1
|
Festa LK, Jordan-Sciutto KL, Grinspan JB. Neuroinflammation: An Oligodendrocentric View. Glia 2025; 73:1113-1129. [PMID: 40059542 PMCID: PMC12014387 DOI: 10.1002/glia.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/16/2025]
Abstract
Chronic neuroinflammation, driven by central nervous system (CNS)-resident astrocytes and microglia, as well as infiltration of the peripheral immune system, is an important pathologic mechanism across a range of neurologic diseases. For decades, research focused almost exclusively on how neuroinflammation impacted neuronal function; however, there is accumulating evidence that injury to the oligodendrocyte lineage is an important component for both pathologic and clinical outcomes. While oligodendrocytes are able to undergo an endogenous repair process known as remyelination, this process becomes inefficient and usually fails in the presence of sustained inflammation. The present review focuses on our current knowledge regarding activation of the innate and adaptive immune systems in the chronic demyelinating disease, multiple sclerosis, and provides evidence that sustained neuroinflammation in other neurologic conditions, such as perinatal white matter injury, traumatic brain injury, and viral infections, converges on oligodendrocyte injury. Lastly, the therapeutic potential of targeting the impact of inflammation on the oligodendrocyte lineage in these diseases is discussed.
Collapse
Affiliation(s)
- Lindsay K Festa
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kelly L Jordan-Sciutto
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Judith B Grinspan
- Department of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Kratimenos P, Sanidas G, Simonti G, Byrd C, Gallo V. The shifting landscape of the preterm brain. Neuron 2025:S0896-6273(25)00224-7. [PMID: 40239653 DOI: 10.1016/j.neuron.2025.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/16/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025]
Abstract
Preterm birth remains a significant global health concern despite advancements in neonatal care. While survival rates have increased, the long-term neurodevelopmental consequences of preterm birth persist. Notably, the profile of the preterm infant has shifted, with infants at earlier gestational ages surviving and decreased rates of gross structural injury secondary to intracranial hemorrhage. However, these infants are still vulnerable to insults, including hypoxia-ischemia, inflammation, and disrupted in utero development, impinging on critical developmental processes, which can lead to neuronal and oligodendrocyte injury and impaired brain function. Consequently, preterm infants often experience a range of neurodevelopmental disorders, such as cognitive impairment and behavioral problems. Here, we address mechanisms underlying preterm brain injury and explore existing and new investigational therapeutic strategies. We discuss how gestational age influences brain development and how interventions, including pharmacological and non-pharmacological approaches, mitigate the effects of preterm birth complications and improve the long-term outcomes of preterm infants.
Collapse
Affiliation(s)
- Panagiotis Kratimenos
- Children's National Research Institute, Washington, DC, USA; George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Georgios Sanidas
- Children's National Research Institute, Washington, DC, USA; George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Gabriele Simonti
- Children's National Research Institute, Washington, DC, USA; George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Chad Byrd
- Children's National Research Institute, Washington, DC, USA; George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Vittorio Gallo
- Seattle Children's Research Institute, Seattle, WA, USA; The University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
3
|
Guenoun D, Blaise N, Sellam A, Roupret‐Serzec J, Jacquens A, Steenwinckel JV, Gressens P, Bokobza C. Microglial Depletion, a New Tool in Neuroinflammatory Disorders: Comparison of Pharmacological Inhibitors of the CSF-1R. Glia 2025; 73:686-700. [PMID: 39719687 PMCID: PMC11845850 DOI: 10.1002/glia.24664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/26/2024]
Abstract
A growing body of evidence highlights the importance of microglia, the resident immune cells of the CNS, and their pro-inflammatory activation in the onset of many neurological diseases. Microglial proliferation, differentiation, and survival are highly dependent on the CSF-1 signaling pathway, which can be pharmacologically modulated by inhibiting its receptor, CSF-1R. Pharmacological inhibition of CSF-1R leads to an almost complete microglial depletion whereas treatment arrest allows for subsequent repopulation. Microglial depletion has shown promising results in many animal models of neurodegenerative diseases (Alzheimer's disease (AD), Parkinson's disease, or multiple sclerosis) where transitory microglial depletion reduced neuroinflammation and improved behavioral test results. In this review, we will focus on the comparison of three different pharmacological CSF-1R inhibitors (PLX3397, PLX5622, and GW2580) regarding microglial depletion. We will also highlight the promising results obtained by microglial depletion strategies in adult models of neurological disorders and argue they could also prove promising in neurodevelopmental diseases associated with microglial activation and neuroinflammation. Finally, we will discuss the lack of knowledge about the effects of these strategies on neurons, astrocytes, and oligodendrocytes in adults and during neurodevelopment.
Collapse
Affiliation(s)
- David Guenoun
- Inserm, NeuroDiderotUniversité Paris‐CitéParisFrance
- Department of PharmacyRobert Debré Hospital (AP‐HP)ParisFrance
| | - Nathan Blaise
- Inserm, NeuroDiderotUniversité Paris‐CitéParisFrance
| | | | | | - Alice Jacquens
- Inserm, NeuroDiderotUniversité Paris‐CitéParisFrance
- Department of Anesthesia and Critical CarePitié‐Salpétrière Hospital (AP‐HP)ParisFrance
| | | | | | - Cindy Bokobza
- Inserm, NeuroDiderotUniversité Paris‐CitéParisFrance
| |
Collapse
|
4
|
Huo L, Liu X, Wang H. Leukemia Inhibitory Factor Attenuates Hypoxic-Ischemic White Matter Injury via NLRP3 Inflammasome Activity Suppressing Through the Nrf2/HO-1 Pathway. FRONT BIOSCI-LANDMRK 2025; 30:36630. [PMID: 40152399 DOI: 10.31083/fbl36630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/07/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Inhibiting neuroinflammatory damage is an effective strategy for treating preterm white matter injury (PWMI). Leukemia inhibitory factor (LIF) can ameliorate (HI) induced white matter injury; however, the neuroprotective effects and mechanisms of LIF remain unclear. This study aimed to determine whether NOD-like receptor thermal protein domain associated protein (NLRP3)-dependent pyroptosis is involved in PWMI pathogenesis. METHODS We established an in vitro oxygen-glucose deprivation (OGD) cell model and an in vivo HI induced brain white matter injury neonatal mouse model. RNA sequencing (RNA-seq) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses examined differentially expressed genes in oxygen-glucose deprivation/reoxygenation (OGD/R) challenged CTX TNA2 rat astrocytes. The changes and effects of proteins were confirmed in neonatal rats in vitro and in vivo. Cell viability assays, reactive oxygen species (ROS) assays, apoptosis assays, and immunoblot were used to confirm LIF-mediated its neuroprotective effect against HI-induced white matter injury in vitro. RESULTS RNA-seq and KEGG analyses indicated OGD/R enriched NLRP3 inflammasome-related genes (validated by in vitro and in vivo models), showing that NLRP3-dependent pyroptosis proteins (apoptosis-associated speck-like protein contain a CARD (ASC), NLRP3, active caspase 1, IL-1β, IL-18, and N-terminal fragment of gasdermin D (GSDMD-N)) were all increased by HI or OGD/R. LIF upregulated HO-1 expression by activating Nrf2 via the MAPK and Akt kinase pathways and significantly decreased OGD/R-induced ROS production. NLRP3-dependent pyroptosis proteins were suppressed in the LIF group compared with those in the OGD/R and HI groups. Zinc protophyrin, an HO-1 inhibitor, partially abolished LIF-mediated viability enhancement in rat astrocytes. CONCLUSION NLRP3-dependent pyroptosis plays a role in PWMI pathogenesis; moreover, LIF mitigates OGD/R-induced pyroptosis-dependent neurotoxicity by upregulating HO-1 expression in rat astrocytes.
Collapse
Affiliation(s)
- Liang Huo
- Department of Pediatrics, Shengjing Hospital of China Medical University, 110004 Shenyang, Liaoning, China
| | - Xueyan Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, 110004 Shenyang, Liaoning, China
| | - Hua Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, 110004 Shenyang, Liaoning, China
| |
Collapse
|
5
|
Kapur RP, Vo AE, Li A, Li M, Munson J, Huang H, Del Rosario B, Cervantes O, Zhao H, Vong A, Manuel G, Li E, Devaraju M, Deng X, Baldessari A, Durning WM, Wangari S, Menz B, Germond A, English C, Coleman M, Orvis A, Sun S, Parker E, Juul S, Fountaine B, Rajagopal L, Adams Waldorf KM. Granular cytoplasmic inclusions in astrocytes and microglial activation in the fetal brain of pigtail macaques in response to maternal viral infection. Acta Neuropathol Commun 2025; 13:55. [PMID: 40069869 PMCID: PMC11895267 DOI: 10.1186/s40478-025-01970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/21/2025] [Indexed: 03/15/2025] Open
Abstract
The fetal origins of neuropsychiatric disorders are poorly understood but have been linked to viral or inflammatory injury of the developing brain. The fetal white matter is particularly susceptible to injury as myelination, axonal growth, and deep white matter tracts become established. We have used the pigtail macaque (Macaca nemestrina) to study the maternal and fetal effects of influenza A virus (FLUAV) and Zika virus (ZIKV) infection during pregnancy, in cohorts with different time intervals between inoculation and delivery. We observed a striking histopathological alteration in a subset of astrocytes which contained granular cytoplasmic inclusions ("inclusion cells", ICs) within a specific region of the deep cerebral white matter in the fetal brains from specific FLUAV and ZIKV cohorts. Immunohistochemical and ultrastructural characteristics of ICs indicated that they are astrocytes (GFAP+) undergoing autophagocytosis (p62+) with activated lysosomes (LAMP1+, LAMP2+) and reactive changes in neighboring microglia. There was also a positive correlation between the number of ICs and LAMP1 or LAMP2 immunoreactivity in the fetal brain (LAMP1: rho 0.66; LAMP2: rho 0.54, p < 0.001 for both). Interestingly, ICs were significantly more prevalent in the 5-day FLUAV cohort and the 21-day intermediate ZIKV cohort than in controls (p < 0.005 and p = 0.04, respectively), but this relationship was not apparent in the ZIKV cohort with a shorter (2-3 days) or longer (months) time course. Virologic and immunologic assays indicated that the appearance of these cells was not linked with fetal brain infection. ICs were not observed in a macaque model of perinatal hypoxic ischemic encephalopathy. These alterations in fetal white matter are pathologically abnormal and may represent a transient neuropathologic finding that signifies a subtle brain injury in the fetus after maternal viral infection.
Collapse
Affiliation(s)
- Raj P Kapur
- Department of Laboratory Medicine and Pathology, Seattle Children's Hospital, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| | - Andrew E Vo
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Amanda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Miranda Li
- School of Medicine, University of Washington, Seattle, WA, USA
| | - Jeff Munson
- Department of Psychiatry, University of Washington, Seattle, WA, USA
| | - Hazel Huang
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Briana Del Rosario
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Orlando Cervantes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Hong Zhao
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Ashley Vong
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Gygeria Manuel
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Edmunda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Monica Devaraju
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Xuemei Deng
- Department of Laboratory Medicine and Pathology, Seattle Children's Hospital, Seattle, WA, USA
| | | | | | - Solomon Wangari
- Washington National Primate Research Center, Seattle, WA, USA
| | - Brenna Menz
- Washington National Primate Research Center, Seattle, WA, USA
| | - Audrey Germond
- Washington National Primate Research Center, Seattle, WA, USA
| | - Chris English
- Washington National Primate Research Center, Seattle, WA, USA
| | - Michelle Coleman
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Austyn Orvis
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Sidney Sun
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Ed Parker
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Sandra Juul
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Brendy Fountaine
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Lakshmi Rajagopal
- Department of Global Health, University of Washington, Seattle, WA, USA
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Kristina M Adams Waldorf
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| |
Collapse
|
6
|
Meller SJ, Greer CA. Olfactory Development and Dysfunction: Involvement of Microglia. Physiology (Bethesda) 2025; 40:0. [PMID: 39499248 DOI: 10.1152/physiol.00037.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/07/2024] Open
Abstract
Olfactory deficits are increasingly recognized in a variety of neurological, neurodevelopmental, psychiatric, and viral diseases. While the pathology underlying olfactory loss is likely to differ across diseases, one shared feature may be an immune response mediated by microglia. Microglia orchestrate the brain's response to environmental insults and maintain neurodevelopmental homeostasis. Here, we explore the potential involvement of microglia in olfactory development and loss in disease. The effects of microglia-mediated immune response during development may be of special relevance to the olfactory system, which is unique in both its vulnerability to environmental insults as well as its extended period of neurogenesis and neuronal migration.
