135:328-342. [PMID: 29580951 DOI: 10.1016/j.neuropharm.2018.03.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/05/2018] [Accepted: 03/20/2018] [Indexed: 11/16/2022]
Abstract
Morphine induces peripherally μ-opioid-mediated antinociception to heat but not to mechanical stimulation. Peripheral sigma-1 receptors tonically inhibit μ-opioid antinociception to mechanical stimuli, but it is unknown whether they modulate μ-opioid heat antinociception. We hypothesized that sigma-1 receptors might play a role in the modality-specific peripheral antinociceptive effects of morphine and other clinically relevant μ-opioid agonists. Mechanical nociception was assessed in mice with the paw pressure test (450 g), and heat nociception with the unilateral hot plate (55 °C) test. Local peripheral (intraplantar) administration of morphine, buprenorphine or oxycodone did not induce antinociception to mechanical stimulation but had dose-dependent antinociceptive effects on heat stimuli. Local sigma-1 antagonism unmasked peripheral antinociception by μ-opioid agonists to mechanical stimuli, but did not modify their effects on heat stimulation. TRPV1+ and IB4+ cells are segregated populations of small neurons in the dorsal root ganglia (DRG) and the density of sigma-1 receptors was higher in IB4+ cells than in the rest of small nociceptive neurons. The in vivo ablation of TRPV1-expressing neurons with resiniferatoxin did not alter IB4+ neurons in the DRG, mechanical nociception, or the effects of sigma-1 antagonism on local morphine antinociception in this type of stimulus. However, it impaired the responses to heat stimuli and the effect of local morphine on heat nociception. In conclusion, peripheral opioid antinociception to mechanical stimuli is limited by sigma-1 tonic inhibitory actions, whereas peripheral opioid antinociception to heat stimuli (produced in TRPV1-expressing neurons) is not. Therefore, sigma-1 receptors contribute to the modality-specific peripheral effects of opioid analgesics.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Hot Temperature
- Hyperalgesia/drug therapy
- Hyperalgesia/metabolism
- Hyperalgesia/pathology
- Mice, Knockout
- Nociceptors/drug effects
- Nociceptors/metabolism
- Nociceptors/pathology
- Random Allocation
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Receptors, sigma/agonists
- Receptors, sigma/antagonists & inhibitors
- Receptors, sigma/genetics
- Receptors, sigma/metabolism
- TRPV Cation Channels/metabolism
- Touch
- Sigma-1 Receptor
Collapse
Affiliation(s)
- Ángeles Montilla-García
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain
| | - Gloria Perazzoli
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain
| | - Miguel Á Tejada
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain
| | - Rafael González-Cano
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain
| | - Cristina Sánchez-Fernández
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain; Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain; Teófilo Hernando Institute for Drug Discovery, 28029 Madrid, Spain.
| | - José M Baeyens
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain; Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain.
| |
Collapse
|
14
|
Kan HW, Hsieh JH, Chien HF, Lin YH, Yeh TY, Chao CC, Hsieh ST. CD40-mediated HIF-1α expression underlying microangiopathy in diabetic nerve pathology. Dis Model Mech 2018; 11:dmm033647. [PMID: 29549140 PMCID: PMC5963861 DOI: 10.1242/dmm.033647] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/12/2018] [Indexed: 01/31/2023] Open
Abstract
To understand the pathology and molecular signatures of microangiopathy in diabetic neuropathy, we systemically and quantitatively examined the morphometry of microvascular and nerve pathologies of sural nerves. In the endoneurium of diabetic nerves, prominent microangiopathy was observed, as evidenced by reduced capillary luminal area, increased capillary basement membrane thickness and increased proportion of fibrin(+) blood vessels. Furthermore, capillary basement membrane thickness and the proportion of fibrin(+) blood vessels were correlated with small myelinated fiber density in diabetic nerves. In diabetic nerves, there was also significant macrophage and T cell infiltration, and cluster of differentiation 40 (CD40) expression was increased. The molecular alterations observed were upregulation of hypoxia-inducible factor-1α (HIF-1α), mitogen-activated protein kinase-activated protein kinase 2 (MK2; MAPKAPK2) and phosphatase and tensin homolog (PTEN). In addition, HIF-1α was correlated with small myelinated fiber density and capillary luminal area, while both MK2 and PTEN were correlated with capillary basement membrane thickness. The molecular cascades were further demonstrated and replicated in a cell model of microangiopathy on human umbilical vein endothelial cells (HUVECs) exposed to high-glucose medium by silencing of CD40, PTEN and HIF-1α in HUVECs using shRNA. These data clarified the hierarchy of the molecular cascades, i.e. upregulation of CD40 leading to HIF-1α expression in endothelium and nerve fibers. In conclusion, this study revealed the association of microangiopathy, thrombosis and inflammatory infiltrates with nerve degeneration in diabetic nerves, demonstrating that CD40 is a key molecule for the upregulation of HIF-1α and PTEN underlying the severity of microangiopathy.
Collapse
Affiliation(s)
- Hung-Wei Kan
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei 10051, Taiwan
| | - Jung-Hsien Hsieh
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei 10051, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Hsiung-Fei Chien
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei 10051, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Yea-Huey Lin
- Department of Neurology, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Ti-Yen Yeh
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei 10051, Taiwan
| | - Chi-Chao Chao
- Department of Neurology, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei 10051, Taiwan
- Department of Neurology, National Taiwan University Hospital, Taipei 10002, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| |
Collapse
|
15
|
Lee YC, Lu SC, Hsieh YL. Establishing a Mouse Model of a Pure Small Fiber Neuropathy with the Ultrapotent Agonist of Transient Receptor Potential Vanilloid Type 1. J Vis Exp 2018. [PMID: 29553496 DOI: 10.3791/56651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Patients with diabetes mellitus (DM) or those experiencing the neurotoxic effects of chemotherapeutic agents may develop sensation disorders due to degeneration and injury of small-diameter sensory neurons, referred to as small fiber neuropathy. Present animal models of small fiber neuropathy affect both large- and small-diameter sensory fibers and thus create a neuropathology too complex to properly assess the effects of injured small-diameter sensory fibers. Therefore, it is necessary to develop an experimental model of pure small fiber neuropathy to adequately examine these issues. This protocol describes an experimental model of small fiber neuropathy specifically affecting small-diameter sensory nerves with resiniferatoxin (RTX), an ultrapotent agonist of transient receptor potential vanilloid type 1 (TRPV1), through a single dose of intraperitoneal injection, referred to as RTX neuropathy. This RTX neuropathy showed pathological manifestations and behavioral abnormalities that mimic the clinical characteristics of patients with small fiber neuropathy, including intraepidermal nerve fiber (IENF) degeneration, specifically injury in small-diameter neurons, and induction of thermal hypoalgesia and mechanical allodynia. This protocol tested three doses of RTX (200, 50, and 10 µg/kg, respectively) and concluded that a critical dose of RTX (50 µg/kg) is required for the development of typical small fiber neuropathy manifestations, and prepared a modified immunostaining procedure to investigate IENF degeneration and neuronal soma injury. The modified procedure is fast, systematic, and economic. Behavioral evaluation of neuropathic pain is critical to reveal the function of small-diameter sensory nerves. The evaluation of mechanical thresholds in experimental rodents is particularly challenging and this protocol describes a customized metal mesh that is suitable for this type of assessment in rodents. In summary, RTX neuropathy is a new and easily established experimental model to evaluate the molecular significance and intervention underlying neuropathic pain for the development of therapeutic agents.
