1
|
Indelicato E, Delatycki MB, Farmer J, França MC, Perlman S, Rai M, Boesch S. A global perspective on research advances and future challenges in Friedreich ataxia. Nat Rev Neurol 2025; 21:204-215. [PMID: 40032987 DOI: 10.1038/s41582-025-01065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2025] [Indexed: 03/05/2025]
Abstract
Friedreich ataxia (FRDA) is a rare multisystem, life-limiting disease and is the most common early-onset inherited ataxia in populations of European, Arab and Indian descent. In recent years, substantial progress has been made in dissecting the pathogenesis and natural history of FRDA, and several clinical trials have been initiated. A particularly notable recent achievement was the approval of the nuclear factor erythroid 2-related factor 2 activator omaveloxolone as the first disease-specific therapy for FRDA. In light of these developments, we review milestones in FRDA translational and clinical research over the past 10 years, as well as the various therapeutic strategies currently in the pipeline. We also consider the lessons that have been learned from failed trials and other setbacks. We conclude by presenting a global roadmap for future research, as outlined by the recently established Friedreich's Ataxia Global Clinical Consortium, which covers North and South America, Europe, India, Australia and New Zealand.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | | | | | | | - Myriam Rai
- Friedreich's Ataxia Research Alliance, Downingtown, PA, USA
- Laboratory of Experimental Neurology, Brussels, Belgium
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
2
|
Indelicato E, Wanschitz J, Löscher W, Boesch S. Skeletal Muscle Involvement in Friedreich Ataxia. Int J Mol Sci 2024; 25:9915. [PMID: 39337401 PMCID: PMC11432698 DOI: 10.3390/ijms25189915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Friedreich Ataxia (FRDA) is an inherited neuromuscular disorder triggered by a deficit of the mitochondrial protein frataxin. At a cellular level, frataxin deficiency results in insufficient iron-sulfur cluster biosynthesis and impaired mitochondrial function and adenosine triphosphate production. The main clinical manifestation is a progressive balance and coordination disorder which depends on the involvement of peripheral and central sensory pathways as well as of the cerebellum. Besides the neurological involvement, FRDA affects also the striated muscles. The most prominent manifestation is a hypertrophic cardiomyopathy, which also represents the major determinant of premature mortality. Moreover, FRDA displays skeletal muscle involvement, which contributes to the weakness and marked fatigue evident throughout the course of the disease. Herein, we review skeletal muscle findings in FRDA generated by functional imaging, histology, as well as multiomics techniques in both disease models and in patients. Altogether, these findings corroborate a disease phenotype in skeletal muscle and support the notion of progressive mitochondrial damage as a driver of disease progression in FRDA. Furthermore, we highlight the relevance of skeletal muscle investigations in the development of biomarkers for early-phase trials and future therapeutic strategies in FRDA.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Julia Wanschitz
- Unit for Neuromuscular Disorders and Clinical Neurophysiology, Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Wolfgang Löscher
- Unit for Neuromuscular Disorders and Clinical Neurophysiology, Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
3
|
Stovickova L, Hansikova H, Hanzalova J, Musova Z, Semjonov V, Stovicek P, Hadzic H, Novotna L, Simcik M, Strnad P, Serbina A, Karamazovova S, Schwabova Paulasova J, Vyhnalek M, Krsek P, Zumrova A. Exploring mitochondrial biomarkers for Friedreich's ataxia: a multifaceted approach. J Neurol 2024; 271:3439-3454. [PMID: 38520521 PMCID: PMC11136723 DOI: 10.1007/s00415-024-12223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 03/25/2024]
Abstract
This study presents an in-depth analysis of mitochondrial enzyme activities in Friedreich's ataxia (FA) patients, focusing on the Electron Transport Chain complexes I, II, and IV, the Krebs Cycle enzyme Citrate Synthase, and Coenzyme Q10 levels. It examines a cohort of 34 FA patients, comparing their mitochondrial enzyme activities and clinical parameters, including disease duration and cardiac markers, with those of 17 healthy controls. The findings reveal marked reductions in complexes II and, specifically, IV, highlighting mitochondrial impairment in FA. Additionally, elevated Neurofilament Light Chain levels and cardiomarkers were observed in FA patients. This research enhances our understanding of FA pathophysiology and suggests potential biomarkers for monitoring disease progression. The study underscores the need for further clinical trials to validate these findings, emphasizing the critical role of mitochondrial dysfunction in FA assessment and treatment.
Collapse
Affiliation(s)
- Lucie Stovickova
- Department of Paediatric Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, V Uvalu 84, 15006, Prague 5, Czech Republic.
- Centre of Hereditary Ataxias, Second Faculty of Medicine, An Official EFACTS Site, a Member of European Reference Network for Rare Neurological Diseases (ERN-RND), Charles University, Motol University Hospital, Prague 5, Czech Republic.
| | - Hana Hansikova
- Department of Paediatrics and Inherited Metabolic Disorders, First Medical Faculty, Charles University and General University Hospital in Prague, Prague 2, Czech Republic
| | - Jitka Hanzalova
- Department of Immunology, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague 5, Czech Republic
| | - Zuzana Musova
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague 5, Czech Republic
- Centre of Hereditary Ataxias, Second Faculty of Medicine, An Official EFACTS Site, a Member of European Reference Network for Rare Neurological Diseases (ERN-RND), Charles University, Motol University Hospital, Prague 5, Czech Republic
| | - Valerij Semjonov
- Department of Paediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | | | - Haris Hadzic
- Second Faculty of Medicine, Charles University, Prague 5, Czech Republic
| | - Ludmila Novotna
- Second Faculty of Medicine, Charles University, Prague 5, Czech Republic
| | - Martin Simcik
- Second Faculty of Medicine, Charles University, Prague 5, Czech Republic
| | - Pavel Strnad
- Second Faculty of Medicine, Charles University, Prague 5, Czech Republic
| | - Anastaziia Serbina
- Second Faculty of Medicine, Charles University, Prague 5, Czech Republic
| | - Simona Karamazovova
- Department of Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague 5, Czech Republic
- Centre of Hereditary Ataxias, Second Faculty of Medicine, An Official EFACTS Site, a Member of European Reference Network for Rare Neurological Diseases (ERN-RND), Charles University, Motol University Hospital, Prague 5, Czech Republic
| | - Jaroslava Schwabova Paulasova
- Department of Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague 5, Czech Republic
- Centre of Hereditary Ataxias, Second Faculty of Medicine, An Official EFACTS Site, a Member of European Reference Network for Rare Neurological Diseases (ERN-RND), Charles University, Motol University Hospital, Prague 5, Czech Republic
| | - Martin Vyhnalek
- Department of Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague 5, Czech Republic
- Centre of Hereditary Ataxias, Second Faculty of Medicine, An Official EFACTS Site, a Member of European Reference Network for Rare Neurological Diseases (ERN-RND), Charles University, Motol University Hospital, Prague 5, Czech Republic
| | - Pavel Krsek
- Department of Paediatric Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - Alena Zumrova
- Department of Paediatric Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, V Uvalu 84, 15006, Prague 5, Czech Republic
- Centre of Hereditary Ataxias, Second Faculty of Medicine, An Official EFACTS Site, a Member of European Reference Network for Rare Neurological Diseases (ERN-RND), Charles University, Motol University Hospital, Prague 5, Czech Republic
| |
Collapse
|
4
|
Gavriilaki M, Chatzikyriakou E, Moschou M, Arnaoutoglou M, Sakellari I, Kimiskidis VK. Therapeutic Biomarkers in Friedreich's Ataxia: a Systematic Review and Meta-analysis. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1184-1203. [PMID: 37889470 PMCID: PMC11102393 DOI: 10.1007/s12311-023-01621-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Although a large array of biomarkers have been investigated in Friedreich's ataxia (FRDA) trials, the optimal biomarker for assessing disease progression or therapeutic benefit has yet to be identified. We searched PubMed, MEDLINE, and EMBASE databases up to June 2023 for any original study (with ≥ 5 participants and ≥ 2 months' follow-up) reporting the effect of therapeutic interventions on any clinical, cardiac, biochemical, patient-reported outcome measures, imaging, or neurophysiologic biomarker. We also explored the biomarkers' ability to detect subtle disease progression in untreated patients. The pooled standardized mean difference (SMD) was calculated using a random-effects model. The study's protocol was registered in PROSPERO (CRD42022319196). In total, 43 studies with 1409 FRDA patients were included in the qualitative synthesis. A statistically significant improvement was observed in Friedreich Ataxia Rating Scale scores [combining Friedreich Ataxia Rating Scale (FARS) and modified FARS (mFARS): SMD = - 0.32 (- 0.62 to - 0.02)] following drugs that augment mitochondrial function in a sensitivity analysis. Left ventricular mass index (LVMI) was improved significantly [SMD = - 0.34 (- 0.5 to - 0.18)] after 28.5 months of treatment with drugs that augment mitochondrial function. However, LVMI remained stable [SMD = 0.05 (- 0.3 to 0.41)] in untreated patients after 6-month follow-up. None of the remaining biomarkers changed significantly following any treatment intervention nor during the natural disease progression. Nevertheless, clinical implications of these results should be interpreted with caution because of low to very low quality of evidence. Further randomized controlled trials of at least 24 months' duration using a biomarker toolbox rather than a single biomarker are warranted.