Collapse
Affiliation(s)
- Sarah J Meller
- Departments of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, United States
- Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, United States
- The Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Charles A Greer
- Departments of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, United States
- Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, United States
- The Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
7
|
Serdar M, Walther KA, Gallert M, Kempe K, Obst S, Labusek N, Herrmann R, Herz J, Felderhoff-Müser U, Bendix I. Prenatal inflammation exacerbates hyperoxia-induced neonatal brain injury. J Neuroinflammation 2025; 22:57. [PMID: 40022130 PMCID: PMC11871844 DOI: 10.1186/s12974-025-03389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/20/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Premature born infants are at high risk to develop white matter injury (WMI). Hyperoxia and perinatal inflammation are main risk factors for preterm birth and associated brain injury. To date the majority of experimental studies have focused on isolated insults. However, clinically, WMI injury is a multifactorial disorder caused by a variety of triggers. To establish a clinically relevant rodent model of WMI, we combined prenatal inflammation with postnatal hyperoxia to investigate individual, and additive or synergistic effects on inflammatory processes, myelination and grey matter development. METHODS At embryonic day 20, pregnant Wistar rat dams received either a single intraperitoneal injection of 100 µg/ kg lipopolysaccharide (LPS) or sodium chloride. Offspring were either exposed to hyperoxia (80% O2) or normoxia (21% O2) from postnatal day 3 to 5. Animals were sacrificed immediately after hyperoxia or 6 days later, corresponding to term-equivalent age. White and grey matter development and neuroinflammatory responses were investigated at cellular and molecular levels applying immunohistochemistry, western blotting, real time PCR in brain tissues and multiplex protein expression analysis on serum samples. RESULTS Prenatal inflammation combined with postnatal hyperoxia resulted in reduced body weight and length in the offspring, accompanied by increased serum leptin levels at term equivalent age. The altered body parameters, like body weight, were associated with decreased brain volume, thinning of deep cortical layers and hypomyelination. As potential underlying mechanisms, we identified severe myelination deficits and an increased microglia activation associated with elevated inflammatory cytokine expression in brain tissues, while peripheral cytokine levels were reduced. Interestingly, effects on body size were mainly mediated by prenatal LPS, independent of hyperoxia, while oligodendrocyte degeneration was mainly induced by postnatal hyperoxia, independent of prenatal inflammation. However, for the majority of pathological changes, including brain size, myelination deficits, microglia activation and inflammatory cytokine expression, additive or synergistic effects were detected. CONCLUSION Prenatal inflammation combined with postnatal hyperoxia results in aggravated myelination deficits and inflammatory responses compared to single insults, making it an ideal model to improve our understanding of the complex pathophysiology underlying WMI and to evaluate urgently needed therapies.
Collapse
Affiliation(s)
- Meray Serdar
- Department of Paediatrics I, Neonatology and Experimental perinatal Neurosciences, Centre for Translational Neuro- and Behavioural Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Kay-Anja Walther
- Department of Paediatrics I, Neonatology and Experimental perinatal Neurosciences, Centre for Translational Neuro- and Behavioural Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Markus Gallert
- Department of Paediatrics I, Neonatology and Experimental perinatal Neurosciences, Centre for Translational Neuro- and Behavioural Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Karina Kempe
- Department of Paediatrics I, Neonatology and Experimental perinatal Neurosciences, Centre for Translational Neuro- and Behavioural Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Stefanie Obst
- Department of Paediatrics I, Neonatology and Experimental perinatal Neurosciences, Centre for Translational Neuro- and Behavioural Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Nicole Labusek
- Department of Paediatrics I, Neonatology and Experimental perinatal Neurosciences, Centre for Translational Neuro- and Behavioural Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ralf Herrmann
- Department of Paediatrics I, Neonatology and Experimental perinatal Neurosciences, Centre for Translational Neuro- and Behavioural Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Josephine Herz
- Department of Paediatrics I, Neonatology and Experimental perinatal Neurosciences, Centre for Translational Neuro- and Behavioural Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ursula Felderhoff-Müser
- Department of Paediatrics I, Neonatology and Experimental perinatal Neurosciences, Centre for Translational Neuro- and Behavioural Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | - Ivo Bendix
- Department of Paediatrics I, Neonatology and Experimental perinatal Neurosciences, Centre for Translational Neuro- and Behavioural Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
8
|
Prasad J, Van Steenwinckel J, Gunn AJ, Bennet L, Korzeniewski SJ, Gressens P, Dean JM. Chronic Inflammation Offers Hints About Viable Therapeutic Targets for Preeclampsia and Potentially Related Offspring Sequelae. Int J Mol Sci 2024; 25:12999. [PMID: 39684715 PMCID: PMC11640791 DOI: 10.3390/ijms252312999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
The combination of hypertension with systemic inflammation during pregnancy is a hallmark of preeclampsia, but both processes also convey dynamic information about its antecedents and correlates (e.g., fetal growth restriction) and potentially related offspring sequelae. Causal inferences are further complicated by the increasingly frequent overlap of preeclampsia, fetal growth restriction, and multiple indicators of acute and chronic inflammation, with decreased gestational length and its correlates (e.g., social vulnerability). This complexity prompted our group to summarize information from mechanistic studies, integrated with key clinical evidence, to discuss the possibility that sustained or intermittent systemic inflammation-related phenomena offer hints about viable therapeutic targets, not only for the prevention of preeclampsia, but also the neurobehavioral and other developmental deficits that appear to be overrepresented in surviving offspring. Importantly, we feel that carefully designed hypothesis-driven observational studies are necessary if we are to translate the mechanistic evidence into child health benefits, namely because multiple pregnancy disorders might contribute to heightened risks of neuroinflammation, arrested brain development, or dysconnectivity in survivors who exhibit developmental problems later in life.
Collapse
Affiliation(s)
- Jaya Prasad
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| | | | - Alistair J. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| | - Steven J. Korzeniewski
- C.S. Mott Center for Human Growth and Development, Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Pierre Gressens
- Inserm, Neurodiderot, Université de Paris, 75019 Paris, France;
- Centre for the Developing Brain, Division of Imaging Sciences and Department of Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London SE1 7EH, UK
| | - Justin M. Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| |
Collapse
|
9
|
Leavy A, Phelan J, Jimenez-Mateos EM. Contribution of microglia to the epileptiform activity that results from neonatal hypoxia. Neuropharmacology 2024; 253:109968. [PMID: 38692453 DOI: 10.1016/j.neuropharm.2024.109968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Microglia are described as the immune cells of the brain, their immune properties have been extensively studied since first described, however, their neural functions have only been explored over the last decade. Microglia have an important role in maintaining homeostasis in the central nervous system by surveying their surroundings to detect pathogens or damage cells. While these are the classical functions described for microglia, more recently their neural functions have been defined; they are critical to the maturation of neurons during embryonic and postnatal development, phagocytic microglia remove excess synapses during development, a process called synaptic pruning, which is important to overall neural maturation. Furthermore, microglia can respond to neuronal activity and, together with astrocytes, can regulate neural activity, contributing to the equilibrium between excitation and inhibition through a feedback loop. Hypoxia at birth is a serious neurological condition that disrupts normal brain function resulting in seizures and epilepsy later in life. Evidence has shown that microglia may contribute to this hyperexcitability after neonatal hypoxia. This review will summarize the existing data on the role of microglia in the pathogenesis of neonatal hypoxia and the plausible mechanisms that contribute to the development of hyperexcitability after hypoxia in neonates. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Aisling Leavy
- Discipline of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Jessie Phelan
- Discipline of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Eva M Jimenez-Mateos
- Discipline of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland.
| |
Collapse
|
10
|
Dhillon SK, Lear CA, Davidson JO, Magawa S, Gunn AJ, Bennet L. The neural and cardiovascular effects of exposure of gram-positive bacterial inflammation in preterm fetal sheep. J Cereb Blood Flow Metab 2024; 44:955-969. [PMID: 37824725 PMCID: PMC11318397 DOI: 10.1177/0271678x231197380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/17/2023] [Accepted: 05/27/2023] [Indexed: 10/14/2023]
Abstract
Perinatal infection or inflammation are associated with adverse neurodevelopmental effects and cardiovascular impairments in preterm infants. Most preclinical studies have examined the effects of gram-negative bacterial inflammation on the developing brain, although gram-positive bacterial infections are a major contributor to adverse outcomes. Killed Su-strain group 3 A streptococcus pyogenes (Picibanil, OK-432) is being used for pleurodesis in fetal hydrothorax/chylothorax. We therefore examined the neural and cardiovascular effects of clinically relevant intra-plural infusions of Picibanil. Chronically instrumented preterm (0.7 gestation) fetal sheep received an intra-pleural injection of low-dose (0.1 mg, n = 8) or high-dose (1 mg, n = 8) Picibanil or saline-vehicle (n = 8). Fetal brains were collected for histology one-week after injection. Picibanil exposure was associated with sustained diffuse white matter inflammation and loss of immature and mature oligodendrocytes and subcortical neurons, and associated loss of EEG power. These neural effects were not dose-dependent. Picibanil was also associated with acute changes in heart rate and attenuation of the maturational increase in mean arterial pressure. Even a single exposure to a low-dose gram-positive bacterial-mediated inflammation during the antenatal period is associated with prolonged changes in vascular and neural function.
Collapse
Affiliation(s)
| | - Christopher A Lear
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Shoichi Magawa
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Viaene AN. A role for immunohistochemical stains in perinatal brain autopsies. J Neuropathol Exp Neurol 2024; 83:345-356. [PMID: 38441171 PMCID: PMC11029462 DOI: 10.1093/jnen/nlae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Identification of central nervous system injury is a critical part of perinatal autopsies; however, injury is not always easily identifiable due to autolysis and immaturity of the developing brain. Here, the role of immunohistochemical stains in the identification of perinatal brain injury was investigated. Blinded semiquantitative scoring of injury was performed on sections of frontal lobe from 76 cases (51 liveborn and 25 stillborn) using H&E, GFAP, Iba-1, and β-APP stains. Digital image analysis was used to quantify GFAP and Iba-1 staining. Commonly observed pathologies included diffuse white matter gliosis (DWMG) and white matter necrosis (WMN). DWMG scores were very similar on H&E and GFAP stains for liveborn subjects. For stillborn subjects, DWMG scores were significantly higher on GFAP stain than H&E. β-APP was needed for identification of WMN in 71.4% of stillborn subjects compared to 15.4% of liveborn subjects. Diffuse staining for Iba-1 within cortex and white matter was positively correlated with subject age. Staining quantification on digital image analysis was highly correlated to semiquantitative scoring. Overall, GFAP and β-APP stains were most helpful in identifying white matter injury not seen on H&E in stillborn subjects. Immunostains may therefore be warranted as an integral part of stillborn brain autopsies.
Collapse
Affiliation(s)
- Angela N Viaene
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Molloy EJ, El-Dib M, Soul J, Juul S, Gunn AJ, Bender M, Gonzalez F, Bearer C, Wu Y, Robertson NJ, Cotton M, Branagan A, Hurley T, Tan S, Laptook A, Austin T, Mohammad K, Rogers E, Luyt K, Wintermark P, Bonifacio SL. Neuroprotective therapies in the NICU in preterm infants: present and future (Neonatal Neurocritical Care Series). Pediatr Res 2024; 95:1224-1236. [PMID: 38114609 PMCID: PMC11035150 DOI: 10.1038/s41390-023-02895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 12/21/2023]
Abstract
The survival of preterm infants has steadily improved thanks to advances in perinatal and neonatal intensive clinical care. The focus is now on finding ways to improve morbidities, especially neurological outcomes. Although antenatal steroids and magnesium for preterm infants have become routine therapies, studies have mainly demonstrated short-term benefits for antenatal steroid therapy but limited evidence for impact on long-term neurodevelopmental outcomes. Further advances in neuroprotective and neurorestorative therapies, improved neuromonitoring modalities to optimize recruitment in trials, and improved biomarkers to assess the response to treatment are essential. Among the most promising agents, multipotential stem cells, immunomodulation, and anti-inflammatory therapies can improve neural outcomes in preclinical studies and are the subject of considerable ongoing research. In the meantime, bundles of care protecting and nurturing the brain in the neonatal intensive care unit and beyond should be widely implemented in an effort to limit injury and promote neuroplasticity. IMPACT: With improved survival of preterm infants due to improved antenatal and neonatal care, our focus must now be to improve long-term neurological and neurodevelopmental outcomes. This review details the multifactorial pathogenesis of preterm brain injury and neuroprotective strategies in use at present, including antenatal care, seizure management and non-pharmacological NICU care. We discuss treatment strategies that are being evaluated as potential interventions to improve the neurodevelopmental outcomes of infants born prematurely.
Collapse
Affiliation(s)
- Eleanor J Molloy
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland.
- Children's Hospital Ireland (CHI) at Tallaght, Dublin, Ireland.
- Neonatology, CHI at Crumlin, Dublin, Ireland.
- Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland.
| | - Mohamed El-Dib
- Department of Pediatrics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Janet Soul
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sandra Juul
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Alistair J Gunn
- Departments of Physiology and Paediatrics, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Manon Bender
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Fernando Gonzalez
- Department of Neurology, Division of Child Neurology, University of California, San Francisco, California, USA
| | - Cynthia Bearer
- Division of Neonatology, Department of Pediatrics, Rainbow Babies & Children's Hospital, Cleveland, Ohio, USA
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Yvonne Wu
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mike Cotton
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Aoife Branagan
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland
- Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland
| | - Tim Hurley
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland
| | - Sidhartha Tan
- Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Abbot Laptook
- Department of Pediatrics, Women and Infants Hospital, Brown University, Providence, Rhode Island, USA
| | - Topun Austin
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Khorshid Mohammad
- Section of Neonatology, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Elizabeth Rogers
- Department of Pediatrics, University of California, San Francisco Benioff Children's Hospital, San Francisco, California, USA
| | - Karen Luyt
- Translational Health Sciences, University of Bristol, Bristol, UK
- Neonatology, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Pia Wintermark
- Division of Neonatology, Montreal Children's Hospital, Montreal, Quebec, Canada
- McGill University Health Centre - Research Institute, Montreal, Quebec, Canada
| | - Sonia Lomeli Bonifacio
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
13
|
Tscherrig V, Steinfort M, Haesler V, Surbek D, Schoeberlein A, Joerger-Messerli MS. All but Small: miRNAs from Wharton's Jelly-Mesenchymal Stromal Cell Small Extracellular Vesicles Rescue Premature White Matter Injury after Intranasal Administration. Cells 2024; 13:543. [PMID: 38534387 PMCID: PMC10969443 DOI: 10.3390/cells13060543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
White matter injury (WMI) is a common neurological issue in premature-born neonates, often causing long-term disabilities. We recently demonstrated a key beneficial role of Wharton's jelly mesenchymal stromal cell-derived small extracellular vesicles (WJ-MSC-sEVs) microRNAs (miRNAs) in WMI-related processes in vitro. Here, we studied the functions of WJ-MSC-sEV miRNAs in vivo using a preclinical rat model of premature WMI. Premature WMI was induced in rat pups through inflammation and hypoxia-ischemia. Small EVs were purified from the culture supernatant of human WJ-MSCs. The capacity of WJ-MSC-sEV-derived miRNAs to decrease microglia activation and promote oligodendrocyte maturation was evaluated by knocking down (k.d) DROSHA in WJ-MSCs, releasing sEVs containing significantly less mature miRNAs. Wharton's jelly MSC-sEVs intranasally administrated 24 h upon injury reached the brain within 1 h, remained detectable for at least 24 h, significantly reduced microglial activation, and promoted oligodendrocyte maturation. The DROSHA k.d in WJ-MSCs lowered the therapeutic capabilities of sEVs in experimental premature WMI. Our results strongly indicate the relevance of miRNAs in the therapeutic abilities of WJ-MSC-sEVs in premature WMI in vivo, opening the path to clinical application.