Collapse
Affiliation(s)
- Yi-Chen Lee
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University; Department of Medical Research, Kaohsiung Medical University Hospital
| | - Shui-Chin Lu
- Department of Medical Research, Ultrastructural Laboratory, Kaohsiung Medical University Hospital
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University; Department of Medical Research, Kaohsiung Medical University Hospital;
| |
Collapse
|
16
|
Hsieh YL, Kan HW, Chiang H, Lee YC, Hsieh ST. Distinct TrkA and Ret modulated negative and positive neuropathic behaviors in a mouse model of resiniferatoxin-induced small fiber neuropathy. Exp Neurol 2017; 300:87-99. [PMID: 29106982 DOI: 10.1016/j.expneurol.2017.10.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/21/2017] [Accepted: 10/25/2017] [Indexed: 12/18/2022]
Abstract
Neurotrophic factors and their corresponding receptors play key roles in the maintenance of different phenotypic dorsal root ganglion (DRG) neurons, the axons of which degenerate in small fiber neuropathy, leading to various neuropathic manifestations. Mechanisms underlying positive and negative symptoms of small fiber neuropathy have not been systematically explored. This study investigated the molecular basis of these seemingly paradoxical neuropathic behaviors according to the profiles of TrkA and Ret with immunohistochemical and pharmacological interventions in a mouse model of resiniferatoxin (RTX)-induced small fiber neuropathy. Mice with RTX neuropathy exhibited thermal hypoalgesia and mechanical allodynia, reduced skin innervation, and altered DRG expression profiles with decreased TrkA(+) neurons and increased Ret(+) neurons. RTX neuropathy induced the expression of activating transcription factor 3 (ATF3), and ATF3(+) neurons were colocalized with Ret but not with TrkA (P<0.001). As a neuroprotectant, 4-Methylcatechol (4MC) promoted skin reinnervation partially with correlated reversal of the neuropathic behaviors and altered neurochemical expression. Gambogic amide, a selective TrkA agonist, normalized thermal hypoalgesia, and GW441756, a TrkA kinase inhibitor, induced thermal hypoalgesia, which was already reversed by 4MC. Mechanical allodynia was reversed by a Ret kinase inhibitor, AST487, which induced thermal hyperalgesia in naïve mice. The activation of Ret signaling by XIB4035 induced mechanical allodynia and thermal hypoalgesia in RTX neuropathy mice in which the neuropathic behaviors were previously normalized by 4MC. Distinct neurotrophic factor receptors, TrkA and Ret, accounted for negative and positive neuropathic behaviors in RTX-induced small fiber neuropathy, respectively: TrkA for thermal hypoalgesia and Ret for mechanical allodynia and thermal hypoalgesia.
Collapse
Affiliation(s)
- Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| | - Hung-Wei Kan
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Hao Chiang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Yi-Chen Lee
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; Department of Neurology, National Taiwan University Hospital, Taipei 10002, Taiwan; Graduate Institute of Brain and Mind Science, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| |
Collapse
|
17
|
Bessaguet F, Danigo A, Magy L, Sturtz F, Desmoulière A, Demiot C. Candesartan prevents resiniferatoxin-induced sensory small-fiber neuropathy in mice by promoting angiotensin II-mediated AT2 receptor stimulation. Neuropharmacology 2017; 126:142-150. [PMID: 28882562 DOI: 10.1016/j.neuropharm.2017.08.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/04/2017] [Accepted: 08/31/2017] [Indexed: 12/27/2022]
Abstract
Sensory defects associated with small-fiber neuropathy (SFN) can lead to profound disabilities. The relationship between the sensory nervous system and modulation of the renin-angiotensin system (RAS) has been described and focused on pain and neurodegeneration in several animal models. We have recently developed an experimental model of functional sensory neuropathy showing thermal hypoalgesia and neuropeptide depletion without nerve fiber degeneration. Here, we aimed to determine whether the modulation of angiotensin II (Ang II) activity could prevent sensory neuropathy induced by RTX. Control and RTX mice received ramipril, an Ang II converting enzyme (ACE) inhibitor, (0.5 mg/kg/day) or candesartan, an Ang II type 1 receptor (AT1R) blocker (0.5 mg/kg/day), one day before vehicle or RTX administration, and each day for the next seven days. Ramipril did not have a beneficial effect in RTX mice, whereas candesartan prevented thermal hypoalgesia and reduced neuropeptide depletion in intraepidermal nerve fibers and dorsal root ganglion neurons. The preventive effect of candesartan was not observed in mice deficient for the Ang II type 2 receptor (AT2R) and was counteracted in wild type mice by EMA200, an AT2R antagonist (3 mg/kg/day). Thus, candesartan may promote AT2R activation by blocking AT1R and increasing Ang II production and enhance its mechanisms of neuroprotection in our RTX model. Our finding that candesartan prevents nociception deficits and neuropeptide depletion encourages the evaluation of its therapeutic potential in patients presenting SFN, particularly those who experience chemotherapy-induced SFN.
Collapse
Affiliation(s)
- Flavien Bessaguet
- EA 6309 - Myelin Maintenance & Peripheral Neuropathy, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France
| | - Aurore Danigo
- EA 6309 - Myelin Maintenance & Peripheral Neuropathy, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France
| | - Laurent Magy
- Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, Limoges, France
| | - Franck Sturtz
- EA 6309 - Myelin Maintenance & Peripheral Neuropathy, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France
| | - Alexis Desmoulière
- EA 6309 - Myelin Maintenance & Peripheral Neuropathy, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France
| | - Claire Demiot
- EA 6309 - Myelin Maintenance & Peripheral Neuropathy, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France.