Collapse
Affiliation(s)
- Maria Gavriilaki
- 1st Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Evangelia Chatzikyriakou
- 1st Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria Moschou
- 1st Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Marianthi Arnaoutoglou
- Laboratory of Clinical Neurophysiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioanna Sakellari
- Hematology Department, Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, "George Papanikolaou" Hospital, Thessaloniki, Greece
| | - Vasilios K Kimiskidis
- 1st Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
5
|
Indelicato E, Faserl K, Amprosi M, Nachbauer W, Schneider R, Wanschitz J, Sarg B, Boesch S. Skeletal muscle proteome analysis underpins multifaceted mitochondrial dysfunction in Friedreich's ataxia. Front Neurosci 2023; 17:1289027. [PMID: 38027498 PMCID: PMC10644315 DOI: 10.3389/fnins.2023.1289027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Friedreich's ataxia (FRDA) is a severe multisystemic disorder caused by a deficiency of the mitochondrial protein frataxin. While some aspects of FRDA pathology are developmental, the causes underlying the steady progression are unclear. The inaccessibility of key affected tissues to sampling is a main hurdle. Skeletal muscle displays a disease phenotype and may be sampled in vivo to address open questions on FRDA pathophysiology. Thus, we performed a quantitative mass spectrometry-based proteomics analysis in gastrocnemius skeletal muscle biopsies from genetically confirmed FRDA patients (n = 5) and controls. Obtained data files were processed using Proteome Discoverer and searched by Sequest HT engine against a UniProt human reference proteome database. Comparing skeletal muscle proteomics profiles between FRDA and controls, we identified 228 significant differentially expressed (DE) proteins, of which 227 were downregulated in FRDA. Principal component analysis showed a clear separation between FRDA and control samples. Interactome analysis revealed clustering of DE proteins in oxidative phosphorylation, ribosomal elements, mitochondrial architecture control, and fission/fusion pathways. DE findings in the muscle-specific proteomics suggested a shift toward fast-twitching glycolytic fibers. Notably, most DE proteins (169/228, 74%) are target of the transcription factor nuclear factor-erythroid 2. Our data corroborate a mitochondrial biosignature of FRDA, which extends beyond a mere oxidative phosphorylation failure. Skeletal muscle proteomics highlighted a derangement of mitochondrial architecture and maintenance pathways and a likely adaptive metabolic shift of contractile proteins. The present findings are relevant for the design of future therapeutic strategies and highlight the value of skeletal muscle-omics as disease state readout in FRDA.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Faserl
- Institute of Medical Biochemistry, Protein Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Amprosi
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Wolfgang Nachbauer
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Rainer Schneider
- Institute of Biochemistry, Center of Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens University Innsbruck, Innsbruck, Austria
| | - Julia Wanschitz
- Laboratory of Tissue Diagnostics, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Bettina Sarg
- Institute of Medical Biochemistry, Protein Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Turchi R, Sciarretta F, Ceci V, Tiberi M, Audano M, Pedretti S, Panebianco C, Nesci V, Pazienza V, Ferri A, Carotti S, Chiurchiù V, Mitro N, Lettieri-Barbato D, Aquilano K. Butyrate prevents visceral adipose tissue inflammation and metabolic alterations in a Friedreich's ataxia mouse model. iScience 2023; 26:107713. [PMID: 37701569 PMCID: PMC10494209 DOI: 10.1016/j.isci.2023.107713] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/02/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023] Open
Abstract
Friedreich's ataxia (FA) is a neurodegenerative disease resulting from a mutation in the FXN gene, leading to mitochondrial frataxin deficiency. FA patients exhibit increased visceral adiposity, inflammation, and heightened diabetes risk, negatively affecting prognosis. We investigated visceral white adipose tissue (vWAT) in a murine model (KIKO) to understand its role in FA-related metabolic complications. RNA-seq analysis revealed altered expression of inflammation, angiogenesis, and fibrosis genes. Diabetes-like traits, including larger adipocytes, immune cell infiltration, and increased lactate production, were observed in vWAT. FXN downregulation in cultured adipocytes mirrored vWAT diabetes-like features, showing metabolic shifts toward glycolysis and lactate production. Metagenomic analysis indicated a reduction in fecal butyrate-producing bacteria, known to exert antidiabetic effects. A butyrate-enriched diet restrained vWAT abnormalities and mitigated diabetes features in KIKO mice. Our work emphasizes the role of vWAT in FA-related metabolic issues and suggests butyrate as a safe and promising adjunct for FA management.
Collapse
Affiliation(s)
- Riccardo Turchi
- Department Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Veronica Ceci
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Marta Tiberi
- Laboratory of Resolution of Neuroinflammation, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Matteo Audano
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Silvia Pedretti
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Concetta Panebianco
- Gastroenterology Unit Fondazione IRCSS “Casa Sollievo della Sofferenza” Hospital San Giovanni Rotondo (FG)-Italy
| | - Valentina Nesci
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Division of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Valerio Pazienza
- Gastroenterology Unit Fondazione IRCSS “Casa Sollievo della Sofferenza” Hospital San Giovanni Rotondo (FG)-Italy
| | - Alberto Ferri
- Division of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Rome, Italy
- Institute of Traslational Pharmacology, IFT-CNR, Rome, Italy
| | - Simone Carotti
- Microscopic and Ultrastructural Anatomy Research Unit, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Predictive Molecular Diagnostics, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Valerio Chiurchiù
- Laboratory of Resolution of Neuroinflammation, IRCCS Fondazione Santa Lucia, Rome, Italy
- Institute of Traslational Pharmacology, IFT-CNR, Rome, Italy
| | - Nico Mitro
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Daniele Lettieri-Barbato
- Department Biology, University of Rome Tor Vergata, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Katia Aquilano
- Department Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
7
|
Poffé C, Robberechts R, Van Thienen R, Hespel P. Exogenous ketosis elevates circulating erythropoietin and stimulates muscular angiogenesis during endurance training overload. J Physiol 2023; 601:2345-2358. [PMID: 37062892 DOI: 10.1113/jp284346] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/12/2023] [Indexed: 04/18/2023] Open
Abstract
De novo capillarization is a primary muscular adaptation to endurance exercise training and is crucial to improving performance. Excess training load, however, impedes such beneficial adaptations, yet we recently demonstrated that such downregulation may be counteracted by ketone ester ingestion (KE) post-exercise. Therefore, we investigated whether KE could increase pro-angiogenic factors and thereby stimulate muscular angiogenesis during a 3-week endurance training-overload period involving 10 training sessions/week in healthy, male volunteers. Subjects received either 25 g of a ketone ester (KE, n = 9) or a control drink (CON, n = 9) immediately after each training session and before sleep. In KE, but not in CON, the training intervention increased the number of capillary contacts and the capillary-to-fibre perimeter exchange index by 44% and 42%, respectively. Furthermore, KE also substantially increased vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) expression both at the protein and at the mRNA level. Serum erythropoietin concentration was concomitantly increased by 26%. Conversely, in CON the training intervention increased only the protein content of eNOS. These data indicate that intermittent exogenous ketosis during endurance overload training stimulates muscular angiogenesis. This likely resulted from a direct stimulation of muscle angiogenesis, which may be at least partly due to stimulation of erythropoietin secretion and elevated VEGF activity, and/or an inhibition of the suppressive effect of overload training on the normal angiogenic response to training. This study provides novel evidence to support the potential of exogenous ketosis to benefit endurance training-induced muscular adaptation. KEY POINTS: Increased capillarization is a primary muscular adaptation to endurance exercise training. However, excess training load may impede such response. We previously observed that intermittent exogenous ketosis by post-exercise and pre-sleep ketone ester ingestion (KE) counteracted physiological dysregulations induced by endurance overload training. Therefore, we investigated whether KE could increase pro-angiogenic factors thereby stimulating muscular angiogenesis during a 3-week endurance training overload period. We show that the overload training period in the presence, but not in the absence, of KE markedly increased muscle capillarization (+40%). This increase was accompanied by higher circulating erythropoietin concentration and stimulation of the pro-angiogenic factors vascular endothelial growth factor and endothelial nitric oxide synthase in skeletal muscle. Collectively, our data indicate that intermittent exogenous ketosis may evolve as a potent nutritional strategy to facilitate recovery from strenuous endurance exercise, thereby stimulating beneficial muscular adaptations.