Collapse
Affiliation(s)
- Vera Tscherrig
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.S.)
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3012 Bern, Switzerland
| | - Marel Steinfort
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.S.)
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3012 Bern, Switzerland
| | - Valérie Haesler
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.S.)
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Daniel Surbek
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.S.)
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Andreina Schoeberlein
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.S.)
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Marianne Simone Joerger-Messerli
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.S.)
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
14
|
Van Steenwinckel J, Bokobza C, Laforge M, Shearer IK, Miron VE, Rua R, Matta SM, Hill‐Yardin EL, Fleiss B, Gressens P. Key roles of glial cells in the encephalopathy of prematurity. Glia 2024; 72:475-503. [PMID: 37909340 PMCID: PMC10952406 DOI: 10.1002/glia.24474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 11/03/2023]
Abstract
Across the globe, approximately one in 10 babies are born preterm, that is, before 37 weeks of a typical 40 weeks of gestation. Up to 50% of preterm born infants develop brain injury, encephalopathy of prematurity (EoP), that substantially increases their risk for developing lifelong defects in motor skills and domains of learning, memory, emotional regulation, and cognition. We are still severely limited in our abilities to prevent or predict preterm birth. No longer just the "support cells," we now clearly understand that during development glia are key for building a healthy brain. Glial dysfunction is a hallmark of EoP, notably, microgliosis, astrogliosis, and oligodendrocyte injury. Our knowledge of glial biology during development is exponentially expanding but hasn't developed sufficiently for development of effective neuroregenerative therapies. This review summarizes the current state of knowledge for the roles of glia in infants with EoP and its animal models, and a description of known glial-cell interactions in the context of EoP, such as the roles for border-associated macrophages. The field of perinatal medicine is relatively small but has worked passionately to improve our understanding of the etiology of EoP coupled with detailed mechanistic studies of pre-clinical and human cohorts. A primary finding from this review is that expanding our collaborations with computational biologists, working together to understand the complexity of glial subtypes, glial maturation, and the impacts of EoP in the short and long term will be key to the design of therapies that improve outcomes.
Collapse
Affiliation(s)
| | - Cindy Bokobza
- NeuroDiderot, INSERMUniversité Paris CitéParisFrance
| | | | - Isabelle K. Shearer
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Veronique E. Miron
- Barlo Multiple Sclerosis CentreSt. Michael's HospitalTorontoOntarioCanada
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
- College of Medicine and Veterinary MedicineThe Dementia Research Institute at The University of EdinburghEdinburghUK
| | - Rejane Rua
- CNRS, INSERM, Centre d'Immunologie de Marseille‐Luminy (CIML), Turing Centre for Living SystemsAix‐Marseille UniversityMarseilleFrance
| | - Samantha M. Matta
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Elisa L. Hill‐Yardin
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Bobbi Fleiss
- NeuroDiderot, INSERMUniversité Paris CitéParisFrance
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | | |
Collapse
|
15
|
Fleiss B, Gressens P. Role of Microglial Modulation in Therapies for Perinatal Brain Injuries Leading to Neurodevelopmental Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:591-606. [PMID: 39207715 DOI: 10.1007/978-3-031-55529-9_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neurodevelopmental disorders (NDDs) encompass various conditions stemming from changes during brain development, typically diagnosed early in life. Examples include autism spectrum disorder, intellectual disability, cerebral palsy, seizures, dyslexia, and attention deficit hyperactivity disorder. Many NDDs are linked to perinatal events like infections, oxygen disturbances, or insults in combination. This chapter outlines the causes and effects of perinatal brain injury as they relate to microglia, along with efforts to prevent or treat such damage. We primarily discuss therapies targeting microglia modulation, focusing on those either clinically used or in advanced development, often tested in large animal models such as sheep, non-human primates, and piglets-standard translational models in perinatal medicine. Additionally, it touches on experimental studies showcasing advancements in the field.
Collapse
Affiliation(s)
- Bobbi Fleiss
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Pierre Gressens
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.
- Université de Paris, NeuroDiderot, Inserm, Paris, France.
| |
Collapse
|
16
|
Mulc D, Smilović D, Krsnik Ž, Junaković-Munjas A, Kopić J, Kostović I, Šimić G, Vukšić M. Fetal development of the human amygdala. J Comp Neurol 2024; 532:e25580. [PMID: 38289194 DOI: 10.1002/cne.25580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/03/2023] [Accepted: 12/31/2023] [Indexed: 02/01/2024]
Abstract
The intricate development of the human amygdala involves a complex interplay of diverse processes, varying in speed and duration. In humans, transient cytoarchitectural structures deliquesce, leading to the formation of functionally distinct nuclei as a result of multiple interdependent developmental events. This study compares the amygdala's cytoarchitectural development in conjunction with specific antibody reactivity for neuronal, glial, neuropil, and radial glial fibers, synaptic, extracellular matrix, and myelin components in 39 fetal human brains. We recognized that the early fetal period, as a continuation of the embryonic period, is still dominated by relatively uniform histogenetic processes. The typical appearance of ovoid cell clusters in the lateral nucleus during midfetal period is most likely associated with the cell migration and axonal growth processes in the developing human brain. Notably, synaptic markers are firstly detected in the corticomedial group of nuclei, while immunoreactivity for the panaxonal neurofilament marker SMI 312 is found dorsally. The late fetal period is characterized by a protracted migration process evidenced by the presence of doublecortin and SOX-2 immunoreactivity ventrally, in the prospective paralaminar nucleus, reinforced by vimentin immunoreactivity in the last remaining radial glial fibers. Nearing the term period, SMI 99 immunoreactivity indicates that perinatal myelination becomes prominent primarily along major axonal pathways, laying the foundation for more pronounced functional maturation. This study comprehensively elucidates the rate and sequence of maturational events in the amygdala, highlighting the key role of prenatal development in its behavioral, autonomic, and endocrine regulation, with subsequent implications for both normal functioning and psychiatric disorders.
Collapse
Affiliation(s)
- Damir Mulc
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
- Psychiatric Hospital Vrapče, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dinko Smilović
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Alisa Junaković-Munjas
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Janja Kopić
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Goran Šimić
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Mario Vukšić
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
17
|
Yang L, Zhang Y, Yu X, Li D, Liu N, Xue X, Fu J. Periventricular Microglia Polarization and Morphological Changes Accompany NLRP3 Inflammasome-Mediated Neuroinflammation after Hypoxic-Ischemic White Matter Damage in Premature Rats. J Immunol Res 2023; 2023:5149306. [PMID: 37636861 PMCID: PMC10460280 DOI: 10.1155/2023/5149306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 08/29/2023] Open
Abstract
White matter damage (WMD) is a primary cause of cerebral palsy and cognitive impairment in preterm infants, and no effective treatments are available. Microglia are a major component of the innate immune system. When activated, they form typical pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes and regulate myelin development and synapse formation. Therefore, they may play a pivotal role in hypoxic-ischemic (HI) WMD. Herein, we investigated neural inflammation and long-term microglia phenotypic polarization in a neonatal rat model of hypoxia-ischemia-induced WMD and elucidated the underlying pathophysiological processes. We exposed 3-day-old (P3) Sprague-Dawley rats to hypoxia (8% oxygen) for 2.5 hr after unilateral common carotid artery ligation. The activation of NLRP3 inflammatory bodies, microglia M1/M2 polarization, myelination, and synaptic development in our model were monitored 7, 14, and 21 days after birth. In addition, the Morris water maze test was performed on postnatal Day 28. We confirmed myelination disturbance in the periventricular white matter, abnormal synaptic development, and behavioral changes in the periventricular area during the development of HI WMD. In addition, we found an association between the occurrence and development of HI WMD and activation of the NLRP3 inflammasome, microglial M1/M2 polarization, and the release of inflammatory factors. NLRP3 inhibition can play an anti-inflammatory role by inhibiting the differentiation of microglia into the M1 phenotype, thereby improving myelination and synapse formation. In conclusion, microglia are key mediators of the inflammatory response and exhibit continuous phenotypic polarization 7-21 days after HI-induced WMD. This finding can potentially lead to a new treatment regimen targeting the phenotypic polarization of microglia early after HI-induced brain injury.
Collapse
Affiliation(s)
- Liu Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian 116021, Liaoning, China
| | - Yajun Zhang
- Department of Anesthesiology, Dalian Municipal Maternal and Child Health Care Hospital, Dalian 116021, Liaoning, China
| | - Xuefei Yu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Danni Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Na Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| |
Collapse
|
18
|
Holloway RK, Zhang L, Molina-Gonzalez I, Ton K, Nicoll JAR, Boardman JP, Liang Y, Williams A, Miron VE. Localized microglia dysregulation impairs central nervous system myelination in development. Acta Neuropathol Commun 2023; 11:49. [PMID: 36949514 PMCID: PMC10035254 DOI: 10.1186/s40478-023-01543-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/03/2023] [Indexed: 03/24/2023] Open
Abstract
Myelination of neuronal axons is a critical aspect of central nervous system development and function. However, the fundamental cellular and molecular mechanisms influencing human developmental myelination and its failure are not fully understood. Here, we used digital spatial transcriptomics of a rare bank of human developing white matter to uncover that a localized dysregulated innate immune response is associated with impeded myelination. We identified that poorly myelinating areas have a distinct signature of Type II interferon signalling in microglia/macrophages, relative to adjacent myelinating areas. This is associated with a surprising increase in mature oligodendrocytes, which fail to form myelin processes appropriately. We functionally link these findings by showing that conditioned media from interferon-stimulated microglia is sufficient to dysregulate myelin process formation by oligodendrocytes in culture. We identify the Type II interferon inducer, Osteopontin (SPP1), as being upregulated in poorly myelinating brains, indicating a potential biomarker. Our results reveal the importance of microglia-mature oligodendrocyte interaction and interferon signaling in regulating myelination of the developing human brain.
Collapse
Affiliation(s)
- Rebecca K Holloway
- Keenan Research Centre for Biomedial Science at St. Michael's Hospital, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, Scotland, UK
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Liang Zhang
- Nanostring Technologies, Inc., Seattle, WA, USA
| | - Irene Molina-Gonzalez
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, Scotland, UK
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Kathy Ton
- Nanostring Technologies, Inc., Seattle, WA, USA
| | - James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - James P Boardman
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Yan Liang
- Nanostring Technologies, Inc., Seattle, WA, USA
| | - Anna Williams
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Veronique E Miron
- Keenan Research Centre for Biomedial Science at St. Michael's Hospital, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada.
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland, UK.
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, Scotland, UK.
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
19
|
Bokobza C, Jacquens A, Guenoun D, Bianco B, Galland A, Pispisa M, Cruz A, Zinni M, Faivre V, Roumier A, Lebon S, Vitalis T, Csaba Z, Le Charpentier T, Schwendimann L, Young-Ten P, Degos V, Monteiro P, Dournaud P, Gressens P, Van Steenwinckel J. Targeting the brain 5-HT7 receptor to prevent hypomyelination in a rodent model of perinatal white matter injuries. J Neural Transm (Vienna) 2023; 130:281-297. [PMID: 36335540 PMCID: PMC10033587 DOI: 10.1007/s00702-022-02556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
Approximately 15 million babies are born prematurely every year and many will face lifetime motor and/or cognitive deficits. Children born prematurely are at higher risk of developing perinatal brain lesions, especially white matter injuries (WMI). Evidence in humans and rodents demonstrates that systemic inflammation-induced neuroinflammation, including microglial and astrocyte reactivity, is the prominent processes of WMI associated with preterm birth. Thus, a new challenge in the field of perinatal brain injuries is to develop new neuroprotective strategies to target neuroinflammation to prevent WMI. Serotonin (5-HT) and its receptors play an important role in inflammation, and emerging evidence indicates that 5-HT may regulate brain inflammation by the modulation of microglial reactivity and astrocyte functions. The present study is based on a mouse model of WMI induced by intraperitoneal (i.p.) injections of IL-1β during the first 5 days of life. In this model, certain key lesions of preterm brain injuries can be summarized by (i) systemic inflammation, (ii) pro-inflammatory microglial and astrocyte activation, and (iii) inhibition of oligodendrocyte maturation, leading to hypomyelination. We demonstrate that Htr7 mRNA (coding for the HTR7/5-HT7 receptor) is significantly overexpressed in the anterior cortex of IL-1β-exposed animals, suggesting it as a potential therapeutic target. LP-211 is a specific high-affinity HTR7 agonist that crosses the blood-brain barrier (BBB). When co-injected with IL-1β, LP-211 treatment prevented glial reactivity, the down-regulation of myelin-associated proteins, and the apparition of anxiety-like phenotypes. Thus, HTR7 may represent an innovative therapeutic target to protect the developing brain from preterm brain injuries.