| |
Collapse
|
18
|
Abstract
Injury or dysfunction of somatosensory system induces a complex syndrome called neuropathic pain, which still needs adequate pharmacological control. The current pharmacological treatments were in part developed from natural compounds. Flavonoids are natural polyphenolic molecules presenting varied biological activities and low toxicity. The flavonoid diosmin is a safe compound with good tolerability and low toxicity. This study evaluated the antinociceptive effect of diosmin in the sciatic nerve chronic constriction injury (CCI)-induced neuropathic pain model. Male Swiss mice were submitted to CCI and 7 days after, diosmin at 1 or 10 mg/kg was administrated intraperitoneally. Mechanical (electronic analgesimeter) and thermal (hot plate) hyperalgesia were evaluated 1-24 h after treatment. The role of the NO/cGMP/PKG/KATP channel signaling pathway in the analgesic effect of diosmin was evaluated using the pretreatment with L-NAME (an inhibitor of NOS), ODQ (an inhibitor of soluble guanylate cyclase), KT5823 (an inhibitor of PKG), or glibenclamide (an ATP-sensitive K+ channels blocker). Single treatment with diosmin inhibited in a dose-dependent manner CCI-induced mechanical and thermal hyperalgesia by activating the NO/cGMP/PKG/KATP channel signaling pathway and inhibiting spinal cord cytokine (Il-1β and Il-33/St2) and glial cells activation (microglia - Iba-1, oligodendrocytes - Olig2) mRNA expression markers. Daily treatment during 7 days with diosmin inhibited CCI-induced mechanical and thermal hyperalgesia by inhibiting spinal cord cytokine (Il-1β, Tnfα, and Il-33/St2) and glial cells activation (astrocytes - Gfap, Iba-1, and Olig2) markers mRNA expression. In conclusion, diosmin inhibits neuropathic spinal cord nociceptive mechanisms suggesting this flavonoid as a potential therapeutic molecule to reduce nerve lesion-induced neuropathic pain.
Collapse
|
19
|
Chang MF, Hsieh JH, Chiang H, Kan HW, Huang CM, Chellis L, Lin BS, Miaw SC, Pan CL, Chao CC, Hsieh ST. Effective gene expression in the rat dorsal root ganglia with a non-viral vector delivered via spinal nerve injection. Sci Rep 2016; 6:35612. [PMID: 27748450 PMCID: PMC5066268 DOI: 10.1038/srep35612] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/04/2016] [Indexed: 12/13/2022] Open
Abstract
Delivering gene constructs into the dorsal root ganglia (DRG) is a powerful but challenging therapeutic strategy for sensory disorders affecting the DRG and their peripheral processes. The current delivery methods of direct intra-DRG injection and intrathecal injection have several disadvantages, including potential injury to DRG neurons and low transfection efficiency, respectively. This study aimed to develop a spinal nerve injection strategy to deliver polyethylenimine mixed with plasmid (PEI/DNA polyplexes) containing green fluorescent protein (GFP). Using this spinal nerve injection approach, PEI/DNA polyplexes were delivered to DRG neurons without nerve injury. Within one week of the delivery, GFP expression was detected in 82.8% ± 1.70% of DRG neurons, comparable to the levels obtained by intra-DRG injection (81.3% ± 5.1%, p = 0.82) but much higher than those obtained by intrathecal injection. The degree of GFP expression by neurofilament(+) and peripherin(+) DRG neurons was similar. The safety of this approach was documented by the absence of injury marker expression, including activation transcription factor 3 and ionized calcium binding adaptor molecule 1 for neurons and glia, respectively, as well as the absence of behavioral changes. These results demonstrated the efficacy and safety of delivering PEI/DNA polyplexes to DRG neurons via spinal nerve injection.
Collapse
Affiliation(s)
- Ming-Fong Chang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Jung-Hsien Hsieh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Departments of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Hao Chiang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Hung-Wei Kan
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Cho-Min Huang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Luke Chellis
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA
| | - Bo-Shiou Lin
- Department of Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Shi-Chuen Miaw
- Department of Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chun-Liang Pan
- Department of Graduate Institute of Molecular Medicine, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei, 10002, Taiwan
| | - Chi-Chao Chao
- Departments of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Graduate Institute of Brain and Mind Science, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Departments of Clinical Center for Neuroscience and Behavior, National Taiwan University Hospital, Taipei, Taiwan
- Department of Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| |
Collapse
|
20
|
Wu CH, Ho WY, Lee YC, Lin CL, Hsieh YL. EXPRESS: NGF-trkA signaling modulates the analgesic effects of prostatic acid phosphatase in resiniferatoxin-induced neuropathy. Mol Pain 2016; 12:12/0/1744806916656846. [PMID: 27306411 PMCID: PMC4956004 DOI: 10.1177/1744806916656846] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Neuropathic pain in small-fiber neuropathy results from injury to and sensitization of nociceptors. Functional prostatic acid phosphatase (PAP) acts as an analgesic effector. However, the mechanism responsible for the modulation of PAP neuropathology, which leads to loss of the analgesic effect after small-fiber neuropathy, remains unclear. Results We used a resiniferatoxin (RTX)-induced small-fiber neuropathy model to examine whether functional PAP(+) neurons are essential to maintain the analgesic effect. PAP(+) neurons were categorized into small to medium neurons (25th–75th percentile: 17.1–23.7 µm); these neurons were slightly reduced by RTX (p = 0.0003). By contrast, RTX-induced activating transcription factor 3 (ATF3), an injury marker, in PAP(+) neurons (29.0% ± 5.6% vs. 0.2% ± 0.2%, p = 0.0043), indicating PAP neuropathology. Moreover, the high-affinity nerve growth factor (NGF) receptor (trkA) colocalized with PAP and showed similar profiles after RTX-induced neuropathy, and the PAP/trkA ratios correlated with the degree of mechanical allodynia (r = 0.62, p = 0.0062). The NGF inducer 4-methylcatechol (4MC) normalized the analgesic effects of PAP; specifically, it reversed the PAP and trkA profiles and relieved mechanical allodynia. Administering 2.5S NGF showed similar results to those of administering 4MC. This finding suggests that the analgesic effect of functional PAP is mediated by NGF-trkA signaling, which was confirmed by NGF neutralization. Conclusions This study revealed that functional PAP(+) neurons are essential for the analgesic effect, which is mediated by NGF-trkA signaling.