Collapse
Affiliation(s)
- Chiel Poffé
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Ruben Robberechts
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Ruud Van Thienen
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Peter Hespel
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Vásquez-Trincado C, Dunn J, Han JI, Hymms B, Tamaroff J, Patel M, Nguyen S, Dedio A, Wade K, Enigwe C, Nichtova Z, Lynch DR, Csordas G, McCormack SE, Seifert EL. Frataxin deficiency lowers lean mass and triggers the integrated stress response in skeletal muscle. JCI Insight 2022; 7:e155201. [PMID: 35531957 PMCID: PMC9090249 DOI: 10.1172/jci.insight.155201] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/09/2022] [Indexed: 12/03/2022] Open
Abstract
Friedreich's ataxia (FRDA) is an inherited disorder caused by reduced levels of frataxin (FXN), which is required for iron-sulfur cluster biogenesis. Neurological and cardiac comorbidities are prominent and have been a major focus of study. Skeletal muscle has received less attention despite indications that FXN loss affects it. Here, we show that lean mass is lower, whereas body mass index is unaltered, in separate cohorts of adults and children with FRDA. In adults, lower lean mass correlated with disease severity. To further investigate FXN loss in skeletal muscle, we used a transgenic mouse model of whole-body inducible and progressive FXN depletion. There was little impact of FXN loss when FXN was approximately 20% of control levels. When residual FXN was approximately 5% of control levels, muscle mass was lower along with absolute grip strength. When we examined mechanisms that can affect muscle mass, only global protein translation was lower, accompanied by integrated stress response (ISR) activation. Also in mice, aerobic exercise training, initiated prior to the muscle mass difference, improved running capacity, yet, muscle mass and the ISR remained as in untrained mice. Thus, FXN loss can lead to lower lean mass, with ISR activation, both of which are insensitive to exercise training.
Collapse
Affiliation(s)
- César Vásquez-Trincado
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Julia Dunn
- Division of Endocrinology and Diabetes and
| | - Ji In Han
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Briyanna Hymms
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Monika Patel
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Anna Dedio
- Division of Endocrinology and Diabetes and
| | | | | | - Zuzana Nichtova
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - David R. Lynch
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology and
| | - Gyorgy Csordas
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Shana E. McCormack
- Division of Endocrinology and Diabetes and
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erin L. Seifert
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Rufini A, Malisan F, Condò I, Testi R. Drug Repositioning in Friedreich Ataxia. Front Neurosci 2022; 16:814445. [PMID: 35221903 PMCID: PMC8863941 DOI: 10.3389/fnins.2022.814445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
Friedreich ataxia is a rare neurodegenerative disorder caused by insufficient levels of the essential mitochondrial protein frataxin. It is a severely debilitating disease that significantly impacts the quality of life of affected patients and reduces their life expectancy, however, an adequate cure is not yet available for patients. Frataxin function, although not thoroughly elucidated, is associated with assembly of iron-sulfur cluster and iron metabolism, therefore insufficient frataxin levels lead to reduced activity of many mitochondrial enzymes involved in the electron transport chain, impaired mitochondrial metabolism, reduced ATP production and inefficient anti-oxidant response. As a consequence, neurons progressively die and patients progressively lose their ability to coordinate movement and perform daily activities. Therapeutic strategies aim at restoring sufficient frataxin levels or at correcting some of the downstream consequences of frataxin deficiency. However, the classical pathways of drug discovery are challenging, require a significant amount of resources and time to reach the final approval, and present a high failure rate. Drug repositioning represents a viable alternative to boost the identification of a therapy, particularly for rare diseases where resources are often limited. In this review we will describe recent efforts aimed at the identification of a therapy for Friedreich ataxia through drug repositioning, and discuss the limitation of such strategies.
Collapse
Affiliation(s)
- Alessandra Rufini
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Fratagene Therapeutics, Rome, Italy
- Saint Camillus International University of Health and Medical Sciences, Rome, Italy
- *Correspondence: Alessandra Rufini,
| | - Florence Malisan
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Ivano Condò
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Roberto Testi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Fratagene Therapeutics, Rome, Italy
| |
Collapse
|
10
|
Lees JG, Napierala M, Pébay A, Dottori M, Lim SY. Cellular pathophysiology of Friedreich's ataxia cardiomyopathy. Int J Cardiol 2022; 346:71-78. [PMID: 34798207 DOI: 10.1016/j.ijcard.2021.11.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/01/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022]
Abstract
Friedreich's ataxia (FRDA) is a hereditary neuromuscular disorder. Cardiomyopathy is the leading cause of premature death in FRDA. FRDA cardiomyopathy is a complex and progressive disease with no cure or treatment to slow its progression. At the cellular level, cardiomyocyte hypertrophy, apoptosis and fibrosis contribute to the cardiac pathology. However, the heart is composed of multiple cell types and several clinical studies have reported the involvement of cardiac non-myocytes such as vascular cells, autonomic neurons, and inflammatory cells in the pathogenesis of FRDA cardiomyopathy. In fact, several of the cardiac pathologies associated with FRDA including cardiomyocyte necrosis, fibrosis, and arrhythmia, could be contributed to by a diseased vasculature and autonomic dysfunction. Here, we review available evidence regarding the current understanding of cellular mechanisms for, and the involvement of, cardiac non-myocytes in the pathogenesis of FRDA cardiomyopathy.
Collapse
Affiliation(s)
- Jarmon G Lees
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria 3052, Australia; Department of Surgery, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mirella Dottori
- Illawarra Health and Medical Research Institute, School of Medicine, Molecular Horizons, University of Wollongong, New South Wales 2522, Australia; Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Shiang Y Lim
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia; Department of Surgery, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
11
|
Monda E, Lioncino M, Rubino M, Passantino S, Verrillo F, Caiazza M, Cirillo A, Fusco A, Di Fraia F, Fimiani F, Amodio F, Borrelli N, Mauriello A, Natale F, Scarano G, Girolami F, Favilli S, Limongelli G. Diagnosis and Management of Cardiovascular Involvement in Friedreich Ataxia. Heart Fail Clin 2021; 18:31-37. [PMID: 34776081 DOI: 10.1016/j.hfc.2021.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a homozygous GAA triplet repeat expansion in the frataxin gene. Cardiac involvement, usually manifesting as hypertrophic cardiomyopathy, can range from asymptomatic cases to severe cardiomyopathy with progressive deterioration of the left ventricular ejection fraction and chronic heart failure. The management of cardiac involvement is directed to prevent disease progression and cardiovascular complications. However, direct-disease therapies are not currently available for FRDA. The present review aims to describe the current state of knowledge regarding cardiovascular involvement of FRDA, focusing on clinical-instrumental features and management of cardiac manifestation.
