1
|
Raghupathi R, Prasad R, Fox D, Huh JW. Repeated mild closed head injury in neonatal rats results in sustained cognitive deficits associated with chronic microglial activation and neurodegeneration. J Neuropathol Exp Neurol 2023; 82:707-721. [PMID: 37390808 PMCID: PMC10357947 DOI: 10.1093/jnen/nlad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023] Open
Abstract
Abusive head trauma in infants is a consequence of multiple episodes of abuse and results in axonal injury, brain atrophy, and chronic cognitive deficits. Anesthetized 11-day-old rats, neurologically equivalent to infants, were subjected to 1 impact/day to the intact skull for 3 successive days. Repeated, but not single impact(s) resulted in spatial learning deficits (p < 0.05 compared to sham-injured animals) up to 5 weeks postinjury. In the first week following single or repetitive brain injury, axonal and neuronal degeneration, and microglial activation were observed in the cortex, white matter, thalamus, and subiculum; the extent of the histopathologic damage was significantly greater in the repetitive-injured animals compared to single-injured animals. At 40 days postinjury, loss of cortical, white matter and hippocampal tissue was evident only in the repetitive-injured animals, along with evidence of microglial activation in the white matter tracts and thalamus. Axonal injury and neurodegeneration were evident in the thalamus up to 40 days postinjury in the repetitive-injured rats. These data demonstrate that while single closed head injury in the neonate rat is associated with pathologic alterations in the acute post-traumatic period, repetitive closed head injury results in sustained behavioral and pathologic deficits reminiscent of infants with abusive head trauma.
Collapse
Affiliation(s)
- Ramesh Raghupathi
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Rupal Prasad
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Douglas Fox
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Jimmy W Huh
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Nikam RM, Kecskemethy HH, Kandula VVR, Averill LW, Langhans SA, Yue X. Abusive Head Trauma Animal Models: Focus on Biomarkers. Int J Mol Sci 2023; 24:4463. [PMID: 36901893 PMCID: PMC10003453 DOI: 10.3390/ijms24054463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
Abusive head trauma (AHT) is a serious traumatic brain injury and the leading cause of death in children younger than 2 years. The development of experimental animal models to simulate clinical AHT cases is challenging. Several animal models have been designed to mimic the pathophysiological and behavioral changes in pediatric AHT, ranging from lissencephalic rodents to gyrencephalic piglets, lambs, and non-human primates. These models can provide helpful information for AHT, but many studies utilizing them lack consistent and rigorous characterization of brain changes and have low reproducibility of the inflicted trauma. Clinical translatability of animal models is also limited due to significant structural differences between developing infant human brains and the brains of animals, and an insufficient ability to mimic the effects of long-term degenerative diseases and to model how secondary injuries impact the development of the brain in children. Nevertheless, animal models can provide clues on biochemical effectors that mediate secondary brain injury after AHT including neuroinflammation, excitotoxicity, reactive oxygen toxicity, axonal damage, and neuronal death. They also allow for investigation of the interdependency of injured neurons and analysis of the cell types involved in neuronal degeneration and malfunction. This review first focuses on the clinical challenges in diagnosing AHT and describes various biomarkers in clinical AHT cases. Then typical preclinical biomarkers such as microglia and astrocytes, reactive oxygen species, and activated N-methyl-D-aspartate receptors in AHT are described, and the value and limitations of animal models in preclinical drug discovery for AHT are discussed.
Collapse
Affiliation(s)
- Rahul M. Nikam
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Radiology, Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Heidi H. Kecskemethy
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Radiology, Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Vinay V. R. Kandula
- Department of Radiology, Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Lauren W. Averill
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Radiology, Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Sigrid A. Langhans
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Wilmington, DE 19803, USA
- Nemours Biomedical Research, Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Xuyi Yue
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Radiology, Nemours Children’s Health, Wilmington, DE 19803, USA
| |
Collapse
|
3
|
Radomski KL, Zi X, Lischka FW, Noble MD, Galdzicki Z, Armstrong RC. Acute axon damage and demyelination are mitigated by 4-aminopyridine (4-AP) therapy after experimental traumatic brain injury. Acta Neuropathol Commun 2022; 10:67. [PMID: 35501931 PMCID: PMC9059462 DOI: 10.1186/s40478-022-01366-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
Damage to long axons in white matter tracts is a major pathology in closed head traumatic brain injury (TBI). Acute TBI treatments are needed that protect against axon damage and promote recovery of axon function to prevent long term symptoms and neurodegeneration. Our prior characterization of axon damage and demyelination after TBI led us to examine repurposing of 4-aminopyridine (4-AP), an FDA-approved inhibitor of voltage-gated potassium (Kv) channels. 4-AP is currently indicated to provide symptomatic relief for patients with chronic stage multiple sclerosis, which involves axon damage and demyelination. We tested clinically relevant dosage of 4-AP as an acute treatment for experimental TBI and found multiple benefits in corpus callosum axons. This randomized, controlled pre-clinical study focused on the first week after TBI, when axons are particularly vulnerable. 4-AP treatment initiated one day post-injury dramatically reduced axon damage detected by intra-axonal fluorescence accumulations in Thy1-YFP mice of both sexes. Detailed electron microscopy in C57BL/6 mice showed that 4-AP reduced pathological features of mitochondrial swelling, cytoskeletal disruption, and demyelination at 7 days post-injury. Furthermore, 4-AP improved the molecular organization of axon nodal regions by restoring disrupted paranode domains and reducing Kv1.2 channel dispersion. 4-AP treatment did not resolve deficits in action potential conduction across the corpus callosum, based on ex vivo electrophysiological recordings at 7 days post-TBI. Thus, this first study of 4-AP effects on axon damage in the acute period demonstrates a significant decrease in multiple pathological hallmarks of axon damage after experimental TBI.