Collapse
Affiliation(s)
- Chieh-Hsin Wu
- Kaohsiung Medical University Chung Ho Memorial Hospital
| | | | | | | | - Yu-Lin Hsieh
- Kaohsiung Medical University Chung Ho Memorial HospitalKaohsiung Medical UniversityKaohsiung Medical UniversityKaohsiung Medical University Hospital
| |
Collapse
|
21
|
Longhi-Balbinot DT, Rossaneis AC, Pinho-Ribeiro FA, Bertozzi MM, Cunha FQ, Alves-Filho JC, Cunha TM, Peron JPS, Miranda KM, Casagrande R, Verri WA. The nitroxyl donor, Angeli's salt, reduces chronic constriction injury-induced neuropathic pain. Chem Biol Interact 2016; 256:1-8. [PMID: 27287419 DOI: 10.1016/j.cbi.2016.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/27/2016] [Accepted: 06/06/2016] [Indexed: 12/31/2022]
Abstract
Chronic pain is a major health problem worldwide. We have recently demonstrated the analgesic effect of the nitroxyl donor, Angeli's salt (AS) in models of inflammatory pain. In the present study, the acute and chronic analgesic effects of AS was investigated in chronic constriction injury of the sciatic nerve (CCI)-induced neuropathic pain in mice. Acute (7th day after CCI) AS treatment (1 and 3 mg/kg; s.c.) reduced CCI-induced mechanical, but not thermal hyperalgesia. The acute analgesic effect of AS was prevented by treatment with 1H-[1,2, 4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, a soluble guanylate cyclase inhibitor), KT5823 (an inhibitor of protein kinase G [PKG]) or glibenclamide (GLB, an ATP-sensitive potassium channel blocker). Chronic (7-14 days after CCI) treatment with AS (3 mg/kg, s.c.) promoted a sustained reduction of CCI-induced mechanical and thermal hyperalgesia. Acute AS treatment reduced CCI-induced spinal cord allograft inflammatory factor 1 (known as Iba-1), interleukin-1β (IL-1β), and ST2 receptor mRNA expression. Chronic AS treatment reduced CCI-induced spinal cord glial fibrillary acidic protein (GFAP), Iba-1, IL-1β, tumor necrosis factor-α (TNF-α), interleukin-33 (IL-33) and ST2 mRNA expression. Chronic treatment with AS (3 mg/kg, s.c.) did not alter aspartate aminotransferase, alanine aminotransferase, urea or creatinine plasma levels. Together, these results suggest that the acute analgesic effect of AS depends on activating the cGMP/PKG/ATP-sensitive potassium channel signaling pathway. Moreover, chronic AS diminishes CCI-induced mechanical and thermal hyperalgesia by reducing the activation of spinal cord microglia and astrocytes, decreasing TNF-α, IL-1β and IL-33 cytokines expression. This spinal cord immune modulation was more prominent in the chronic treatment with AS. Thus, nitroxyl limits CCI-induced neuropathic pain by reducing spinal cord glial cells activation.
Collapse
Affiliation(s)
- Daniela T Longhi-Balbinot
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR 445, Km 380, Cx. Postal 10.011, 86057-970, Londrina, Parana, Brazil
| | - Ana C Rossaneis
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR 445, Km 380, Cx. Postal 10.011, 86057-970, Londrina, Parana, Brazil
| | - Felipe A Pinho-Ribeiro
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR 445, Km 380, Cx. Postal 10.011, 86057-970, Londrina, Parana, Brazil
| | - Mariana M Bertozzi
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR 445, Km 380, Cx. Postal 10.011, 86057-970, Londrina, Parana, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - José C Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - Jean P S Peron
- Department of Immunology, Institute of Biomedical Sciences, Ed. Biomédicas IV, University of Sao Paulo, Av. Prof. Dr. Lineu Prestes, 1730, 05508-900, São Paulo, Brazil
| | - Katrina M Miranda
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, University Hospital (Health Science Centre), Av. Robert Koch, 60, 86038-350, State University of Londrina, Parana, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR 445, Km 380, Cx. Postal 10.011, 86057-970, Londrina, Parana, Brazil.
| |
Collapse
|
22
|
Tseng TJ, Hsiao TH, Hsieh ST, Hsieh YL. Determinants of nerve conduction recovery after nerve injuries: Compression duration and nerve fiber types. Muscle Nerve 2015; 52:107-12. [PMID: 25362849 DOI: 10.1002/mus.24501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2014] [Indexed: 01/20/2023]
Abstract
INTRODUCTION The aims of this study were to determine the influences of: (1) timing of nerve decompression; and (2) nerve fiber types on the patterns of nerve conduction studies (NCS) after nerve injury. METHODS Nerve conduction studies (NCS) were performed on 3 models of nerve injury: (1) crush injury due to transient nerve compression (crush group); (2) chronic constriction injury (CCI), or permanent compression (CCI group); and (3) CCI with removal of ligatures, or delayed nerve decompression (De-CCI group). RESULTS There were distinct patterns of NCS recovery. The crush and De-CCI groups achieved similar motor nerve recovery, better than that of the CCI group. In contrast, recovery of sensory nerves was limited in the CCI and De-CCI groups and was lower than in the crush group. CONCLUSIONS Immediate relief of compression resulted in the best recovery of motor and sensory nerve conduction. In contrast, delayed decompression restored only motor nerve conduction.
Collapse
Affiliation(s)
- To-Jung Tseng
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tin-Hsin Hsiao
- Department of Anatomy, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| |
Collapse
|
23
|
Merkies ISJ, Faber CG, Lauria G. Advances in diagnostics and outcome measures in peripheral neuropathies. Neurosci Lett 2015; 596:3-13. [PMID: 25703220 DOI: 10.1016/j.neulet.2015.02.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/05/2015] [Accepted: 02/17/2015] [Indexed: 12/13/2022]
Abstract
Peripheral neuropathies are a group of acquired and hereditary disorders presenting with different distribution and nerve fiber class involvement. The overall prevalence is 2.4%, increasing to 8% in the elderly population. However, the frequency may vary depending on the underlying pathogenesis and association with systemic diseases. Distal symmetric polyneuropathy is the most common form, though multiple mononeuropathies, non-length dependent neuropathy and small fiber neuropathy can occur and may require specific diagnostic tools. The use of uniform outcome measures in peripheral neuropathies is important to improve the quality of randomized controlled trials, enabling comparison between studies. Recent developments in defining the optimal set of outcome measures in inflammatory neuropathies may serve as an example for other conditions. Diagnostic and outcome measure advances in peripheral neuropathies will be discussed.
Collapse
Affiliation(s)
- Ingemar S J Merkies
- Department of Neurology, Spaarne Hospital, Hoofddorp, The Netherlands; Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Catharina G Faber
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Giuseppe Lauria
- 3rd Neurology Unit, IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy.
| |
Collapse
|
24
|
Neuroprotective effect of erythropoietin against pressure ulcer in a mouse model of small fiber neuropathy. PLoS One 2014; 9:e113454. [PMID: 25422898 PMCID: PMC4244151 DOI: 10.1371/journal.pone.0113454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/24/2014] [Indexed: 01/31/2023] Open
Abstract
An increased risk of skin pressure ulcers (PUs) is common in patients with sensory neuropathies, including those caused by diabetes mellitus. Recombinant human erythropoietin (rhEPO) has been shown to protect the skin against PUs developed in animal models of long-term diabetes. The aim of this work was to determine whether rhEPO could prevent PU formation in a mouse model of drug-inducedSFN. Functional SFN was induced by systemic injection of resiniferatoxin (RTX, 50 µg/kg, i.p.). RhEPO (3000 UI/kg, i.p.) was given the day before RTX injection and then every other day. Seven days after RTX administration, PUs were induced by applying two magnetic plates on the dorsal skin. RTX-treated mice expressed thermal and mechanical hypoalgesia and showed calcitonin gene-related peptide (CGRP) and substance P (SP) depletion without nerve degeneration or vascular dysfunction. RTX mice developed significantly larger stage 2 PUs than Vehicle mice. RhEPO prevented thermal and mechanical hypoalgesia and neuropeptide depletion in small nerve fibers. RhEPO increased hematocrit and altered endothelium-dependent vasodilatation without any effect on PU formation in Vehicle mice. The characteristics of PUs in RTX mice treated with rhEPO and Vehicle mice were found similar. In conclusion, RTX appeared to increased PU development through depletion of CGRP and SP in small nerve fibers, whereas systemic rhEPO treatment had beneficial effect on peptidergic nerve fibers and restored skin protective capacities against ischemic pressure. Our findings support the evaluation of rhEPO and/or its non-hematopoietic analogs in preventing to prevent PUs in patients with SFN.
