1
|
Dang K, Gao Y, Wang H, Yang H, Kong Y, Jiang S, Qian A. Integrated metabolomics and proteomics analysis to understand muscle atrophy resistance in hibernating Spermophilus dauricus. Cryobiology 2024; 114:104838. [PMID: 38097057 DOI: 10.1016/j.cryobiol.2023.104838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Hibernating Spermophilus dauricus experiences minor muscle atrophy, which is an attractive anti-disuse muscle atrophy model. Integrated metabolomics and proteomics analysis was performed on the hibernating S. dauricus during the pre-hibernation (PRE) stage, torpor (TOR) stage, interbout arousal (IBA) stage, and post-hibernation (POST) stage. Time course stage transition-based (TOR vs. PRE, IBA vs. TOR, POST vs. IBA) differential expression analysis was performed based on the R limma package. A total of 14 co-differential metabolites were detected. Among these, l-cystathionine, l-proline, ketoleucine, serine, and 1-Hydroxy-3,6,7-Trimethoxy-2, 8-Diprenylxanthone demonstrated the highest levels in the TOR stage; Beta-Nicotinamide adenine dinucleotide, Dihydrozeatin, Pannaric acid, and Propionylcarnitine demonstrated the highest levels in the IBA stage; Adrenosterone, PS (18:0/14,15-EpETE), S-Carboxymethylcysteine, TxB2, and 3-Phenoxybenzylalcohol demonstrated the highest levels in the POST stage. Kyoto Encyclopedia of Genes and Genomes pathways annotation analysis indicated that biosynthesis of amino acids, ATP-binding cassette transporters, and cysteine and methionine metabolism were co-differential metabolism pathways during the different stages of hibernation. The stage-specific metabolism processes and integrated enzyme-centered metabolism networks in the different stages were also deciphered. Overall, our findings suggest that (1) the periodic change of proline, ketoleucine, and serine contributes to the hindlimb lean tissue preservation; and (2) key metabolites related to the biosynthesis of amino acids, ATP-binding cassette transporters, and cysteine and methionine metabolism may be associated with muscle atrophy resistance. In conclusion, our co-differential metabolites, co-differential metabolism pathways, stage-specific metabolism pathways, and integrated enzyme-centered metabolism networks are informative for biologists to generate hypotheses for functional analyses to perturb disuse-induced muscle atrophy.
Collapse
Affiliation(s)
- Kai Dang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yuan Gao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Huiping Wang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, 710069, China; China Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Huajian Yang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, 710069, China; China Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Yong Kong
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, 710069, China; China Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Shanfeng Jiang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Airong Qian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
2
|
Stone TW. Relationships and Interactions between Ionotropic Glutamate Receptors and Nicotinic Receptors in the CNS. Neuroscience 2021; 468:321-365. [PMID: 34111447 DOI: 10.1016/j.neuroscience.2021.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Although ionotropic glutamate receptors and nicotinic receptors for acetylcholine (ACh) have usually been studied separately, they are often co-localized and functionally inter-dependent. The objective of this review is to survey the evidence for interactions between the two receptor families and the mechanisms underlying them. These include the mutual regulation of subunit expression, which change the NMDA:AMPA response balance, and the existence of multi-functional receptor complexes which make it difficult to distinguish between individual receptor sites, especially in vivo. This is followed by analysis of the functional relationships between the receptors from work on transmitter release, cellular electrophysiology and aspects of behavior where these can contribute to understanding receptor interactions. It is clear that nicotinic receptors (nAChRs) on axonal terminals directly regulate the release of glutamate and other neurotransmitters, α7-nAChRs generally promoting release. Hence, α7-nAChR responses will be prevented not only by a nicotinic antagonist, but also by compounds blocking the indirectly activated glutamate receptors. This accounts for the apparent anticholinergic activity of some glutamate antagonists, including the endogenous antagonist kynurenic acid. The activation of presynaptic nAChRs is by the ambient levels of ACh released from pre-terminal synapses, varicosities and glial cells, acting as a 'volume neurotransmitter' on synaptic and extrasynaptic sites. In addition, ACh and glutamate are released as CNS co-transmitters, including 'cholinergic' synapses onto spinal Renshaw cells. It is concluded that ACh should be viewed primarily as a modulator of glutamatergic neurotransmission by regulating the release of glutamate presynaptically, and the location, subunit composition, subtype balance and sensitivity of glutamate receptors, and not primarily as a classical fast neurotransmitter. These conclusions and caveats should aid clarification of the sites of action of glutamate and nicotinic receptor ligands in the search for new centrally-acting drugs.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; Institute of Neuroscience, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
3
|