Collapse
Affiliation(s)
- Kryslaine L. Radomski
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
| | - Xiaomei Zi
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
| | - Fritz W. Lischka
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
- Biomedical Instrumentation Center, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
| | - Mark D. Noble
- Department of Biomedical Genetics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Box 633, Rochester, NY 14642 USA
| | - Zygmunt Galdzicki
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
| | - Regina C. Armstrong
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
| |
Collapse
|
4
|
Motanis H, Khorasani LN, Giza CC, Harris NG. Peering into the Brain through the Retrosplenial Cortex to Assess Cognitive Function of the Injured Brain. Neurotrauma Rep 2021; 2:564-580. [PMID: 34901949 PMCID: PMC8655812 DOI: 10.1089/neur.2021.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The retrosplenial cortex (RSC) is a posterior cortical area that has been drawing increasing interest in recent years, with a growing number of studies studying its contribution to cognitive and sensory functions. From an anatomical perspective, it has been established that the RSC is extensively and often reciprocally connected with the hippocampus, neocortex, and many midbrain regions. Functionally, the RSC is an important hub of the default-mode network. This endowment, with vast anatomical and functional connections, positions the RSC to play an important role in episodic memory, spatial and contextual learning, sensory-cognitive activities, and multi-modal sensory information processing and integration. Additionally, RSC dysfunction has been reported in cases of cognitive decline, particularly in Alzheimer's disease and stroke. We review the literature to examine whether the RSC can act as a cortical marker of persistent cognitive dysfunction after traumatic brain injury (TBI). Because the RSC is easily accessible at the brain's surface using in vivo techniques, we argue that studying RSC network activity post-TBI can shed light into the mechanisms of less-accessible brain regions, such as the hippocampus. There is a fundamental gap in the TBI field about the microscale alterations occurring post-trauma, and by studying the RSC's neuronal activity at the cellular level we will be able to design better therapeutic tools. Understanding how neuronal activity and interactions produce normal and abnormal activity in the injured brain is crucial to understanding cognitive dysfunction. By using this approach, we expect to gain valuable insights to better understand brain disorders like TBI.
Collapse
Affiliation(s)
- Helen Motanis
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Laila N. Khorasani
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Christopher C. Giza
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Neil G. Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- Intellectual Development and Disabilities Research Center, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- *Address correspondence to: Neil G. Harris, PhD, Department of Neurosurgery, University of California at Los Angeles, Wasserman Building, 300 Stein Plaza, Room 551, Los Angeles, CA 90095, USA;
| |
Collapse
|
5
|
Semple BD, Raghupathi R. A Pro-social Pill? The Potential of Pharmacological Treatments to Improve Social Outcomes After Pediatric Traumatic Brain Injury. Front Neurol 2021; 12:714253. [PMID: 34489853 PMCID: PMC8417315 DOI: 10.3389/fneur.2021.714253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of injury-induced disability in young children worldwide, and social behavior impairments in this population are a significant challenge for affected patients and their families. The protracted trajectory of secondary injury processes triggered by a TBI during early life-alongside ongoing developmental maturation-offers an extended time window when therapeutic interventions may yield functional benefits. This mini-review explores the scarce but promising pre-clinical literature to date demonstrating that social behavior impairments after early life brain injuries can be modified by drug therapies. Compounds that provide broad neuroprotection, such as those targeting neuroinflammation, oxidative stress, axonal injury and/or myelination, may prevent social behavior impairments by reducing secondary neuropathology. Alternatively, targeted treatments that promote affiliative behaviors, exemplified by the neuropeptide oxytocin, may reduce the impact of social dysfunction after pediatric TBI. Complementary literature from other early life neurodevelopmental conditions such as hypoxic ischemic encephalopathy also provides avenues for future research in neurotrauma. Knowledge gaps in this emerging field are highlighted throughout, toward the goal of accelerating translational research to support optimal social functioning after a TBI during early childhood.
Collapse
Affiliation(s)
- Bridgette D Semple
- Department of Neuroscience, Monash University, Prahran, VIC, Australia.,Department of Neurology, Alfred Health, Prahran, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Ramesh Raghupathi
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
6
|
Lengel D, Sevilla C, Romm ZL, Huh JW, Raghupathi R. Stem Cell Therapy for Pediatric Traumatic Brain Injury. Front Neurol 2020; 11:601286. [PMID: 33343501 PMCID: PMC7738475 DOI: 10.3389/fneur.2020.601286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
There has been a growing interest in the potential of stem cell transplantation as therapy for pediatric brain injuries. Studies in pre-clinical models of pediatric brain injury such as Traumatic Brain Injury (TBI) and neonatal hypoxia-ischemia (HI) have contributed to our understanding of the roles of endogenous stem cells in repair processes and functional recovery following brain injury, and the effects of exogenous stem cell transplantation on recovery from brain injury. Although only a handful of studies have evaluated these effects in models of pediatric TBI, many studies have evaluated stem cell transplantation therapy in models of neonatal HI which has a considerable overlap of injury pathology with pediatric TBI. In this review, we have summarized data on the effects of stem cell treatments on histopathological and functional outcomes in models of pediatric brain injury. Importantly, we have outlined evidence supporting the potential for stem cell transplantation to mitigate pathology of pediatric TBI including neuroinflammation and white matter injury, and challenges that will need to be addressed to incorporate these therapies to improve functional outcomes following pediatric TBI.