Collapse
|
25
|
Danigo A, Magy L, Richard L, Sturtz F, Funalot B, Demiot C. A reversible functional sensory neuropathy model. Neurosci Lett 2014; 571:39-44. [PMID: 24792390 DOI: 10.1016/j.neulet.2014.04.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/07/2014] [Accepted: 04/19/2014] [Indexed: 11/26/2022]
Abstract
Small-fiber neuropathy was induced in young adult mice by intraperitoneal injection of resiniferatoxin (RTX), a TRPV1 agonist. At day 7, RTX induced significant thermal and mechanical hypoalgesia. At day 28, mechanical and thermal nociception were restored. No nerve degeneration in skin was observed and unmyelinated nerve fiber morphology and density in sciatic nerve were unchanged. At day 7, substance P (SP) was largely depleted in dorsal root ganglia (DRG) neurons, although calcitonin gene-related peptide (CGRP) was only moderately depleted. Three weeks after, SP and CGRP expression was restored in DRG neurons. At the same time, CGRP expression remained low in intraepidermal nerve fibers (IENFs) whereas SP expression had improved. In summary, RTX induced in our model a transient neuropeptide depletion in sensory neurons without nerve degeneration. We think this model is valuable as it brings the opportunity to study functional nerve changes in the very early phase of small fiber neuropathy. Moreover, it may represent a useful tool to study the mechanisms of action of therapeutic strategies to prevent sensory neuropathy of various origins.
Collapse
Affiliation(s)
- Aurore Danigo
- EA 6309 - Schools of Medicine and Pharmacy - University of Limoges, France
| | - Laurent Magy
- EA 6309 - Schools of Medicine and Pharmacy - University of Limoges, France; Service de Neurologie, Centre de référence national "neuropathies périphériques rares" - CHU Limoges, 87042 Limoges Cedex, France
| | - Laurence Richard
- EA 6309 - Schools of Medicine and Pharmacy - University of Limoges, France; Service de Neurologie, Centre de référence national "neuropathies périphériques rares" - CHU Limoges, 87042 Limoges Cedex, France
| | - Franck Sturtz
- EA 6309 - Schools of Medicine and Pharmacy - University of Limoges, France
| | - Benoît Funalot
- EA 6309 - Schools of Medicine and Pharmacy - University of Limoges, France; Service de Neurologie, Centre de référence national "neuropathies périphériques rares" - CHU Limoges, 87042 Limoges Cedex, France
| | - Claire Demiot
- EA 6309 - Schools of Medicine and Pharmacy - University of Limoges, France.
| |
Collapse
|
26
|
Hoffmeister C, Silva MA, Rossato MF, Trevisan G, Oliveira SM, Guerra GP, Silva CR, Ferreira J. Participation of the TRPV1 receptor in the development of acute gout attacks. Rheumatology (Oxford) 2013; 53:240-9. [DOI: 10.1093/rheumatology/ket352] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
27
|
Mechanisms involved in abdominal nociception induced by either TRPV1 or TRPA1 stimulation of rat peritoneum. Eur J Pharmacol 2013; 714:332-44. [PMID: 23911956 DOI: 10.1016/j.ejphar.2013.07.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 05/21/2013] [Accepted: 07/12/2013] [Indexed: 01/13/2023]
Abstract
Abdominal pain is a frequent symptom of peritoneal cavity irritation, but little is known about the role of the receptors for irritant substances, transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1), in this painful condition. Thus, we investigated the abdominal nociception caused by peritoneal stimulation with TRPV1 (capsaicin) and TRPA1 (allyl isothiocyanate, AITC) agonists and their mechanisms in rats. The intraperitoneal (i.p.) injection of either capsaicin or AITC (0.03-10 mg/kg) induced short-term (up to 20 min) and dose-dependent abdominal nociception, and also produced c-fos expression in spinal afferents of the dorsal horn. TRPV1 antagonism prevented (94 ± 4% inhibition) nociception induced by capsaicin but not by AITC. In contrast, the TRPA1 antagonism almost abolished AITC-induced nociception (95 ± 2% inhibition) without altering the capsaicin response. Moreover, nociception induced by either capsaicin or AITC was reduced by the desensitisation of TRPV1-positive sensory fibres with resiniferatoxin (73 ± 18 and 76 ± 15% inhibitions, respectively) and by the NK1 receptor antagonist aprepitant (56 ± 5 and 53 ± 8% inhibitions, respectively). Likewise, the i.p. injections of capsaicin or AITC increased the content of substance P in the peritoneal fluid. Nevertheless, neither the mast cell membrane stabiliser cromoglycate, nor the H1 antagonist promethazine, nor depletion of peritoneal macrophages affected abdominal nociception induced either by capsaicin or AITC. Accordingly, neither capsaicin nor AITC increased the histamine content in the peritoneal fluid or provoked peritoneal mast cell degranulation in vitro. Collectively, our findings suggest that TRPV1 and TRPA1 stimulation in the peritoneum produces abdominal nociception that is mediated by sensory fibres activation.
Collapse
|
28
|
Hsiao TH, Fu YS, Ho WY, Chen TH, Hsieh YL. Promotion of thermal analgesia and neuropeptidergic skin reinnervation by 4-methylcatechol in resiniferatoxin-induced neuropathy. Kaohsiung J Med Sci 2013; 29:405-11. [DOI: 10.1016/j.kjms.2012.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/17/2012] [Indexed: 02/04/2023] Open
|
29
|
Patterns of target tissue reinnervation and trophic factor expression after nerve grafting. Plast Reconstr Surg 2013; 131:989-1000. [PMID: 23385987 DOI: 10.1097/prs.0b013e3182870445] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Reinnervation of target tissues determines functional outcomes after nerve grafting, which is important in traumatic injury caused by accidents or consequences resulting from surgical removal of tumors. Previous studies documented the influences of nerve repair mainly based on nerve morphometry but rarely compared the final outcomes according to target reinnervation patterns by nerve fibers of different categories. METHODS In a mouse model of nerve grafting, the authors analyzed the innervation indexes of different target tissues after transection-reimplantation on the sciatic nerve, which were defined as a parameter on the operated side normalized to that on the control side. RESULTS Muscle reinnervation appeared to be the best compared with skin reinnervation (p < 0.0001) and sweat gland reinnervation (p < 0.0001) at postoperative month 3. The sudomotor reinnervation was relatively higher than the cutaneous reinnervation (p = 0.014). The abundance of trophin transcripts for brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and neurotrophin 3 (NT3) was higher in plantar muscles on the operated side than those on the control side. In contrast, transcripts of BDNF, GDNF, nerve growth factor, and NT3 were all similar in the footpad skin between the operated and control sides. CONCLUSIONS The results suggested that, compared with the skin, muscles achieved the best reinnervation after nerve grafting, which was related to higher expression of BDNF, GDNF, and NT3 in muscles than in the skin.