Hoy KC, Strain MM, Turtle JD, Lee KH, Huie JR, Hartman JJ, Tarbet MM, Harlow ML, Magnuson DSK, Grau JW. Evidence That the Central Nervous System Can Induce a Modification at the Neuromuscular Junction That Contributes to the Maintenance of a Behavioral Response. J Neurosci 2020; 40:9186-9209. [PMID: 33097637 PMCID: PMC7687054 DOI: 10.1523/jneurosci.2683-19.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 11/21/2022] Open
Abstract
Neurons within the spinal cord are sensitive to environmental relations and can bring about a behavioral modification without input from the brain. For example, rats that have undergone a thoracic (T2) transection can learn to maintain a hind leg in a flexed position to minimize exposure to a noxious electrical stimulation (shock). Inactivating neurons within the spinal cord with lidocaine, or cutting communication between the spinal cord and the periphery (sciatic transection), eliminates the capacity to learn, which implies that it depends on spinal neurons. Here we show that these manipulations have no effect on the maintenance of the learned response, which implicates a peripheral process. EMG showed that learning augments the muscular response evoked by motoneuron output and that this effect survives a sciatic transection. Quantitative fluorescent imaging revealed that training brings about an increase in the area and intensity of ACh receptor labeling at the neuromuscular junction (NMJ). It is hypothesized that efferent motoneuron output, in conjunction with electrical stimulation of the tibialis anterior muscle, strengthens the connection at the NMJ in a Hebbian manner. Supporting this, paired stimulation of the efferent nerve and tibialis anterior generated an increase in flexion duration and augmented the evoked electrical response without input from the spinal cord. Evidence is presented that glutamatergic signaling contributes to plasticity at the NMJ. Labeling for vesicular glutamate transporter is evident at the motor endplate. Intramuscular application of an NMDAR antagonist blocked the acquisition/maintenance of the learned response and the strengthening of the evoked electrical response.SIGNIFICANCE STATEMENT The neuromuscular junction (NMJ) is designed to faithfully elicit a muscular contraction in response to neural input. From this perspective, encoding environmental relations (learning) and the maintenance of a behavioral modification over time (memory) are assumed to reflect only modifications upstream from the NMJ, within the CNS. The current results challenge this view. Rats were trained to maintain a hind leg in a flexed position to avoid noxious stimulation. As expected, treatments that inhibit activity within the CNS, or disrupt peripheral communication, prevented learning. These manipulations did not affect the maintenance of the acquired response. The results imply that a peripheral modification at the NMJ contributes to the maintenance of the learned response.
Collapse
Affiliation(s)
- Kevin C Hoy
- Case Comprehensive Cancer Center/Case Western Reserve School of Medicine, Cleveland, Ohio 44106
| | - Misty M Strain
- U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, Houston, Texas 78234
| | - Joel D Turtle
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas 77843
| | - Kuan H Lee
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas 77843
| | - J Russell Huie
- Department of Neuroscience, University of California San Francisco, San Francisco, California 94110
| | - John J Hartman
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas 77843
| | - Megan M Tarbet
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas 77843
| | - Mark L Harlow
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - David S K Magnuson
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky 40202
| | - James W Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
4
|
Hammond-Weinberger DR, Wang Y, Glavis-Bloom A, Spitzer NC. Mechanism for neurotransmitter-receptor matching. Proc Natl Acad Sci U S A 2020; 117:4368-4374. [PMID: 32041885 PMCID: PMC7049162 DOI: 10.1073/pnas.1916600117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synaptic communication requires the expression of functional postsynaptic receptors that match the presynaptically released neurotransmitter. The ability of neurons to switch the transmitter they release is increasingly well documented, and these switches require changes in the postsynaptic receptor population. Although the activity-dependent molecular mechanism of neurotransmitter switching is increasingly well understood, the basis of specification of postsynaptic neurotransmitter receptors matching the newly expressed transmitter is unknown. Using a functional assay, we show that sustained application of glutamate to embryonic vertebrate skeletal muscle cells cultured before innervation is necessary and sufficient to up-regulate ionotropic glutamate receptors from a pool of different receptors expressed at low levels. Up-regulation of these ionotropic receptors is independent of signaling by metabotropic glutamate receptors. Both imaging of glutamate-induced calcium elevations and Western blots reveal ionotropic glutamate receptor expression prior to immunocytochemical detection. Sustained application of glutamate to skeletal myotomes in vivo is necessary and sufficient for up-regulation of membrane expression of the GluN1 NMDA receptor subunit. Pharmacological antagonists and morpholinos implicate p38 and Jun kinases and MEF2C in the signal cascade leading to ionotropic glutamate receptor expression. The results suggest a mechanism by which neuronal release of transmitter up-regulates postsynaptic expression of appropriate transmitter receptors following neurotransmitter switching and may contribute to the proper expression of receptors at the time of initial innervation.