Collapse
Affiliation(s)
- Cindy Bokobza
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France.
| | - Alice Jacquens
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
- Department of Anesthesia and Critical Care, APHP-Sorbonne University, Hôpital La Pitié- Salpêtrière, Paris, France
| | - David Guenoun
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
- Department of Pharmacy, APHP, Hôpital Robert Debré, Université de Paris, Paris, France
| | - Blandine Bianco
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
| | - Anne Galland
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
| | - Maxime Pispisa
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
| | - Alexandra Cruz
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Manuela Zinni
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
| | - Valérie Faivre
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
| | - Anne Roumier
- Sorbonne Université, Inserm, UMR-S 1270, Paris, France
| | - Sophie Lebon
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
| | - Tania Vitalis
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
| | - Zsolt Csaba
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
| | | | | | | | - Vincent Degos
- Department of Anesthesia and Critical Care, APHP-Sorbonne University, Hôpital La Pitié- Salpêtrière, Paris, France
| | - Patricia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Pascal Dournaud
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
| | - Pierre Gressens
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
| | | |
Collapse
|
20
|
Yates AG, Kislitsyna E, Alfonso Martin C, Zhang J, Sewell AL, Goikolea-Vives A, Cai V, Alkhader LF, Skaland A, Hammond B, Dimitrova R, Batalle D, Fernandes C, Edwards AD, Gressens P, Thornton C, Stolp HB. Montelukast reduces grey matter abnormalities and functional deficits in a mouse model of inflammation-induced encephalopathy of prematurity. J Neuroinflammation 2022; 19:265. [PMID: 36309753 PMCID: PMC9617353 DOI: 10.1186/s12974-022-02625-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022] Open
Abstract
Encephalopathy of prematurity (EoP) affects approximately 30% of infants born < 32 weeks gestation and is highly associated with inflammation in the foetus. Here we evaluated the efficacy of montelukast, a cysteinyl leukotriene receptor antagonist widely used to treat asthma in children, to ameliorate peripheral and central inflammation, and subsequent grey matter neuropathology and behaviour deficits in a mouse model of EoP. Male CD-1 mice were treated with intraperitoneal (i.p.) saline or interleukin-1beta (IL-1β, 40 μg/kg, 5 μL/g body weight) from postnatal day (P)1-5 ± concomitant montelukast (1-30 mg/kg). Saline or montelukast treatment was continued for a further 5 days post-injury. Assessment of systemic and central inflammation and short-term neuropathology was performed from 4 h following treatment through to P10. Behavioural testing, MRI and neuropathological assessments were made on a second cohort of animals from P36 to 54. Montelukast was found to attenuate both peripheral and central inflammation, reducing the expression of pro-inflammatory molecules (IL-1β, IL-6, TNF) in the brain. Inflammation induced a reduction in parvalbumin-positive interneuron density in the cortex, which was normalised with high-dose montelukast. The lowest effective dose, 3 mg/kg, was able to improve anxiety and spatial learning deficits in this model of inflammatory injury, and alterations in cortical mean diffusivity were not present in animals that received this dose of montelukast. Repurposed montelukast administered early after preterm birth may, therefore, improve grey matter development and outcome in EoP.
Collapse
Affiliation(s)
- Abi G Yates
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Kislitsyna
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Carla Alfonso Martin
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Jiaying Zhang
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Amy L Sewell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Ane Goikolea-Vives
- Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Valerie Cai
- Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Lama F Alkhader
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Aleksander Skaland
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Basil Hammond
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Ralica Dimitrova
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Cathy Fernandes
- SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopment Disorders, King's College London, London, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | | | - Claire Thornton
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Helen B Stolp
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
- Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK.
| |
Collapse
|
21
|
Song J, Nilsson G, Xu Y, Zelco A, Rocha-Ferreira E, Wang Y, Zhang X, Zhang S, Ek J, Hagberg H, Zhu C, Wang X. Temporal brain transcriptome analysis reveals key pathological events after germinal matrix hemorrhage in neonatal rats. J Cereb Blood Flow Metab 2022; 42:1632-1649. [PMID: 35491813 PMCID: PMC9441725 DOI: 10.1177/0271678x221098811] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Germinal matrix hemorrhage (GMH) is a common complication in preterm infants and is associated with high risk of adverse neurodevelopmental outcomes. We used a rat GMH model and performed RNA sequencing to investigate the signaling pathways and biological processes following hemorrhage. GMH induced brain injury characterized by early hematoma and subsequent tissue loss. At 6 hours after GMH, gene expression indicated an increase in mitochondrial activity such as ATP metabolism and oxidative phosphorylation along with upregulation of cytoprotective pathways and heme metabolism. At 24 hours after GMH, the expression pattern suggested an increase in cell cycle progression and downregulation of neurodevelopmental-related pathways. At 72 hours after GMH, there was an increase in genes related to inflammation and an upregulation of ferroptosis. Hemoglobin components and genes related to heme metabolism and ferroptosis such as Hmox1, Alox15, and Alas2 were among the most upregulated genes. We observed dysregulation of processes involved in development, mitochondrial function, cholesterol biosynthesis, and inflammation, all of which contribute to neurodevelopmental deterioration following GMH. This study is the first temporal transcriptome profile providing a comprehensive overview of the molecular mechanisms underlying brain injury following GMH, and it provides useful guidance in the search for therapeutic interventions.
Collapse
Affiliation(s)
- Juan Song
- Centre for Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Gisela Nilsson
- Centre for Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Aura Zelco
- Centre for Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eridan Rocha-Ferreira
- Centre for Perinatal Medicine and Health, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Yafeng Wang
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Shan Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Joakim Ek
- Centre for Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Hagberg
- Centre for Perinatal Medicine and Health, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Xiaoyang Wang
- Centre for Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China.,Centre for Perinatal Medicine and Health, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
Klein L, Van Steenwinckel J, Fleiss B, Scheuer T, Bührer C, Faivre V, Lemoine S, Blugeon C, Schwendimann L, Csaba Z, Bokobza C, Vousden DA, Lerch JP, Vernon AC, Gressens P, Schmitz T. A unique cerebellar pattern of microglia activation in a mouse model of encephalopathy of prematurity. Glia 2022; 70:1699-1719. [PMID: 35579329 PMCID: PMC9545095 DOI: 10.1002/glia.24190] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022]
Abstract
Preterm infants often show pathologies of the cerebellum, which are associated with impaired motor performance, lower IQ and poor language skills at school ages. Using a mouse model of inflammation-induced encephalopathy of prematurity driven by systemic administration of pro-inflammatory IL-1β, we sought to uncover causes of cerebellar damage. In this model, IL-1β is administered between postnatal day (P) 1 to day 5, a timing equivalent to the last trimester for brain development in humans. Structural MRI analysis revealed that systemic IL-1β treatment induced specific reductions in gray and white matter volumes of the mouse cerebellar lobules I and II (5% false discovery rate [FDR]) from P15 onwards. Preceding these MRI-detectable cerebellar volume changes, we observed damage to oligodendroglia, with reduced proliferation of OLIG2+ cells at P10 and reduced levels of the myelin proteins myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) at P10 and P15. Increased density of IBA1+ cerebellar microglia were observed both at P5 and P45, with evidence for increased microglial proliferation at P5 and P10. Comparison of the transcriptome of microglia isolated from P5 cerebellums and cerebrums revealed significant enrichment of pro-inflammatory markers in microglia from both regions, but cerebellar microglia displayed a unique type I interferon signaling dysregulation. Collectively, these data suggest that perinatal inflammation driven by systemic IL-1β leads to specific cerebellar volume deficits, which likely reflect oligodendrocyte pathology downstream of microglial activation. Further studies are now required to confirm the potential of protective strategies aimed at preventing sustained type I interferon signaling driven by cerebellar microglia as an important therapeutic target.
Collapse
Affiliation(s)
- Luisa Klein
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| | | | - Bobbi Fleiss
- NeuroDiderot, InsermUniversité de ParisParisFrance
- School of Health and Biomedical SciencesRMIT UniversityMelbourneVictoriaAustralia
| | - Till Scheuer
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| | - Christoph Bührer
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| | | | - Sophie Lemoine
- Genomics Core Facility, Département de Biologie, École Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS, INSERMUniversité PSLParisFrance
| | - Corinne Blugeon
- Genomics Core Facility, Département de Biologie, École Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS, INSERMUniversité PSLParisFrance
| | | | - Zsolt Csaba
- NeuroDiderot, InsermUniversité de ParisParisFrance
| | | | - Dulcie A. Vousden
- Mouse Imaging CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Jason P. Lerch
- Mouse Imaging CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
- Wellcome Trust Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| | | | - Thomas Schmitz
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| |
Collapse
|
23
|
Favrais G, Bokobza C, Saliba E, Chalon S, Gressens P. Alteration of the Oligodendrocyte Lineage Varies According to the Systemic Inflammatory Stimulus in Animal Models That Mimic the Encephalopathy of Prematurity. Front Physiol 2022; 13:881674. [PMID: 35928559 PMCID: PMC9343871 DOI: 10.3389/fphys.2022.881674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Preterm birth before the gestational age of 32 weeks is associated with the occurrence of specific white matter damage (WMD) that can compromise the neurological outcome. These white matter abnormalities are embedded in more global brain damage defining the encephalopathy of prematurity (EoP). A global reduction in white matter volume that corresponds to chronic diffuse WMD is the most frequent form in contemporary cohorts of very preterm infants. This WMD partly results from alterations of the oligodendrocyte (OL) lineage during the vulnerability window preceding the beginning of brain myelination. The occurrence of prenatal, perinatal and postnatal events in addition to preterm birth is related to the intensity of WMD. Systemic inflammation is widely recognised as a risk factor of WMD in humans and in animal models. This review reports the OL lineage alterations associated with the WMD observed in infants suffering from EoP and emphasizes the role of systemic inflammation in inducing these alterations. This issue is addressed through data on human tissue and imaging, and through neonatal animal models that use systemic inflammation to induce WMD. Interestingly, the OL lineage damage varies according to the inflammatory stimulus, i.e., the liposaccharide portion of the E.Coli membrane (LPS) or the proinflammatory cytokine Interleukin-1β (IL-1β). This discrepancy reveals multiple cellular pathways inducible by inflammation that result in EoP. Variable long-term consequences on the white matter morphology and functioning may be speculated upon according to the intensity of the inflammatory challenge. This hypothesis emerges from this review and requires further exploration.
Collapse
Affiliation(s)
- Geraldine Favrais
- UMR 1253, iBrain, Inserm, Université de Tours, Tours, France
- Neonatology Unit, CHRU de Tours, Tours, France
- *Correspondence: Geraldine Favrais,
| | - Cindy Bokobza
- Inserm, NeuroDiderot, Université Paris Cité, Paris, France
| | - Elie Saliba
- UMR 1253, iBrain, Inserm, Université de Tours, Tours, France
| | - Sylvie Chalon
- UMR 1253, iBrain, Inserm, Université de Tours, Tours, France
| | | |
Collapse
|
24
|
Sosunov SA, Niatsetskaya ZV, Stepanova AA, Galkin AS, Juliano CE, Ratner VI, Ten VS. Developmental window of vulnerability to white matter injury driven by sublethal intermittent hypoxemia. Pediatr Res 2022; 91:1383-1390. [PMID: 33947998 PMCID: PMC8566320 DOI: 10.1038/s41390-021-01555-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND In the developing brain, the death of immature oligodendrocytes (OLs) has been proposed to explain a developmental window for vulnerability to white matter injury (WMI). However, in neonatal mice, chronic sublethal intermittent hypoxia (IH) recapitulates the phenotype of diffuse WMI without affecting cellular viability. This work determines whether, in neonatal mice, a developmental window of WMI vulnerability exists in the absence of OLs lineage cellular death. METHODS Neonatal mice were exposed to cell-nonlethal early or late IH stress. The presence or absence of WMI phenotype in their adulthood was defined by the extent of sensorimotor deficit and diffuse cerebral hypomyelination. A separate cohort of mice was examined for markers of cellular degeneration and OLs maturation. RESULTS Compared to normoxic littermates, only mice exposed to early IH stress demonstrated arrested OLs maturation, diffuse cerebral hypomyelination, and sensorimotor deficit. No cellular death associated with IH was detected. CONCLUSIONS Neonatal sublethal IH recapitulates the phenotype of diffuse WMI only when IH stress coincides with the developmental stage of primary white matter myelination. This signifies a contribution of cell-nonlethal mechanisms in defining the developmental window of vulnerability to diffuse WMI. IMPACT The key message of our work is that the developmental window of vulnerability to the WMI driven by intermittent hypoxemia exists even in the absence of excessive OLs and other cells death. This is an important finding because the existence of the developmental window of vulnerability to WMI has been explained by a lethal-selective sensitivity of immature OLs to hypoxic and ischemic stress, which coincided with their differentiation. Thus, our study expands mechanistic explanation of a developmental window of sensitivity to WMI by showing the existence of cell-nonlethal pathways responsible for this biological phenomenon.