Collapse
Affiliation(s)
- Dana Lengel
- Graduate Program in Neuroscience, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Cruz Sevilla
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Zoe L Romm
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jimmy W Huh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ramesh Raghupathi
- Graduate Program in Neuroscience, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
7
|
Hirose-Ikeda M, Chu B, Zhao P, Akil O, Escalante E, Vergnes L, Cepeda C, Espinosa-Jeffrey A. Trophic factors are essential for the survival of grafted oligodendrocyte progenitors and for neuroprotection after perinatal excitotoxicity. Neural Regen Res 2020; 15:557-568. [PMID: 31571668 PMCID: PMC6921341 DOI: 10.4103/1673-5374.266066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/26/2019] [Indexed: 12/29/2022] Open
Abstract
The consequences of neonatal white matter injury are devastating and represent a major societal problem as currently there is no cure. Prematurity, low weight birth and maternal pre-natal infection are the most frequent causes of acquired myelin deficiency in the human neonate leading to cerebral palsy and cognitive impairment. In the developing brain, oligodendrocyte (OL) maturation occurs perinatally, and immature OLs are particularly vulnerable. Cell replacement therapy is often considered a viable option to replace progenitors that die due to glutamate excitotoxicity. We previously reported directed specification and mobilization of endogenous committed and uncommitted neural progenitors by the combination of transferrin and insulin growth factor 1 (TSC1). Here, considering cell replacement and integration as therapeutic goals, we examined if OL progenitors (OLPs) grafted into the brain parenchyma of mice that were subjected to an excitotoxic insult could rescue white matter injury. For that purpose, we used a well-established model of glutamate excitotoxic injury. Four-day-old mice received a single intraparenchymal injection of the glutamate receptor agonist N-methyl-D-aspartate alone or in conjunction with TSC1 in the presence or absence of OLPs grafted into the brain parenchyma. Energetics and expression of stress proteins and OL developmental specific markers were examined. A comparison of the proteomic profile per treatment was also ascertained. We found that OLPs did not survive in the excitotoxic environment when grafted alone. In contrast, when combined with TSC1, survival and integration of grafted OLPs was observed. Further, energy metabolism in OLPs was significantly increased by N-methyl-D-aspartate and modulated by TSC1. The proteomic profile after the various treatments showed elevated ubiquitination and stress/heat shock protein 90 in response to N-methyl-D-aspartate. These changes were reversed in the presence of TSC1 and ubiquitination was decreased. The results obtained in this pre-clinical study indicate that the use of a combinatorial intervention including both trophic support and healthy OLPs constitutes a promising approach for long-term survival and successful graft integration. We established optimal conditioning of the host brain environment to promote long-term survival and integration of grafted OLPs into an inflamed neonate host brain. Experimental procedures were performed under the United States Public Health Service Guide for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care Committee at (UCLA) (ARC #1992-034-61) on July 1, 2010.
Collapse
Affiliation(s)
- Megumi Hirose-Ikeda
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Brian Chu
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Paul Zhao
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Omar Akil
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Elida Escalante
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Araceli Espinosa-Jeffrey
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Marion CM, McDaniel DP, Armstrong RC. Sarm1 deletion reduces axon damage, demyelination, and white matter atrophy after experimental traumatic brain injury. Exp Neurol 2019; 321:113040. [PMID: 31445042 DOI: 10.1016/j.expneurol.2019.113040] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/07/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022]
Abstract
Traumatic brain injury (TBI) often damages axons in white matter tracts and causes corpus callosum (CC) atrophy in chronic TBI patients. Injured axons encounter irreversible damage if transected, or alternatively may maintain continuity and subsequently either recover or degenerate. Secondary mechanisms can cause further axon damage, myelin pathology, and neuroinflammation. Molecular mechanisms regulating the progression of white matter pathology indicate potential therapeutic targets. SARM1 is essential for execution of the conserved axon death pathway. We examined white matter pathology following mild TBI with CC traumatic axonal injury in mice with Sarm1 gene deletion (Sarm1-/-). High resolution ultrastructural analysis at 3 days post-TBI revealed dramatically reduced axon damage in Sarm1-/- mice, as compared to Sarm1+/+ wild-type controls. Sarm1 deletion produced larger axons with thinner myelin, and attenuated TBI induced demyelination, i.e. myelin loss along apparently intact axons. At 6 weeks post-TBI, Sarm1-/- mice had less demyelination and thinner myelin than Sarm1+/+ mice, but axonal protection was no longer observed. We next used Thy1-YFP crosses to assess Sarm1 involvement in white matter neurodegeneration and neuroinflammation at 8 weeks post-TBI, when significant CC atrophy indicates chronic pathology. Thy1-YFP expression demonstrated continued CC axon damage yet absence of overt cortical pathology. Importantly, significant CC atrophy in Thy1-YFP/Sarm1+/+ mice was associated with reduced neurofilament immunolabeling of axons. Both effects were attenuated in Thy1-YFP/Sarm1-/- mice. Surprisingly, Thy1-YFP/Sarm1-/- mice had increased CC astrogliosis. This study demonstrates that Sarm1 inactivation reduces demyelination, and white matter atrophy after TBI, while the post-injury stage impacts when axon protection is effective.