Collapse
Affiliation(s)
- Emanuele Monda
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Michele Lioncino
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Marta Rubino
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Silvia Passantino
- Department of Pediatric Cardiology, Meyer Children's Hospital, Viale Gaetano Pieraccini, 24, 50139 Florence, Italy
| | - Federica Verrillo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Martina Caiazza
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Annapaola Cirillo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Adelaide Fusco
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Francesco Di Fraia
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Fabio Fimiani
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Federica Amodio
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Nunzia Borrelli
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Alfredo Mauriello
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Francesco Natale
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Gioacchino Scarano
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Francesca Girolami
- Department of Pediatric Cardiology, Meyer Children's Hospital, Viale Gaetano Pieraccini, 24, 50139 Florence, Italy
| | - Silvia Favilli
- Department of Pediatric Cardiology, Meyer Children's Hospital, Viale Gaetano Pieraccini, 24, 50139 Florence, Italy
| | - Giuseppe Limongelli
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy; Institute of Cardiovascular Sciences, University College of London and St. Bartholomew's Hospital, Grower Street, London WC1E 6DD, UK.
| |
Collapse
|
12
|
Paulus-Andres JA, Burnett MS. Three Adult-Onset Autosomal Recessive Ataxias: What Adult Neurologists Need to Know. Neurol Clin Pract 2021; 11:256-262. [PMID: 34484893 PMCID: PMC8382373 DOI: 10.1212/cpj.0000000000000947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/07/2020] [Indexed: 11/15/2022]
Abstract
PURPOSE OF REVIEW In this review we seek to raise awareness of 3 autosomal recessive ataxias that look different clinically when presenting in adulthood rather than childhood. RECENT FINDINGS A study found a high allelic frequency for repeat expansions in the RFC1 gene, a cause of cerebellar ataxia, neuropathy, and vestibular areflexia syndrome, which presents exclusively in adults. This implies that autosomal recessive etiologies of adult-onset cerebellar ataxias may be more common than previously thought. SUMMARY Adult-onset cerebellar ataxias are commonly caused by mutations inherited in either an autosomal dominant or X-linked pattern, as most autosomal recessive mutations cause disease at earlier ages. However, some autosomal recessive etiologies such as late-onset Tay-Sachs disease, very late-onset Friedreich ataxia, and autosomal recessive spastic ataxia of Charlevoix-Saguenay emerge in adulthood, with age at presentation influencing the progression and clinical signs of the disease. This review will cover the genetics, clinical presentation, and necessary diagnostic steps required to identify 3 causes of autosomal recessive cerebellar ataxia that manifest differently in adults vs children.
Collapse
Affiliation(s)
- Jordan A Paulus-Andres
- Creighton University School of Medicine (JAP-A); and Department of Neurology (MSB), Creighton University School of Medicine, Omaha, NE
| | - Melinda S Burnett
- Creighton University School of Medicine (JAP-A); and Department of Neurology (MSB), Creighton University School of Medicine, Omaha, NE
| |
Collapse
|
13
|
Hui CK, Dedkova EN, Montgomery C, Cortopassi G. Dimethyl fumarate dose-dependently increases mitochondrial gene expression and function in muscle and brain of Friedreich's ataxia model mice. Hum Mol Genet 2021; 29:3954-3965. [PMID: 33432356 DOI: 10.1093/hmg/ddaa282] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 01/03/2023] Open
Abstract
Previously we showed that dimethyl fumarate (DMF) dose-dependently increased mitochondrial gene expression and function in cells and might be considered as a therapeutic for inherited mitochondrial disease, including Friedreich's ataxia (FA). Here we tested DMF's ability to dose-dependently increase mitochondrial function, mitochondrial gene expression (frataxin and cytochrome oxidase protein) and mitochondrial copy number in C57BL6 wild-type mice and the FXNKD mouse model of FA. We first dosed DMF at 0-320 mg/kg in C57BL6 mice and observed significant toxicity above 160 mg/kg orally, defining the maximum tolerated dose. Oral dosing of C57BL6 mice in the range 0-160 mg/kg identified a maximum increase in aconitase activity and mitochondrial gene expression in brain and quadriceps at 110 mg/kg DMF, thus defining the maximum effective dose (MED). The MED of DMF in mice overlaps the currently approved human-equivalent doses of DMF prescribed for multiple sclerosis (480 mg/day) and psoriasis (720 mg/day). In the FXNKD mouse model of FA, which has a doxycycline-induced deficit of frataxin protein, we observed significant decreases of multiple mitochondrial parameters, including deficits in brain mitochondrial Complex 2, Complex 4 and aconitase activity, supporting the idea that frataxin deficiency reduces mitochondrial gene expression, mitochondrial functions and biogenesis. About 110 mg/kg of oral DMF rescued these enzyme activities in brain and rescued frataxin and cytochrome oxidase expression in brain, cerebellum and quadriceps muscle of the FXNKD mouse model. Taken together, these results support the idea of using fumarate-based molecules to treat FA or other mitochondrial diseases.
Collapse
Affiliation(s)
- Chun Kiu Hui
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Elena N Dedkova
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Claire Montgomery
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Gino Cortopassi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
14
|
Suresh S, Lee J, Noguchi CT. Effects of Erythropoietin in White Adipose Tissue and Bone Microenvironment. Front Cell Dev Biol 2020; 8:584696. [PMID: 33330462 PMCID: PMC7732496 DOI: 10.3389/fcell.2020.584696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Erythropoietin (EPO) is expressed primarily in fetal liver and adult kidney to stimulate red blood cell production. Erythropoietin receptor expression is not restricted to erythroid progenitor cells, and non-erythroid EPO activity includes immune response and bone remodeling. In bone fracture models, EPO administration promotes bone formation and accelerates bone healing. In contrast, in healthy adult mice, exogenous EPO-stimulated erythropoiesis has been concomitant with bone loss, particularly at high EPO, that may be accompanied by increased osteoclast activation. Other EPO-associated responses include reduced inflammation and loss of fat mass with high-fat diet feeding, especially in male mice. While EPO exhibited a sex-dimorphic response in regulation of fat mass and inflammation in obese mice, EPO-stimulated erythropoiesis as well as EPO-associated bone loss was comparable in males and females. EPO administration in young mice and in obese mice resulted in bone loss without increasing osteoclasts, suggesting an osteoclast-independent mechanism, while loss of endogenous EPO decreased bone development and maintenance. Ossicle formation of bone marrow stromal cell transplants showed that EPO directly regulates the balance between osteogenesis and adipogenesis. Therefore, during development, endogenous EPO contributes to normal bone development and in maintaining the balance between osteogenesis and adipogenesis in bone marrow stromal cells, while EPO treatment in mice increased erythropoiesis, promoted bone loss, decreased bone marrow adipogenesis, and increased osteoclast activity. These observations in mouse models suggest that the most prevalent use of EPO to treat anemia associated with chronic kidney disease may compromise bone health and increase fracture risk, especially at a high dose.