Collapse
Affiliation(s)
- Sergey A. Sosunov
- Department of Pediatrics, Division of Neonatology, Columbia University, New York, NY
| | - Zoya V. Niatsetskaya
- Department of Pediatrics, Division of Neonatology, Columbia University, New York, NY
| | - Anna A. Stepanova
- Department of Pediatrics, Division of Neonatology, Columbia University, New York, NY
| | - Alexander S. Galkin
- Department of Pediatrics, Division of Neonatology, Columbia University, New York, NY
| | - Courtney E. Juliano
- Department of Pediatrics, Division of Neonatology, Icahn Mount Sinai School of Medicine, New York, NY
| | - Veniamin I. Ratner
- Department of Pediatrics, Division of Neonatology, Icahn Mount Sinai School of Medicine, New York, NY
| | - Vadim S. Ten
- Department of Pediatrics, Division of Neonatology, Columbia University, New York, NY.,Corresponding author: Vadim S. Ten MD, PhD. , Address: 650 West 168 street, William Black Building, 4th floor, room 407, New York, NY, 10032, phone number: 212-342-0075
| |
Collapse
|
25
|
Gressens P. Extracellular vesicles at the rescue of the preterm brain. Brain Behav Immun 2022; 102:135-136. [PMID: 35150859 DOI: 10.1016/j.bbi.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 10/19/2022] Open
Affiliation(s)
- Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.
| |
Collapse
|
26
|
The Impact of Mouse Preterm Birth Induction by RU-486 on Microglial Activation and Subsequent Hypomyelination. Int J Mol Sci 2022; 23:ijms23094867. [PMID: 35563258 PMCID: PMC9105222 DOI: 10.3390/ijms23094867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Preterm birth (PTB) represents 15 million births every year worldwide and is frequently associated with maternal/fetal infections and inflammation, inducing neuroinflammation. This neuroinflammation is mediated by microglial cells, which are brain-resident macrophages that release cytotoxic molecules that block oligodendrocyte differentiation, leading to hypomyelination. Some preterm survivors can face lifetime motor and/or cognitive disabilities linked to periventricular white matter injuries (PWMIs). There is currently no recommendation concerning the mode of delivery in the case of PTB and its impact on brain development. Many animal models of induced-PTB based on LPS injections exist, but with a low survival rate. There is a lack of information regarding clinically used pharmacological substances to induce PTB and their consequences on brain development. Mifepristone (RU-486) is a drug used clinically to induce preterm labor. This study aims to elaborate and characterize a new model of induced-PTB and PWMIs by the gestational injection of RU-486 and the perinatal injection of pups with IL-1beta. A RU-486 single subcutaneous (s.c.) injection at embryonic day (E)18.5 induced PTB at E19.5 in pregnant OF1 mice. All pups were born alive and were adopted directly after birth. IL-1beta was injected intraperitoneally from postnatal day (P)1 to P5. Animals exposed to both RU-486 and IL-1beta demonstrated microglial reactivity and subsequent PWMIs. In conclusion, the s.c. administration of RU-486 induced labor within 24 h with a high survival rate for pups. In the context of perinatal inflammation, RU-486 labor induction significantly decreases microglial reactivity in vivo but did not prevent subsequent PWMIs.
Collapse
|
27
|
Romantsik O, Ross-Munro E, Grönlund S, Holmqvist B, Brinte A, Gerdtsson E, Vallius S, Bruschettini M, Wang X, Fleiss B, Ley D. Severe intraventricular hemorrhage causes long-lasting structural damage in a preterm rabbit pup model. Pediatr Res 2022; 92:403-414. [PMID: 35505079 PMCID: PMC9522590 DOI: 10.1038/s41390-022-02075-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Intraventricular hemorrhage causes significant lifelong mortality and morbidity, especially in preterm born infants. Progress in finding an effective therapy is stymied by a lack of preterm animal models with long-term follow-up. This study addresses this unmet need, using an established model of preterm rabbit IVH and analyzing outcomes out to 1 month of age. METHODS Rabbit pups were delivered preterm and administered intraperitoneal injection of glycerol at 3 h of life and approximately 58% developed IVH. Neurobehavioral assessment was performed at 1 month of age followed by immunohistochemical labeling of epitopes for neurons, synapses, myelination, and interneurons, analyzed by means of digital quantitation and assessed via two-way ANOVA or Student's t test. RESULTS IVH pups had globally reduced myelin content, an aberrant cortical myelination microstructure, and thinner upper cortical layers (I-III). We also observed a lower number of parvalbumin (PV)-positive interneurons in deeper cortical layers (IV-VI) in IVH animals and reduced numbers of neurons, synapses, and microglia. However, there were no discernable changes in behaviors. CONCLUSIONS We have established in this preterm pup model that long-term changes after IVH include significant wide-ranging alterations to cortical organization and microstructure. Further work to improve the sensitivity of neurocognitive testing in this species at this age may be required. IMPACT This study uses an established animal model of preterm birth, in which the rabbit pups are truly born preterm, with reduced organ maturation and deprivation of maternally supplied trophic factors. This is the first study in preterm rabbits that explores the impacts of severe intraventricular hemorrhage beyond 14 days, out to 1 month of age. Our finding of persisting but subtle global changes including brain white and gray matter will have impact on our understanding of the best path for therapy design and interventions.
Collapse
Affiliation(s)
- Olga Romantsik
- Department of Clinical Sciences Lund, Division of Pediatrics, Lund University, Skåne University Hospital, 21185, Lund, Sweden.
| | - Emily Ross-Munro
- grid.1017.70000 0001 2163 3550School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, 3083 VIC Australia
| | - Susanne Grönlund
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Division of Pediatrics, Lund University, Skåne University Hospital, 21185 Lund, Sweden
| | | | | | | | - Suvi Vallius
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Division of Pediatrics, Lund University, Skåne University Hospital, 21185 Lund, Sweden
| | - Matteo Bruschettini
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Division of Pediatrics, Lund University, Skåne University Hospital, 21185 Lund, Sweden
| | - Xiaoyang Wang
- grid.8761.80000 0000 9919 9582Centre of Perinatal Medicine & Health, Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, 40530 Gothenburg, Sweden ,grid.412719.8Henan Key Laboratory of Child Brain Injury and Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bobbi Fleiss
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, 3083, VIC, Australia. .,Université de Paris, NeuroDiderot, Inserm, 75019, Paris, France.
| | - David Ley
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Division of Pediatrics, Lund University, Skåne University Hospital, 21185 Lund, Sweden
| |
Collapse
|
28
|
Liu L, Fang L, Duan B, Wang Y, Cui Z, Yang L, Wu D. Multi-Hit White Matter Injury-Induced Cerebral Palsy Model Established by Perinatal Lipopolysaccharide Injection. Front Pediatr 2022; 10:867410. [PMID: 35733809 PMCID: PMC9207278 DOI: 10.3389/fped.2022.867410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral palsy (CP) is a group of permanent, but not unchanging, disorders of movement and/or posture and motor function. Since the major brain injury associated with CP is white matter injury (WMI), especially, in preterm infants, we established a "multi-hit" rat model to mimic human WMI in symptomatology and at a histological level. In our WMI model, pups suffering from limb paresis, incoordination, and direction difficulties fit the performance of CP. Histologically, they present with fewer neural cells, inordinate fibers, and more inflammatory cell infiltration, compared to the control group. From the electron microscopy results, we spotted neuronal apoptosis, glial activation, and myelination delay. Besides, the abundant appearance of IBA1-labeled microglia also implied that microglia play a role during neuronal cell injury. After activation, microglia shift between the pro-inflammatory M1 type and the anti-inflammatory M2 type. The results showed that LPS/infection stimulated IBA1 + (marked activated microglia) expression, downregulated CD11c + (marked M1 phenotype), and upregulated Arg 1 + (marked M2 phenotype) protein expression. It indicated an M1 to M2 transition after multiple infections. In summary, we established a "multi-hit" WMI-induced CP rat model and demonstrated that the microglial activation correlates tightly with CP formation, which may become a potential target for future studies.
Collapse
Affiliation(s)
- Le Liu
- Department of Pediatrics, Pediatric Neurorehabilitation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Pediatrics, Maternal and Child Health Hospital, The Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liwei Fang
- Department of Pediatrics, Pediatric Neurorehabilitation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Boyang Duan
- The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue Wang
- Department of Pediatrics, Pediatric Neurorehabilitation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenzhen Cui
- Department of Pediatrics, Pediatric Neurorehabilitation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Yang
- Department of Pediatrics, Pediatric Neurorehabilitation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - De Wu
- Department of Pediatrics, Pediatric Neurorehabilitation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
29
|
Lear BA, Lear CA, Dhillon SK, Davidson JO, Bennet L, Gunn AJ. Is late prevention of cerebral palsy in extremely preterm infants plausible? Dev Neurosci 2021; 44:177-185. [PMID: 34937030 DOI: 10.1159/000521618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/16/2021] [Indexed: 11/19/2022] Open
Abstract
Preterm birth continues to be associated with neurodevelopmental problems including cerebral palsy. Cystic white matter injury is still the major neuropathology underlying cerebral palsy, affecting 1-3% of preterm infants. Although rates have gradually fallen over time, the pathogenesis and evolution of cystic white matter injury are still poorly understood. Hypoxia-ischemia (HI) remains an important contributor yet there is no established treatment to prevent injury. Clinically, serial ultrasound and magnetic resonance imaging studies typically show delayed development of cystic lesions 2 to 4 weeks after birth. This raises the important and unresolved question as to whether this represents slow evolution of injury occurring around the time of birth, or repeated injury over many weeks after birth. There is increasing evidence that tertiary injury after HI can contribute to impairment of white and grey matter maturation. In the present review, we discuss preclinical evidence that severe, cystic white matter injury can evolve for many weeks after acute HI and is associated with microglia activity. This suggests the intriguing hypothesis that the tertiary phase of injury is not as subtle as often thought and that there may be a window of therapeutic opportunity for one to two weeks after hypoxic-ischemic injury to prevent delayed cystic lesions and so further reduce the risk of cerebral palsy after preterm birth.
Collapse
Affiliation(s)
- Benjamin A Lear
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| | | | - Joanne O Davidson
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
30
|
Bokobza C, Joshi P, Schang AL, Csaba Z, Faivre V, Montané A, Galland A, Benmamar-Badel A, Bosher E, Lebon S, Schwendimann L, Mani S, Dournaud P, Besson V, Fleiss B, Gressens P, Van Steenwinckel J. miR-146b Protects the Perinatal Brain against Microglia-Induced Hypomyelination. Ann Neurol 2021; 91:48-65. [PMID: 34741343 PMCID: PMC9298799 DOI: 10.1002/ana.26263] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022]
Abstract
Objectives In the premature newborn, perinatal inflammation mediated by microglia contributes significantly to neurodevelopmental injuries including white matter injury (WMI). Brain inflammation alters development through neuroinflammatory processes mediated by activation of homeostatic microglia toward a pro‐inflammatory and neurotoxic phenotype. Investigating immune regulators of microglial activation is crucial to find effective strategies to prevent and treat WMI. Methods Ex vivo microglial cultures and a mouse model of WMI induced by perinatal inflammation (interleukin‐1‐beta [IL‐1β] and postnatal days 1–5) were used to uncover and elucidate the role of microRNA‐146b‐5p in microglial activation and WMI. Results A specific reduction in vivo in microglia of Dicer, a protein required for microRNAs maturation, reduces pro‐inflammatory activation of microglia and prevents hypomyelination in our model of WMI. Microglial miRNome analysis in the WMI model identified miRNA‐146b‐5p as a candidate modulator of microglial activation. Ex vivo microglial cell culture treated with the pro‐inflammatory stimulus lipopolysaccharide (LPS) led to overexpression of immunomodulatory miRNA‐146b‐5p but its drastic reduction in the microglial extracellular vesicles (EVs). To increase miRNA‐146b‐5p expression, we used a 3DNA nanocarrier to deliver synthetic miRNA‐146b‐5p specifically to microglia. Enhancing microglial miRNA‐146b‐5p overexpression significantly decreased LPS‐induced activation, downregulated IRAK1, and restored miRNA‐146b‐5p levels in EVs. In our WMI model, 3DNA miRNA‐146b‐5p treatment significantly prevented microglial activation, hypomyelination, and cognitive defect induced by perinatal inflammation. Interpretations These findings support that miRNA‐146b‐5p is a major regulator of microglia phenotype and could be targeted to reduce the incidence and the severity of perinatal brain injuries and their long‐term consequences. ANN NEUROL 2022;91:48–65
Collapse
Affiliation(s)
- Cindy Bokobza
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Pooja Joshi
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Anne-Laure Schang
- Université de Paris, Centre de recherche en Epidémiologie et Statistiques, Inserm, Paris, France
| | - Zsolt Csaba
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Valérie Faivre
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Amélie Montané
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Anne Galland
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | | | | | - Sophie Lebon
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | | | - Shyamala Mani
- Université de Paris, NeuroDiderot, Inserm, Paris, France.,Curadev Pharma, Pvt. Ltd, Noida, India
| | | | - Valerie Besson
- Université de Paris, Faculté de Pharmacie de Paris, UMR-S1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France
| | - Bobbi Fleiss
- Université de Paris, NeuroDiderot, Inserm, Paris, France.,School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | | | | |
Collapse
|
31
|
Nilsson G, Baburamani AA, Rutherford MA, Zhu C, Mallard C, Hagberg H, Vontell R, Wang X. White matter injury but not germinal matrix hemorrhage induces elevated osteopontin expression in human preterm brains. Acta Neuropathol Commun 2021; 9:166. [PMID: 34654477 PMCID: PMC8518254 DOI: 10.1186/s40478-021-01267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/26/2021] [Indexed: 11/10/2022] Open
Abstract
Osteopontin (OPN) is a matricellular protein that mediates various physiological functions and is implicated in neuroinflammation, myelination, and perinatal brain injury. However, its expression in association with brain injury in preterm infants is unexplored. Here we examined the expression of OPN in postmortem brains of preterm infants and explored how this expression is affected in brain injury. We analyzed brain sections from cases with white matter injury (WMI) and cases with germinal matrix hemorrhage (GMH) and compared them to control cases having no brain injury. WMI cases displayed moderate to severe tissue injury in the periventricular and deep white matter that was accompanied by an increase of microglia with amoeboid morphology. Apart from visible hemorrhage in the germinal matrix, GMH cases displayed diffuse white matter injury in the periventricular and deep white matter. In non-injured preterm brains, OPN was expressed at low levels in microglia, astrocytes, and oligodendrocytes. OPN expression was significantly increased in regions with white matter injury in both WMI cases and GMH cases. The main cellular source of OPN in white matter injury areas was amoeboid microglia, although a significant increase was also observed in astrocytes in WMI cases. OPN was not expressed in the germinal matrix of any case, regardless of whether there was hemorrhage. In conclusion, preterm brain injury induces elevated OPN expression in microglia and astrocytes, and this increase is found in sites closely related to injury in the white matter regions but not with the hemorrhage site in the germinal matrix. Thus, it appears that OPN takes part in the inflammatory process in white matter injury in preterm infants, and these findings facilitate our understanding of OPN's role under both physiological and pathological conditions in the human brain that may lead to greater elucidation of disease mechanisms and potentially better treatment strategies.