Collapse
Affiliation(s)
- Christina M Marion
- Center for Neuroscience and Regenerative Medicine, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Program in Neuroscience, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Dennis P McDaniel
- Biomedical Instrumentation Center, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Department of Microbiology and Immunology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Regina C Armstrong
- Center for Neuroscience and Regenerative Medicine, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Department of Anatomy, Physiology and Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Program in Neuroscience, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
9
|
Huh JW, Raghupathi R. Therapeutic strategies to target acute and long-term sequelae of pediatric traumatic brain injury. Neuropharmacology 2018; 145:153-159. [PMID: 29933010 DOI: 10.1016/j.neuropharm.2018.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022]
Abstract
Pediatric traumatic brain injury (TBI) remains one of the leading causes of morbidity and mortality in children. Experimental and clinical studies demonstrate that the developmental age, the type of injury (diffuse vs. focal) and sex may play important roles in the response of the developing brain to a traumatic injury. Advancements in acute neurosurgical interventions and neurocritical care have improved and led to a decrease in mortality rates over the past decades. However, survivors are left with life-long behavioral deficits underscoring the need to better define the cellular mechanisms underlying these functional changes. A better understanding of these mechanisms some of which begin in the acute post-traumatic period may likely lead to targeted treatment strategies. Key considerations in designing pre-clinical experiments to test therapeutic strategies in pediatric TBI include the use of age-appropriate and pathologically-relevant models, functional outcomes that are tested as animals age into adolescence and beyond, sex as a biological variable and the recognition that doses and dosing strategies that have been demonstrated to be effective in animal models of adult TBI may not be effective in the developing brain. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Jimmy W Huh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ramesh Raghupathi
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Pre-clinical models in pediatric traumatic brain injury-challenges and lessons learned. Childs Nerv Syst 2017; 33:1693-1701. [PMID: 29149385 PMCID: PMC5909721 DOI: 10.1007/s00381-017-3474-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 05/30/2017] [Indexed: 12/31/2022]
Abstract
PURPOSE Despite the enormity of the problem and the lack of new therapies, research in the pre-clinical arena specifically using pediatric traumatic brain injury (TBI) models is limited. In this review, some of the key models addressing both the age spectrum of pediatric TBI and its unique injury mechanisms will be highlighted. Four topics will be addressed, namely, (1) unique facets of the developing brain important to TBI model development, (2) a description of some of the most commonly used pre-clinical models of severe pediatric TBI including work in both rodents and large animals, (3) a description of the pediatric models of mild TBI and repetitive mild TBI that are relatively new, and finally (4) a discussion of challenges, gaps, and potential future directions to further advance work in pediatric TBI models. METHODS This narrative review on the topic of pediatric TBI models was based on review of PUBMED/Medline along with a synthesis of information on key factors in pre-clinical and clinical developmental brain injury that influence TBI modeling. RESULTS In the contemporary literature, six types of models have been used in rats including weight drop, fluid percussion injury (FPI), impact acceleration, controlled cortical impact (CCI), mechanical shaking, and closed head modifications of CCI. In mice, studies are largely restricted to CCI. In large animals, FPI and rotational injury have been used in piglets and shake injury has also been used in lambs. Most of the studies have been in severe injury models, although more recently, studies have begun to explore mild and repetitive mild injuries to study concussion. CONCLUSIONS Given the emerging importance of TBI in infants and children, the morbidity and mortality that is produced, along with its purported link to the development of chronic neurodegenerative diseases, studies in these models merit greater systematic investigations along with consortium-type approaches and long-term follow-up to translate new therapies to the bedside.
Collapse
|
11
|
A Novel Approach for Studying the Physiology and Pathophysiology of Myelinated and Non-Myelinated Axons in the CNS White Matter. PLoS One 2016; 11:e0165637. [PMID: 27829055 PMCID: PMC5102346 DOI: 10.1371/journal.pone.0165637] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/14/2016] [Indexed: 11/19/2022] Open
Abstract
Advances in brain connectomics set the need for detailed knowledge of functional properties of myelinated and non-myelinated (if present) axons in specific white matter pathways. The corpus callosum (CC), a major white matter structure interconnecting brain hemispheres, is extensively used for studying CNS axonal function. Unlike another widely used CNS white matter preparation, the optic nerve where all axons are myelinated, the CC contains also a large population of non-myelinated axons, making it particularly useful for studying both types of axons. Electrophysiological studies of optic nerve use suction electrodes on nerve ends to stimulate and record compound action potentials (CAPs) that adequately represent its axonal population, whereas CC studies use microelectrodes (MEs), recording from a limited area within the CC. Here we introduce a novel robust isolated "whole" CC preparation comparable to optic nerve. Unlike ME recordings where the CC CAP peaks representing myelinated and non-myelinated axons vary broadly in size, "whole" CC CAPs show stable reproducible ratios of these two main peaks, and also reveal a third peak, suggesting a distinct group of smaller caliber non-myelinated axons. We provide detailed characterization of "whole" CC CAPs and conduction velocities of myelinated and non-myelinated axons along the rostro-caudal axis of CC body and show advantages of this preparation for comparing axonal function in wild type and dysmyelinated shiverer mice, studying the effects of temperature dependence, bath-applied drugs and ischemia modeled by oxygen-glucose deprivation. Due to the isolation from gray matter, our approach allows for studying CC axonal function without possible "contamination" by reverberating signals from gray matter. Our analysis of "whole" CC CAPs revealed higher complexity of myelinated and non-myelinated axonal populations, not noticed earlier. This preparation may have a broad range of applications as a robust model for studying myelinated and non-myelinated axons of the CNS in various experimental models.