Collapse
Affiliation(s)
- Sukanya Suresh
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jeeyoung Lee
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Constance Tom Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
15
|
Rodríguez LR, Lapeña T, Calap-Quintana P, Moltó MD, Gonzalez-Cabo P, Navarro Langa JA. Antioxidant Therapies and Oxidative Stress in Friedreich´s Ataxia: The Right Path or Just a Diversion? Antioxidants (Basel) 2020; 9:E664. [PMID: 32722309 PMCID: PMC7465446 DOI: 10.3390/antiox9080664] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022] Open
Abstract
Friedreich´s ataxia is the commonest autosomal recessive ataxia among population of European descent. Despite the huge advances performed in the last decades, a cure still remains elusive. One of the most studied hallmarks of the disease is the increased production of oxidative stress markers in patients and models. This feature has been the motivation to develop treatments that aim to counteract such boost of free radicals and to enhance the production of antioxidant defenses. In this work, we present and critically review those "antioxidant" drugs that went beyond the disease´s models and were approved for its application in clinical trials. The evaluation of these trials highlights some crucial aspects of the FRDA research. On the one hand, the analysis contributes to elucidate whether oxidative stress plays a central role or whether it is only an epiphenomenon. On the other hand, it comments on some limitations in the current trials that complicate the analysis and interpretation of their outcome. We also include some suggestions that will be interesting to implement in future studies and clinical trials.
Collapse
Affiliation(s)
- Laura R. Rodríguez
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (L.R.R.); (T.L.); (P.C.-Q.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
| | - Tamara Lapeña
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (L.R.R.); (T.L.); (P.C.-Q.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Pablo Calap-Quintana
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (L.R.R.); (T.L.); (P.C.-Q.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - María Dolores Moltó
- Department of Genetics, Universitat de València-INCLIVA, 46100 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 46100 Valencia, Spain
| | - Pilar Gonzalez-Cabo
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (L.R.R.); (T.L.); (P.C.-Q.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | | |
Collapse
|
16
|
Corben LA, Yiu EM, Tai G, Milne SC, Lynch B, Delatycki MB. Probing the multifactorial source of hand dysfunction in Friedreich ataxia. J Clin Neurosci 2019; 64:71-76. [DOI: 10.1016/j.jocn.2019.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/22/2019] [Accepted: 04/12/2019] [Indexed: 11/29/2022]
|
17
|
Boesch S, Indelicato E. Erythropoietin and Friedreich Ataxia: Time for a Reappraisal? Front Neurosci 2019; 13:386. [PMID: 31105516 PMCID: PMC6491891 DOI: 10.3389/fnins.2019.00386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/04/2019] [Indexed: 12/24/2022] Open
Abstract
Friedreich ataxia (FRDA) is a rare neurological disorder due to deficiency of the mitochondrial protein frataxin. Frataxin deficiency results in impaired mitochondrial function and iron deposition in affected tissues. Erythropoietin (EPO) is a cytokine which was mostly known as a key regulator of erythropoiesis until cumulative evidence showed additional neurotrophic and neuroprotective properties. These features offered the rationale for advancement of EPO in clinical trials in different neurological disorders in the past years, including FRDA. Several mechanisms of action of EPO may be beneficial in FRDA. First of all, EPO exposure results in frataxin upregulation in vitro and in vivo. By promoting erythropoiesis, EPO influences iron metabolism and induces shifts in iron pool which may ameliorate conditions of free iron excess and iron accumulation. Furthermore, EPO signaling is crucial for mitochondrial gene activation and mitochondrial biogenesis. Up to date nine clinical trials investigated the effects of EPO and derivatives in FRDA. The majority of these studies had a proof-of-concept design. Considering the natural history of FRDA, all of them were too short in duration and not powered for clinical changes. However, these studies addressed significant issues in the treatment with EPO, such as (1) the challenge of the dose finding, (2) stability of frataxin up-regulation, (3) continuous versus intermittent stimulation with EPO/regimen, or (4) tissue changes after EPO exposure in humans in vivo (muscle biopsy, brain imaging). Despite several clinical trials in the past, no treatment is available for the treatment of FRDA. Current lines of research focus on gene therapy, frataxin replacement strategies and on regulation of key metabolic checkpoints such as NrF2. Due to potential crosstalk with all these mechanisms, interventions on the EPO pathway still represent a valuable research field. The recent development of small EPO mimetics which maintain cytoprotective properties without erythropoietic action may open a new era in EPO research for the treatment of FRDA.
Collapse
Affiliation(s)
- Sylvia Boesch
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
18
|
Roy AR, Ahmed A, DiStefano PV, Chi L, Khyzha N, Galjart N, Wilson MD, Fish JE, Delgado-Olguín P. The transcriptional regulator CCCTC-binding factor limits oxidative stress in endothelial cells. J Biol Chem 2018; 293:8449-8461. [PMID: 29610276 PMCID: PMC5986204 DOI: 10.1074/jbc.m117.814699] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 03/28/2018] [Indexed: 12/22/2022] Open
Abstract
The CCCTC-binding factor (CTCF) is a versatile transcriptional regulator required for embryogenesis, but its function in vascular development or in diseases with a vascular component is poorly understood. Here, we found that endothelial Ctcf is essential for mouse vascular development and limits accumulation of reactive oxygen species (ROS). Conditional knockout of Ctcf in endothelial progenitors and their descendants affected embryonic growth, and caused lethality at embryonic day 10.5 because of defective yolk sac and placental vascular development. Analysis of global gene expression revealed Frataxin (Fxn), the gene mutated in Friedreich's ataxia (FRDA), as the most strongly down-regulated gene in Ctcf-deficient placental endothelial cells. Moreover, in vitro reporter assays showed that Ctcf activates the Fxn promoter in endothelial cells. ROS are known to accumulate in the endothelium of FRDA patients. Importantly, Ctcf deficiency induced ROS-mediated DNA damage in endothelial cells in vitro, and in placental endothelium in vivo Taken together, our findings indicate that Ctcf promotes vascular development and limits oxidative stress in endothelial cells. These results reveal a function for Ctcf in vascular development, and suggest a potential mechanism for endothelial dysfunction in FRDA.
Collapse
Affiliation(s)
- Anna R Roy
- From the Translational Medicine Research Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Abdalla Ahmed
- From the Translational Medicine Research Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Peter V DiStefano
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Lijun Chi
- From the Translational Medicine Research Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Nadiya Khyzha
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Niels Galjart
- Department of Cell Biology and Genetics, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Michael D Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Genetics and Genome Biology Research Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada, and
- Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario M5S 3H2, Canada
| | - Paul Delgado-Olguín
- From the Translational Medicine Research Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada,
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario M5S 3H2, Canada
| |
Collapse
|
19
|
Edenharter O, Schneuwly S, Navarro JA. Mitofusin-Dependent ER Stress Triggers Glial Dysfunction and Nervous System Degeneration in a Drosophila Model of Friedreich's Ataxia. Front Mol Neurosci 2018; 11:38. [PMID: 29563863 PMCID: PMC5845754 DOI: 10.3389/fnmol.2018.00038] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/29/2018] [Indexed: 11/13/2022] Open
Abstract
Friedreich's ataxia (FRDA) is the most important recessive ataxia in the Caucasian population. It is caused by a deficit of the mitochondrial protein frataxin. Despite its pivotal effect on biosynthesis of iron-sulfur clusters and mitochondrial energy production, little is known about the influence of frataxin depletion on homeostasis of the cellular mitochondrial network. We have carried out a forward genetic screen to analyze genetic interactions between genes controlling mitochondrial homeostasis and Drosophila frataxin. Our screen has identified silencing of Drosophila mitofusin (Marf) as a suppressor of FRDA phenotypes in glia. Drosophila Marf is known to play crucial roles in mitochondrial fusion, mitochondrial degradation and in the interface between mitochondria and endoplasmic reticulum (ER). Thus, we have analyzed the effects of frataxin knockdown on mitochondrial morphology, mitophagy and ER function in our fly FRDA model using different histological and molecular markers such as tetramethylrhodamine, ethyl ester (TMRE), mitochondria-targeted GFP (mitoGFP), p62, ATG8a, LAMP1, Xbp1 and BiP/GRP78. Furthermore, we have generated the first Drosophila transgenic line containing the mtRosella construct under the UAS control to study the progression of the mitophagy process in vivo. Our results indicated that frataxin-deficiency had a small impact on mitochondrial morphology but enhanced mitochondrial clearance and altered the ER stress response in Drosophila. Remarkably, we demonstrate that downregulation of Marf suppresses ER stress in frataxin-deficient cells and this is sufficient to improve locomotor dysfunction, brain degeneration and lipid dyshomeostasis in our FRDA model. In agreement, chemical reduction of ER stress by means of two different compounds was sufficient to ameliorate the effects of frataxin deficiency in three different fly FRDA models. Altogether, our results strongly suggest that the protection mediated by Marf knockdown in glia is mainly linked to its role in the mitochondrial-ER tethering and not to mitochondrial dynamics or mitochondrial degradation and that ER stress is a novel and pivotal player in the progression and etiology of FRDA. This work might define a new pathological mechanism in FRDA, linking mitochondrial dysfunction due to frataxin deficiency and mitofusin-mediated ER stress, which might be responsible for characteristic cellular features of the disease and also suggests ER stress as a therapeutic target.