Collapse
Affiliation(s)
- Gisela Nilsson
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Ana A Baburamani
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Mary A Rutherford
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Changlian Zhu
- Department of Clinical Neuroscience, Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Henan Key Laboratory of Child Brain Injury and Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Carina Mallard
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, 40530, Gothenburg, Sweden
| | - Regina Vontell
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
- University of Miami Brain Endowment Bank, Miami, FL, 33136, USA
| | - Xiaoyang Wang
- Centre of Perinatal Medicine and Health, Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, 40530, Gothenburg, Sweden.
| |
Collapse
|
32
|
Delahaye-Duriez A, Dufour A, Bokobza C, Gressens P, Van Steenwinckel J. Targeting Microglial Disturbances to Protect the Brain From Neurodevelopmental Disorders Associated With Prematurity. J Neuropathol Exp Neurol 2021; 80:634-648. [PMID: 34363661 DOI: 10.1093/jnen/nlab049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Microglial activation during critical phases of brain development can result in short- and long-term consequences for neurological and psychiatric health. Several studies in humans and rodents have shown that microglial activation, leading to a transition from the homeostatic state toward a proinflammatory phenotype, has adverse effects on the developing brain and neurodevelopmental disorders. Targeting proinflammatory microglia may be an effective strategy for protecting the brain and attenuating neurodevelopmental disorders induced by inflammation. In this review we focus on the role of inflammation and the activation of immature microglia (pre-microglia) soon after birth in prematurity-associated neurodevelopmental disorders, and the specific features of pre-microglia during development. We also highlight the relevance of immunomodulatory strategies for regulating activated microglia in a rodent model of perinatal brain injury. An original neuroprotective approach involving a nanoparticle-based therapy and targeting microglia, with the aim of improving myelination and protecting the developing brain, is also addressed.
Collapse
Affiliation(s)
- Andrée Delahaye-Duriez
- From the NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, France.,UFR SMBH, Université Sorbonne Paris Nord, Bobigny, France.,Assistance Publique des Hôpitaux de Paris, Hôpital Jean Verdier, Service d'Histologie-Embryologie-Cytogénétique, Bondy, France
| | - Adrien Dufour
- From the NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, France
| | - Cindy Bokobza
- From the NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, France
| | - Pierre Gressens
- From the NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, France
| | | |
Collapse
|
33
|
Ogawa S, Hagiwara M, Misumi S, Tajiri N, Shimizu T, Ishida A, Suzumori N, Sugiura-Ogasawara M, Hida H. Transplanted Oligodendrocyte Progenitor Cells Survive in the Brain of a Rat Neonatal White Matter Injury Model but Less Mature in Comparison with the Normal Brain. Cell Transplant 2021; 29:963689720946092. [PMID: 32757665 PMCID: PMC7563029 DOI: 10.1177/0963689720946092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Preterm infants have a high risk of neonatal white matter injury (WMI) caused by hypoxia-ischemia. Cell-based therapies are promising strategies for neonatal WMI by providing trophic substances and replacing lost cells. Using a rat model of neonatal WMI in which oligodendrocyte progenitors (OPCs) are predominantly damaged, we investigated whether insulin-like growth factor 2 (IGF2) has trophic effects on OPCs in vitro and whether OPC transplantation has potential as a cell replacement therapy. Enhanced expression of Igf2 mRNA was first confirmed in the brain of P5 model rats by real-time polymerase chain reaction. Immunostaining for IGF2 and its receptor IGF2 R revealed that both proteins were co-expressed in OLIG2-positive and GFAP-positive cells in the corpus callosum (CC), indicating autocrine and paracrine effects of IGF2. To investigate the in vitro effect of IGF2 on OPCs, IGF2 (100 ng/ml) was added to the differentiation medium containing ciliary neurotrophic factor (10 ng/ml) and triiodothyronine (20 ng/ml), and IGF2 promoted the differentiation of OPCs into mature oligodendrocytes. We next transplanted rat-derived OPCs that express green fluorescent protein into the CC of neonatal WMI model rats without immunosuppression and investigated the survival of grafted cells for 8 weeks. Although many OPCs survived for at least 8 weeks, the number of mature oligodendrocytes was unexpectedly small in the CC of the model compared with that in the sham-operated control. These findings suggest that the mechanism in the brain that inhibits differentiation should be solved in cell replacement therapy for neonatal WMI as same as trophic support from IGF2.
Collapse
Affiliation(s)
- Shino Ogawa
- Departments of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Obstetrics and Gynecology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Mutsumi Hagiwara
- Departments of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Sachiyo Misumi
- Departments of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Naoki Tajiri
- Departments of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takeshi Shimizu
- Departments of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akimasa Ishida
- Departments of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Nobuhiro Suzumori
- Obstetrics and Gynecology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Mayumi Sugiura-Ogasawara
- Obstetrics and Gynecology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Hideki Hida
- Departments of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
34
|
Dhillon SK, Wassink G, Lear CA, Davidson JO, Gunn AJ, Bennet L. Adverse neural effects of delayed, intermittent treatment with rEPO after asphyxia in preterm fetal sheep. J Physiol 2021; 599:3593-3609. [PMID: 34032286 DOI: 10.1113/jp281269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/07/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS We have previously shown that high-dose constant infusion of recombinant human erythropoietin (rEPO) from 30 min to 72 h after asphyxia in preterm fetal sheep reduced histological injury and improved electrophysiological recovery. This study shows that a high-dose infusion of rEPO from 6 to 72 h after asphyxia did not improve EEG recovery, oligodendrocyte and neuronal survival at 1 week post-asphyxia. Of concern, intermittent rEPO boluses started 6 h after asphyxia were associated with impaired EEG recovery and bilateral cystic injury of temporal lobe intragyral white matter. Intermittent boluses of rEPO were associated with significantly increased cerebral vascular resistance and hypoperfusion, particularly after the first dose, but did not affect seizures, suggesting mismatch between perfusion and brain activity. ABSTRACT Recombinant human erythropoietin (rEPO) is a promising treatment for hypoxic-ischaemic brain injury. Disappointingly, a large randomized controlled trial in preterm infants found that prophylactic, repeated high-dose rEPO boluses started within 24 h of birth did not improve neurodevelopmental outcomes. We examined whether initiation of a continuous infusion of rEPO at the end of the latent phase after hypoxic-ischaemia (HI) might improve outcomes compared with intermittent bolus injections. Chronically instrumented preterm (0.7 gestation) fetal sheep received sham asphyxia or asphyxia induced by complete umbilical cord occlusion for 25 min. Six hours after asphyxia, fetuses received either a continuous infusion of rEPO (loading dose 2000 IU, infusion at 520 IU/h) from 6 to 72 h post-asphyxia or intravenous saline or 5000 IU rEPO, with repeated doses every 48 h for 5 days. Continuous infusion of rEPO did not improve EEG recovery, oligodendrocyte and neuronal survival at 1 week post-asphyxia. By contrast, intermittent rEPO boluses were associated with impaired EEG recovery and bilateral cystic injury of temporal lobe intragyral white matter in 6/8 fetuses. These studies demonstrate for the first time that initiation of intermittent rEPO boluses 6 h after HI, at a dose comparable with recent clinical trials, exacerbated neural injury. These data reinforce the importance of early initiation of many potential neuroprotective therapies.
Collapse
Affiliation(s)
| | - Guido Wassink
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | | | - Joanne O Davidson
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
35
|
Prasad JD, Gunn KC, Davidson JO, Galinsky R, Graham SE, Berry MJ, Bennet L, Gunn AJ, Dean JM. Anti-Inflammatory Therapies for Treatment of Inflammation-Related Preterm Brain Injury. Int J Mol Sci 2021; 22:4008. [PMID: 33924540 PMCID: PMC8069827 DOI: 10.3390/ijms22084008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the prevalence of preterm brain injury, there are no established neuroprotective strategies to prevent or alleviate mild-to-moderate inflammation-related brain injury. Perinatal infection and inflammation have been shown to trigger acute neuroinflammation, including proinflammatory cytokine release and gliosis, which are associated with acute and chronic disturbances in brain cell survival and maturation. These findings suggest the hypothesis that the inhibition of peripheral immune responses following infection or nonspecific inflammation may be a therapeutic strategy to reduce the associated brain injury and neurobehavioral deficits. This review provides an overview of the neonatal immunity, neuroinflammation, and mechanisms of inflammation-related brain injury in preterm infants and explores the safety and efficacy of anti-inflammatory agents as potentially neurotherapeutics.
Collapse
Affiliation(s)
- Jaya D. Prasad
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Katherine C. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Joanne O. Davidson
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia;
| | - Scott E. Graham
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand;
| | - Mary J. Berry
- Department of Pediatrics and Health Care, University of Otago, Dunedin 9016, New Zealand;
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Alistair J. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Justin M. Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| |
Collapse
|
36
|
Adle-Biassette H. Neurodevelopmental Sequelae of Preterm Infants: Scientific Challenges. J Neuropathol Exp Neurol 2021; 80:390-392. [PMID: 33842955 DOI: 10.1093/jnen/nlab035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Homa Adle-Biassette
- AP-HP, Hôpital Lariboisière, Service Anatomie Pathologique and Université de Paris, NeuroDiderot, Inserm, Paris, France
| |
Collapse
|
37
|
Kostović I, Radoš M, Kostović-Srzentić M, Krsnik Ž. Fundamentals of the Development of Connectivity in the Human Fetal Brain in Late Gestation: From 24 Weeks Gestational Age to Term. J Neuropathol Exp Neurol 2021; 80:393-414. [PMID: 33823016 PMCID: PMC8054138 DOI: 10.1093/jnen/nlab024] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
During the second half of gestation, the human cerebrum undergoes pivotal histogenetic events that underlie functional connectivity. These include the growth, guidance, selection of axonal pathways, and their first engagement in neuronal networks. Here, we characterize the spatiotemporal patterns of cerebral connectivity in extremely preterm (EPT), very preterm (VPT), preterm and term babies, focusing on magnetic resonance imaging (MRI) and histological data. In the EPT and VPT babies, thalamocortical axons enter into the cortical plate creating the electrical synapses. Additionally, the subplate zone gradually resolves in the preterm and term brain in conjunction with the growth of associative pathways leading to the activation of large-scale neural networks. We demonstrate that specific classes of axonal pathways within cerebral compartments are selectively vulnerable to temporally nested pathogenic factors. In particular, the radial distribution of axonal lesions, that is, radial vulnerability, is a robust predictor of clinical outcome. Furthermore, the subplate tangential nexus that we can visualize using MRI could be an additional marker as pivotal in the development of cortical connectivity. We suggest to direct future research toward the identification of sensitive markers of earlier lesions, the elucidation of genetic mechanisms underlying pathogenesis, and better long-term follow-up using structural and functional MRI.
Collapse
Affiliation(s)
- Ivica Kostović
- From the Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Milan Radoš
- From the Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia.,Polyclinic "Neuron", Zagreb, Croatia
| | - Mirna Kostović-Srzentić
- From the Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia.,Department of Health Psychology, University of Applied Health Sciences, Zagreb, Croatia.,Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Željka Krsnik
- From the Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| |
Collapse
|
38
|
Lear BA, Lear CA, Davidson JO, Sae-Jiw J, Lloyd JM, Gunn AJ, Bennet L. Tertiary cystic white matter injury as a potential phenomenon after hypoxia-ischaemia in preterm f sheep. Brain Commun 2021; 3:fcab024. [PMID: 33937767 PMCID: PMC8072523 DOI: 10.1093/braincomms/fcab024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/14/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
White matter injury, including both diffuse and cystic elements, remains highly associated with neurodevelopmental disability and cerebral palsy in preterm infants, yet its pathogenesis and evolution are still poorly understood and there is no established treatment. We examined the long-term evolution of white matter injury in chronically instrumented preterm fetal sheep (0.7 gestation) after 25 min of complete umbilical cord occlusion or sham occlusion. Fetal brains were processed for histology after 3 days (n = 9, sham n = 9), 7 days (n = 8, sham n = 8), 14 days (n = 9, sham n = 8) and 21 days (n = 9, sham n = 9) of recovery. At 3 and 7 days recovery, umbilical cord occlusion was associated with diffuse white matter injury, with loss of total and mature oligodendrocytes and reduced myelination in both the parietal and temporal lobes. At 14 days after umbilical cord occlusion, extensive microglial and astrocytic activation were observed in the temporal lobe. At 21 days recovery a spectrum of severe white matter degeneration was observed, including white matter atrophy, ventriculomegaly and overt cystic white matter lesions. The most severe injury was observed in the temporal lobe after 21 days recovery, including the majority of cystic lesions, persistent oligodendrocyte maturational arrest and impaired myelination. The spatial distribution of delayed white matter degeneration at 21 days recovery was closely related to the location of dense microglial aggregates at earlier time-points, implicating a role for exuberant inflammation originating from microglial aggregates in the pathogenesis of cystic white matter injury. The delayed appearance of cystic injury is consistent with continuing tertiary evolution of necrotic cell death. This slow evolution raises the tantalizing possibility that there may a relatively long therapeutic window to mitigate the development of cystic white matter injury. Delayed anti-inflammatory treatments may therefore represent a promising strategy to reduce neurodevelopmental disability in the preterm infants.