Collapse
Affiliation(s)
- Dena R Hammond-Weinberger
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0357;
| | - Yunxin Wang
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0357
| | - Alex Glavis-Bloom
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0357
| | - Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0357;
- Center for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA 92161
| |
Collapse
|
5
|
von Wild T, Brunelli GA, von Wild KR, Löhnhardt M, Catoi C, Catoi AF, Vester JC, Strilciuc S, Trillenberg P. Regeneration of Denervated Skeletal Muscles - Brunelli's CNS-PNS Paradigm. J Med Life 2019; 12:342-353. [PMID: 32025252 PMCID: PMC6993288 DOI: 10.25122/jml-2019-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/20/2019] [Indexed: 12/02/2022] Open
Abstract
The restoration of voluntary muscle activity in posttraumatic paraplegia in both animal experiments and other clinical applications requires reproducibility of a technically-demanding microsurgical procedure, limited by physicians' understanding of Brunelli's spinal cord grafting paradigm. The insufficient clinical investigation of the long-term benefits of the CNS-PNS graft application warrants additional inquiry. The objective of this study is to explore the potential benefits of the first replicated, graft-induced neuroregeneration of denervated skeletal muscle regarding long-term clinical outcomes and to investigate the effect of Cerebrolysin on neuromodulation. A randomized study evaluating 30 rats, approved by the National Animal Ethics Advisory Committee was performed. The medication was administered postoperatively. For 14 days, 12 rats received Cerebrolysin (serum), 11 received NaCl 0.9% (shams), and 7 were controls. For microsurgery, the lateral corticospinal tract T10 was grafted to the denervated internal obliquus abdominal muscle. On day 90, intraoperative proof of reinnervation was observed. On day 100, 15 rats were euthanized for fixation, organ removal, and extensive histology-morphology examination, and the Wei-Lachin statistical procedure was employed. After an open revision of 16 rats, 8 were CMAP positive. After intravenous Vecuronium application, two (Cerebrolysin, NaCl) out of two rats showed an incomplete compound muscle action potential (CMAP) loss due to glutamatergic and cholinergic co-transmission, while two others showed a complete loss of amplitude. Cerebrolysin medication initiated larger restored muscle fiber diameters and less scarring. FB+ neurons were not observed in the brain but were observed in the Rexed laminae. Brunelli's concept was successfully replicated, demonstrating the first graft induced existence of cholinergic and glutamatergic neurotransmission in denervated grafted muscles. Statistics of the histometric count of muscle fibers revealed larger fiber diameters after Cerebrolysin. Brunelli's CNS-PNS experimental concept is suitable to analyze graft-neuroplasticity focused on the voluntary restoration of denervated skeletal muscles in spinal cord injury. Neuroprotection by Cerebrolysin is demonstrated.
