1
|
García-Rodríguez P, Lamana-Vallverdú M, Guamán-Pilco DR, Penalba A, Ramiro L, Simats A, Faura J, Bustamante A, Díaz-Troyano N, Montaner J. Association of A1AT With Poor Functional Outcome in Patients With Acute Ischemic Stroke. J Am Heart Assoc 2025; 14:e036727. [PMID: 40247624 DOI: 10.1161/jaha.124.036727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/19/2024] [Indexed: 04/19/2025]
Abstract
BACKGROUND This study aimed to investigate whether A1AT (α-1 antitrypsin) bloodstream levels, measured acutely after ischemic stroke, can predict the outcome of patients with stroke. METHODS AND RESULTS Two cohorts of patients with stroke were studied independently and retrospectively: a pilot cohort of 59 patients and a larger replicative study with 527 patients. Blood samples were drawn at hospital admission (<6 hours after stroke onset) before any treatment was given. A1AT levels were analyzed. Patients were followed after the event, and functional outcomes were evaluated at in-hospital (discharge) and midterm (third month) follow-up according to the modified Rankin Scale (considering modified Rankin Scale score >2 a poor outcome). Association studies between A1AT levels and functional outcomes were conducted. We also evaluated the added value of A1AT as a prognostic biomarker over the clinical model (sex, age, premorbid modified Rankin Scale and National Institutes of Health Stroke Scale scores) with the likelihood ratio test. In both studies, the levels of A1AT were higher in patients who had worse outcomes, were older, and had higher National Institutes of Health Stroke Scale scores at admission. In the pilot study, higher levels of A1AT were also associated with death at discharge and at 3 months after stroke (P=0.035 and P=0.023, respectively). The addition of A1AT to the clinical model did not show enough evidence of increasing the fit of the model to the data in either cohort. CONCLUSIONS Based on our data, we cannot claim that A1AT is an independent biomarker of ischemic stroke. Nevertheless, A1AT is potentially involved in stroke outcomes and might be explored as a potential therapeutic target.
Collapse
Affiliation(s)
- Paula García-Rodríguez
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR) Universitat Autònoma de Barcelona Barcelona Spain
| | - Marcel Lamana-Vallverdú
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR) Universitat Autònoma de Barcelona Barcelona Spain
| | - Daisy R Guamán-Pilco
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR) Universitat Autònoma de Barcelona Barcelona Spain
| | - Anna Penalba
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR) Universitat Autònoma de Barcelona Barcelona Spain
| | - Laura Ramiro
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR) Universitat Autònoma de Barcelona Barcelona Spain
| | - Alba Simats
- Cerebrovascular Research Laboratory, Instituto de Investigaciones Biomédicas de Barcelona (IIBB) Consejo Superior de Investigaciones Científicas (CSIC) Barcelona Spain
| | - Júlia Faura
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR) Universitat Autònoma de Barcelona Barcelona Spain
| | - Alejandro Bustamante
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR) Universitat Autònoma de Barcelona Barcelona Spain
- Stroke Unit, Hospital Universitari Germans Trias i Pujol, Germans Trias i Pujol Research Institute (IGTP) Universitat Autònoma de Barcelona Barcelona Spain
| | - Noelia Díaz-Troyano
- Department of Biochemistry Vall d'Hebron University Hospital Barcelona Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR) Universitat Autònoma de Barcelona Barcelona Spain
- Stroke Research Program, Institute of Biomedicine of Seville, IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville & Department of Neurology Hospital Universitario Virgen Macarena Seville Spain
| |
Collapse
|
2
|
Webb RJ, Al-Asmakh M, Banach M, Mazidi M. Application of proteomics for novel drug discovery and risk prediction optimisation in stroke and myocardial infarction: a review of in-human studies. Drug Discov Today 2024; 29:104186. [PMID: 39306234 DOI: 10.1016/j.drudis.2024.104186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
The use of proteomics in human studies investigating stroke and myocardial infarction (MI) has been increasing, prompting a review of the literature. This revealed proteinaceous biomarkers of stroke from thrombi, brain tissue, cells, and particles, some of which cross the blood-brain barrier (BBB). Several proteins were also implicated in coronary artery disease (CAD), which often underlies MI, cholesterol transportation, and inflammation. Furthermore, the platelet proteome revealed itself as a potential therapeutic target, along with differentially expressed proteins associated with MI progression. Moreover, proteomic data enhanced the performance of conventional risk scores and causal protein discovery has improved interventions and drug development for patients with MI and other conditions. These findings suggest that proteomics holds much promise for future stroke and MI research.
Collapse
Affiliation(s)
- Richard J Webb
- School of Health and Sport Sciences, Hope Park Campus, Liverpool Hope University, Taggart Avenue, Liverpool, UK
| | - Maha Al-Asmakh
- Department of Biomedical Sciences, College of Health Sciences, QU-Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar
| | - Maciej Banach
- Faculty of Medicine, the John Paul II Catholic University of Lublin, Lublin, Poland; Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), 93-338 Lodz, Poland
| | - Mohsen Mazidi
- Department of Twin Research, King's College London, London, UK; Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK; Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Moxon JV, Pretorius C, Trollope AF, Mittal P, Klingler-Hoffmann M, Hoffmann P, Golledge J. A systematic review and in silico analysis of studies investigating the ischemic penumbra proteome in animal models of experimental stroke. J Cereb Blood Flow Metab 2024; 44:1709-1722. [PMID: 38639008 PMCID: PMC11504113 DOI: 10.1177/0271678x241248502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
Ischaemic stroke results in the formation of a cerebral infarction bordered by an ischaemic penumbra. Characterising the proteins within the ischaemic penumbra may identify neuro-protective targets and novel circulating markers to improve patient care. This review assessed data from studies using proteomic platforms to compare ischaemic penumbra tissues to controls following experimental stroke in animal models. Proteins reported to differ significantly between penumbra and control tissues were analysed in silico to identify protein-protein interactions and over-represented pathways. Sixteen studies using rat (n = 12), mouse (n = 2) or primate (n = 2) models were included. Heterogeneity in the design of the studies and definition of the penumbra were observed. Analyses showed high abundance of p53 in the penumbra within 24 hours of permanent ischaemic stroke and was implicated in driving apoptosis, cell cycle progression, and ATM- MAPK- and p53- signalling. Between 1 and 7 days after stroke there were changes in the abundance of proteins involved in the complement and coagulation pathways. Favourable recovery 1 month after stroke was associated with an increase in the abundance of proteins involved in wound healing. Poor recovery was associated with increases in prostaglandin signalling. Findings suggest that p53 may be a target for novel therapeutics for ischaemic stroke.
Collapse
Affiliation(s)
- Joseph V Moxon
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Cornea Pretorius
- Townsville University Hospital, Angus Smith Drive, Douglas, Townsville, Australia
| | - Alexandra F Trollope
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Parul Mittal
- Mass Spectrometry and Proteomics Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Manuela Klingler-Hoffmann
- Mass Spectrometry and Proteomics Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Peter Hoffmann
- Mass Spectrometry and Proteomics Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
- Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, Australia
| |
Collapse
|
4
|
Subramanian V, Juhr D, Johnson LS, Yem JB, Giansanti P, Grumbach IM. Changes in the Proteome of the Circle of Willis during Aging Reveal Signatures of Vascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:4887877. [PMID: 38962180 PMCID: PMC11221951 DOI: 10.1155/2024/4887877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/22/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
Approximately 70% of all strokes occur in patients over 65 years old, and stroke increases the risk of developing dementia. The circle of Willis (CoW), the ring of arteries at the base of the brain, links the intracerebral arteries to one another to maintain adequate cerebral perfusion. The CoW proteome is affected in cerebrovascular and neurodegenerative diseases, but changes related to aging have not been described. Here, we report on a quantitative proteomics analysis comparing the CoW from five young (2-3-month-old) and five aged male (18-20-month-old) mice using gene ontology (GO) enrichment, ingenuity pathway analysis (IPA), and iPathwayGuide tools. This revealed 242 proteins that were significantly dysregulated with aging, among which 189 were upregulated and 53 downregulated. GO enrichment-based analysis identified blood coagulation as the top biological function that changed with age and integrin binding and extracellular matrix constituents as the top molecular functions. Consistent with these findings, iPathwayGuide-based impact analysis revealed associations between aging and the complement and coagulation, platelet activation, ECM-receptor interaction, and metabolic process pathways. Furthermore, IPA analysis revealed the enrichment of 97 canonical pathways that contribute to inflammatory responses, as well as 59 inflammation-associated upstream regulators including 39 transcription factors and 20 cytokines. Thus, aging-associated changes in the CoW proteome in male mice demonstrate increases in metabolic, thrombotic, and inflammatory processes.