Collapse
Affiliation(s)
- Benjamin A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand
| | - Christopher A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand
| | - Joanne O Davidson
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand
| | - Jialin Sae-Jiw
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand
| | - Johanna M Lloyd
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand
| | - Laura Bennet
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
39
|
Therapeutic potential of stem cells for preterm infant brain damage: Can we move from the heterogeneity of preclinical and clinical studies to established therapeutics? Biochem Pharmacol 2021; 186:114461. [PMID: 33571501 DOI: 10.1016/j.bcp.2021.114461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022]
Abstract
Acquired perinatal brain injuries are a set of conditions that remains a key challenge for neonatologists and that have significant social, emotional and financial implications for our communities. In our perspective article, we will introduce perinatal brain injury focusing specifically on the events leading to brain damage in preterm born infants and outcomes for these infants. Then we will summarize and discuss the preclinical and clinical studies testing the efficacy of stem cells as neuroprotectants in the last ten years in perinatal brain injury. There are no therapies to treat brain damage in preterm born infants and a primary finding from this review is that there is a scarcity of stem cell trials focused on overcoming brain injuries in these infants. Overall, across all forms of perinatal brain injury there is a remarkable heterogeneity in previous and on-going preclinical and clinical studies in terms of the stem cell type, animal models/patient selection, route and time of administration. Despite the quality of many of the studies this variation makes it difficult to reach a valid consensus for future developments. However, it is clear that stem cells (and stem cell derived exosomes) can reduce perinatal brain injury and our field needs to work collectively to refine an effective protocol for each type of injury. The use of standardized stem cell products and testing these products across multiple models of injury will provide a stronger framework for clinical trials development.
Collapse
|
40
|
Microglia-Mediated Neurodegeneration in Perinatal Brain Injuries. Biomolecules 2021; 11:biom11010099. [PMID: 33451166 PMCID: PMC7828679 DOI: 10.3390/biom11010099] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Perinatal brain injuries, including encephalopathy related to fetal growth restriction, encephalopathy of prematurity, neonatal encephalopathy of the term neonate, and neonatal stroke, are a major cause of neurodevelopmental disorders. They trigger cellular and molecular cascades that lead in many cases to permanent motor, cognitive, and/or behavioral deficits. Damage includes neuronal degeneration, selective loss of subclasses of interneurons, blocked maturation of oligodendrocyte progenitor cells leading to dysmyelination, axonopathy and very likely synaptopathy, leading to impaired connectivity. The nature and severity of changes vary according to the type and severity of insult and maturation stage of the brain. Microglial activation has been demonstrated almost ubiquitously in perinatal brain injuries and these responses are key cell orchestrators of brain pathology but also attempts at repair. These divergent roles are facilitated by a diverse suite of transcriptional profiles and through a complex dialogue with other brain cell types. Adding to the complexity of understanding microglia and how to modulate them to protect the brain is that these cells have their own developmental stages, enabling them to be key participants in brain building. Of note, not only do microglia help build the brain and respond to brain injury, but they are a key cell in the transduction of systemic inflammation into neuroinflammation. Systemic inflammatory exposure is a key risk factor for poor neurodevelopmental outcomes in preterm born infants. Based on these observations, microglia appear as a key cell target for neuroprotection in perinatal brain injuries. Numerous strategies have been developed experimentally to modulate microglia and attenuate brain injury based on these strong supporting data and we will summarize these.
Collapse
|
41
|
Holloway RK, Ireland G, Sullivan G, Becher JC, Smith C, Boardman JP, Gressens P, Miron VE. Microglial inflammasome activation drives developmental white matter injury. Glia 2021; 69:1268-1280. [PMID: 33417729 PMCID: PMC8607465 DOI: 10.1002/glia.23963] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/15/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
Injury to the developing brain during the perinatal period often causes hypomyelination, leading to clinical deficits for which there is an unmet therapeutic need. Dysregulation of inflammation and microglia have been implicated, yet the molecular mechanisms linking these to hypomyelination are unclear. Using human infant cerebrospinal fluid (CSF) and postmortem tissue, we found that microglial activation of the pro-inflammatory molecular complex the NLRP3 inflammasome is associated with pathology. By developing a novel mouse brain explant model of microglial inflammasome activation, we demonstrate that blocking the inflammasome rescues myelination. In human and mouse, we discovered a link between the inflammasome product IL1β and increased levels of follistatin, an endogenous inhibitor of activin-A. Follistatin treatment was sufficient to reduce myelination, whereas myelination was rescued in injured explants upon follistatin neutralization or supplementation with exogenous activin-A. Our data reveal that inflammasome activation in microglia drives hypomyelination and identifies novel therapeutic strategies to reinstate myelination following developmental injury.
Collapse
Affiliation(s)
- Rebecca K Holloway
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Graeme Ireland
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Gemma Sullivan
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Julie-Clare Becher
- Simpson Centre for Reproductive Health, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, Centre for Comparative Pathology, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - James P Boardman
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Pierre Gressens
- Department of Perinatal Imaging and Health, Rayne's Institute, King's College London, London, UK.,PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Veronique E Miron
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
42
|
Wendel K, Pfeiffer HCV, Fugelseth DM, Nestaas E, Domellöf M, Skålhegg BS, Elgstøen KBP, Rootwelt H, Pettersen RD, Pripp AH, Stiris T, Moltu SJ. Effects of nutrition therapy on growth, inflammation and metabolism in immature infants: a study protocol of a double-blind randomized controlled trial (ImNuT). BMC Pediatr 2021; 21:19. [PMID: 33407269 PMCID: PMC7789285 DOI: 10.1186/s12887-020-02425-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022] Open
Abstract
Background Current nutritional management of infants born very preterm results in significant deficiency of the essential fatty acids (FAs) arachidonic acid (ARA) and docosahexaenoic acid (DHA). The impact of this deficit on brain maturation and inflammation mediated neonatal morbidities are unknown. The aim of this study is to determine whether early supply of ARA and DHA improves brain maturation and neonatal outcomes in infants born before 29 weeks of gestation. Methods Infants born at Oslo University Hospital are eligible to participate in this double-blind randomized controlled trial. Study participants are randomized to receive an enteral FA supplement of either 0.4 ml/kg MCT-oil™ (medium chain triglycerides) or 0.4 ml/kg Formulaid™ (100 mg/kg of ARA and 50 mg/kg of DHA). The FA supplement is given from the second day of life to 36 weeks’ postmenstrual age (PMA). The primary outcome is brain maturation assessed by Magnetic Resonance Imaging (MRI) at term equivalent age. Secondary outcomes include quality of growth, incidence of neonatal morbidities, cardiovascular health and neuro-development. Target sample size is 120 infants (60 per group), this will provide 80% power to detect a 0.04 difference in mean diffusivity (MD, mm2/sec) in major white matter tracts on MRI. Discussion Supplementation of ARA and DHA has the potential to improve brain maturation and reduce inflammation related diseases. This study is expected to provide valuable information for future nutritional guidelines for preterm infants. Trial registration Clinicaltrials.gov ID: NCT03555019. Registered 4 October 2018- Retrospectively registered.
Collapse
Affiliation(s)
- Kristina Wendel
- Department of Neonatal Intensive Care, Oslo University Hospital, Oslo, Norway.
| | - Helle Cecilie Viekilde Pfeiffer
- Department of Neonatal Intensive Care, Oslo University Hospital, Oslo, Norway.,Department of Pediatric Neurology, Oslo University Hospital, Oslo, Norway
| | - Drude Merete Fugelseth
- Department of Neonatal Intensive Care, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eirik Nestaas
- Department of Neonatal Intensive Care, Oslo University Hospital, Oslo, Norway.,Department of Pediatrics, Vestfold Hospital Trust, Tønsberg, Norway
| | - Magnus Domellöf
- Department of Clinical Sciences, Pediatrics, Umea University, Umea, Sweden
| | - Bjorn Steen Skålhegg
- Division of Molecular Nutrition, Department of Nutrition, University of Oslo, Oslo, Norway
| | | | - Helge Rootwelt
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Rolf Dagfinn Pettersen
- Norwegian National Unit for Newborn Screening, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Are Hugo Pripp
- Oslo Centre of Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Tom Stiris
- Department of Neonatal Intensive Care, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sissel J Moltu
- Department of Neonatal Intensive Care, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
43
|
Vaes JEG, Brandt MJV, Wanders N, Benders MJNL, de Theije CGM, Gressens P, Nijboer CH. The impact of trophic and immunomodulatory factors on oligodendrocyte maturation: Potential treatments for encephalopathy of prematurity. Glia 2020; 69:1311-1340. [PMID: 33595855 PMCID: PMC8246971 DOI: 10.1002/glia.23939] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022]
Abstract
Encephalopathy of prematurity (EoP) is a major cause of morbidity in preterm neonates, causing neurodevelopmental adversities that can lead to lifelong impairments. Preterm birth-related insults, such as cerebral oxygen fluctuations and perinatal inflammation, are believed to negatively impact brain development, leading to a range of brain abnormalities. Diffuse white matter injury is a major hallmark of EoP and characterized by widespread hypomyelination, the result of disturbances in oligodendrocyte lineage development. At present, there are no treatment options available, despite the enormous burden of EoP on patients, their families, and society. Over the years, research in the field of neonatal brain injury and other white matter pathologies has led to the identification of several promising trophic factors and cytokines that contribute to the survival and maturation of oligodendrocytes, and/or dampening neuroinflammation. In this review, we discuss the current literature on selected factors and their therapeutic potential to combat EoP, covering a wide range of in vitro, preclinical and clinical studies. Furthermore, we offer a future perspective on the translatability of these factors into clinical practice.
Collapse
Affiliation(s)
- Josine E G Vaes
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands.,Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Myrna J V Brandt
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Nikki Wanders
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Caroline G M de Theije
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | | | - Cora H Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
44
|
Ross-Munro E, Kwa F, Kreiner J, Khore M, Miller SL, Tolcos M, Fleiss B, Walker DW. Midkine: The Who, What, Where, and When of a Promising Neurotrophic Therapy for Perinatal Brain Injury. Front Neurol 2020; 11:568814. [PMID: 33193008 PMCID: PMC7642484 DOI: 10.3389/fneur.2020.568814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022] Open
Abstract
Midkine (MK) is a small secreted heparin-binding protein highly expressed during embryonic/fetal development which, through interactions with multiple cell surface receptors promotes growth through effects on cell proliferation, migration, and differentiation. MK is upregulated in the adult central nervous system (CNS) after multiple types of experimental injury and has neuroprotective and neuroregenerative properties. The potential for MK as a therapy for developmental brain injury is largely unknown. This review discusses what is known of MK's expression and actions in the developing brain, areas for future research, and the potential for using MK as a therapeutic agent to ameliorate the effects of brain damage caused by insults such as birth-related hypoxia and inflammation.
Collapse
Affiliation(s)
- Emily Ross-Munro
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Faith Kwa
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia.,School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Jenny Kreiner
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Madhavi Khore
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Mary Tolcos
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Bobbi Fleiss
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia.,Neurodiderot, Inserm U1141, Universita de Paris, Paris, France
| | - David W Walker
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| |
Collapse
|
45
|
Jung DH, Pak ME, Lee HJ, Ahn SM, Yun YJ, Shin YI, Shin HK, Lee SY, Choi BT. Electroacupuncture on the Scalp over the Motor Cortex Ameliorates Behavioral Deficits Following Neonatal Hypoxia-Ischemia in Rats via the Activation of Neural Stem Cells. Life (Basel) 2020; 10:life10100240. [PMID: 33066563 PMCID: PMC7602251 DOI: 10.3390/life10100240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022] Open
Abstract
Electroacupuncture (EA) therapy via alternating current stimulation on the scalp over the motor cortex is used for the treatment of brain disorders. Perinatal hypoxia-ischemia (HI), a brain injury in newborns, leads to long-term neurologic complications. Here, we investigated whether EA could promote functional improvements and neurogenesis in a neonatal HI rat model. A neonatal HI rat model was induced by permanent ligation of the left carotid artery in postnatal day 7 pups. EA for neonatal HI rats was performed at 2 Hz (1, 3, or 5 mA; 20 min) from 4–6 weeks after birth. HI rats undergoing EA had improved motor and memory function, with the greatest improvement after 3 mA EA. The corpus callosum was significantly thicker and showed a significant increase in proliferating astrocytes in the 3 mA EA group. We observed proliferating cells and a greater number of newly developed neurons and astrocytes in the subventricular zone and dentate gyrus of the 3 mA EA group than in those of the HI group. These results suggest that EA promotes functional improvements following neonatal HI assault via the proliferation and differentiation of neural stem cells. This effect was the strongest after 3 mA EA, suggesting that this is the optimal treatment dose.
Collapse
Affiliation(s)
- Da Hee Jung
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Gyeongnam, Korea; (D.H.J.); (M.E.P.); (H.J.L.); (H.K.S.)