Collapse
Affiliation(s)
- Tobias von Wild
- Department of Plastic Reconstructive and Aesthetic Surgery, Hand Surgery, Praxisklinik in der Alster City, Hamburg, Germany
| | - Giorgio A. Brunelli
- School of Specialists in Orthopedics, Traumatology, Hand and Microsurgery, University of Brescia, Brescia, Italy
- Foundation Giorgio Brunelli for Research on Spinal Cord Lesions ONLUS, E.S.C.R.I., Brescia, Italy
| | - Klaus R.H. von Wild
- Department of Neurosurgery, Medical Faculty Westphalia Wilhelm’s University Münster, Münster, Germany
- International Neuroscience Institute, Hanover, Germany
| | - Marlene Löhnhardt
- Department of Plastic and Reconstructive Surgery, Hand Surgery, University Hospital, Hamburg, Germany
| | - Cornel Catoi
- Department of Pathology, University of Agricultural Science and Veterinary Medicine, Cluj-Napoca, Romania
| | - Adriana Florinela Catoi
- Department of Functional Biosciences, University of Medicine and Pharmacy “Iuliu Hatieganu”, Cluj-Napoca, Romania
| | - Johannes C. Vester
- Department of Biometry & Clinical Research, idv Data Analysis and Study Planning, Gauting, Germany
| | - Stefan Strilciuc
- Department of Neurology, University of Medicine and Pharmacy “Iuliu Hatieganu”, Cluj-Napoca; Romania
| | - Peter Trillenberg
- Department of Neurology, University Medical Center Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
6
|
Glutamate at the Vertebrate Neuromuscular Junction: From Modulation to Neurotransmission. Cells 2019; 8:cells8090996. [PMID: 31466388 PMCID: PMC6770210 DOI: 10.3390/cells8090996] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 12/23/2022] Open
Abstract
Although acetylcholine is the major neurotransmitter operating at the skeletal neuromuscular junction of many invertebrates and of vertebrates, glutamate participates in modulating cholinergic transmission and plastic changes in the last. Presynaptic terminals of neuromuscular junctions contain and release glutamate that contribute to the regulation of synaptic neurotransmission through its interaction with pre- and post-synaptic receptors activating downstream signaling pathways that tune synaptic efficacy and plasticity. During vertebrate development, the chemical nature of the neurotransmitter at the vertebrate neuromuscular junction can be experimentally shifted from acetylcholine to other mediators (including glutamate) through the modulation of calcium dynamics in motoneurons and, when the neurotransmitter changes, the muscle fiber expresses and assembles new receptors to match the nature of the new mediator. Finally, in adult rodents, by diverting descending spinal glutamatergic axons to a denervated muscle, a functional reinnervation can be achieved with the formation of new neuromuscular junctions that use glutamate as neurotransmitter and express ionotropic glutamate receptors and other markers of central glutamatergic synapses. Here, we summarize the past and recent experimental evidences in support of a role of glutamate as a mediator at the synapse between the motor nerve ending and the skeletal muscle fiber, focusing on the molecules and signaling pathways that are present and activated by glutamate at the vertebrate neuromuscular junction.
Collapse
|
7
|
Colón A, Guo X, Akanda N, Cai Y, Hickman JJ. Functional analysis of human intrafusal fiber innervation by human γ-motoneurons. Sci Rep 2017; 7:17202. [PMID: 29222416 PMCID: PMC5722897 DOI: 10.1038/s41598-017-17382-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/21/2017] [Indexed: 11/09/2022] Open
Abstract
Investigation of neuromuscular deficits and diseases such as SMA, as well as for next generation prosthetics, utilizing in vitro phenotypic models would benefit from the development of a functional neuromuscular reflex arc. The neuromuscular reflex arc is the system that integrates the proprioceptive information for muscle length and activity (sensory afferent), to modify motoneuron output to achieve graded muscle contraction (actuation efferent). The sensory portion of the arc is composed of proprioceptive sensory neurons and the muscle spindle, which is embedded in the muscle tissue and composed of intrafusal fibers. The gamma motoneurons (γ-MNs) that innervate these fibers regulate the intrafusal fiber's stretch so that they retain proper tension and sensitivity during muscle contraction or relaxation. This mechanism is in place to maintain the sensitivity of proprioception during dynamic muscle activity and to prevent muscular damage. In this study, a co-culture system was developed for innervation of intrafusal fibers by human γ-MNs and demonstrated by morphological and immunocytochemical analysis, then validated by functional electrophysiological evaluation. This human-based fusimotor model and its incorporation into the reflex arc allows for a more accurate recapitulation of neuromuscular function for applications in disease investigations, drug discovery, prosthetic design and neuropathic pain investigations.
Collapse
Affiliation(s)
- A Colón
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - X Guo
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - N Akanda
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Y Cai
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - J J Hickman
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA.
| |
Collapse
|
8
|
Abstract
Neurotransmitter switching is the gain of one neurotransmitter and the loss of another in the same neuron in response to chronic stimulation. Neurotransmitter receptors on postsynaptic cells change to match the identity of the newly expressed neurotransmitter. Neurotransmitter switching often appears to change the sign of the synapse from excitatory to inhibitory or from inhibitory to excitatory. In these cases, neurotransmitter switching and receptor matching thus change the polarity of the circuit in which they take place. Neurotransmitter switching produces up or down reversals of behavior. It is also observed in response to disease. These findings raise the possibility that neurotransmitter switching contributes to depression, schizophrenia, and other illnesses. Many early discoveries of the single gain or loss of a neurotransmitter may have been harbingers of neurotransmitter switching.