Collapse
|
30
|
Mechanisms involved in the nociception triggered by the venom of the armed spider Phoneutria nigriventer. PLoS Negl Trop Dis 2013; 7:e2198. [PMID: 23638210 PMCID: PMC3636088 DOI: 10.1371/journal.pntd.0002198] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 03/25/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The frequency of accidental spider bites in Brazil is growing, and poisoning due to bites from the spider genus Phoneutria nigriventer is the second most frequent source of such accidents. Intense local pain is the major symptom reported after bites of P. nigriventer, although the mechanisms involved are still poorly understood. Therefore, the aim of this study was to identify the mechanisms involved in nociception triggered by the venom of Phoneutria nigriventer (PNV). METHODOLOGY/PRINCIPAL FINDINGS Twenty microliters of PNV or PBS was injected into the mouse paw (intraplantar, i.pl.). The time spent licking the injected paw was considered indicative of the level of nociception. I.pl. injection of PNV produced spontaneous nociception, which was reduced by arachnid antivenin (ArAv), local anaesthetics, opioids, acetaminophen and dipyrone, but not indomethacin. Boiling or dialysing the venom reduced the nociception induced by the venom. PNV-induced nociception is not dependent on glutamate or histamine receptors or on mast cell degranulation, but it is mediated by the stimulation of sensory fibres that contain serotonin 4 (5-HT4) and vanilloid receptors (TRPV1). We detected a kallikrein-like kinin-generating enzyme activity in tissue treated with PNV, which also contributes to nociception. Inhibition of enzymatic activity or administration of a receptor antagonist for kinin B2 was able to inhibit the nociception induced by PNV. PNV nociception was also reduced by the blockade of tetrodotoxin-sensitive Na(+) channels, acid-sensitive ion channels (ASIC) and TRPV1 receptors. CONCLUSION/SIGNIFICANCE Results suggest that both low- and high-molecular-weight toxins of PNV produce spontaneous nociception through direct or indirect action of kinin B2, TRPV1, 5-HT4 or ASIC receptors and voltage-dependent sodium channels present in sensory neurons but not in mast cells. Understanding the mechanisms involved in nociception caused by PNV are of interest not only for better treating poisoning by P. nigriventer but also appreciating the diversity of targets triggered by PNV toxins.
Collapse
|
31
|
Iadarola MJ, Gonnella GL. Resiniferatoxin for Pain Treatment: An Interventional Approach to Personalized Pain Medicine. ACTA ACUST UNITED AC 2013; 6:95-107. [PMID: 26779292 PMCID: PMC4711370 DOI: 10.2174/1876386301306010095] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review examines existing preclinical and clinical studies related to resiniferatoxin (RTX) and its potential uses in pain treatment. Like capsaicin, RTX is a vanilloid receptor (TRPV1) agonist, only more potent. This increased potency confers both quantitative and qualitative advantages in terms of drug action on the TRPV1 containing nerve terminal, which result in an increased efficacy and a long duration of action. RTX can be delivered by a central route of administration through injection into the subarachnoid space around the lumbosacral spinal cord. It can also be administered peripherally into a region of skin or deep tissue where primary afferents nerves terminate, or directly into a nerve trunk or a dorsal root ganglion. The central route is currently being evaluated as a treatment for intractable pain in patients with advanced cancer. Peripheral administration offers the possibility to treat a wide diversity of pain problems because of the ability to bring the treatment to the site of the pain (the peripheral generator). While not all pain disorders are appropriate for RTX, tailoring treatment to an individual patient's needs via a selective and local intervention that chemically targets a specific population of nerve terminals provides a new capability for pain therapy and a simplified and effective approach to personalized pain medicine.
Collapse
Affiliation(s)
- Michael J Iadarola
- Neurobiology and Pain Therapeutics Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, NIH; Building 49 Room 1C20, 49 Convent Drive MSC 4410, Bethesda MD 20892-4410, USA
| | - Gian Luigi Gonnella
- Neurobiology and Pain Therapeutics Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, NIH; Department of Anesthesiology and Intensive Care Medicine, Catholic University School of Medicine, Rome, Italy
| |
Collapse
|
32
|
Lin CL, Fu YS, Hsiao TH, Hsieh YL. Enhancement of purinergic signalling by excessive endogenous ATP in resiniferatoxin (RTX) neuropathy. Purinergic Signal 2012; 9:249-57. [PMID: 23264185 DOI: 10.1007/s11302-012-9347-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 12/11/2012] [Indexed: 12/24/2022] Open
Abstract
ATP is a ligand of P2X family purinoceptors, and exogenous ATP administration evokes pain behaviors. To date, there is a lack of systematic studies to address relationships between endogenous ATP and neuropathic pain. In this report, we took advantage of a mouse model of resiniferatoxin (RTX)-induced neuropathic pain to address the role of endogenous ATP in neuropathic pain. After RTX administration, endogenous ATP markedly increased in dorsal root ganglia (DRGs) (p < 0.01) and skin tissues (p < 0.001). The excessive endogenous ATP was removed by apyrase, an ATP hydrolyzing enzyme, administration via either a lumbar puncture route (p < 0.001) or an intraplantar injection (p < 0.001), which led to the normalization of neuropathic pain. In addition, intraplantar treatment with apyrase caused mechanical analgesia. Linear analyses showed that the densities of P2X3(+) neurons (r = -0.72, p < 0.0001) and P2X3(+) dermal nerves (r = -0.72, p < 0.0001) were inversely correlated with mechanical thresholds. Moreover, the contents of endogenous ATP in skin tissues were linearly correlated with P2X3(+) dermal nerves (r = 0.80, p < 0.0001) and mechanical thresholds (r = -0.80, p < 0.0001). In summary, this study demonstrated that enhanced purinergic signalling due to an increase in endogenous ATP after RTX-induced nerve injury contributed to the development of neuropathic pain. The data in this report provide a new therapeutic strategy for pain control by targeting the endogenous ligand of purinergic signalling.