Collapse
|
12
|
Menzel L, Kleber L, Friedrich C, Hummel R, Dangel L, Winter J, Schmitz K, Tegeder I, Schäfer MKE. Progranulin protects against exaggerated axonal injury and astrogliosis following traumatic brain injury. Glia 2016; 65:278-292. [DOI: 10.1002/glia.23091] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 10/04/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Lutz Menzel
- Department of Anesthesiology; University Medical Center, Johannes Gutenberg-University, Mainz; Germany
| | - Lisa Kleber
- Department of Anesthesiology; University Medical Center, Johannes Gutenberg-University, Mainz; Germany
| | - Carina Friedrich
- Department of Anesthesiology; University Medical Center, Johannes Gutenberg-University, Mainz; Germany
| | - Regina Hummel
- Department of Anesthesiology; University Medical Center, Johannes Gutenberg-University, Mainz; Germany
| | - Larissa Dangel
- Department of Anesthesiology; University Medical Center, Johannes Gutenberg-University, Mainz; Germany
| | - Jennifer Winter
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg-University, Mainz; Germany
- Focus Program Translational Neurosciences (FTN) of the Johannes Gutenberg-University, Mainz; Germany
| | - Katja Schmitz
- Clinical Pharmacology; Goethe-University Hospital; Frankfurt Germany
| | - Irmgard Tegeder
- Clinical Pharmacology; Goethe-University Hospital; Frankfurt Germany
| | - Michael K. E. Schäfer
- Department of Anesthesiology; University Medical Center, Johannes Gutenberg-University, Mainz; Germany
- Focus Program Translational Neurosciences (FTN) of the Johannes Gutenberg-University, Mainz; Germany
| |
Collapse
|
13
|
Osier ND, Bales JW, Pugh B, Shin S, Wyrobek J, Puccio AM, Okonkwo DO, Ren D, Alexander S, Conley YP, Dixon CE. Variation in PPP3CC Genotype Is Associated with Long-Term Recovery after Severe Brain Injury. J Neurotrauma 2016; 34:86-96. [PMID: 27225880 DOI: 10.1089/neu.2015.4343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
After experimental traumatic brain injury (TBI), calcineurin is upregulated; blocking calcineurin is associated with improved outcomes. In humans, variation in the calcineurin A-gamma gene (PPP3CC) has been associated with neuropsychiatric disorders, though any role in TBI recovery remains unknown. This study examines associations between PPP3CC genotype and mortality, as well as gross functional status assessed at admission using the Glasgow Coma Scale (GCS) and at 3, 6, and 12 months after severe TBI using the Glasgow Outcome Score (GOS). The following tagging single nucleotide polymorphisms (tSNPs) in PPP3CC were genotyped: rs2443504, rs2461491, rs2469749, and rs10108011. The rs2443504 AA genotype was univariately associated with GCS (p = 0.022), GOS at 3, 6, and 12 months (p = 0.002, p = 0.034, and p = 0.004, respectively), and mortality (p = 0.007). In multivariate analysis controlling for age, sex, and GCS, the AA genotype of rs2443504 was associated with GOS at 3 (p = 0.02), and 12 months (p = 0.01), with a trend toward significance at 6 months (p = 0.05); the AA genotype also was associated with mortality in the multivariate model (p = 0.04). Further work is warranted to better understand the role of calcineurin, as well as the genes encoding it and their relevance to outcomes after brain injury.
Collapse
Affiliation(s)
- Nicole D Osier
- 1 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 School of Nursing, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - James W Bales
- 2 Department of Neurosurgery, University of Washington , Seattle, Washington
| | - Bunny Pugh
- 1 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 Safar Center for Resuscitation Research, Seton Hill University , Greensburg, Pennsylvania
| | - Samuel Shin
- 1 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Julie Wyrobek
- 5 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University , Baltimore, Maryland
| | - Ava M Puccio
- 6 Department of Neurological Surgery, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - David O Okonkwo
- 6 Department of Neurological Surgery, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Dianxu Ren
- 3 School of Nursing, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sheila Alexander
- 3 School of Nursing, University of Pittsburgh , Pittsburgh, Pennsylvania.,7 School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Yvette P Conley
- 3 School of Nursing, University of Pittsburgh , Pittsburgh, Pennsylvania.,8 Department of Human Genetics, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - C Edward Dixon
- 1 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania.,6 Department of Neurological Surgery, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania.,9 VA Pittsburgh Healthcare System , Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Margulies S, Anderson G, Atif F, Badaut J, Clark R, Empey P, Guseva M, Hoane M, Huh J, Pauly J, Raghupathi R, Scheff S, Stein D, Tang H, Hicks M. Combination Therapies for Traumatic Brain Injury: Retrospective Considerations. J Neurotrauma 2015; 33:101-12. [PMID: 25970337 DOI: 10.1089/neu.2014.3855] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Patients enrolled in clinical trials for traumatic brain injury (TBI) may present with heterogeneous features over a range of injury severity, such as diffuse axonal injury, ischemia, edema, hemorrhage, oxidative damage, mitochondrial and metabolic dysfunction, excitotoxicity, inflammation, and other pathophysiological processes. To determine whether combination therapies might be more effective than monotherapy at attenuating moderate TBI or promoting recovery, the National Institutes of Health funded six preclinical studies in adult and immature male rats to evaluate promising acute treatments alone and in combination. Each of the studies had a solid rationale for its approach based on previous research, but only one reported significant improvements in long-term outcomes across a battery of behavioral tests. Four studies had equivocal results because of a lack of sensitivity of the outcome assessments. One study demonstrated worse results with the combination in comparison with monotherapies. While specific research findings are reported elsewhere, this article provides an overview of the study designs, insights, and recommendations for future research aimed at therapy development for TBI.