Collapse
Affiliation(s)
- Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences, Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, California 92093-0357;
| |
Collapse
|
9
|
Abstract
Among the many forms of brain plasticity, changes in synaptic strength and changes in synapse number are particularly prominent. However, evidence for neurotransmitter respecification or switching has been accumulating steadily, both in the developing nervous system and in the adult brain, with observations of transmitter addition, loss, or replacement of one transmitter with another. Natural stimuli can drive these changes in transmitter identity, with matching changes in postsynaptic transmitter receptors. Strikingly, they often convert the synapse from excitatory to inhibitory or vice versa, providing a basis for changes in behavior in those cases in which it has been examined. Progress has been made in identifying the factors that induce transmitter switching and in understanding the molecular mechanisms by which it is achieved. There are many intriguing questions to be addressed.
Collapse
Affiliation(s)
- Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences & Kavli Institute for Brain and Mind, UCSD, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
De Palma C, Morisi F, Pambianco S, Assi E, Touvier T, Russo S, Perrotta C, Romanello V, Carnio S, Cappello V, Pellegrino P, Moscheni C, Bassi MT, Sandri M, Cervia D, Clementi E. Deficient nitric oxide signalling impairs skeletal muscle growth and performance: involvement of mitochondrial dysregulation. Skelet Muscle 2014; 4:22. [PMID: 25530838 PMCID: PMC4272808 DOI: 10.1186/s13395-014-0022-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/18/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Nitric oxide (NO), generated in skeletal muscle mostly by the neuronal NO synthases (nNOSμ), has profound effects on both mitochondrial bioenergetics and muscle development and function. The importance of NO for muscle repair emerges from the observation that nNOS signalling is defective in many genetically diverse skeletal muscle diseases in which muscle repair is dysregulated. How the effects of NO/nNOSμ on mitochondria impact on muscle function, however, has not been investigated yet. METHODS In this study we have examined the relationship between the NO system, mitochondrial structure/activity and skeletal muscle phenotype/growth/functions using a mouse model in which nNOSμ is absent. Also, NO-induced effects and the NO pathway were dissected in myogenic precursor cells. RESULTS We show that nNOSμ deficiency in mouse skeletal muscle leads to altered mitochondrial bioenergetics and network remodelling, and increased mitochondrial unfolded protein response (UPR(mt)) and autophagy. The absence of nNOSμ is also accompanied by an altered mitochondrial homeostasis in myogenic precursor cells with a decrease in the number of myonuclei per fibre and impaired muscle development at early stages of perinatal growth. No alterations were observed, however, in the overall resting muscle structure, apart from a reduced specific muscle mass and cross sectional areas of the myofibres. Investigating the molecular mechanisms we found that nNOSμ deficiency was associated with an inhibition of the Akt-mammalian target of rapamycin pathway. Concomitantly, the Akt-FoxO3-mitochondrial E3 ubiquitin protein ligase 1 (Mul-1) axis was also dysregulated. In particular, inhibition of nNOS/NO/cyclic guanosine monophosphate (cGMP)/cGMP-dependent-protein kinases induced the transcriptional activity of FoxO3 and increased Mul-1 expression. nNOSμ deficiency was also accompanied by functional changes in muscle with reduced muscle force, decreased resistance to fatigue and increased degeneration/damage post-exercise. CONCLUSIONS Our results indicate that nNOSμ/NO is required to regulate key homeostatic mechanisms in skeletal muscle, namely mitochondrial bioenergetics and network remodelling, UPR(mt) and autophagy. These events are likely associated with nNOSμ-dependent impairments of muscle fibre growth resulting in a deficit of muscle performance.