Collapse
Affiliation(s)
- Vikram Subramanian
- Abboud Cardiovascular Research CenterDepartment of Internal MedicineCarver College of MedicineUniversity of Iowa, Iowa City, USA
| | - Denise Juhr
- Abboud Cardiovascular Research CenterDepartment of Internal MedicineCarver College of MedicineUniversity of Iowa, Iowa City, USA
| | - Lydia S. Johnson
- Abboud Cardiovascular Research CenterDepartment of Internal MedicineCarver College of MedicineUniversity of Iowa, Iowa City, USA
| | - Justin B. Yem
- Abboud Cardiovascular Research CenterDepartment of Internal MedicineCarver College of MedicineUniversity of Iowa, Iowa City, USA
| | - Piero Giansanti
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS@MRI)Technical University of Munich, Munich, Germany
| | - Isabella M. Grumbach
- Abboud Cardiovascular Research CenterDepartment of Internal MedicineCarver College of MedicineUniversity of Iowa, Iowa City, USA
- Free Radical and Radiation Biology ProgramDepartment of Radiation OncologyCarver College of MedicineUniversity of Iowa, Iowa City, USA
- Iowa City VA Healthcare System, Iowa City, IA, USA
| |
Collapse
|
5
|
Martínez-Alonso E, Escobar-Peso A, Guerra-Pérez N, Roca M, Masjuan J, Alcázar A. Dihydropyrimidinase-Related Protein 2 Is a New Partner in the Binding between 4E-BP2 and eIF4E Related to Neuronal Death after Cerebral Ischemia. Int J Mol Sci 2023; 24:ijms24098246. [PMID: 37175950 PMCID: PMC10179276 DOI: 10.3390/ijms24098246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/23/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Transient cerebral ischemia induces neuronal degeneration, followed in time by secondary delayed neuronal death that is strongly correlated with a permanent inhibition of protein synthesis in vulnerable brain regions, while protein translational rates are recovered in resistant areas. In the translation-regulation initiation step, the eukaryotic initiation factor (eIF) 4E is a key player regulated by its association with eIF4E-binding proteins (4E-BPs), mostly 4E-BP2 in brain tissue. In a previous work, we identified dihydropyrimidinase-related protein 2 (DRP2) as a 4E-BP2-interacting protein. Here, using a proteomic approach in a model of transient cerebral ischemia, a detailed study of DRP2 was performed in order to address the challenge of translation restoration in vulnerable regions. In this report, several DRP2 isoforms that have a specific interaction with both 4E-BP2 and eIF4E were identified, showing significant and opposite differences in this association, and being differentially detected in resistant and vulnerable regions in response to ischemia reperfusion. Our results provide the first evidence of DRP2 isoforms as potential regulators of the 4E-BP2-eIF4E association that would have consequences in the delayed neuronal death under ischemic-reperfusion stress. The new knowledge reported here identifies DRP2 as a new target to promote neuronal survival after cerebral ischemia.
Collapse
Affiliation(s)
- Emma Martínez-Alonso
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Proteomics Unit, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Alejandro Escobar-Peso
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Natalia Guerra-Pérez
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Marcel Roca
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Jaime Masjuan
- Department of Neurology, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Department of Neurology, Facultad de Medicina, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | - Alberto Alcázar
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Proteomics Unit, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| |
Collapse
|
6
|
Lu Y, Wang W, Tang Z, Chen L, Zhang M, Zhang Q, Wu L, Jiang J, Zhang X, He C, Peng H. A Prediction Model for Rapid Identification of Ischemic Stroke: Application of Serum Soluble Corin. J Multidiscip Healthc 2022; 15:2933-2943. [PMID: 36582588 PMCID: PMC9792811 DOI: 10.2147/jmdh.s395896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Objective Rapid identification is critical for ischemic stroke due to the very narrow therapeutic time window. The objective of this study was to construct a diagnostic model for the rapid identification of ischemic stroke. Methods A mixture population constituted of patients with ischemic stroke (n = 481), patients with hemorrhagic stroke (n = 116), and healthy individuals from communities (n = 2498) were randomly resampled into training (n = 1547, mean age: 55 years, 44% males) and testing (n = 1548, mean age: 54 years, 43% males) samples. Serum corin was assayed using commercial ELISA kits. Potential risk factors including age, sex, education level, cigarette smoking, alcohol consumption, obesity, blood pressure, lipids, glucose, and medical history were obtained as candidate predictors. The diagnostic model of ischemic stroke was developed using a backward stepwise logistic regression model in the training sample and validated in the testing sample. Results The final diagnostic model included age, sex, cigarette smoking, family history of stroke, history of hypertension, systolic blood pressure, total cholesterol, high-density lipoprotein cholesterol, fasting glucose, and serum corin. The diagnostic model exhibited good discrimination in both training (AUC: 0.910, 95% CI: 0.884-0.936) and testing (AUC: 0.907, 95% CI: 0.881-0.934) samples. Calibration curves showed good concordance between the observed and predicted probability of ischemic stroke in both samples (all P>0.05). Conclusion We developed a simple diagnostic model with routinely available variables to assist rapid identification of ischemic stroke. The effectiveness and efficiency of this model warranted further investigation.
Collapse
Affiliation(s)
- Ying Lu
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, People’s Republic of China
| | - Weiqi Wang
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, People’s Republic of China
| | - Zijie Tang
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, People’s Republic of China
| | - Linan Chen
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, People’s Republic of China
| | - Min Zhang
- Department of Central Office, Suzhou National New and Hi-tech Industrial Development Zone Center for Disease Control and Prevention, Suzhou, People’s Republic of China
| | - Qiu Zhang
- Department of Chronic Disease, Gusu Center for Disease Control and Prevention, Suzhou, People’s Republic of China
| | - Lei Wu
- Department of Maternal and Child Health, Suzhou Industrial Park Center for Disease Control and Prevention, Suzhou, People’s Republic of China
| | - Jun Jiang
- Department of Tuberculosis Control, Suzhou Center for Disease Control and Prevention, Suzhou, People’s Republic of China
| | - Xiaolong Zhang
- Department of Tuberculosis Control, Suzhou Center for Disease Control and Prevention, Suzhou, People’s Republic of China
| | - Chuan He
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, People’s Republic of China
| | - Hao Peng
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, People’s Republic of China,Department of Tuberculosis Control, Suzhou Center for Disease Control and Prevention, Suzhou, People’s Republic of China,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, People’s Republic of China,Correspondence: Hao Peng; Chuan He, Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, People’s Republic of China, Tel +86 512 6588 0079, Email ;
| |
Collapse
|
7
|
Li W, Shao C, Zhou H, Du H, Chen H, Wan H, He Y. Multi-omics research strategies in ischemic stroke: A multidimensional perspective. Ageing Res Rev 2022; 81:101730. [PMID: 36087702 DOI: 10.1016/j.arr.2022.101730] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/23/2022] [Accepted: 09/03/2022] [Indexed: 01/31/2023]
Abstract
Ischemic stroke (IS) is a multifactorial and heterogeneous neurological disorder with high rate of death and long-term impairment. Despite years of studies, there are still no stroke biomarkers for clinical practice, and the molecular mechanisms of stroke remain largely unclear. The high-throughput omics approach provides new avenues for discovering biomarkers of IS and explaining its pathological mechanisms. However, single-omics approaches only provide a limited understanding of the biological pathways of diseases. The integration of multiple omics data means the simultaneous analysis of thousands of genes, RNAs, proteins and metabolites, revealing networks of interactions between multiple molecular levels. Integrated analysis of multi-omics approaches will provide helpful insights into stroke pathogenesis, therapeutic target identification and biomarker discovery. Here, we consider advances in genomics, transcriptomics, proteomics and metabolomics and outline their use in discovering the biomarkers and pathological mechanisms of IS. We then delineate strategies for achieving integration at the multi-omics level and discuss how integrative omics and systems biology can contribute to our understanding and management of IS.
Collapse
Affiliation(s)
- Wentao Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Chongyu Shao
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Huifen Zhou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Haixia Du
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Haiyang Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
8
|
Abstract
Stroke remains a leading cause of death and disability, with limited therapeutic options and suboptimal tools for diagnosis and prognosis. High throughput technologies such as proteomics generate large volumes of experimental data at once, thus providing an advanced opportunity to improve the status quo by facilitating identification of novel therapeutic targets and molecular biomarkers. Proteomics studies in animals are largely designed to decipher molecular pathways and targets altered in brain tissue after stroke, whereas studies in human patients primarily focus on biomarker discovery in biofluids and, more recently, in thrombi and extracellular vesicles. Here, we offer a comprehensive review of stroke proteomics studies conducted in both animal and human specimen and present our view on limitations, challenges, and future perspectives in the field. In addition, as a unique resource for the scientific community, we provide extensive lists of all proteins identified in proteomic studies as altered by stroke and perform postanalysis of animal data to reveal stroke-related cellular processes and pathways.
Collapse
Affiliation(s)
- Karin Hochrainer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (K.H.)
| | - Wei Yang
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University School of Medicine, Durham, NC (W.Y.)
| |
Collapse
|
9
|
Simats A, Ramiro L, Valls R, de Ramón H, García-Rodríguez P, Orset C, Artigas L, Sardon T, Rosell A, Montaner J. Ceruletide and Alpha-1 Antitrypsin as a Novel Combination Therapy for Ischemic Stroke. Neurotherapeutics 2022; 19:513-527. [PMID: 35226340 PMCID: PMC9226209 DOI: 10.1007/s13311-022-01203-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 12/29/2022] Open
Abstract
Ischemic stroke is a primary cause of morbidity and mortality worldwide. Beyond the approved thrombolytic therapies, there is no effective treatment to mitigate its progression. Drug repositioning combinational therapies are becoming promising approaches to identify new uses of existing drugs to synergically target multiple disease-response mechanisms underlying complex pathologies. Here, we used a systems biology-based approach based on artificial intelligence and pattern recognition tools to generate in silico mathematical models mimicking the ischemic stroke pathology. Combinational treatments were acquired by screening these models with more than 5 million two-by-two combinations of drugs. A drug combination (CA) formed by ceruletide and alpha-1 antitrypsin showing a predicted value of neuroprotection of 92% was evaluated for their synergic neuroprotective effects in a mouse pre-clinical stroke model. The administration of both drugs in combination was safe and effective in reducing by 39.42% the infarct volume 24 h after cerebral ischemia. This neuroprotection was not observed when drugs were given individually. Importantly, potential incompatibilities of the drug combination with tPA thrombolysis were discarded in vitro and in vivo by using a mouse thromboembolic stroke model with t-PA-induced reperfusion, revealing an improvement in the forepaw strength 72 h after stroke in CA-treated mice. Finally, we identified the predicted mechanisms of action of ceruletide and alpha-1 antitrypsin and we demonstrated that CA modulates EGFR and ANGPT-1 levels in circulation within the acute phase after stroke. In conclusion, we have identified a promising combinational treatment with neuroprotective effects for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Alba Simats
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, Barcelona, 08035, Spain
| | - Laura Ramiro
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, Barcelona, 08035, Spain
| | | | - Helena de Ramón
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, Barcelona, 08035, Spain
| | - Paula García-Rodríguez
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, Barcelona, 08035, Spain
| | - Cyrille Orset
- Inserm UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Université Caen-Normandie, GIP Cyceron, Caen, France
| | | | | | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, Barcelona, 08035, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, Barcelona, 08035, Spain.