Collapse
Affiliation(s)
- Susan Margulies
- 1 Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Gail Anderson
- 2 Department of Pharmacy, Pharmaceutics, and Neurological Surgery, University of Washington , Seattle, Washington
| | - Fahim Atif
- 3 Department of Emergency Medicine, Emory University , Atlanta, Georgia
| | - Jerome Badaut
- 4 Institut of Neuroscience Cognitive and Integrative of Aquitaine (INCIA), University of Bordeaux , Bordeaux, France
| | - Robert Clark
- 5 Safar Center for Resuscitation Research and Department of Critical Care Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Philip Empey
- 6 Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy , Pittsburgh, Pennsylvania
| | - Maria Guseva
- 7 Fresenius Kabi USA, LLC , Lake Zurich, Illinois
| | - Michael Hoane
- 8 Department of Psychology, Southern Illinois University , Carbondale, Illinois
| | - Jimmy Huh
- 9 Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia , Philadelphia, Pennsylvania
| | - Jim Pauly
- 10 Department of Pharmaceutical Sciences, University of Kentucky , Lexington, Kentucky
| | - Ramesh Raghupathi
- 11 Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Stephen Scheff
- 12 Center on Aging, University of Kentucky , Lexington, Kentucky
| | - Donald Stein
- 3 Department of Emergency Medicine, Emory University , Atlanta, Georgia
| | - Huiling Tang
- 3 Department of Emergency Medicine, Emory University , Atlanta, Georgia
| | | |
Collapse
|
15
|
Logsdon AF, Lucke-Wold BP, Turner RC, Huber JD, Rosen CL, Simpkins JW. Role of Microvascular Disruption in Brain Damage from Traumatic Brain Injury. Compr Physiol 2015; 5:1147-1160. [PMID: 26140712 PMCID: PMC4573402 DOI: 10.1002/cphy.c140057] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Traumatic brain injury (TBI) is acquired from an external force, which can inflict devastating effects to the brain vasculature and neighboring neuronal cells. Disruption of vasculature is a primary effect that can lead to a host of secondary injury cascades. The primary effects of TBI are rapidly occurring while secondary effects can be activated at later time points and may be more amenable to targeting. Primary effects of TBI include diffuse axonal shearing, changes in blood-brain barrier (BBB) permeability, and brain contusions. These mechanical events, especially changes to the BBB, can induce calcium perturbations within brain cells producing secondary effects, which include cellular stress, inflammation, and apoptosis. These secondary effects can be potentially targeted to preserve the tissue surviving the initial impact of TBI. In the past, TBI research had focused on neurons without any regard for glial cells and the cerebrovasculature. Now a greater emphasis is being placed on the vasculature and the neurovascular unit following TBI. A paradigm shift in the importance of the vascular response to injury has opened new avenues of drug-treatment strategies for TBI. However, a connection between the vascular response to TBI and the development of chronic disease has yet to be elucidated. Long-term cognitive deficits are common amongst those sustaining severe or multiple mild TBIs. Understanding the mechanisms of cellular responses following TBI is important to prevent the development of neuropsychiatric symptoms. With appropriate intervention following TBI, the vascular network can perhaps be maintained and the cellular repair process possibly improved to aid in the recovery of cellular homeostasis.
Collapse
Affiliation(s)
- Aric F Logsdon
- Department of Pharmaceutical Sciences, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Brandon P Lucke-Wold
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Ryan C Turner
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Jason D Huber
- Department of Pharmaceutical Sciences, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Charles L Rosen
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - James W Simpkins
- Department of Physiology and Pharmacology, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| |
Collapse
|
16
|
Mu J, Song Y, Zhang J, Lin W, Dong H. Calcium signaling is implicated in the diffuse axonal injury of brain stem. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:4388-4397. [PMID: 26191130 PMCID: PMC4503002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 04/13/2015] [Indexed: 06/04/2023]
Abstract
Evaluating diffuse axonal injury (DAI) remains challenging in clinical sciences since the physiopathologic mechanism of DAI is still unclear. The calcium overload in the axoplasm is considered to be crucial for secondary axonal injury. The present study use calcium channel blocker, nimodipine, to explore the influence of Ca2+ in the pathogenesis of rat DAI. In the DAI group, the expressions of β-APP and NF-L in axons were increased from 12 to 72 h. The ultrastructural observation indicated the axon and vessel injury appeared at 12 h post-injury and severely aggravated from 24 to 72 h. The expression of vWF and brain water content was increased at 12 h after injury and further increased at 24 h. Nimodipine decreased the expression of β-APP, NF-L and vWF, and also attenuated the ultrastructural damage of vascular wall and axons. Furthermore, Ca-dependent enzyme, the calcineurin activity were increased in DAI and nimodipine suppressed the activity of calcineurins (CaN). However, the amount of CaN expression was not changed. Our results showed that disturbances of axonal calcium homeostasis play an important role in the secondary damage of the axon, neuron and capillary vessel which may be related with activating CaN during the acute phase of DAI. Nimodipine can alleviate the secondary damage by suppressing the calcineurin activity.