Collapse
Affiliation(s)
- Oliver Edenharter
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Stephan Schneuwly
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Juan A. Navarro
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
20
|
Ostrowski D, Heinrich R. Alternative Erythropoietin Receptors in the Nervous System. J Clin Med 2018; 7:E24. [PMID: 29393890 PMCID: PMC5852440 DOI: 10.3390/jcm7020024] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 12/18/2022] Open
Abstract
In addition to its regulatory function in the formation of red blood cells (erythropoiesis) in vertebrates, Erythropoietin (Epo) contributes to beneficial functions in a variety of non-hematopoietic tissues including the nervous system. Epo protects cells from apoptosis, reduces inflammatory responses and supports re-establishment of compromised functions by stimulating proliferation, migration and differentiation to compensate for lost or injured cells. Similar neuroprotective and regenerative functions of Epo have been described in the nervous systems of both vertebrates and invertebrates, indicating that tissue-protective Epo-like signaling has evolved prior to its erythropoietic function in the vertebrate lineage. Epo mediates its erythropoietic function through a homodimeric Epo receptor (EpoR) that is also widely expressed in the nervous system. However, identification of neuroprotective but non-erythropoietic Epo splice variants and Epo derivatives indicated the existence of other types of Epo receptors. In this review, we summarize evidence for potential Epo receptors that might mediate Epo's tissue-protective function in non-hematopoietic tissue, with focus on the nervous system. In particular, besides EpoR, we discuss three other potential neuroprotective Epo receptors: (1) a heteroreceptor consisting of EpoR and common beta receptor (βcR), (2) the Ephrin (Eph) B4 receptor and (3) the human orphan cytokine receptor-like factor 3 (CRLF3).
Collapse
Affiliation(s)
- Daniela Ostrowski
- Department of Biology, Truman State University, Kirksville, MO 63501, USA.
| | - Ralf Heinrich
- Department of Cellular Neurobiology, Institute for Zoology, Georg-August-University Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
21
|
Legati A, Reyes A, Ceccatelli Berti C, Stehling O, Marchet S, Lamperti C, Ferrari A, Robinson AJ, Mühlenhoff U, Lill R, Zeviani M, Goffrini P, Ghezzi D. A novel de novo dominant mutation in ISCU associated with mitochondrial myopathy. J Med Genet 2017; 54:815-824. [PMID: 29079705 PMCID: PMC5740555 DOI: 10.1136/jmedgenet-2017-104822] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/16/2017] [Accepted: 08/22/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Hereditary myopathy with lactic acidosis and myopathy with deficiency of succinate dehydrogenase and aconitase are variants of a recessive disorder characterised by childhood-onset early fatigue, dyspnoea and palpitations on trivial exercise. The disease is non-progressive, but life-threatening episodes of widespread weakness, metabolic acidosis and rhabdomyolysis may occur. So far, this disease has been molecularly defined only in Swedish patients, all homozygous for a deep intronic splicing affecting mutation in ISCU encoding a scaffold protein for the assembly of iron-sulfur (Fe-S) clusters. A single Scandinavian family was identified with a different mutation, a missense change in compound heterozygosity with the common intronic mutation. The aim of the study was to identify the genetic defect in our proband. METHODS A next-generation sequencing (NGS) approach was carried out on an Italian male who presented in childhood with ptosis, severe muscle weakness and exercise intolerance. His disease was slowly progressive, with partial recovery between episodes. Patient's specimens and yeast models were investigated. RESULTS Histochemical and biochemical analyses on muscle biopsy showed multiple defects affecting mitochondrial respiratory chain complexes. We identified a single heterozygous mutation p.Gly96Val in ISCU, which was absent in DNA from his parents indicating a possible de novo dominant effect in the patient. Patient fibroblasts showed normal levels of ISCU protein and a few variably affected Fe-S cluster-dependent enzymes. Yeast studies confirmed both pathogenicity and dominance of the identified missense mutation. CONCLUSION We describe the first heterozygous dominant mutation in ISCU which results in a phenotype reminiscent of the recessive disease previously reported.
Collapse
Affiliation(s)
- Andrea Legati
- Molecular Neurogenetics Unit, Foundation IRCCS Neurological Institute Besta, Milan, Italy
| | - Aurelio Reyes
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Camilla Ceccatelli Berti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Oliver Stehling
- Department of Medicine, Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg, Germany
| | - Silvia Marchet
- Molecular Neurogenetics Unit, Foundation IRCCS Neurological Institute Besta, Milan, Italy
| | - Costanza Lamperti
- Molecular Neurogenetics Unit, Foundation IRCCS Neurological Institute Besta, Milan, Italy
| | - Alberto Ferrari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Alan J Robinson
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Ulrich Mühlenhoff
- Department of Medicine, Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg, Germany
| | - Roland Lill
- Department of Medicine, Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg, Germany,Unit of Metabolism, LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Marburg, Germany
| | - Massimo Zeviani
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Paola Goffrini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Daniele Ghezzi
- Molecular Neurogenetics Unit, Foundation IRCCS Neurological Institute Besta, Milan, Italy
| |
Collapse
|
22
|
Miller JL, Rai M, Frigon NL, Pandolfo M, Punnonen J, Spencer JR. Erythropoietin and small molecule agonists of the tissue-protective erythropoietin receptor increase FXN expression in neuronal cells in vitro and in Fxn-deficient KIKO mice in vivo. Neuropharmacology 2017; 123:34-45. [PMID: 28504123 DOI: 10.1016/j.neuropharm.2017.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 12/19/2022]
Abstract
Friedreich's ataxia (FA) is a progressive neurodegenerative disease caused by reduced levels of the mitochondrial protein frataxin (FXN). Recombinant human erythropoietin (rhEPO) increased FXN protein in vitro and in early clinical studies, while no published reports evaluate rhEPO in animal models of FA. STS-E412 and STS-E424 are novel small molecule agonists of the tissue-protective, but not the erythropoietic EPO receptor. We find that rhEPO, STS-E412 and STS-E424 increase FXN expression in vitro and in vivo. RhEPO, STS-E412 and STS-E424 increase FXN by up to 2-fold in primary human cortical cells and in retinoic-acid differentiated murine P19 cells. In primary human cortical cells, the increase in FXN protein was accompanied by an increase in FXN mRNA, detectable within 4 h. RhEPO and low nanomolar concentrations of STS-E412 and STS-E424 also increase FXN in normal and FA patient-derived PBMC by 20%-40% within 24 h, an effect that was comparable to that by HDAC inhibitor 4b. In vivo, STS-E412 increased Fxn mRNA and protein in wild-type C57BL6/j mice. RhEPO, STS-E412, and STS-E424 increase FXN expression in the heart of FXN-deficient KIKO mice. In contrast, FXN expression in the brains of KIKO mice increased following treatment with STS-E412 and STS-E424, but not following treatment with rhEPO. Unexpectedly, rhEPO-treated KIKO mice developed severe splenomegaly, while no splenomegaly was observed in STS-E412- or STS-E424-treated mice. RhEPO, STS-E412 and STS-E424 upregulate FXN expression in vitro at equal efficacy, however, the effects of the small molecules on FXN expression in the CNS are superior to rhEPO in vivo.