- Stroke Research Program, Institute of Biomedicine of Seville, IBiS/Hospital Universitario Virgen del Rocío/CSIC, University of Seville, Seville, Spain.
- Department of Neurology, Hospital Universitario Virgen Macarena, Seville, Spain.
| |
Collapse
|
10
|
Das T, Kamle A, Kumar A, Chakravarty S. Hypoxia Induced Sex-Difference in Zebrafish Brain Proteome Profile Reveals the Crucial Role of H3K9me3 in Recovery From Acute Hypoxia. Front Genet 2022; 12:635904. [PMID: 35173759 PMCID: PMC8841817 DOI: 10.3389/fgene.2021.635904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Understanding the molecular basis of sex differences in neural response to acute hypoxic insult has profound implications for the effective prevention and treatment of ischemic stroke. Global hypoxic-ischemic induced neural damage has been studied recently under well-controlled, non-invasive, reproducible conditions using a zebrafish model. Our earlier report on sex difference in global acute hypoxia-induced neural damage and recovery in zebrafish prompted us to conduct a comprehensive study on the mechanisms underlying the recovery. An omics approach for studying quantitative changes in brain proteome upon hypoxia insult following recovery was undertaken using iTRAQ-based LC-MS/MS approach. The results shed light on the altered expression of many regulatory proteins in the zebrafish brain upon acute hypoxia following recovery. The sex difference in differentially expressed proteins along with the proteins expressed in a uniform direction in both the sexes was studied. Core expression analysis by Ingenuity Pathway Analysis (IPA) showed a distinct sex difference in the disease function heatmap. Most of the upstream regulators obtained through IPA were validated at the transcriptional level. Translational upregulation of H3K9me3 in males led us to elucidate the mechanism of recovery by confirming transcriptional targets through ChIP-qPCR. The upregulation of H3K9me3 level in males at 4 h post-hypoxia appears to affect the early neurogenic markers nestin, klf4, and sox2, which might explain the late recovery in males, compared to females. Acute hypoxia-induced sex-specific comparison of brain proteome led us to reveal many differentially expressed proteins, which can be further studied for the development of novel targets for better therapeutic strategy.
Collapse
Affiliation(s)
- Tapatee Das
- Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Avijeet Kamle
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Arvind Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Sumana Chakravarty
- Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- *Correspondence: Sumana Chakravarty,
| |
Collapse
|
11
|
Babu M, Singh N, Datta A. In Vitro Oxygen Glucose Deprivation Model of Ischemic Stroke: A Proteomics-Driven Systems Biological Perspective. Mol Neurobiol 2022; 59:2363-2377. [PMID: 35080759 DOI: 10.1007/s12035-022-02745-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/11/2022] [Indexed: 01/17/2023]
Abstract
Oxygen glucose deprivation (OGD) of brain cells is the commonest in vitro model of ischemic stroke that is used extensively for basic and preclinical stroke research. Protein mass spectrometry is one of the most promising and rapidly evolving technologies in biomedical research. A systems-level understanding of cell-type-specific responses to oxygen and glucose deprivation without systemic influence is a prerequisite to delineate the response of the neurovascular unit following ischemic stroke. In this systematic review, we summarize the proteomics studies done on different OGD models. These studies have followed an expression or interaction proteomics approach. They have been primarily used to understand the cellular pathophysiology of ischemia-reperfusion injury or to assess the efficacy of interventions as potential treatment options. We compile the limitations of OGD model and downstream proteomics experiment. We further show that despite having limitations, several proteins shortlisted as altered in in vitro OGD-proteomics studies showed comparable regulation in ischemic stroke patients. This showcases the translational potential of this approach for therapeutic target and biomarker discovery. We next discuss the approaches that can be adopted for cell-type-specific validation of OGD-proteomics results in the future. Finally, we briefly present the research questions that can be addressed by OGD-proteomics studies using emerging techniques of protein mass spectrometry. We have also created a web resource compiling information from OGD-proteomics studies to facilitate data sharing for community usage. This review intends to encourage preclinical stroke community to adopt a hypothesis-free proteomics approach to understand cell-type-specific responses following ischemic stroke.
Collapse
Affiliation(s)
- Manju Babu
- Laboratory of Translational Neuroscience, Division of Neuroscience, Yenepoya Research Center, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Nikhil Singh
- Laboratory of Translational Neuroscience, Division of Neuroscience, Yenepoya Research Center, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Arnab Datta
- Laboratory of Translational Neuroscience, Division of Neuroscience, Yenepoya Research Center, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India.
| |
Collapse
|
12
|
Martínez-Alonso E, Guerra-Pérez N, Escobar-Peso A, Regidor I, Masjuan J, Alcázar A. Differential Association of 4E-BP2-Interacting Proteins Is Related to Selective Delayed Neuronal Death after Ischemia. Int J Mol Sci 2021; 22:ijms221910327. [PMID: 34638676 PMCID: PMC8509075 DOI: 10.3390/ijms221910327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/30/2022] Open
Abstract
Cerebral ischemia induces an inhibition of protein synthesis and causes cell death and neuronal deficits. These deleterious effects do not occur in resilient areas of the brain, where protein synthesis is restored. In cellular stress conditions, as brain ischemia, translational repressors named eukaryotic initiation factor (eIF) 4E-binding proteins (4E-BPs) specifically bind to eIF4E and are critical in the translational control. We previously described that 4E-BP2 protein, highly expressed in brain, can be a molecular target for the control of cell death or survival in the reperfusion after ischemia in an animal model of transient cerebral ischemia. Since these previous studies showed that phosphorylation would not be the regulation that controls the binding of 4E-BP2 to eIF4E under ischemic stress, we decided to investigate the differential detection of 4E-BP2-interacting proteins in two brain regions with different vulnerability to ischemia-reperfusion (IR) in this animal model, to discover new potential 4E-BP2 modulators and biomarkers of cerebral ischemia. For this purpose, 4E-BP2 immunoprecipitates from the resistant cortical region and the vulnerable hippocampal cornu ammonis 1 (CA1) region were analyzed by two-dimensional (2-D) fluorescence difference in gel electrophoresis (DIGE), and after a biological variation analysis, 4E-BP2-interacting proteins were identified by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry. Interestingly, among the 4E-BP2-interacting proteins identified, heat shock 70 kDa protein-8 (HSC70), dihydropyrimidinase-related protein-2 (DRP2), enolase-1, ubiquitin carboxyl-terminal hydrolase isozyme-L1 (UCHL1), adenylate kinase isoenzyme-1 (ADK1), nucleoside diphosphate kinase-A (NDKA), and Rho GDP-dissociation inhibitor-1 (Rho-GDI), were of notable interest, showing significant differences in their association with 4E-BP2 between resistant and vulnerable regions to ischemic stress. Our data contributes to the first characterization of the 4E-BP2 interactome, increasing the knowledge in the molecular basis of the protection and vulnerability of the ischemic regions and opens the way to detect new biomarkers and therapeutic targets for diagnosis and treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Emma Martínez-Alonso
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. Colmenar km 9.1, 28034 Madrid, Spain; (E.M.-A.); (N.G.-P.); (A.E.-P.)
- Proteomics Unit, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. Colmenar km 9.1, 28034 Madrid, Spain
| | - Natalia Guerra-Pérez
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. Colmenar km 9.1, 28034 Madrid, Spain; (E.M.-A.); (N.G.-P.); (A.E.-P.)
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Av. Complutense, 28040 Madrid, Spain
| | - Alejandro Escobar-Peso
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. Colmenar km 9.1, 28034 Madrid, Spain; (E.M.-A.); (N.G.-P.); (A.E.-P.)
| | - Ignacio Regidor
- Department of Neurophysiology, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. Colmenar km 9.1, 28034 Madrid, Spain;
| | - Jaime Masjuan
- Department of Neurology, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. Colmenar km 9.1, 28034 Madrid, Spain;
- Department of Neurology, Facultad de Medicina, Universidad de Alcalá, Ctra. Madrid-Barcelona km 33.6, 28871 Alcalá de Henares, Spain
| | - Alberto Alcázar
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. Colmenar km 9.1, 28034 Madrid, Spain; (E.M.-A.); (N.G.-P.); (A.E.-P.)
- Proteomics Unit, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. Colmenar km 9.1, 28034 Madrid, Spain
- Correspondence:
| |
Collapse
|
13
|
SWATH-MS for prospective identification of protein blood biomarkers of rtPA-associated intracranial hemorrhage in acute ischemic stroke: a pilot study. Sci Rep 2021; 11:18765. [PMID: 34548538 PMCID: PMC8455557 DOI: 10.1038/s41598-021-97710-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 08/27/2021] [Indexed: 11/08/2022] Open
Abstract
Intravenous recombinant tissue plasminogen activator (rtPA) is, besides mechanical thrombectomy, the highest class evidence based reperfusion treatment of acute ischemic stroke (AIS). The biggest concern of the therapy is symptomatic intracranial hemorrhage (sICH), which occurs in 3-7% of all treated patients, and is associated with worse functional outcome. Finding a method of the powerful identification of patients at highest risk of sICH, in order to increase the percentage of stroke patients safely treated with rtPA, is one of the most important challenges in stroke research. To address this problem, we designed a complex project to identify blood, neuroimaging, and clinical biomarkers combined for prospective assessment of the risk of rtPA-associated ICH. In this paper we present results of blood proteomic and peptide analysis of pilot 41 AIS patients before rtPA administration (the test ICH group, n = 9 or the controls, without ICH, n = 32). We demonstrated that pre-treatment blood profiles of 15 proteins differ depending on whether the patients develop rtPA-associated ICH or not. SWATH-MS quantification of serum or plasma proteins might allow for robust selection of blood biomarkers to increase the prospective assessment of rtPA-associated ICH over that based solely on clinical and neuroimaging characteristics.