Collapse
Affiliation(s)
- Chih-Lung Lin
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | | | | | | |
Collapse
|
33
|
Hsieh YL, Lin CL, Chiang H, Fu YS, Lue JH, Hsieh ST. Role of peptidergic nerve terminals in the skin: reversal of thermal sensation by calcitonin gene-related peptide in TRPV1-depleted neuropathy. PLoS One 2012; 7:e50805. [PMID: 23209829 PMCID: PMC3507736 DOI: 10.1371/journal.pone.0050805] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 10/23/2012] [Indexed: 11/18/2022] Open
Abstract
To investigate the contribution of peptidergic intraepidermal nerve fibers (IENFs) to nociceptive responses after depletion of the thermal-sensitive receptor, transient receptor potential vanilloid subtype 1 (TRPV1), we took advantage of a resiniferatoxin (RTX)-induced neuropathy which specifically affected small-diameter dorsal root ganglion (DRG) neurons and their corresponding nerve terminals in the skin. Thermal hypoalgesia (p<0.001) developed from RTX-treatment day 7 (RTXd7) and became normalized from RTXd56 to RTXd84. Substance P (SP)(+) and TRPV1(+) neurons were completely depleted (p = 0.0001 and p<0.0001, respectively), but RTX had a relatively minor effect on calcitonin gene-related peptide (CGRP)(+) neurons (p = 0.029). Accordingly, SP(+) (p<0.0001) and TRPV1(+) (p = 0.0008) IENFs were permanently depleted, but CGRP(+) IENFs (p = 0.012) were only transiently reduced and had recovered by RTXd84 (p = 0.83). The different effects of RTX on peptidergic neurons were attributed to the higher co-localization ratio of TRPV1/SP than of TRPV1/CGRP (p = 0.029). Thermal hypoalgesia (p = 0.0018) reappeared with an intraplantar injection of botulinum toxin type A (botox), and the temporal course of withdrawal latencies in the hot-plate test paralleled the innervation of CGRP(+) IENFs (p = 0.0003) and CGRP contents in skin (p = 0.01). In summary, this study demonstrated the preferential effects of RTX on depletion of SP(+) IENFs which caused thermal hypoalgesia. In contrast, the skin was reinnervated by CGRP(+) IENFs, which resulted in a normalization of nociceptive functions.
Collapse
Affiliation(s)
- Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Lung Lin
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Faculty of Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hao Chiang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yaw-Syan Fu
- Department of Biomedical Science and Environmental Biology, College of Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - June-Horng Lue
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
34
|
Nassini R, Pedretti P, Moretto N, Fusi C, Carnini C, Facchinetti F, Viscomi AR, Pisano AR, Stokesberry S, Brunmark C, Svitacheva N, McGarvey L, Patacchini R, Damholt AB, Geppetti P, Materazzi S. Transient receptor potential ankyrin 1 channel localized to non-neuronal airway cells promotes non-neurogenic inflammation. PLoS One 2012; 7:e42454. [PMID: 22905134 PMCID: PMC3419223 DOI: 10.1371/journal.pone.0042454] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 07/06/2012] [Indexed: 02/06/2023] Open
Abstract
Background The transient receptor potential ankyrin 1 (TRPA1) channel, localized to airway sensory nerves, has been proposed to mediate airway inflammation evoked by allergen and cigarette smoke (CS) in rodents, via a neurogenic mechanism. However the limited clinical evidence for the role of neurogenic inflammation in asthma or chronic obstructive pulmonary disease raises an alternative possibility that airway inflammation is promoted by non-neuronal TRPA1. Methodology/Principal Findings By using Real-Time PCR and calcium imaging, we found that cultured human airway cells, including fibroblasts, epithelial and smooth muscle cells express functional TRPA1 channels. By using immunohistochemistry, TRPA1 staining was observed in airway epithelial and smooth muscle cells in sections taken from human airways and lung, and from airways and lung of wild-type, but not TRPA1-deficient mice. In cultured human airway epithelial and smooth muscle cells and fibroblasts, acrolein and CS extract evoked IL-8 release, a response selectively reduced by TRPA1 antagonists. Capsaicin, agonist of the transient receptor potential vanilloid 1 (TRPV1), a channel co-expressed with TRPA1 by airway sensory nerves, and acrolein or CS (TRPA1 agonists), or the neuropeptide substance P (SP), which is released from sensory nerve terminals by capsaicin, acrolein or CS), produced neurogenic inflammation in mouse airways. However, only acrolein and CS, but not capsaicin or SP, released the keratinocyte chemoattractant (CXCL-1/KC, IL-8 analogue) in bronchoalveolar lavage (BAL) fluid of wild-type mice. This effect of TRPA1 agonists was attenuated by TRPA1 antagonism or in TRPA1-deficient mice, but not by pharmacological ablation of sensory nerves. Conclusions Our results demonstrate that, although either TRPV1 or TRPA1 activation causes airway neurogenic inflammation, solely TRPA1 activation orchestrates an additional inflammatory response which is not neurogenic. This finding suggests that non-neuronal TRPA1 in the airways is functional and potentially capable of contributing to inflammatory airway diseases.
Collapse
Affiliation(s)
- Romina Nassini
- Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| | - Pamela Pedretti
- Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
- Pharmacology Department, Chiesi Farmaceutici SpA, Parma, Italy
| | - Nadia Moretto
- Pharmacology Department, Chiesi Farmaceutici SpA, Parma, Italy
| | - Camilla Fusi
- Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| | - Chiara Carnini
- Pharmacology Department, Chiesi Farmaceutici SpA, Parma, Italy
| | | | | | | | - Susan Stokesberry
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, United Kingdom
| | - Charlott Brunmark
- AstraZeneca Research & Development Innovative Medicines Respiratory & Inflammation, Mölndal, Sweden
- Truly Translational Sweden AB, Lund, Sweden
| | - Naila Svitacheva
- AstraZeneca Research & Development Innovative Medicines Respiratory & Inflammation, Mölndal, Sweden
- Disease Pharmacology LEO Pharma A/S, Ballerup, Denmark
| | - Lorcan McGarvey
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, United Kingdom
| | | | - Anders B. Damholt
- AstraZeneca Research & Development Innovative Medicines Respiratory & Inflammation, Mölndal, Sweden
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Pierangelo Geppetti
- Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
- Headache Center, University of Florence, Florence, Italy
- * E-mail:
| | - Serena Materazzi
- Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| |
Collapse
|
35
|
Hsieh YL, Chiang H, Lue JH, Hsieh ST. P2X3-mediated peripheral sensitization of neuropathic pain in resiniferatoxin-induced neuropathy. Exp Neurol 2012; 235:316-25. [PMID: 22391132 DOI: 10.1016/j.expneurol.2012.02.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 02/10/2012] [Accepted: 02/20/2012] [Indexed: 11/29/2022]
Abstract
Patients suffering from sensory neuropathy due to skin denervation frequently have paradoxical manifestations of reduced nociception and neuropathic pain. However, there is a lack of satisfactory animal models to investigate these phenomena and underlying mechanisms. We developed a mouse system of neuropathy induced by resiniferatoxin (RTX), a capsaicin analog, and examined the functional significance of P2X3 receptor in neuropathic pain. From day 7 of RTX neuropathy, mice displayed mechanical allodynia (p<0.0001) and thermal hypoalgesia (p<0.0001). After RTX treatment, dorsal root ganglion (DRG) neurons of the peripherin type were depleted (p=0.012), while neurofilament (+) DRG neurons were not affected (p=0.62). In addition, RTX caused a shift in neuronal profiles of DRG: (1) increased in P2X3 receptor (p=0.0002) and ATF3 (p=0.0006) but (2) reduced TRPV1 (p=0.036) and CGRP (p=0.015). The number of P2X3(+)/ATF3(+) neurons was linearly correlated with mechanical thresholds (p=0.0017). The peripheral expression of P2X3 receptor in dermal nerves was accordingly increased (p=0.016), and an intraplantar injection of the P2X3 antagonists, A-317491 and TNP-ATP, relieved mechanical allodynia in a dose-dependent manner. In conclusion, RTX-induced sensory neuropathy with upregulation of P2X3 receptor for peripheral sensitization of mechanical allodynia, which provides a new therapeutic target for neuropathic pain after skin denervation.