- Graduate Training Program of Korean Medicine for Healthy-Aging, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Korea
| | - Malk Eun Pak
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Gyeongnam, Korea; (D.H.J.); (M.E.P.); (H.J.L.); (H.K.S.)
- Graduate Training Program of Korean Medicine for Healthy-Aging, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Korea
| | - Hong Ju Lee
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Gyeongnam, Korea; (D.H.J.); (M.E.P.); (H.J.L.); (H.K.S.)
- Graduate Training Program of Korean Medicine for Healthy-Aging, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Korea
| | - Sung Min Ahn
- Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan 50612, Gyeongnam, Korea;
| | - Young Ju Yun
- Department of Integrative Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Gyeongnam, Korea;
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University, Yangsan 50612, Gyeongnam, Korea;
| | - Hwa Kyoung Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Gyeongnam, Korea; (D.H.J.); (M.E.P.); (H.J.L.); (H.K.S.)
- Graduate Training Program of Korean Medicine for Healthy-Aging, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Korea
- Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan 50612, Gyeongnam, Korea;
| | - Seo-Yeon Lee
- Department of Pharmacology, Wonkwang University School of Medicine, Iksan 54538, Jeonbuk, Korea
- Correspondence: (S.-Y.L.); (B.T.C.)
| | - Byung Tae Choi
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Gyeongnam, Korea; (D.H.J.); (M.E.P.); (H.J.L.); (H.K.S.)
- Graduate Training Program of Korean Medicine for Healthy-Aging, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Korea
- Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan 50612, Gyeongnam, Korea;
- Correspondence: (S.-Y.L.); (B.T.C.)
| |
Collapse
|
46
|
Vaes JEG, van Kammen CM, Trayford C, van der Toorn A, Ruhwedel T, Benders MJNL, Dijkhuizen RM, Möbius W, van Rijt SH, Nijboer CH. Intranasal mesenchymal stem cell therapy to boost myelination after encephalopathy of prematurity. Glia 2020; 69:655-680. [PMID: 33045105 PMCID: PMC7821154 DOI: 10.1002/glia.23919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022]
Abstract
Encephalopathy of prematurity (EoP) is a common cause of long-term neurodevelopmental morbidity in extreme preterm infants. Diffuse white matter injury (dWMI) is currently the most commonly observed form of EoP. Impaired maturation of oligodendrocytes (OLs) is the main underlying pathophysiological mechanism. No therapies are currently available to combat dWMI. Intranasal application of mesenchymal stem cells (MSCs) is a promising therapeutic option to boost neuroregeneration after injury. Here, we developed a double-hit dWMI mouse model and investigated the therapeutic potential of intranasal MSC therapy. Postnatal systemic inflammation and hypoxia-ischemia led to transient deficits in cortical myelination and OL maturation, functional deficits and neuroinflammation. Intranasal MSCs migrated dispersedly into the injured brain and potently improved myelination and functional outcome, dampened cerebral inflammationand rescued OL maturation after dWMI. Cocultures of MSCs with primary microglia or OLs show that MSCs secrete factors that directly promote OL maturation and dampen neuroinflammation. We show that MSCs adapt their secretome after ex vivo exposure to dWMI milieu and identified several factors including IGF1, EGF, LIF, and IL11 that potently boost OL maturation. Additionally, we showed that MSC-treated dWMI brains express different levels of these beneficial secreted factors. In conclusion, the combination of postnatal systemic inflammation and hypoxia-ischemia leads to a pattern of developmental brain abnormalities that mimics the clinical situation. Intranasal delivery of MSCs, that secrete several beneficial factors in situ, is a promising strategy to restore myelination after dWMI and subsequently improve the neurodevelopmental outcome of extreme preterm infants in the future.
Collapse
Affiliation(s)
- Josine E G Vaes
- Department for Developmental Origins of Disease, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Caren M van Kammen
- Department for Developmental Origins of Disease, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Chloe Trayford
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Annette van der Toorn
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Torben Ruhwedel
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Manon J N L Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Sabine H van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Cora H Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
47
|
Fleiss B, Gressens P, Stolp HB. Cortical Gray Matter Injury in Encephalopathy of Prematurity: Link to Neurodevelopmental Disorders. Front Neurol 2020; 11:575. [PMID: 32765390 PMCID: PMC7381224 DOI: 10.3389/fneur.2020.00575] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Preterm-born infants frequently suffer from an array of neurological damage, collectively termed encephalopathy of prematurity (EoP). They also have an increased risk of presenting with a neurodevelopmental disorder (e.g., autism spectrum disorder; attention deficit hyperactivity disorder) later in life. It is hypothesized that it is the gray matter injury to the cortex, in addition to white matter injury, in EoP that is responsible for the altered behavior and cognition in these individuals. However, although it is established that gray matter injury occurs in infants following preterm birth, the exact nature of these changes is not fully elucidated. Here we will review the current state of knowledge in this field, amalgamating data from both clinical and preclinical studies. This will be placed in the context of normal processes of developmental biology and the known pathophysiology of neurodevelopmental disorders. Novel diagnostic and therapeutic tactics required integration of this information so that in the future we can combine mechanism-based approaches with patient stratification to ensure the most efficacious and cost-effective clinical practice.
Collapse
Affiliation(s)
- Bobbi Fleiss
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Université de Paris, NeuroDiderot, Inserm, Paris, France
- PremUP, Paris, France
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, Paris, France
- PremUP, Paris, France
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Helen B. Stolp
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| |
Collapse
|
48
|
Brain inflammation and injury at 48 h is not altered by human amnion epithelial cells in ventilated preterm lambs. Pediatr Res 2020; 88:27-37. [PMID: 32120374 DOI: 10.1038/s41390-020-0815-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/18/2020] [Accepted: 02/07/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mechanical ventilation of preterm neonates is associated with neuroinflammation and an increased risk of adverse neurological outcomes. Human amnion epithelial cells (hAECs) have anti-inflammatory and regenerative properties. We aimed to determine if intravenous administration of hAECs to preterm lambs would reduce neuroinflammation and injury at 2 days of age. METHODS Preterm lambs were delivered by cesarean section at 128-130 days' gestation (term is ~147 days) and either ventilated for 48 h or humanely killed at birth. Lambs received 3 mL surfactant (Curosurf) via endotracheal tube prior to delivery (either with or without 90 × 106 hAECs) and 3 mL intravenous phosphate-buffered saline (with or without 90 × 106 hAECs, consistent with intratracheal treatment) after birth. RESULTS Ventilation increased microglial activation, total oligodendrocyte cell number, cell proliferation and blood-brain barrier permeability (P < 0.05, PBS + ventilation and hAEC + ventilation vs. control), but did not affect numbers of immature and mature oligodendrocytes. Ventilation reduced astrocyte and neuron survival (P < 0.05, PBS + ventilation and hAEC + ventilation vs. control). hAEC administration did not alter markers of neuroinflammation or injury within the white or gray matter. CONCLUSIONS Mechanical ventilation for 48 h upregulated markers of neuroinflammation and injury in preterm lambs. Administration of hAECs did not affect markers of neuroinflammation or injury. IMPACT Mechanical ventilation of preterm lambs for 48 h, in a manner consistent with contemporary neonatal intensive care, causes neuroinflammation, neuronal loss and pathological changes in oligodendrocyte and astrocyte survival consistent with evolving neonatal brain injury.Intravenous administration of hAECs immediately after birth did not affect neonatal cardiorespiratory function and markers of neuroinflammation or injury.Reassuringly, our findings in a translational large animal model demonstrate that intravenous hAEC administration to the preterm neonate is safe.Considering that hAECs are being used in phase 1 trials for the treatment of BPD in preterm infants, with future trials planned for neonatal neuroprotection, we believe these observations are highly relevant.
Collapse
|
49
|
Van Steenwinckel J, Schang AL, Krishnan ML, Degos V, Delahaye-Duriez A, Bokobza C, Csaba Z, Verdonk F, Montané A, Sigaut S, Hennebert O, Lebon S, Schwendimann L, Le Charpentier T, Hassan-Abdi R, Ball G, Aljabar P, Saxena A, Holloway RK, Birchmeier W, Baud O, Rowitch D, Miron V, Chretien F, Leconte C, Besson VC, Petretto EG, Edwards AD, Hagberg H, Soussi-Yanicostas N, Fleiss B, Gressens P. Decreased microglial Wnt/β-catenin signalling drives microglial pro-inflammatory activation in the developing brain. Brain 2020; 142:3806-3833. [PMID: 31665242 DOI: 10.1093/brain/awz319] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 07/24/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
Microglia of the developing brain have unique functional properties but how their activation states are regulated is poorly understood. Inflammatory activation of microglia in the still-developing brain of preterm-born infants is associated with permanent neurological sequelae in 9 million infants every year. Investigating the regulators of microglial activation in the developing brain across models of neuroinflammation-mediated injury (mouse, zebrafish) and primary human and mouse microglia we found using analysis of genes and proteins that a reduction in Wnt/β-catenin signalling is necessary and sufficient to drive a microglial phenotype causing hypomyelination. We validated in a cohort of preterm-born infants that genomic variation in the Wnt pathway is associated with the levels of connectivity found in their brains. Using a Wnt agonist delivered by a blood-brain barrier penetrant microglia-specific targeting nanocarrier we prevented in our animal model the pro-inflammatory microglial activation, white matter injury and behavioural deficits. Collectively, these data validate that the Wnt pathway regulates microglial activation, is critical in the evolution of an important form of human brain injury and is a viable therapeutic target.
Collapse
Affiliation(s)
| | - Anne-Laure Schang
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,UMR CNRS 8638-Chimie Toxicologie Analytique et Cellulaire, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, 4 Avenue de l'Observatoire, F-75006 Paris, France
| | - Michelle L Krishnan
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Vincent Degos
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Department of Anesthesia and Intensive Care, Pitié Salpétrière Hospital, F-75013 Paris France
| | - Andrée Delahaye-Duriez
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,UFR de Santé, Médecine et Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, F-93000 Bobigny, France
| | - Cindy Bokobza
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Zsolt Csaba
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Franck Verdonk
- Infection and Epidemiology Department, Human Histopathology and Animal Models Unit, Institut Pasteur, F-75015 Paris, France.,Paris Descartes University, Sorbonne Paris Cité, F-75006 Paris, France
| | - Amélie Montané
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Stéphanie Sigaut
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Olivier Hennebert
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Conservatoire national des arts et métiers, F-75003 Paris, France
| | - Sophie Lebon
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Leslie Schwendimann
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Tifenn Le Charpentier
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Rahma Hassan-Abdi
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Gareth Ball
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Paul Aljabar
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Alka Saxena
- Genomics Core Facility, NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Rebecca K Holloway
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Walter Birchmeier
- Cancer Research Program, Max Delbrueck Center for Molecular Medicine in the Helmholtz Society, Berlin-Buch, Germany
| | - Olivier Baud
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - David Rowitch
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Veronique Miron
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Fabrice Chretien
- UFR de Santé, Médecine et Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, F-93000 Bobigny, France.,Infection and Epidemiology Department, Human Histopathology and Animal Models Unit, Institut Pasteur, F-75015 Paris, France.,Laboratoire de Neuropathologie, Centre Hospitalier Sainte Anne, F-75014 Paris, France
| | - Claire Leconte
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Valérie C Besson
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | | | - A David Edwards
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Henrik Hagberg
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.,Perinatal Center, Institute of Clinical Sciences and Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, 41390 Gothenburg, Sweden
| | - Nadia Soussi-Yanicostas
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Bobbi Fleiss
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.,School of Health and Biomedical Sciences, RMIT University, Bundoora, 3083, VIC, Australia
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
50
|
Truttmann AC, Ginet V, Puyal J. Current Evidence on Cell Death in Preterm Brain Injury in Human and Preclinical Models. Front Cell Dev Biol 2020; 8:27. [PMID: 32133356 PMCID: PMC7039819 DOI: 10.3389/fcell.2020.00027] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022] Open
Abstract
Despite tremendous advances in neonatal intensive care over the past 20 years, prematurity carries a high burden of neurological morbidity lasting lifelong. The term encephalopathy of prematurity (EoP) coined by Volpe in 2009 encompasses all aspects of the now known effects of prematurity on the immature brain, including altered and disturbed development as well as specific lesional hallmarks. Understanding the way cells are damaged is crucial to design brain protective strategies, and in this purpose, preclinical models largely contribute to improve the comprehension of the cell death mechanisms. While neuronal cell death has been deeply investigated and characterized in (hypoxic–ischemic) encephalopathy of the newborn at term, little is known about the types of cell death occurring in preterm brain injury. Three main different morphological cell death types are observed in the immature brain, specifically in models of hypoxic–ischemic encephalopathy, namely, necrotic, apoptotic, and autophagic cell death. Features of all three types may be present in the same dying neuron. In preterm brain injury, description of cell death types is sparse, and cell loss primarily concerns immature oligodendrocytes and, infrequently, neurons. In the present review, we first shortly discuss the different main severe preterm brain injury conditions that have been reported to involve cell death, including periventricular leucomalacia (PVL), diffuse white matter injury (dWMI), and intraventricular hemorrhages, as well as potentially harmful iatrogenic conditions linked to premature birth (anesthesia and caffeine therapy). Then, we present an overview of current evidence concerning cell death in both clinical human tissue data and preclinical models by focusing on studies investigating the presence of cell death allowing discriminating between the types of cell death involved. We conclude that, to improve brain protective strategies, not only apoptosis but also other cell death (such as regulated necrotic and autophagic) pathways now need to be investigated together in order to consider all cell death mechanisms involved in the pathogenesis of preterm brain damage.
Collapse
Affiliation(s)
- Anita C Truttmann
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland
| | - Vanessa Ginet
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland.,Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,CURML, University Center of Legal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|