Collapse
|
14
|
Integrative Multi-omics Analysis to Characterize Human Brain Ischemia. Mol Neurobiol 2021; 58:4107-4121. [PMID: 33939164 DOI: 10.1007/s12035-021-02401-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/21/2021] [Indexed: 01/14/2023]
Abstract
Stroke is a major cause of death and disability. A better comprehension of stroke pathophysiology is fundamental to reduce its dramatic outcome. The use of high-throughput unbiased omics approaches and the integration of these data might deepen the knowledge of stroke at the molecular level, depicting the interaction between different molecular units. We aimed to identify protein and gene expression changes in the human brain after ischemia through an integrative approach to join the information of both omics analyses. The translational potential of our results was explored in a pilot study with blood samples from ischemic stroke patients. Proteomics and transcriptomics discovery studies were performed in human brain samples from six deceased stroke patients, comparing the infarct core with the corresponding contralateral brain region, unveiling 128 proteins and 2716 genes significantly dysregulated after stroke. Integrative bioinformatics analyses joining both datasets exposed canonical pathways altered in the ischemic area, highlighting the most influential molecules. Among the molecules with the highest fold-change, 28 genes and 9 proteins were selected to be validated in five independent human brain samples using orthogonal techniques. Our results were confirmed for NCDN, RAB3C, ST4A1, DNM1L, A1AG1, A1AT, JAM3, VTDB, ANXA1, ANXA2, and IL8. Finally, circulating levels of the validated proteins were explored in ischemic stroke patients. Fluctuations of A1AG1 and A1AT, both up-regulated in the ischemic brain, were detected in blood along the first week after onset. In summary, our results expand the knowledge of ischemic stroke pathology, revealing key molecules to be further explored as biomarkers and/or therapeutic targets.
Collapse
|
15
|
Cardiac Testing in Search for Occult Atrial Fibrillation after Ischemic Stroke. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2021. [DOI: 10.1007/s11936-021-00908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Multilevel omics for the discovery of biomarkers and therapeutic targets for stroke. Nat Rev Neurol 2020; 16:247-264. [PMID: 32322099 DOI: 10.1038/s41582-020-0350-6] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
Despite many years of research, no biomarkers for stroke are available to use in clinical practice. Progress in high-throughput technologies has provided new opportunities to understand the pathophysiology of this complex disease, and these studies have generated large amounts of data and information at different molecular levels. The integration of these multi-omics data means that thousands of proteins (proteomics), genes (genomics), RNAs (transcriptomics) and metabolites (metabolomics) can be studied simultaneously, revealing interaction networks between the molecular levels. Integrated analysis of multi-omics data will provide useful insight into stroke pathogenesis, identification of therapeutic targets and biomarker discovery. In this Review, we detail current knowledge on the pathology of stroke and the current status of biomarker research in stroke. We summarize how proteomics, metabolomics, transcriptomics and genomics are all contributing to the identification of new candidate biomarkers that could be developed and used in clinical stroke management.
Collapse
|
17
|
Agarwal A, Park S, Ha S, Kwon JS, Khan MR, Kang BG, Dawson TM, Dawson VL, Andrabi SA, Kang SU. Quantitative mass spectrometric analysis of the mouse cerebral cortex after ischemic stroke. PLoS One 2020; 15:e0231978. [PMID: 32315348 PMCID: PMC7173877 DOI: 10.1371/journal.pone.0231978] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/04/2020] [Indexed: 12/14/2022] Open
Abstract
Ischemic strokes result in the death of brain tissue and a wave of downstream effects, often leading to lifelong disabilities or death. However, the underlying mechanisms of ischemic damage and repair systems remain largely unknown. In order to better understand these mechanisms, TMT-isobaric mass tagging and mass spectrometry were conducted on brain cortex extracts from mice subjected to one hour of middle cerebral artery occlusion (MCAO) and after one hour of reperfusion. In total, 2,690 proteins were identified and quantified, out of which 65% of the top 5% of up- and down-regulated proteins were found to be significant (p < 0.05). Network-based gene ontology analysis was then utilized to cluster all identified proteins by protein functional groups and cellular roles. Although three different cellular functions were identified—organelle outer membrane proteins, cytosolic ribosome proteins, and spliceosome complex proteins—several functional domains were found to be common. Of these, organelle outer membrane proteins were downregulated whereas cytosolic ribosome and spliceosome complex proteins were upregulated, indicating that major molecular events post-stroke were translation-associated and subsequent signaling pathways (e.g., poly (ADP-ribose) (PAR) dependent cell death). By approaching stroke analyses via TMT-isobaric mass tagging, the work herein presents a grand scope of protein-based molecular mechanisms involved with ischemic stroke recovery.
Collapse
Affiliation(s)
- Ank Agarwal
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Seongje Park
- Department of Chemistry, University of Southern California, Los Angeles, California, United States of America
| | - Shinwon Ha
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ji-Sun Kwon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Mohammed Repon Khan
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Bong Gu Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, United States of America
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, United States of America
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Shaida A. Andrabi
- Department of Pharmacology and Toxicology, and Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
18
|
Ludhiadch A, Vasudeva K, Munshi A. Establishing molecular signatures of stroke focusing on omic approaches: a narrative review. Int J Neurosci 2020; 130:1250-1266. [PMID: 32075476 DOI: 10.1080/00207454.2020.1732964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Stroke or 'brain attack' is considered to be the major cause of mortality and morbidity worldwide after myocardial infraction. Inspite of the years of research and clinical practice, the pathogenesis of stroke still remains incompletely understood. Omics approaches not only enable the description of a huge number of molecular platforms but also have a potential to recognize new factors associated with various complex disorders including stroke. The most significant development among all other omics technologies over the recent years has been seen by genomics which is a powerful tool for exploring the genetic architecture of stroke. Genomics has decisively established itself in stroke research and by now wealth of data has been generated providing new insights into the physiology and pathophysiology of stroke. However, the efficacy of genomic data is restricted to risk prediction only. Omics approaches not only enable the description of a huge number of molecular platforms but also have a potential to recognize new factors associated with various complex disorders including stroke. The data generated by omics technologies enables clinicians to provide detailed insight into the makeup of stroke in individual patients, which will further help in developing diagnostic procedures to direct therapies. Present review has been compiled with an aim to understand the potential of integrated omics approach to help in characterization of mechanisms leading to stroke, to predict the patient risk of getting stroke by analyzing signature biomarkers and to develop targeted therapeutic strategies.
Collapse
Affiliation(s)
- Abhilash Ludhiadch
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab
| | - Kanika Vasudeva
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab
| |
Collapse
|
19
|
Fitzgerald S, Mereuta OM, Doyle KM, Dai D, Kadirvel R, Kallmes DF, Brinjikji W. Correlation of imaging and histopathology of thrombi in acute ischemic stroke with etiology and outcome. J Neurosurg Sci 2019; 63:292-300. [PMID: 30514073 PMCID: PMC8693286 DOI: 10.23736/s0390-5616.18.04629-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mechanical thrombectomy has become the stand of care for patients with large vessel occlusions, yet major improvements in thrombectomy speed, efficacy, and completeness can still be achieved. High rates of clot fragmentation and failure to remove the clot resulting in poor neurological outcomes suggest that in order to further advance the field of stroke intervention we must turn our attention towards understanding the science of clot. Accurately identifying the composition of the occlusive clot prior to intervention could significantly influence the success of the revascularization strategy used to treat them. Numerous features of thromboemboli could be studied and characterized, including quantitative histomorphometry and diagnostic imaging characteristics. Each of these features might logically predict superior thrombectomy outcomes with one device or another. This article aims to review the current literature on histopathological composition of acute ischemic stroke clots, with a particular focus on the correlation between clot composition and diagnostic imaging, stroke etiology and revascularization outcomes.
Collapse
Affiliation(s)
- Seán Fitzgerald
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- CÚRAM-Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Oana M Mereuta
- CÚRAM-Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Karen M Doyle
- CÚRAM-Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Daying Dai
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - David F Kallmes
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
| | - Waleed Brinjikji
- Department of Radiology, Mayo Clinic, Rochester, MN, USA -
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
20
|
iTRAQ-based proteome profiling of hyposaline responses in zygotes of the Pacific oyster Crassostrea gigas. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 30:14-24. [PMID: 30771561 DOI: 10.1016/j.cbd.2018.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 11/22/2022]
Abstract
Low salinity treatment is proven to be the practical polyploidy inducing method for shellfish with advantages of lower cost, higher operability and reliable food security. However, little is known about the possible molecular mechanism of hypotonic induction. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) based proteomic profiling was pursued to investigate the responses of zygotes of the Pacific oyster Crassostrea gigas to low salinity. A total of 2235 proteins were identified and 87 proteins were considered differentially expressed, of which 14 were up-regulated and 69 were down-regulated. Numerous functional proteins including ADP ribosylation factor 2, DNA repair protein Rad50, splicing factor 3B, tubulin-specific Chaperone D were significantly changed in abundance, and were involved in various biology processes including energy generation, vesicle trafficking, DNA/RNA/protein metabolism and cytoskeleton modification, indicating the prominent modulation of cell division and embryonic development. Parallel reaction monitoring (PRM) analyses were carried out for validation of the expression levels of differentially expressed proteins (DEPs), which indicated high reliability of the proteomic results. Our study not only demonstrated the proteomic alterations in oyster zygotes under low salinity, but also provided, in part, clues to the relatively lower hatching rate and higher mortality of induced larvae. Above all, this study presents a valuable foundation for further studies on mechanisms of hypotonic induction.