Collapse
Affiliation(s)
- Jiao Mu
- Department of Forensic Medicine, Huazhong University of Science and Technology, Tongji Medical CollegeNo. 13 Hangkong Lu, Hankou, Wuhan 430030, Hubei, PR China
- Department of Pathology, Hebei North UniversityNo. 11 Zuanshinan Lu, Zhangjiakou 075000, Hebei, PR China
| | - Yucheng Song
- Criminal Investigation Brigade of TaicangNo. 128 Loujiangbei Lu, Taicang, Suzhou 215400, Jiangsu, PR China
| | - Ji Zhang
- Department of Forensic Medicine, Huazhong University of Science and Technology, Tongji Medical CollegeNo. 13 Hangkong Lu, Hankou, Wuhan 430030, Hubei, PR China
| | - Wei Lin
- Department of Forensic Medicine, Huazhong University of Science and Technology, Tongji Medical CollegeNo. 13 Hangkong Lu, Hankou, Wuhan 430030, Hubei, PR China
| | - Hongmei Dong
- Department of Forensic Medicine, Huazhong University of Science and Technology, Tongji Medical CollegeNo. 13 Hangkong Lu, Hankou, Wuhan 430030, Hubei, PR China
| |
Collapse
|
17
|
Mazzio E, Georges B, McTier O, Soliman KFA. Neurotrophic Effects of Mu Bie Zi (Momordica cochinchinensis) Seed Elucidated by High-Throughput Screening of Natural Products for NGF Mimetic Effects in PC-12 Cells. Neurochem Res 2015; 40:2102-12. [PMID: 25862192 DOI: 10.1007/s11064-015-1560-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 12/22/2022]
Abstract
Post-mitotic central nervous system (CNS) neurons have limited capacity for regeneration, creating a challenge in the development of effective therapeutics for spinal cord injury or neurodegenerative diseases. Furthermore, therapeutic use of human neurotrophic agents such as nerve growth factor (NGF) are limited due to hampered transport across the blood brain barrier (BBB) and a large number of peripheral side effects (e.g. neuro-inflammatory pain/tissue degeneration etc.). Therefore, there is a continued need for discovery of small molecule NGF mimetics that can penetrate the BBB and initiate CNS neuronal outgrowth/regeneration. In the current study, we conduct an exploratory high-through-put (HTP) screening of 1144 predominantly natural/herb products (947 natural herbs/plants/spices, 29 polyphenolics and 168 synthetic drugs) for ability to induce neurite outgrowth in PC12 dopaminergic cells grown on rat tail collagen, over 7 days. The data indicate a remarkably rare event-low hit ratio with only 1/1144 tested substances (<111.25 µg/mL) being capable of inducing neurite outgrowth in a dose dependent manner, identified as; Mu Bie Zi, Momordica cochinchinensis seed extract (MCS). To quantify the neurotrophic effects of MCS, 36 images (n = 6) (average of 340 cells per image), were numerically assessed for neurite length, neurite count/cell and min/max neurite length in microns (µm) using Image J software. The data show neurite elongation from 0.07 ± 0.02 µm (controls) to 5.5 ± 0.62 µm (NGF 0.5 μg/mL) and 3.39 ± 0.45 µm (138 μg/mL) in MCS, where the average maximum length per group extended from 3.58 ± 0.42 µm (controls) to 41.93 ± 3.14 µm (NGF) and 40.20 ± 2.72 µm (MCS). Imaging analysis using immunocytochemistry (ICC) confirmed that NGF and MCS had similar influence on 3-D orientation/expression of 160/200 kD neurofilament, tubulin and F-actin. These latent changes were associated with early rise in phosphorylated extracellular signal-regulated kinase (ERK) p-Erk1 (T202/Y204)/p-Erk2 (T185/Y187) at 60 min with mild changes in pAKT peaking at 5 min, and no indication of pMEK involvement. These findings demonstrate a remarkable infrequency of natural products or polyphenolic constituents to exert neurotrophic effects at low concentrations, and elucidate a unique property of MCS extract to do so. Future research will be required to delineate in depth mechanism of action of MCS, constituents responsible and potential for therapeutic application in CNS degenerative disease or injury.
Collapse
Affiliation(s)
- E Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Room 104, Dyson Pharmacy Building, 1520 ML King Blvd, Tallahassee, FL, 32307, USA
| | - B Georges
- Department of Biology, Florida A&M University, Tallahassee, FL, 32307, USA
| | - O McTier
- Department of Biology, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Karam F A Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Room 104, Dyson Pharmacy Building, 1520 ML King Blvd, Tallahassee, FL, 32307, USA.