Collapse
Affiliation(s)
- Yu-Lin Hsieh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | | | | | | |
Collapse
|
36
|
Gewehr C, da Silva MA, dos Santos GT, Rossato MF, de Oliveira SM, Drewes CC, Pazini AM, Guerra GP, Rubin MA, Ferreira J. Contribution of peripheral vanilloid receptor to the nociception induced by injection of spermine in mice. Pharmacol Biochem Behav 2011; 99:775-81. [PMID: 21763717 DOI: 10.1016/j.pbb.2011.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 06/27/2011] [Accepted: 07/02/2011] [Indexed: 10/18/2022]
Abstract
Polyamines (putrescine, spermidine and spermine) are important endogenous regulators of ion channels, such as vanilloid (TRPV1), glutamatergic (NMDA or AMPA/kainate) and acid-sensitive (ASIC) receptors. In the present study, we have investigated the possible nociceptive effect induced by polyamines and the mechanisms involved in this nociception in vivo. The subcutaneous (s.c.) injection of capsaicin (as positive control), spermine, spermidine or putrescine produced nociception with ED(50) of 0.16 (0.07-0.39)nmol/paw, 0.4 (0.2-0.7) μmol/paw, 0.3 (0.1-0.9) μmol/paw and 3.2 (0.9-11.5) μmol/paw, respectively. The antagonists of NMDA (MK801, 1 nmol/paw), AMPA/kainate (DNQX, 1 nmol/paw) or ASIC receptors (amiloride, 100 nmol/paw) failed to reduce the spermine-trigged nociception. However, the TRPV1 antagonists capsazepine or SB366791 (1 nmol/paw) reduced spermine-induced nociception, with inhibition of 81 ± 10 and 68 ± 9%, respectively. The previous desensitization with resiniferatoxin (RTX) largely reduced the spermine-induced nociception and TRPV1 expression in the sciatic nerve, with reductions of 82 ± 9% and 67 ± 11%, respectively. Furthermore, the combination of spermine (100 nmol/paw) and RTX (0.005 fmol/paw), in doses which alone were not capable of inducing nociception, produced nociceptive behaviors. Moreover, different concentrations of spermine (3-300 μM) enhanced the specific binding of [(3)H]-RTX to TRPV1 receptor. Altogether, polyamines produce spontaneous nociceptive effect through the stimulation of TRPV1, but not of ionotropic glutamate or ASIC receptors.
Collapse
Affiliation(s)
- Camila Gewehr
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Effects of 4-methylcatechol on skin reinnervation: promotion of cutaneous nerve regeneration after crush injury. J Neuropathol Exp Neurol 2009; 68:1269-81. [PMID: 19915488 DOI: 10.1097/nen.0b013e3181c17b46] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We assessed the effects of treatment with 4-methylcatechol (4MC), a known inducer of nerve growth factor, on peripheral nerve regeneration by analyzing cutaneous and muscular reinnervation in mice after sciatic nerve crush injury. At 3 months postinjury, the skin innervation index was significantly higher in the 4MC group than the control group (p=0.0002); there was also increased unmyelinated fiber density (p=0.0042) and unmyelinated fibers/Remak bundle (p = 0.001) in sural nerves, indicating unmyelinated nerve fiber regeneration. These changes were accompanied by increases of transcripts for nerve growth factor (p = 0.0026) and glial cell line-derived neurotrophic factor (p=0.03) in the 4MC group. In contrast, muscle innervation indices were similar in both groups and were higher than the skin innervation index (p < 0.0001). The regeneration of myelinated nerve fibers, as assessed by fiber density, diameter and g ratio analyses in sural nerves, and amplitudes of muscle action potential in sciatic nerves, was similar in both groups. Taken together, these data suggest that 4MC specifically promoted the regeneration of unmyelinated nerve fibers and reinnervation of the skin by increasing the expression of nerve growth factor and glial cell line-derived neurotrophic factor.
Collapse
|
38
|
Rasmussen NA, Farr LA. Beta-endorphin response to an acute pain stimulus. J Neurosci Methods 2009; 177:285-8. [DOI: 10.1016/j.jneumeth.2008.10.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 10/10/2008] [Accepted: 10/13/2008] [Indexed: 01/08/2023]
|
39
|
Lin YY, Tseng TJ, Hsieh YL, Luo KR, Lin WM, Chiang H, Hsieh ST. Depletion of peptidergic innervation in the gastric mucosa of streptozotocin-induced diabetic rats. Exp Neurol 2008; 213:388-96. [PMID: 18671969 DOI: 10.1016/j.expneurol.2008.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/27/2008] [Accepted: 07/01/2008] [Indexed: 01/24/2023]
Abstract
Autonomic neuropathy affecting the gastrointestinal system is a major presentation of diabetic neuropathy. Changes in the innervation of gastric mucosa or muscle layers can contribute to gastrointestinal symptoms. The present study investigated this issue by quantitatively analyzing the immunohistochemical patterns of the gastric innervation in rats with streptozotocin (STZ)-induced diabetes. In control rats, calcitonin gene-related peptide (CGRP) and substance P (SP) (+) nerve fibers appeared in the gastric mucosa and muscle layers. Double immunohistochemical staining showed that immunoreactivities for SP and CGRP were co-localized with a pan-neuronal marker protein gene product 9.5. Both SP (+) nerve fibers (p<0.001) and CGRP (+) nerve fibers (p<0.005) were decreased in the gastric mucosa within 4 weeks of diabetes; the reduction persisted throughout 24 weeks. Diabetic rats treated with insulin did not show decrease of SP or CGRP (+) fibers in the mucosa 4 weeks after STZ injection (p>0.05). There was no significant change in SP (+) nerve fibers (p>0.05) or CGRP (+) nerve fibers (p>0.05) of the gastric muscle layers. Reverse transcription-polymerase chain reaction (RT-PCR) showed that the expression levels of SP and CGRP mRNA in the thoracic dorsal root ganglia were similar between diabetic and control animals (p>0.05). Qualitative and quantitative ultrastructural examinations on the gastric mucosa documented unmyelinated nerve degeneration. These results suggest the existence of gastric sensory neuropathy in STZ-induced diabetes, and this pathology provides a foundation for understanding diabetic gastropathy.
Collapse
Affiliation(s)
- Yen-Yu Lin
- Department of Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|