Collapse
|
21
|
Makris K, Haliassos A, Chondrogianni M, Tsivgoulis G. Blood biomarkers in ischemic stroke: potential role and challenges in clinical practice and research. Crit Rev Clin Lab Sci 2018; 55:294-328. [DOI: 10.1080/10408363.2018.1461190] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Konstantinos Makris
- Clinical Biochemistry Department, KAT General Hospital, Kifissia, Athens, Greece
| | | | - Maria Chondrogianni
- Second Department of Neurology, Attikon Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, Attikon Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
22
|
Muñoz R, Santamaría E, Rubio I, Ausín K, Ostolaza A, Labarga A, Roldán M, Zandio B, Mayor S, Bermejo R, Mendigaña M, Herrera M, Aymerich N, Olier J, Gállego J, Mendioroz M, Fernández-Irigoyen J. Mass Spectrometry-Based Proteomic Profiling of Thrombotic Material Obtained by Endovascular Thrombectomy in Patients with Ischemic Stroke. Int J Mol Sci 2018; 19:ijms19020498. [PMID: 29414888 PMCID: PMC5855720 DOI: 10.3390/ijms19020498] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 12/25/2022] Open
Abstract
Thrombotic material retrieved from acute ischemic stroke (AIS) patients represents a valuable source of biological information. In this study, we have developed a clinical proteomics workflow to characterize the protein cargo of thrombi derived from AIS patients. To analyze the thrombus proteome in a large-scale format, we developed a workflow that combines the isolation of thrombus by endovascular thrombectomy and peptide chromatographic fractionation coupled to mass-spectrometry. Using this workflow, we have characterized a specific proteomic expression profile derived from four AIS patients included in this study. Around 1600 protein species were unambiguously identified in the analyzed material. Functional bioinformatics analyses were performed, emphasizing a clustering of proteins with immunological functions as well as cardiopathy-related proteins with blood-cell dependent functions and peripheral vascular processes. In addition, we established a reference proteomic fingerprint of 341 proteins commonly detected in all patients. Protein interactome network of this subproteome revealed protein clusters involved in the interaction of fibronectin with 14-3-3 proteins, TGFβ signaling, and TCP complex network. Taken together, our data contributes to the repertoire of the human thrombus proteome, serving as a reference library to increase our knowledge about the molecular basis of thrombus derived from AIS patients, paving the way toward the establishment of a quantitative approach necessary to detect and characterize potential novel biomarkers in the stroke field.
Collapse
Affiliation(s)
- Roberto Muñoz
- Department of Neurology, Complejo Hospitalario de Navarra, Pamplona 31008, Spain.
| | - Enrique Santamaría
- Clinical Neuroproteomics Laboratory, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, IDISNA, Navarra Institute for Health Research, Pamplona 31008, Spain.
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, IDISNA, Navarra Institute for Health Research, Pamplona 31008, Spain.
| | - Idoya Rubio
- Department of Neurology, Complejo Hospitalario de Navarra, Pamplona 31008, Spain.
| | - Karina Ausín
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, IDISNA, Navarra Institute for Health Research, Pamplona 31008, Spain.
| | - Aiora Ostolaza
- Department of Neurology, Complejo Hospitalario de Navarra, Pamplona 31008, Spain.
| | - Alberto Labarga
- Bioinformatics Laboratory, Navarrabiomed-Departamento de Salud, Universidad Pública de Navarra, IDISNA, Navarra Institute for Health Research, Pamplona 31008, Spain.
| | - Miren Roldán
- Neuroepigenetics Laboratory, Navarrabiomed-Departamento de Salud, Universidad Pública de Navarra, IDISNA, Navarra Institute for Health Research, Pamplona 31008, Spain.
| | - Beatriz Zandio
- Department of Neurology, Complejo Hospitalario de Navarra, Pamplona 31008, Spain.
| | - Sergio Mayor
- Department of Neurology, Complejo Hospitalario de Navarra, Pamplona 31008, Spain.
| | - Rebeca Bermejo
- Department of Interventional Neuroradiology, Complejo Hospitalario de Navarra, Pamplona 31008, Spain.
| | - Mónica Mendigaña
- Department of Interventional Neuroradiology, Complejo Hospitalario de Navarra, Pamplona 31008, Spain.
| | - María Herrera
- Department of Neurology, Complejo Hospitalario de Navarra, Pamplona 31008, Spain.
| | - Nuria Aymerich
- Department of Neurology, Complejo Hospitalario de Navarra, Pamplona 31008, Spain.
| | - Jorge Olier
- Department of Interventional Neuroradiology, Complejo Hospitalario de Navarra, Pamplona 31008, Spain.
| | - Jaime Gállego
- Department of Neurology, Complejo Hospitalario de Navarra, Pamplona 31008, Spain.
| | - Maite Mendioroz
- Department of Neurology, Complejo Hospitalario de Navarra, Pamplona 31008, Spain.
- Neuroepigenetics Laboratory, Navarrabiomed-Departamento de Salud, Universidad Pública de Navarra, IDISNA, Navarra Institute for Health Research, Pamplona 31008, Spain.
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Laboratory, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, IDISNA, Navarra Institute for Health Research, Pamplona 31008, Spain.
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, IDISNA, Navarra Institute for Health Research, Pamplona 31008, Spain.
| |
Collapse
|
23
|
Vijayan M, Reddy PH. Stroke, Vascular Dementia, and Alzheimer's Disease: Molecular Links. J Alzheimers Dis 2018; 54:427-43. [PMID: 27567871 DOI: 10.3233/jad-160527] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stroke is a brain disease that occurs when blood flow stops, resulting in reduced oxygen supply to neurons. Stroke occurs at any time and at any age, but increases after the age of 55. It is the second leading cause of death and the third leading cause of disability-adjusted, life-years. The pathophysiology of ischemic stroke is complex and recent molecular, cellular, and animal models and postmortem brain studies have revealed that multiple cellular changes have been implicated, including oxidative stress/mitochondrial dysfunction, inflammatory responses, micro RNA alterations, and marked changes in brain proteins. These cellular changes provide new information for developing therapeutic strategies for ischemic stroke treatment. Research also revealed that stroke increases with a number of modifiable factors and most strokes can be prevented and/or controlled through pharmacological or surgical interventions and lifestyle changes. Ischemic stroke is the major risk factor for vascular dementia and Alzheimer's disease. This review summarizes the latest research findings on stroke, including causal factors and molecular links between stroke and vascular disease/Alzheimer's disease.
Collapse
Affiliation(s)
- Murali Vijayan
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Speech, Language and Hearing Sciences Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
24
|
Dagonnier M, Cooke IR, Faou P, Sidon TK, Dewey HM, Donnan GA, Howells DW. Discovery and Longitudinal Evaluation of Candidate Biomarkers for Ischaemic Stroke by Mass Spectrometry-Based Proteomics. Biomark Insights 2017; 12:1177271917749216. [PMID: 29308009 PMCID: PMC5751906 DOI: 10.1177/1177271917749216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/11/2017] [Indexed: 01/17/2023] Open
Abstract
Application of acute therapies such as thrombolysis for ischaemic stroke (IS) is constrained because of diagnostic uncertainty and the dynamic nature of stroke biology. To investigate changes in blood proteins after stroke and as a result of thrombolysis treatment we performed label-free quantitative proteomics on serum samples using high-resolution mass spectrometry and long high-performance liquid chromatography gradient (5 hours) combined with a 50-cm column to optimise the peptide separation. We identified (false discovery rate [FDR]: 1%) and quantified a total of 574 protein groups from a total of 92 samples from 30 patients. Ten patients were treated by thrombolysis as part of a randomised placebo-controlled trial and up to 5 samples were collected from each individual at different time points after stroke. We identified 26 proteins differently expressed by treatment group (FDR: 5%) and significant changes of expression over time for 23 proteins (FDR: 10%). Molecules such as fibrinogen and C-reactive protein showed expression profiles with a high-potential clinical utility in the acute stroke setting. Protein expression profiles vary acutely in the blood after stroke and have the potential to allow the construction of a stroke clock and to have an impact on IS treatment decision making.
Collapse
Affiliation(s)
- Marie Dagonnier
- Stroke Department, The Florey Institute of Neuroscience & Mental Health and Melbourne Brain Centre, Melbourne, VIC, Australia
| | - Ira Robin Cooke
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.,Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, La Trobe University, Melbourne, VIC, Australia
| | - Pierre Faou
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Tara Kate Sidon
- Stroke Department, The Florey Institute of Neuroscience & Mental Health and Melbourne Brain Centre, Melbourne, VIC, Australia
| | - Helen Margaret Dewey
- Stroke Department, The Florey Institute of Neuroscience & Mental Health and Melbourne Brain Centre, Melbourne, VIC, Australia
| | - Geoffrey Alan Donnan
- Stroke Department, The Florey Institute of Neuroscience & Mental Health and Melbourne Brain Centre, Melbourne, VIC, Australia
| | - David William Howells
- Stroke Department, The Florey Institute of Neuroscience & Mental Health and Melbourne Brain Centre, Melbourne, VIC, Australia.,School of Medicine, Faculty of Health, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
25
|
García-Berrocoso T, Llombart V, Colàs-Campàs L, Hainard A, Licker V, Penalba A, Ramiro L, Simats A, Bustamante A, Martínez-Saez E, Canals F, Sanchez JC, Montaner J. Single Cell Immuno-Laser Microdissection Coupled to Label-Free Proteomics to Reveal the Proteotypes of Human Brain Cells After Ischemia. Mol Cell Proteomics 2017; 17:175-189. [PMID: 29133510 DOI: 10.1074/mcp.ra117.000419] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Indexed: 12/13/2022] Open
Abstract
Cerebral ischemia entails rapid tissue damage in the affected brain area causing devastating neurological dysfunction. How each component of the neurovascular unit contributes or responds to the ischemic insult in the context of the human brain has not been solved yet. Thus, the analysis of the proteome is a straightforward approach to unraveling these cell proteotypes. In this study, post-mortem brain slices from ischemic stroke patients were obtained corresponding to infarcted (IC) and contralateral (CL) areas. By means of laser microdissection, neurons and blood brain barrier structures (BBB) were isolated and analyzed using label-free quantification. MS data are available via ProteomeXchange with identifier PXD003519. Ninety proteins were identified only in neurons, 260 proteins only in the BBB and 261 proteins in both cell types. Bioinformatics analyses revealed that repair processes, mainly related to synaptic plasticity, are outlined in microdissected neurons, with nonexclusive important functions found in the BBB. A total of 30 proteins showing p < 0.05 and fold-change> 2 between IC and CL areas were considered meaningful in this study: 13 in neurons, 14 in the BBB and 3 in both cell types. Twelve of these proteins were selected as candidates and analyzed by immunohistofluorescence in independent brains. The MS findings were completely verified for neuronal SAHH2 and SRSF1 whereas the presence in both cell types of GABT and EAA2 was only validated in neurons. In addition, SAHH2 showed its potential as a prognostic biomarker of neurological improvement when analyzed early in the plasma of ischemic stroke patients. Therefore, the quantitative proteomes of neurons and the BBB (or proteotypes) after human brain ischemia presented here contribute to increasing the knowledge regarding the molecular mechanisms of ischemic stroke pathology and highlight new proteins that might represent putative biomarkers of brain ischemia or therapeutic targets.