Collapse
Affiliation(s)
- Clara De Palma
- Unit of Clinical Pharmacology, National Research Council-Institute of Neuroscience, Department of Biomedical and Clinical Sciences "Luigi Sacco", University Hospital "Luigi Sacco", Università di Milano, Milano, Italy
| | - Federica Morisi
- Unit of Clinical Pharmacology, National Research Council-Institute of Neuroscience, Department of Biomedical and Clinical Sciences "Luigi Sacco", University Hospital "Luigi Sacco", Università di Milano, Milano, Italy
| | - Sarah Pambianco
- Unit of Clinical Pharmacology, National Research Council-Institute of Neuroscience, Department of Biomedical and Clinical Sciences "Luigi Sacco", University Hospital "Luigi Sacco", Università di Milano, Milano, Italy
| | - Emma Assi
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Thierry Touvier
- Unit of Clinical Pharmacology, National Research Council-Institute of Neuroscience, Department of Biomedical and Clinical Sciences "Luigi Sacco", University Hospital "Luigi Sacco", Università di Milano, Milano, Italy
| | - Stefania Russo
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Cristiana Perrotta
- Unit of Clinical Pharmacology, National Research Council-Institute of Neuroscience, Department of Biomedical and Clinical Sciences "Luigi Sacco", University Hospital "Luigi Sacco", Università di Milano, Milano, Italy
| | - Vanina Romanello
- Dulbecco Telethon Institute at Venetian Institute of Molecular Medicine, Padova, Italy
| | - Silvia Carnio
- Dulbecco Telethon Institute at Venetian Institute of Molecular Medicine, Padova, Italy
| | - Valentina Cappello
- National Research Council-Institute of Neuroscience, Department of Medical Biotechnology and Translational Medicine, Università di Milano, Milano, Italy ; CNI@NEST, Italian Institute of Technology, Pisa, Italy
| | - Paolo Pellegrino
- Unit of Clinical Pharmacology, National Research Council-Institute of Neuroscience, Department of Biomedical and Clinical Sciences "Luigi Sacco", University Hospital "Luigi Sacco", Università di Milano, Milano, Italy
| | - Claudia Moscheni
- Unit of Morphology, Department of Biomedical and Clinical Sciences "Luigi Sacco", Università di Milano, Milano, Italy
| | | | - Marco Sandri
- Dulbecco Telethon Institute at Venetian Institute of Molecular Medicine, Padova, Italy ; Department of Biomedical Science, Università di Padova, Padova, Italy
| | - Davide Cervia
- Unit of Clinical Pharmacology, National Research Council-Institute of Neuroscience, Department of Biomedical and Clinical Sciences "Luigi Sacco", University Hospital "Luigi Sacco", Università di Milano, Milano, Italy ; Department for Innovation in Biological, Agro-food and Forest Systems, Università della Tuscia, Viterbo, Italy
| | - Emilio Clementi
- Unit of Clinical Pharmacology, National Research Council-Institute of Neuroscience, Department of Biomedical and Clinical Sciences "Luigi Sacco", University Hospital "Luigi Sacco", Università di Milano, Milano, Italy ; Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| |
Collapse
|
11
|
Electrical stimulation of embryonic neurons for 1 hour improves axon regeneration and the number of reinnervated muscles that function. J Neuropathol Exp Neurol 2013; 72:697-707. [PMID: 23771218 DOI: 10.1097/nen.0b013e318299d376] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Motoneuron death after spinal cord injury or disease results in muscle denervation, atrophy, and paralysis. We have previously transplanted embryonic ventral spinal cord cells into the peripheral nerve to reinnervate denervated muscles and to reduce muscle atrophy, but reinnervation was incomplete. Here, our aim was to determine whether brief electrical stimulation of embryonic neurons in the peripheralnerve changes motoneuron survival, axon regeneration, and muscle reinnervation and function because neural depolarization is crucial for embryonic neuron survival and may promote activity-dependent axon growth. At 1 week after denervation by sciatic nerve section, embryonic day 14 to 15 cells were purified for motoneurons, injected into the tibial nerve of adult Fischer rats, and stimulated immediatelyfor up to 1 hour. More myelinated axons were present in tibial nerves 10 weeks after transplantation when transplants had been stimulated acutely at 1 Hz for 1 hour. More muscles were reinnervated if the stimulation treatment lasted for 1 hour. Reinnervation reduced muscle atrophy, with or without the stimulation treatment. These data suggest that brief stimulation of embryonic neurons promotes axon growth, which has a long-term impact on muscle reinnervation and function. Muscle reinnervation is important because it may enable the use of functional electrical stimulation to restore limb movements.