Collapse
Affiliation(s)
- James L Miller
- STATegics, Inc., 428 Oakmead Pkwy, Sunnyvale, CA 94085, USA.
| | - Myriam Rai
- Université Libre de Bruxelles, Campus Erasme, CP601, Route de Lennik 808, 1070 Bruxelles, Belgium
| | | | - Massimo Pandolfo
- Université Libre de Bruxelles, Campus Erasme, CP601, Route de Lennik 808, 1070 Bruxelles, Belgium
| | - Juha Punnonen
- STATegics, Inc., 428 Oakmead Pkwy, Sunnyvale, CA 94085, USA
| | | |
Collapse
|
23
|
Lamon S, Zacharewicz E, Arentson-Lantz E, Gatta PAD, Ghobrial L, Gerlinger-Romero F, Garnham A, Paddon-Jones D, Russell AP. Erythropoietin Does Not Enhance Skeletal Muscle Protein Synthesis Following Exercise in Young and Older Adults. Front Physiol 2016; 7:292. [PMID: 27458387 PMCID: PMC4937030 DOI: 10.3389/fphys.2016.00292] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/27/2016] [Indexed: 01/07/2023] Open
Abstract
Purpose: Erythropoietin (EPO) is a renal cytokine that is primarily involved in hematopoiesis while also playing a role in non-hematopoietic tissues expressing the EPO-receptor (EPOR). The EPOR is present in human skeletal muscle. In mouse skeletal muscle, EPO stimulation can activate the AKT serine/threonine kinase 1 (AKT) signaling pathway, the main positive regulator of muscle protein synthesis. We hypothesized that a single intravenous EPO injection combined with acute resistance exercise would have a synergistic effect on skeletal muscle protein synthesis via activation of the AKT pathway. Methods: Ten young (24.2 ± 0.9 years) and 10 older (66.6 ± 1.1 years) healthy subjects received a primed, constant infusion of [ring-13C6] L-phenylalanine and a single injection of 10,000 IU epoetin-beta or placebo in a double-blind randomized, cross-over design. 2 h after the injection, the subjects completed an acute bout of leg extension resistance exercise to stimulate skeletal muscle protein synthesis. Results: Significant interaction effects in the phosphorylation levels of the members of the AKT signaling pathway indicated a differential activation of protein synthesis signaling in older subjects when compared to young subjects. However, EPO offered no synergistic effect on vastus lateralis mixed muscle protein synthesis rate in young or older subjects. Conclusions: Despite its ability to activate the AKT pathway in skeletal muscle, an acute EPO injection had no additive or synergistic effect on the exercise-induced activation of muscle protein synthesis or muscle protein synthesis signaling pathways.
Collapse
Affiliation(s)
- Séverine Lamon
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University Geelong, VIC, Australia
| | - Evelyn Zacharewicz
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University Geelong, VIC, Australia
| | - Emily Arentson-Lantz
- Department of Nutrition and Metabolism, University of Texas Medical Branch Galveston, TX, USA
| | - Paul A Della Gatta
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University Geelong, VIC, Australia
| | - Lobna Ghobrial
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University Geelong, VIC, Australia
| | - Frederico Gerlinger-Romero
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University Geelong, VIC, Australia
| | - Andrew Garnham
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University Geelong, VIC, Australia
| | - Douglas Paddon-Jones
- Department of Nutrition and Metabolism, University of Texas Medical Branch Galveston, TX, USA
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University Geelong, VIC, Australia
| |
Collapse
|
24
|
Milne SC, Corben LA, Yiu E, Delatycki MB, Georgiou-Karistianis N. Gastrocnemius and soleus spasticity and muscle length in Friedreich's ataxia. J Clin Neurosci 2016; 29:29-34. [PMID: 27021226 DOI: 10.1016/j.jocn.2016.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 01/17/2016] [Indexed: 10/22/2022]
Abstract
Lower limb spasticity compromises the independence of people with Friedreich's ataxia (FRDA). This study sought to examine lower limb spasticity in FRDA in order to offer new insight as to the best approach and timing of spasticity management. Gastrocnemius and soleus spasticity and muscle length were measured by the Modified Tardieu Scale (MTS) in 31 participants with typical and late-onset FRDA. Relationships between the MTS and the Friedreich Ataxia Rating Scale (FARS), Functional Independence Measure (FIM), and disease duration were analysed. Differences between ambulant (n=18) and non-ambulant (n=13) participants were also examined. All participants had spasticity in at least one muscle, and 38.9% of ambulant and 69.2% of non-ambulant participants had contracture in one or both of their gastrocnemius muscles. Significant negative correlations were found between both gastrocnemius and soleus angle of catch and the FARS score. The FIM score also demonstrated significant correlations with gastrocnemius muscle length and angle of catch. Gastrocnemius and soleus spasticity and contracture is apparent in people with FRDA. Spasticity is evident early in the disease and in ambulant participants. Management of spasticity and reduced muscle length should be considered in people with FRDA at disease onset to optimise function.
Collapse
Affiliation(s)
- Sarah C Milne
- Physiotherapy Department, Monash Health, Cheltenham, VIC, Australia; School of Psychological Sciences, Monash University, Clayton, VIC, Australia; Bruce Lefroy Centre, Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia
| | - Louise A Corben
- School of Psychological Sciences, Monash University, Clayton, VIC, Australia; Bruce Lefroy Centre, Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Monash Medical Centre, Monash Health, 246 Clayton Road, Clayton, VIC, Australia.
| | - Eppie Yiu
- Bruce Lefroy Centre, Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Neurology, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Martin B Delatycki
- School of Psychological Sciences, Monash University, Clayton, VIC, Australia; Bruce Lefroy Centre, Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Clinical Genetics, Austin Health, Heidelberg, VIC, Australia
| | | |
Collapse
|
25
|
Saccà F, Puorro G, Marsili A, Antenora A, Pane C, Casali C, Marcotulli C, Defazio G, Liuzzi D, Tatillo C, Cambriglia DM, Schiano di Cola G, Giuliani L, Guardasole V, Salzano A, Ruvolo A, De Rosa A, Cittadini A, De Michele G, Filla A. Long-term effect of epoetin alfa on clinical and biochemical markers in friedreich ataxia. Mov Disord 2016; 31:734-41. [DOI: 10.1002/mds.26552] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/03/2015] [Accepted: 12/23/2015] [Indexed: 01/15/2023] Open
Affiliation(s)
- Francesco Saccà
- Department of Neurosciences, Odontostomatological and Reproductive Sciences; University Federico II; Naples Italy
| | - Giorgia Puorro
- Department of Neurosciences, Odontostomatological and Reproductive Sciences; University Federico II; Naples Italy
| | - Angela Marsili
- Department of Neurosciences, Odontostomatological and Reproductive Sciences; University Federico II; Naples Italy
| | - Antonella Antenora
- Department of Neurosciences, Odontostomatological and Reproductive Sciences; University Federico II; Naples Italy
| | - Chiara Pane
- Department of Neurosciences, Odontostomatological and Reproductive Sciences; University Federico II; Naples Italy
| | - Carlo Casali
- Department of Medical-Surgical Sciences and Biotechnologies; University of Rome; Rome Italy
| | - Christian Marcotulli
- Department of Medical-Surgical Sciences and Biotechnologies; University of Rome; Rome Italy
| | - Giovanni Defazio
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs; University of Bari; Bari Italy
| | - Daniele Liuzzi
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs; University of Bari; Bari Italy
| | - Chiara Tatillo
- Department of Neurosciences, Odontostomatological and Reproductive Sciences; University Federico II; Naples Italy
| | - Donata Maria Cambriglia
- Department of Neurosciences, Odontostomatological and Reproductive Sciences; University Federico II; Naples Italy
| | - Giuseppe Schiano di Cola
- Department of Neurosciences, Odontostomatological and Reproductive Sciences; University Federico II; Naples Italy
| | - Luigi Giuliani
- Department of Neurosciences, Odontostomatological and Reproductive Sciences; University Federico II; Naples Italy
| | - Vincenzo Guardasole
- Department of Translational Medical Sciences; University Federico II; Naples Italy
| | - Andrea Salzano
- Department of Translational Medical Sciences; University Federico II; Naples Italy
| | - Antonio Ruvolo
- Department of Translational Medical Sciences; University Federico II; Naples Italy
| | - Anna De Rosa
- Department of Neurosciences, Odontostomatological and Reproductive Sciences; University Federico II; Naples Italy
| | - Antonio Cittadini
- Department of Translational Medical Sciences; University Federico II; Naples Italy
| | - Giuseppe De Michele
- Department of Neurosciences, Odontostomatological and Reproductive Sciences; University Federico II; Naples Italy
| | - Alessandro Filla
- Department of Neurosciences, Odontostomatological and Reproductive Sciences; University Federico II; Naples Italy
| |
Collapse
|
26
|
Erythropoietin and the heart: physiological effects and the therapeutic perspective. Int J Cardiol 2013; 171:116-25. [PMID: 24377712 DOI: 10.1016/j.ijcard.2013.12.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 10/08/2013] [Accepted: 12/10/2013] [Indexed: 01/22/2023]
Abstract
Erythropoietin (Epo) has been thought to act exclusively on erythroid progenitor cells. The identification of Epo receptor (EpoR) in non-haematopoietic cells and tissues including neurons, astrocytes, microglia, immune cells, cancer cell lines, endothelial cells, bone marrow stromal cells, as well as cells of myocardium, reproductive system, gastrointestinal tract, kidney, pancreas and skeletal muscle indicates that Epo has pleiotropic actions. Epo shows signals through protein kinases, anti-apoptotic proteins and transcription factors. In light of interest of administering recombinant human erythropoietin (rhEpo) and its analogues for limiting infarct size and left ventricular (LV) remodelling after acute myocardial infarction (AMI) in humans, the foremost studies utilising rhEpo are reviewed. The putative mechanisms involved in Epo-induced cardioprotection are related to the antiapoptotic, anti-inflammatory and angiogenic effects of Epo. Thus, cardioprotective potentials of rhEpo are reviewed in this article by focusing on clinical applicability. An overview of non-haematopoietic Epo analogues, which are a reliable alternative to the classic EpoR agonists and may prevent undesired side effects, is also provided.