Collapse
Affiliation(s)
- Teresa García-Berrocoso
- From the ‡Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Víctor Llombart
- From the ‡Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Colàs-Campàs
- From the ‡Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alexandre Hainard
- §Proteomics Core Facility, Faculty of medicine, University Medical Center, University of Geneva, Geneva, Switzerland
| | - Virginie Licker
- ¶Neuroproteomics Group, Human protein sciences department, University Medical Center, University of Geneva, Geneva, Switzerland
| | - Anna Penalba
- From the ‡Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Ramiro
- From the ‡Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alba Simats
- From the ‡Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandro Bustamante
- From the ‡Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Martínez-Saez
- ‖Neuropathology, Pathology department, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesc Canals
- **Proteomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jean-Charles Sanchez
- ‡‡Translational biomarker group, Human protein sciences department, University Medical Center, University of Geneva, Geneva, Switzerland
| | - Joan Montaner
- From the ‡Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain;
| |
Collapse
|
26
|
Brinjikji W, Duffy S, Burrows A, Hacke W, Liebeskind D, Majoie CBLM, Dippel DWJ, Siddiqui AH, Khatri P, Baxter B, Nogeuira R, Gounis M, Jovin T, Kallmes DF. Correlation of imaging and histopathology of thrombi in acute ischemic stroke with etiology and outcome: a systematic review. J Neurointerv Surg 2017; 9:529-534. [PMID: 27166383 PMCID: PMC6697418 DOI: 10.1136/neurintsurg-2016-012391] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/15/2016] [Accepted: 04/22/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Studying the imaging and histopathologic characteristics of thrombi in ischemic stroke could provide insights into stroke etiology and ideal treatment strategies. We conducted a systematic review of imaging and histologic characteristics of thrombi in acute ischemic stroke. MATERIALS AND METHODS We identified all studies published between January 2005 and December 2015 that reported findings related to histologic and/or imaging characteristics of thrombi in acute ischemic stroke secondary to large vessel occlusion. The five outcomes examined in this study were (1) association between histologic composition of thrombi and stroke etiology; (2) association between histologic composition of thrombi and angiographic outcomes; (3) association between thrombi imaging and histologic characteristics; (4) association between thrombi imaging characteristics and angiographic outcomes; and (5) association between imaging characteristics of thrombi and stroke etiology. A meta-analysis was performed using a random effects model. RESULTS There was no significant difference in the proportion of red blood cell (RBC)-rich thrombi between cardioembolic and large artery atherosclerosis etiologies (OR 1.62, 95% CI 0.1 to 28.0, p=0.63). Patients with a hyperdense artery sign had a higher odds of having RBC-rich thrombi than those without a hyperdense artery sign (OR 9.0, 95% CI 2.6 to 31.2, p<0.01). Patients with a good angiographic outcome had a mean thrombus Hounsfield unit (HU) of 55.1±3.1 compared with a mean HU of 48.4±1.9 for patients with a poor angiographic outcome (mean standard difference 6.5, 95% CI 2.7 to 10.2, p<0.001). There was no association between imaging characteristics and stroke etiology (OR 1.13, 95% CI 0.32 to 4.00, p=0.85). CONCLUSIONS The hyperdense artery sign is associated with RBC-rich thrombi and improved recanalization rates. However, there was no association between the histopathological characteristics of thrombi and stroke etiology and angiographic outcomes.
Collapse
Affiliation(s)
| | - Sharon Duffy
- Department of Engineering, Galway-Mayo Institute of Technology, Galway, Ireland
| | - Anthony Burrows
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Werner Hacke
- Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - David Liebeskind
- Department of Neurology, University of California, Los Angeles, California, USA
| | - Charles B L M Majoie
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Diederik W J Dippel
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Adnan H Siddiqui
- Department of Neurosurgery, University of Buffalo, Buffalo, New York, USA
| | - Pooja Khatri
- Department of Neurology, University of Cincinatti, Cincinatti, Ohio, USA
| | - Blaise Baxter
- Department of Radiology, University of Tennessee Medical Center, Chatanooga, Tennessee, USA
| | - Raul Nogeuira
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - Matt Gounis
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts, Worcester, Massachusetts, USA
| | - Tudor Jovin
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - David F Kallmes
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
27
|
Shao G, Wang Y, Guan S, Burlingame AL, Lu F, Knox R, Ferriero DM, Jiang X. Proteomic Analysis of Mouse Cortex Postsynaptic Density following Neonatal Brain Hypoxia-Ischemia. Dev Neurosci 2017; 39:66-81. [PMID: 28315865 PMCID: PMC5519436 DOI: 10.1159/000456030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/11/2017] [Indexed: 02/02/2023] Open
Abstract
Proteomics of the synapses and postsynaptic densities (PSDs) have provided a deep understanding of protein composition and signal networks in the adult brain, which underlie neuronal plasticity and neurodegenerative or psychiatric disorders. However, there is a paucity of knowledge about the architecture and organization of PSDs in the immature brain, and how it is modified by brain injury in an early developing stage. Mass spectrometry (MS)-based proteomic analysis was performed on PSDs prepared from cortices of postnatal day 9 naïve mice or pups which had suffered hypoxic-ischemic (HI) brain injury. 512 proteins of different functional groups were identified from PSDs collected 1 h after HI injury, among which 60 have not been reported previously. Seven newly identified proteins involved in neural development were highlighted. HI injury increased the yield of PSDs at early time points upon reperfusion, and multiple proteins were recruited into PSDs following the insult. Quantitative analysis was performed using spectral counting, and proteins whose relative expression was more than 50% up- or downregulated compared to the sham animals 1 h after HI insult were reported. Validation with Western blotting demonstrated changes in expression and phosphorylation of the N-methyl-D-aspartate receptor, activation of a series of postsynaptic protein kinases and dysregulation of scaffold and adaptor proteins in response to neonatal HI insult. This work, along with other recent studies of synaptic protein profiling in the immature brain, builds a foundation for future investigation on the molecular mechanisms underlying developing plasticity. Furthermore, it provides insights into the biochemical changes of PSDs following early brain hypoxia-ischemia, which is helpful for understanding not only the injury mechanisms, but also the process of repair or replenishment of neuronal circuits during recovery from brain damage.
Collapse
Affiliation(s)
- Guo Shao
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hinman JD, Rost NS, Leung TW, Montaner J, Muir KW, Brown S, Arenillas JF, Feldmann E, Liebeskind DS. Principles of precision medicine in stroke. J Neurol Neurosurg Psychiatry 2017; 88:54-61. [PMID: 27919057 DOI: 10.1136/jnnp-2016-314587] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 01/22/2023]
Abstract
The era of precision medicine has arrived and conveys tremendous potential, particularly for stroke neurology. The diagnosis of stroke, its underlying aetiology, theranostic strategies, recurrence risk and path to recovery are populated by a series of highly individualised questions. Moreover, the phenotypic complexity of a clinical diagnosis of stroke makes a simple genetic risk assessment only partially informative on an individual basis. The guiding principles of precision medicine in stroke underscore the need to identify, value, organise and analyse the multitude of variables obtained from each individual to generate a precise approach to optimise cerebrovascular health. Existing data may be leveraged with novel technologies, informatics and practical clinical paradigms to apply these principles in stroke and realise the promise of precision medicine. Importantly, precision medicine in stroke will only be realised once efforts to collect, value and synthesise the wealth of data collected in clinical trials and routine care starts. Stroke theranostics, the ultimate vision of synchronising tailored therapeutic strategies based on specific diagnostic data, demand cerebrovascular expertise on big data approaches to clinically relevant paradigms. This review considers such challenges and delineates the principles on a roadmap for rational application of precision medicine to stroke and cerebrovascular health.