Collapse
|
12
|
Ko IK, Lee BK, Lee SJ, Andersson KE, Atala A, Yoo JJ. The effect of in vitro formation of acetylcholine receptor (AChR) clusters in engineered muscle fibers on subsequent innervation of constructs in vivo. Biomaterials 2013; 34:3246-55. [PMID: 23391495 DOI: 10.1016/j.biomaterials.2013.01.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/04/2013] [Indexed: 11/16/2022]
Abstract
Timely innervation of muscle tissue is critical in the recovery of function, and this time-sensitive process relies heavily on the host tissue microenvironment after implantation. However, restoration of muscle tissue mass and function has been a challenge. We investigated whether pre-forming acetylcholine receptor (AChR) clusters on engineered muscle fibers using an AChR cluster-inducing factor (agrin) prior to implantation would facilitate established contacts between implanted muscle tissues and nerves and result in rapid innervation of engineered muscle in vivo. We showed that agrin treatment significantly increased the formation of AChR clusters on culture differentiated myotubes (C2C12), enhanced contacts with nerves in vitro and in vivo, and increased angiogenesis. Pre-fabrication of AChR clusters on engineered skeletal muscle using a released neurotrophic factor can accelerate innervations following implantation in vivo. This technique has considerable potential for enhancing muscle tissue function.
Collapse
Affiliation(s)
- In Kap Ko
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
A resolutive therapy for Duchene muscular dystrophy, a severe degenerative disease of the skeletal muscle, is still lacking. Because autophagy has been shown to be crucial in clearing dysfunctional organelles and in preventing tissue damage, we investigated its pathogenic role and its suitability as a target for new therapeutic interventions in Duchenne muscular dystrophy (DMD). Here we demonstrate that autophagy is severely impaired in muscles from patients affected by DMD and mdx mice, a model of the disease, with accumulation of damaged organelles. The defect in autophagy was accompanied by persistent activation via phosphorylation of Akt, mammalian target of rapamycin (mTOR) and of the autophagy-inhibiting pathways dependent on them, including the translation-initiation factor 4E-binding protein 1 and the ribosomal protein S6, and downregulation of the autophagy-inducing genes LC3, Atg12, Gabarapl1 and Bnip3. The defective autophagy was rescued in mdx mice by long-term exposure to a low-protein diet. The treatment led to normalisation of Akt and mTOR signalling; it also reduced significantly muscle inflammation, fibrosis and myofibre damage, leading to recovery of muscle function. This study highlights novel pathogenic aspects of DMD and suggests autophagy as a new effective therapeutic target. The treatment we propose can be safely applied and immediately tested for efficacy in humans.
Collapse
|
14
|
Cappello V, Vezzoli E, Righi M, Fossati M, Mariotti R, Crespi A, Patruno M, Bentivoglio M, Pietrini G, Francolini M. Analysis of neuromuscular junctions and effects of anabolic steroid administration in the SOD1G93A mouse model of ALS. Mol Cell Neurosci 2012; 51:12-21. [PMID: 22800606 DOI: 10.1016/j.mcn.2012.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 07/06/2012] [Accepted: 07/08/2012] [Indexed: 12/11/2022] Open
Abstract
Several lines of evidence indicate that neuromuscular junction (NMJ) destruction and disassembly is an early phenomenon in amyotrophic lateral sclerosis (ALS). Here we analyzed by confocal and electron microscopy the NMJ structure in the diaphragm of SOD1G93A mice at symptom onset. In these mice, which provide a model for familial ALS, diaphragm denervation (~50%) as well as gastrocnemius denervation (~40%) was found. In addition, the size of the synaptic vesicle pool was reduced and alterations of mitochondria were observed in approximately 40% of the remaining presynaptic terminals. Chronic treatment of SOD1G93A mice with the anabolic steroid nandrolone during the presymptomatic stage preserved the diaphragm muscle mass and features indicative of synaptic activity. These features were represented by the number of vesicles docked within 200 nm from the presynaptic membrane and area of acetylcholine receptor clusters. Structural preservation of mitochondria was documented in presynaptic terminals. However, innervation of diaphragm muscle fibers was only slightly increased in nandrolone-treated SOD1-mutant mice. Altogether the results point out and define fine structural alterations of diaphragm NMJs in the murine model of familial ALS at symptom onset, and indicate that nandrolone may prevent or delay structural alterations in NMJ mitochondria and stimulate presynaptic activity but does not prevent muscle denervation during the disease.