Collapse
|
27
|
Mariotti C, Nachbauer W, Panzeri M, Poewe W, Taroni F, Boesch S. Erythropoietin in Friedreich ataxia. J Neurochem 2013; 126 Suppl 1:80-7. [PMID: 23859343 DOI: 10.1111/jnc.12301] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 03/28/2013] [Accepted: 04/02/2013] [Indexed: 12/11/2022]
Abstract
In Friedreich ataxia (FRDA), several candidate substances including erythropoietin (EPO) focus on increase in the amount of frataxin and aim to counteract the consequences of frataxin deficiency. Evidence for recombinant human erythropoietin (rHuEPO) in FRDA is based on in vitro studies using mouse neuronal cell lines, human fibroblasts, cardiomyocytes, and primary lymphocytes from FRDA patients or control subjects which showed a dose-dependent increase of frataxin after incubation with different erythropoietins. The mechanism by which EPO induces frataxin increase remains to be elucidated, but may involve post-transcriptional and/or post-translational modifications of frataxin or alterations in frataxin half-life and metabolism. In vivo data on rHuEPO's ability to increase frataxin in FRDA patients is contradictory as studies on the effect of EPO derivatives in FRDA differ in treatment regimen, sample size, and duration. Open-label studies indicate for sustained frataxin increase, decrease of oxidative stress, and clinical improvement in FRDA patients after administration of rHuEPO. Two randomized controlled studies found acceptable safety and tolerability of EPO derivatives in FRDA. Secondary outcome measures, however, such as frataxin up-regulation and clinical efficacy were not met. This review will focus on (i) pre-clinical work on erythropoietins in FRDA and (ii) clinical studies in FRDA patients exposed to erythropoietins.
Collapse
Affiliation(s)
- Caterina Mariotti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, IRCCS-Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Nachbauer W, Boesch S, Schneider R, Eigentler A, Wanschitz J, Poewe W, Schocke M. Bioenergetics of the calf muscle in Friedreich ataxia patients measured by 31P-MRS before and after treatment with recombinant human erythropoietin. PLoS One 2013; 8:e69229. [PMID: 23922695 PMCID: PMC3726701 DOI: 10.1371/journal.pone.0069229] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/06/2013] [Indexed: 12/15/2022] Open
Abstract
Friedreich ataxia (FRDA) is caused by a GAA repeat expansion in the FXN gene leading to reduced expression of the mitochondrial protein frataxin. Recombinant human erythropoietin (rhuEPO) is suggested to increase frataxin levels, alter mitochondrial function and improve clinical scores in FRDA patients. Aim of the present pilot study was to investigate mitochondrial metabolism of skeletal muscle tissue in FRDA patients and examine effects of rhuEPO administration by phosphorus 31 magnetic resonance spectroscopy (31P MRS). Seven genetically confirmed FRDA patients underwent 31P MRS of the calf muscles using a rest-exercise-recovery protocol before and after receiving 3000 IU of rhuEPO for eight weeks. FRDA patients showed more rapid phosphocreatine (PCr) depletion and increased accumulation of inorganic phosphate (Pi) during incremental exercise as compared to controls. After maximal exhaustive exercise prolonged regeneration of PCR and slowed decline in Pi can be seen in FRDA. PCr regeneration as hallmark of mitochondrial ATP production revealed correlation to activity of complex II/III of the respiratory chain and to demographic values. PCr and Pi kinetics were not influenced by rhuEPO administration. Our results confirm mitochondrial dysfunction and exercise intolerance due to impaired oxidative phosphorylation in skeletal muscle tissue of FRDA patients. MRS did not show improved mitochondrial bioenergetics after eight weeks of rhuEPO exposition in skeletal muscle tissue of FRDA patients. Trial Registration EU Clinical Trials Register2008-000040-13
Collapse
Affiliation(s)
- Wolfgang Nachbauer
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Sylvia Boesch
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
- * E-mail:
| | - Rainer Schneider
- Department of Biochemistry, Leopold-Franzens-University Innsbruck, Innsbruck, Austria
| | - Andreas Eigentler
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Julia Wanschitz
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Michael Schocke
- Department of Radiology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
29
|
Lamon S, Russell AP. The role and regulation of erythropoietin (EPO) and its receptor in skeletal muscle: how much do we really know? Front Physiol 2013; 4:176. [PMID: 23874302 PMCID: PMC3710958 DOI: 10.3389/fphys.2013.00176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/22/2013] [Indexed: 12/22/2022] Open
Abstract
Erythropoietin (EPO) primarily activates erythroid cell proliferation and growth and is active in several types of non-hematopoietic cells via its interaction with the EPO-receptor (EPO-R). This review focuses on the role of EPO in skeletal muscle. The EPO-R is expressed in skeletal muscle cells and EPO may promote myoblast differentiation and survival via the activation of the same signaling cascades as in hematopoietic cells, such as STAT5, MAPK and Akt. Inconsistent results exist with respect to the detection of the EPO-R mRNA and protein in muscle cells, tissue and across species and the use of non-specific EPO-R antibodies contributes to this problem. Additionally, the inability to reproducibly detect an activation of the known EPO-induced signaling pathways in skeletal muscle questions the functionality of the EPO-R in muscle in vivo. These equivocal findings make it difficult to distinguish between a direct effect of EPO on skeletal muscle, via the activation of its receptor, and an indirect effect resulting from a better oxygen supply to the muscle. Consequently, the precise role of EPO in skeletal muscle and its regulatory mechanism/s remain to be elucidated. Further studies are required to comprehensively establish the importance of EPO and its function in skeletal muscle health.
Collapse
Affiliation(s)
- Séverine Lamon
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University Burwood, VIC, Australia
| | | |
Collapse
|