Collapse
Affiliation(s)
- Jason D Hinman
- Department of Neurology, Neurovascular Imaging Research Core and the UCLA Stroke Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Natalia S Rost
- Department of Neurology, Philip Kistler Stroke Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas W Leung
- Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona & IBIS Stroke Programme, Hospital Virgen Macarena-Rocio, Sevilla, Spain
| | - Keith W Muir
- Institute of Neuroscience & Psychology, Glasgow, UK
| | - Scott Brown
- Altair Biostatistics, St. Louis Park, Minnesota, USA
| | - Juan F Arenillas
- Stroke Unit, Department of Neurology and Medicine, Hospital Clínico Universitario, Universidad de Valladolid, Valladolid, Spain
| | | | - David S Liebeskind
- Department of Neurology, Neurovascular Imaging Research Core and the UCLA Stroke Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
29
|
Choi TM, Yun M, Lee JK, Park JT, Park MS, Kim HS. Proteomic Analysis of a Rat Cerebral Ischemic Injury Model after Human Cerebral Endothelial Cell Transplantation. J Korean Neurosurg Soc 2016; 59:544-550. [PMID: 27847565 PMCID: PMC5106351 DOI: 10.3340/jkns.2016.59.6.544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 02/08/2023] Open
Abstract
Objective Cerebral endothelial cells have unique biological features and are fascinating candidate cells for stroke therapy. Methods In order to understand the molecular mechanisms of human cerebral endothelial cell (hCMEC/D3) transplantation in a rat stroke model, we performed proteomic analysis using 2-dimensional electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Protein expression was confirmed by quantitative real-time PCR and Western blot. Results Several protein spots were identified by gel electrophoresis in the sham, cerebral ischemia (CI), and CI with hCMEC/D3 treatment cerebral ischemia with cell transplantation (CT) groups, and we identified 14 differentially expressed proteins in the CT group. Proteins involved in mitochondrial dysfunction (paraplegin matrix AAA peptidase subunit, SPG7), neuroinflammation (peroxiredoxin 6, PRDX6), and neuronal death (zinc finger protein 90, ZFP90) were markedly reduced in the CT group compared with the CI group. The expression of chloride intracellular channel 4 proteins involved in post-ischemic vasculogenesis was significantly decreased in the CI group but comparable to sham in the CT group. Conclusion These results contribute to our understanding of the early phase processes that follow cerebral endothelial cell treatment in CI. Moreover, some of the identified proteins may present promising new targets for stroke therapy.
Collapse
Affiliation(s)
- Tae-Min Choi
- Department of Neurosurgery, Gwangju Christian Hospital, Gwangju, Korea.; Department of Forensic Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Misun Yun
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Jung-Kil Lee
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea
| | - Jong-Tae Park
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Man-Seok Park
- Department of Neurosurgery, Chonnam National University Medical School, Gwangju, Korea
| | - Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju, Korea.; Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
30
|
Ren C, Guingab-Cagmat J, Kobeissy F, Zoltewicz S, Mondello S, Gao M, Hafeez A, Li N, Geng X, Larner SF, Anagli J, Hayes RL, Ji X, Ding Y. A neuroproteomic and systems biology analysis of rat brain post intracerebral hemorrhagic stroke. Brain Res Bull 2014; 102:46-56. [PMID: 24583080 DOI: 10.1016/j.brainresbull.2014.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/19/2014] [Accepted: 02/18/2014] [Indexed: 12/26/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating form of stroke leading to a high rate of death and disability worldwide. Although it has been hypothesized that much of the IHC insult occurs in the subacute period mediated via a series of complex pathophysiological cascades, the molecular mechanisms involved in ICH have not been systematically characterized. Among the best approaches to understand the underlying mechanisms of injury and recovery, protein dynamics assessment via proteomics/systems biology platforms represent one of the cardinal techniques optimized for mechanisms investigation and biomarker identification. A proteomics approach may provide a biomarker focused framework from which to identify candidate biomarkers of pathophysiological processes involved in brain injury after stroke. In this work, a neuroproteomic approach (LC-MS/MS) was applied to investigate altered expression of proteins that are induced in brain tissue 3 h after injury in a rat model of ICH. Data from sham and focal ischemic models were also obtained and used for comparison. Based on the differentially expressed protein profile, systems biology analysis was conducted to identify associated cellular processes and related interaction maps. After LC-MS/MS analysis of the 3 h brain lysates, 86 proteins were differentially expressed between hemorrhagic and sham tissues. Furthermore, 38 proteins were differentially expressed between ischemic and sham tissues. On the level of global pathway analysis, hemorrhagic stroke proteins were shown to be involved in autophagy, ischemia, necrosis, apoptosis, calpain activation, and cytokine secretion. Moreover, ischemic stroke proteins were related to cell death, ischemia, inflammation, oxidative stress, caspase activation and apoptotic injury. In conclusion, the proteomic responses identified in this study provide key information about target proteins involved in specific pathological pathways.
Collapse
Affiliation(s)
- Changhong Ren
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Xuanwu-Banyan Biomarker Research and Assay Center, Beijing 100053, China
| | - Joy Guingab-Cagmat
- Banyan Labs, Banyan Biomarkers Inc., Alachua, FL, USA; Xuanwu-Banyan Biomarker Research and Assay Center, Beijing 100053, China
| | - Firas Kobeissy
- Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida, Gainesville, FL, USA
| | - Susie Zoltewicz
- Banyan Labs, Banyan Biomarkers Inc., Alachua, FL, USA; Xuanwu-Banyan Biomarker Research and Assay Center, Beijing 100053, China
| | | | - Mingqing Gao
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Adam Hafeez
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ning Li
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Xuanwu-Banyan Biomarker Research and Assay Center, Beijing 100053, China
| | - Xiaokun Geng
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Stephen F Larner
- Banyan Labs, Banyan Biomarkers Inc., Alachua, FL, USA; Xuanwu-Banyan Biomarker Research and Assay Center, Beijing 100053, China
| | - John Anagli
- Banyan Labs, Banyan Biomarkers Inc., Alachua, FL, USA
| | - Ronald L Hayes
- Banyan Labs, Banyan Biomarkers Inc., Alachua, FL, USA; Xuanwu-Banyan Biomarker Research and Assay Center, Beijing 100053, China
| | - Xunming Ji
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Xuanwu-Banyan Biomarker Research and Assay Center, Beijing 100053, China; Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Yuchuan Ding
- Xuanwu-Banyan Biomarker Research and Assay Center, Beijing 100053, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
31
|
García-Berrocoso T, Penalba A, Boada C, Giralt D, Cuadrado E, Colomé N, Dayon L, Canals F, Sanchez JC, Rosell A, Montaner J. From brain to blood: New biomarkers for ischemic stroke prognosis. J Proteomics 2013; 94:138-48. [DOI: 10.1016/j.jprot.2013.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/02/2013] [Accepted: 09/14/2013] [Indexed: 11/26/2022]
|
32
|
Zgavc T, Hu TT, Van de Plas B, Vinken M, Ceulemans AG, Hachimi-Idrissi S, Sarre S, Michotte Y, Arckens L. Proteomic analysis of global protein expression changes in the endothelin-1 rat model for cerebral ischemia: Rescue effect of mild hypothermia. Neurochem Int 2013; 63:379-88. [DOI: 10.1016/j.neuint.2013.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/22/2013] [Accepted: 07/25/2013] [Indexed: 11/27/2022]
|
33
|
Different expression of ubiquitin C-terminal hydrolase-L1 and αII-spectrin in ischemic and hemorrhagic stroke: Potential biomarkers in diagnosis. Brain Res 2013; 1540:84-91. [PMID: 24140110 DOI: 10.1016/j.brainres.2013.09.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 09/28/2013] [Accepted: 09/30/2013] [Indexed: 11/22/2022]
Abstract
The two primary categories of stroke, ischemic and hemorrhagic, both have fundamentally different mechanisms and thus different treatment options. These two stroke categories were applied to rat models to identify potential biomarkers that can distinguish between them. Ischemic stroke was induced by middle cerebral artery occlusion (MCAO) without reperfusion while hemorrhagic stroke was induced by injecting collagenase IV into the striatum. Brain hemispheres and biofluids were collected at two time points: 3 and 6h after stroke. Known molecules were tested on the rat samples via quantitative immunoblotting (injured brain, CSF) and Banyan's proprietary ELISA assays (CSF, serum). The injured brain quantitative analyses revealed that αII-spectrin breakdown products (SBDP150, SBDP145) were strongly increased after 6h ischemia. In CSF, SBDP145 and ubiquitin C-terminal hydrolase-L1 (UCH-L1) levels were elevated after 6h ischemic stroke detected by Western blot and ELISA. In serum UCH-L1 levels were increased after 3 and 6h of ischemia detected by ELISA. However, levels of those proteins in hemorrhagic stroke remain normal. In summary, in both the brain and the biofluids, SBDPs and UCH-L1 were elevated after ischemic but not hemorrhagic stroke. These molecules behaved differently in the two stroke models and thus may be capable of being differentiated.
Collapse
|
34
|
Datta A, Akatsu H, Heese K, Sze SK. Quantitative clinical proteomic study of autopsied human infarcted brain specimens to elucidate the deregulated pathways in ischemic stroke pathology. J Proteomics 2013; 91:556-68. [PMID: 24007662 DOI: 10.1016/j.jprot.2013.08.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/15/2013] [Accepted: 08/20/2013] [Indexed: 11/26/2022]
Abstract
UNLABELLED Ischemic stroke, still lacking an effective neuroprotective therapy is the third leading cause of global mortality and morbidity. Here, we have applied an 8-plex iTRAQ-based 2D-LC-MS/MS strategy to study the commonly regulated infarct proteome from three different brain regions (putamen, thalamus and the parietal lobe) of female Japanese patients. Infarcts were compared with age-, post-mortem interval- and location-matched control specimens. The iTRAQ experiment confidently identified 1520 proteins with 0.1% false discovery rate. Bioinformatics data mining and immunochemical validation of pivotal perturbed proteins revealed a global failure of the cellular energy metabolism in the infarcted tissues as seen by the parallel down-regulation of proteins related to glycolysis, pyruvate dehydrogenase complex, TCA cycle and oxidative phosphorylation. The concomitant down-regulation of all participating proteins (SLC25A11, SLC25A12, GOT2 and MDH2) of malate-aspartate shuttle might be responsible for the metabolic in-coordination between the cytosol and mitochondria resulting in the failure of energy metabolism. The levels of proteins related to reactive gliosis (VIM, GFAP) and anti-inflammatory response (ANXA1, ANXA2) showed an increasing trend. The elevation of ferritin (FTL, FTH1) may indicate an iron-mediated oxidative imbalance aggravating the mitochondrial failure and neurotoxicity. The deregulated proteins could be useful as potential therapeutic targets or biomarkers for ischemic stroke. BIOLOGICAL SIGNIFICANCE Clinical proteomics of stroke has been lagging behind other areas of clinical proteomics like Alzheimer's disease or schizophrenia. Our study is the first quantitative clinical proteomics study where iTRAQ-2D-LC-MS/MS has been utilized in the area of ischemic stroke to obtain a comparative profile of human ischemic infarcts and age-, sex-, location- and post-mortem interval-matched control brain specimens. Different pathological attributes of ischemic stroke well-known through basic and pre-clinical research such as failure of cellular energy metabolism, reactive gliosis, activation of anti-inflammatory response and aberrant iron metabolism have been observed at the bedside. Our dataset could act as a reference for similar studies done in the future using ischemic brain samples from various brain banks across the world. A meta-analysis of these studies could help to map the pathological proteome specific to ischemic stroke that will guide the scientific community to better evaluate the pros and cons of the pre-clinical models for efficacy and mechanistic studies. Infarct being the core of injury should have the most intense regulation for several key proteins involved in the pathophysiology of ischemic stroke. Hence, a part of the up-regulated proteome could leak into the general circulation that may offer candidates of interest as potential biomarkers. In support of our proposed hypothesis, we report ferritin in the current study as one of the most elevated proteins in the infarct, which has been documented as a biomarker in the context of ischemic stroke by an independent study. Overall, our approach has the potential to identify probable therapeutic targets and biomarkers in the area of ischemic stroke.