Collapse
Affiliation(s)
- Valentina Cappello
- Dept. of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ettorre M, Lorenzetto E, Laperchia C, Baiguera C, Branca C, Benarese M, Spano P, Pizzi M, Buffelli M. Glutamatergic neurons induce expression of functional glutamatergic synapses in primary myotubes. PLoS One 2012; 7:e31451. [PMID: 22347480 PMCID: PMC3276509 DOI: 10.1371/journal.pone.0031451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 01/09/2012] [Indexed: 11/21/2022] Open
Abstract
Background The functioning of the nervous system depends upon the specificity of its synaptic contacts. The mechanisms triggering the expression of the appropriate receptors on postsynaptic membrane and the role of the presynaptic partner in the differentiation of postsynaptic structures are little known. Methods and Findings To address these questions we cocultured murine primary muscle cells with several glutamatergic neurons, either cortical, cerebellar or hippocampal. Immunofluorescence and electrophysiology analyses revealed that functional excitatory synaptic contacts were formed between glutamatergic neurons and muscle cells. Moreover, immunoprecipitation and immunofluorescence experiments showed that typical anchoring proteins of central excitatory synapses coimmunoprecipitate and colocalize with rapsyn, the acetylcholine receptor anchoring protein at the neuromuscular junction. Conclusions These results support an important role of the presynaptic partner in the induction and differentiation of the postsynaptic structures.
Collapse
Affiliation(s)
- Michele Ettorre
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Physiology and Psychology, University of Verona, Verona, Italy
- National Institute of Neuroscience, Rome, Italy
- Center for Biomedical Computing, University of Verona, Verona, Italy
| | - Erika Lorenzetto
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Physiology and Psychology, University of Verona, Verona, Italy
- National Institute of Neuroscience, Rome, Italy
| | - Claudia Laperchia
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Physiology and Psychology, University of Verona, Verona, Italy
- National Institute of Neuroscience, Rome, Italy
| | - Cristina Baiguera
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
- National Institute of Neuroscience, Rome, Italy
| | - Caterina Branca
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
- National Institute of Neuroscience, Rome, Italy
| | - Manuela Benarese
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
- National Institute of Neuroscience, Rome, Italy
| | - PierFranco Spano
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
- National Institute of Neuroscience, Rome, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico, S. Camillo Hospital, Venice, Italy
| | - Marina Pizzi
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
- National Institute of Neuroscience, Rome, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico, S. Camillo Hospital, Venice, Italy
| | - Mario Buffelli
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Physiology and Psychology, University of Verona, Verona, Italy
- National Institute of Neuroscience, Rome, Italy
- Center for Biomedical Computing, University of Verona, Verona, Italy
- * E-mail:
| |
Collapse
|
16
|
Mayhew TM. Mapping the distributions and quantifying the labelling intensities of cell compartments by immunoelectron microscopy: progress towards a coherent set of methods. J Anat 2011; 219:647-60. [PMID: 21999926 DOI: 10.1111/j.1469-7580.2011.01438.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
An important tool in cell biology is the combination of immunogold labelling and transmission electron microscopy (TEM) by which target molecules (e.g. antigens) are bound specifically to affinity markers (primary antibodies) and then detected and localised with visualisation probes (e.g. colloidal gold particles bound to protein A). Gold particles are electron-dense, punctate and available in different sizes whilst TEM provides high-resolution images of particles and cell compartments. By virtue of these properties, the combination can be used also to quantify one or more defined targets in cell compartments. During the past decade, new ways of quantifying gold labelling within cells have been devised. Their efficiency and validity rely on sound principles of specimen sampling, event counting and inferential statistics. These include random selection of items at each sampling stage (e.g. specimen blocks, thin sections, microscopical fields), stereological analysis of cell ultrastructure, unbiased particle counting and statistical evaluation of a suitable null hypothesis (no difference in the intensity or pattern of labelling between compartments or groups of cells). The following approaches are possible: (i) A target molecule can be tested for preferential labelling by mapping the localisation of gold particles across a set of compartments. (ii) Data from wild-type and knockdown/knockout control cells can be used to correct raw gold particle counts, estimate specific labelling densities and then test for preferential labeling. (iii) The same antigen can be mapped in two or more groups of cells to test whether there are experimental shifts in compartment labelling patterns. (iv) A variant of this approach uses more than one size of gold particle to test whether or not different antigens colocalise in one or more compartments. (v) In studies involving antigen translocation, absolute numbers of gold particles can be mapped over compartments at specific positions within polarised, oriented or dividing cells. Here, the current state of the art is reviewed and approaches are illustrated with virtual datasets.
Collapse
Affiliation(s)
- Terry M Mayhew
- School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|