Collapse
Affiliation(s)
- Arnab Datta
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | | | | |
Collapse
|
35
|
Abstract
Ischemic stroke is a leading cause of adult disability and mortality. With over 15 million strokes occurring every year in the world, methods to better identify patients at risk for stroke are needed, as are methods to improve patient diagnosis and prognosis when stroke occurs. Use of blood-based biomarkers is one method that has been evaluated to predict risk of stroke, diagnose stroke and its causes, predict stroke severity and outcome, and guide prevention therapy. Markers that have been identified include a variety of proteins, nucleic acids and lipids that relate to stroke pathophysiology. The role of blood biomarkers in ischemic stroke is still being defined, and further study is needed to develop blood biomarkers for clinical stroke use. In this review, the authors provide a summary of biomarkers that have been divided by their potential clinical application.
Collapse
Affiliation(s)
- Lena Rothstein
- Department of Neurology & MIND Institute, University of California at Davis, Sacramento, CA 95817, USA
| | | |
Collapse
|
36
|
|
37
|
Ning M, Lopez M, Cao J, Buonanno FS, Lo EH. Application of proteomics to cerebrovascular disease. Electrophoresis 2012; 33:3582-97. [PMID: 23161401 PMCID: PMC3712851 DOI: 10.1002/elps.201200481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 12/12/2022]
Abstract
While neurovascular diseases such as ischemic and hemorrhagic stroke are the leading causes of disability in the world, the repertoire of therapeutic interventions has remained remarkably limited. There is a dire need to develop new diagnostic, prognostic, and therapeutic options. The study of proteomics is particularly enticing for cerebrovascular diseases such as stroke, which most likely involve multiple gene interactions resulting in a wide range of clinical phenotypes. Currently, rapidly progressing neuroproteomic techniques have been employed in clinical and translational research to help identify biologically relevant pathways, to understand cerebrovascular pathophysiology, and to develop novel therapeutics and diagnostics. Future integration of proteomic with genomic, transcriptomic, and metabolomic studies will add new perspectives to better understand the complexities of neurovascular injury. Here, we review cerebrovascular proteomics research in both preclinical (animal, cell culture) and clinical (blood, urine, cerebrospinal fluid, microdialyates, tissue) studies. We will also discuss the rewards, challenges, and future directions for the application of proteomics technology to the study of various disease phenotypes. To capture the dynamic range of cerebrovascular injury and repair with a translational targeted and discovery approach, we emphasize the importance of complementing innovative proteomic technology with existing molecular biology models in preclinical studies, and the need to advance pharmacoproteomics to directly probe clinical physiology and gauge therapeutic efficacy at the bedside.
Collapse
Affiliation(s)
- Mingming Ning
- Clinical Proteomics Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | |
Collapse
|
38
|
Yigitkanli K, Pekcec A, Karatas H, Pallast S, Mandeville E, Joshi N, Smirnova N, Gazaryan I, Ratan RR, Witztum JL, Montaner J, Holman TR, Lo EH, van Leyen K. Inhibition of 12/15-lipoxygenase as therapeutic strategy to treat stroke. Ann Neurol 2012. [PMID: 23192915 DOI: 10.1002/ana.23734] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Targeting newly identified damage pathways in the ischemic brain can help to circumvent the currently severe limitations of acute stroke therapy. Here we show that the activity of 12/15-lipoxygenase was increased in the ischemic mouse brain, and 12/15-lipoxygenase colocalized with a marker for oxidized lipids, MDA2. This colocalization was also detected in the brain of 2 human stroke patients, where it also coincided with increased apoptosis-inducing factor. A novel inhibitor of 12/15-lipoxygenase, LOXBlock-1, protected neuronal HT22 cells against oxidative stress. In a mouse model of transient focal ischemia, the inhibitor reduced infarct sizes both 24 hours and 14 days poststroke, with improved behavioral parameters. Even when treatment was delayed until at least 4 hours after onset of ischemia, LOXBlock-1 was protective. Furthermore, it reduced tissue plasminogen activator-associated hemorrhage in a clot model of ischemia/reperfusion. This study establishes inhibition of 12/15-lipoxygenase as a viable strategy for first-line stroke treatment.
Collapse
Affiliation(s)
- Kazim Yigitkanli
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Di Domenico F, Casalena G, Jia J, Sultana R, Barone E, Cai J, Pierce WM, Cini C, Mancuso C, Perluigi M, Davis CM, Alkayed NJ, Butterfield DA, Butterfield AD. Sex differences in brain proteomes of neuron-specific STAT3-null mice after cerebral ischemia/reperfusion. J Neurochem 2012; 121:680-92. [PMID: 22394374 DOI: 10.1111/j.1471-4159.2012.07721.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Signal transduction and activator of transcription-3 (STAT3) plays an important role in neuronal survival, regeneration and repair after brain injury. We previously demonstrated that STAT3 is activated in brain after cerebral ischemia specifically in neurons. The effect was sex-specific and modulated by sex steroids, with higher activation in females than males. In the current study, we used a proteomics approach to identify downstream proteins affected by ischemia in male and female wild-type (WT) and neuron-specific STAT3 knockout (KO) mice. We established four comparison groups based on the transgenic condition and the hemisphere analyzed, respectively. Moreover, the sexual variable was taken into account and male and female animals were analyzed independently. Results support a role for STAT3 in metabolic, synaptic, structural and transcriptional responses to cerebral ischemia, indeed the adaptive response to ischemia/reperfusion injury is delayed in neuronal-specific STAT3 KO mice. The differences observed between males and females emphasize the importance of sex-specific neuronal survival and repair mechanisms, especially those involving antioxidant and energy-related activities, often caused by sex hormones.
Collapse
Affiliation(s)
- Fabio Di Domenico
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
This review provides a summary of the protein and RNA biomarkers that have been studied for the diagnosis and assessment of ischemic stroke. Many of the biomarkers identified relate to the pathophysiology of ischemic stroke, including ischemia of CNS tissue, acute thrombosis and inflammatory response. These biomarkers are summarized by their intended clinical application in ischemic stroke including diagnosis, prediction of stroke severity and outcome, and stratification of patients for stroke therapy. Among the biomarkers discussed are recent whole genome studies using RNA expression profiles to diagnose ischemic stroke and stroke etiology. Though many candidate blood based biomarkers for ischemic stroke have been identified, none are currently used in clinical practice. With further well designed study and careful validation, the development of blood biomarkers to improve the care of patients with ischemic stroke may be achieved.
Collapse
Affiliation(s)
- Glen C Jickling
- Department of Neurology and MIND Institute, University of California at Davis, Sacramento, CA 95817, USA.
| | | |
Collapse
|
42
|
Nafría C, Fernández-Cadenas I, Mendioroz M, Domingues-Montanari S, Hernández-Guillamón M, Fernández-Morales J, del Río-Espínola A, Giralt D, Deu L, Delgado P, Rosell A, Montaner J. Update on the Serum Biomarkers and Genetic Factors Associated with Safety and Efficacy of rt-PA Treatment in Acute Stroke Patients. Stroke Res Treat 2011; 2011:182783. [PMID: 21772966 PMCID: PMC3137952 DOI: 10.4061/2011/182783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 11/08/2010] [Accepted: 01/31/2011] [Indexed: 11/20/2022] Open
Abstract
An accurate understanding of the mechanisms underlying an individual's response to rt-PA treatment is critical to improve stroke patients' management. We thus reviewed the literature in order to identify biochemical and genetic factors that have been associated with safety and efficacy of rt-PA administration after stroke.
Collapse
Affiliation(s)
- C. Nafría
- Neurovascular Research Laboratory, Neurology and Medicine Departments, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - I. Fernández-Cadenas
- Neurovascular Research Laboratory, Neurology and Medicine Departments, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - M. Mendioroz
- Neurovascular Research Laboratory, Neurology and Medicine Departments, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - S. Domingues-Montanari
- Neurovascular Research Laboratory, Neurology and Medicine Departments, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - M. Hernández-Guillamón
- Neurovascular Research Laboratory, Neurology and Medicine Departments, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - J. Fernández-Morales
- Neurovascular Research Laboratory, Neurology and Medicine Departments, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - A. del Río-Espínola
- Neurovascular Research Laboratory, Neurology and Medicine Departments, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - D. Giralt
- Neurovascular Research Laboratory, Neurology and Medicine Departments, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - L. Deu
- Neurovascular Research Laboratory, Neurology and Medicine Departments, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - P. Delgado
- Neurovascular Research Laboratory, Neurology and Medicine Departments, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - A. Rosell
- Neurovascular Research Laboratory, Neurology and Medicine Departments, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - J. Montaner
- Neurovascular Research Laboratory, Neurology and Medicine Departments, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), 08035 Barcelona, Spain
- *J. Montaner:
| |
Collapse
|