| |
Collapse
|
18
|
Armstrong RC, Mierzwa AJ, Marion CM, Sullivan GM. White matter involvement after TBI: Clues to axon and myelin repair capacity. Exp Neurol 2015; 275 Pt 3:328-333. [PMID: 25697845 DOI: 10.1016/j.expneurol.2015.02.011] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/15/2015] [Accepted: 02/06/2015] [Indexed: 11/17/2022]
Abstract
Impact-acceleration forces to the head cause traumatic brain injury (TBI) with damage in white matter tracts comprised of long axons traversing the brain. White matter injury after TBI involves both traumatic axonal injury (TAI) and myelin pathology that evolves throughout the post-injury time course. The axon response to initial mechanical forces and secondary insults follows the process of Wallerian degeneration, which initiates as a potentially reversible phase of intra-axonal damage and proceeds to an irreversible phase of axon fragmentation. Distal to sites of axon disconnection, myelin sheaths remain for prolonged periods, which may activate neuroinflammation and inhibit axon regeneration. In addition to TAI, TBI can cause demyelination of intact axons. These evolving features of axon and myelin pathology also represent opportunities for repair. In experimental TBI, demyelinated axons exhibit remyelination, which can serve to both protect axons and facilitate recovery of function. Myelin remodeling may also contribute to neuroplasticity. Efficient clearance of myelin debris is a potential target to attenuate the progression of chronic pathology. During the early phase of Wallerian degeneration, interventions that prevent the transition from reversible damage to axon disconnection warrant the highest priority, based on the poor regenerative capacity of axons in the CNS. Clinical evaluation of TBI will need to address the challenge of accurately detecting the extent and stage of axon damage. Distinguishing the complex white matter changes associated with axons and myelin is necessary for interpreting advanced neuroimaging approaches and for identifying a broader range of therapeutic opportunities to improve outcome after TBI.
Collapse
Affiliation(s)
- Regina C Armstrong
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Amanda J Mierzwa
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Christina M Marion
- Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Genevieve M Sullivan
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
19
|
Siedler DG, Chuah MI, Kirkcaldie MTK, Vickers JC, King AE. Diffuse axonal injury in brain trauma: insights from alterations in neurofilaments. Front Cell Neurosci 2014; 8:429. [PMID: 25565963 PMCID: PMC4269130 DOI: 10.3389/fncel.2014.00429] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/29/2014] [Indexed: 12/02/2022] Open
Abstract
Traumatic brain injury (TBI) from penetrating or closed forces to the cranium can result in a range of forms of neural damage, which culminate in mortality or impart mild to significant neurological disability. In this regard, diffuse axonal injury (DAI) is a major neuronal pathophenotype of TBI and is associated with a complex set of cytoskeletal changes. The neurofilament triplet proteins are key structural cytoskeletal elements, which may also be important contributors to the tensile strength of axons. This has significant implications with respect to how axons may respond to TBI. It is not known, however, whether neurofilament compaction and the cytoskeletal changes that evolve following axonal injury represent a component of a protective mechanism following damage, or whether they serve to augment degeneration and progression to secondary axotomy. Here we review the structure and role of neurofilament proteins in normal neuronal function. We also discuss the processes that characterize DAI and the resultant alterations in neurofilaments, highlighting potential clues to a possible protective or degenerative influence of specific neurofilament alterations within injured neurons. The potential utility of neurofilament assays as biomarkers for axonal injury is also discussed. Insights into the complex alterations in neurofilaments will contribute to future efforts in developing therapeutic strategies to prevent, ameliorate or reverse neuronal degeneration in the central nervous system (CNS) following traumatic injury.
Collapse
Affiliation(s)
- Declan G Siedler
- Wicking Dementia Research and Education Centre, Medical Sciences Precinct Hobart, TAS, Australia ; School of Medicine, University of Tasmania Hobart, TAS, Australia
| | - Meng Inn Chuah
- Wicking Dementia Research and Education Centre, Medical Sciences Precinct Hobart, TAS, Australia ; School of Medicine, University of Tasmania Hobart, TAS, Australia
| | - Matthew T K Kirkcaldie
- Wicking Dementia Research and Education Centre, Medical Sciences Precinct Hobart, TAS, Australia ; School of Medicine, University of Tasmania Hobart, TAS, Australia
| | - James C Vickers
- Wicking Dementia Research and Education Centre, Medical Sciences Precinct Hobart, TAS, Australia ; School of Medicine, University of Tasmania Hobart, TAS, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, Medical Sciences Precinct Hobart, TAS, Australia ; School of Medicine, University of Tasmania Hobart, TAS, Australia
| |
Collapse
|
20
|
Li Y, Korgaonkar AA, Swietek B, Wang J, Elgammal FS, Elkabes S, Santhakumar V. Toll-like receptor 4 enhancement of non-NMDA synaptic currents increases dentate excitability after brain injury. Neurobiol Dis 2014; 74:240-53. [PMID: 25497689 DOI: 10.1016/j.nbd.2014.11.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/21/2014] [Accepted: 11/26/2014] [Indexed: 11/18/2022] Open
Abstract
Concussive brain injury results in neuronal degeneration, microglial activation and enhanced excitability in the hippocampal dentate gyrus, increasing the risk for epilepsy and memory dysfunction. Endogenous molecules released during injury can activate innate immune responses including toll-like receptor 4 (TLR4). Recent studies indicate that immune mediators can modulate neuronal excitability. Since non-specific agents that reduce TLR4 signaling can limit post-traumatic neuropathology, we examined whether TLR4 signaling contributes to early changes in dentate excitability after brain injury. Concussive brain injury caused a transient increase in hippocampal TLR4 expression within 4h, which peaked at 24h. Post-injury increase in TLR4 expression in the dentate gyrus was primarily neuronal and persisted for one week. Acute, in vitro treatment with TLR4 ligands caused bidirectional modulation of dentate excitability in control and brain-injured rats, with a reversal in the direction of modulation after brain injury. TLR4 antagonists decreased, and agonist increased, afferent-evoked dentate excitability one week after brain injury. NMDA receptor antagonist did not occlude the ability of LPS-RS, a TLR4 antagonist, to decrease post-traumatic dentate excitability. LPS-RS failed to modulate granule cell NMDA EPSCs but decreased perforant path-evoked non-NMDA EPSC peak amplitude and charge transfer in both granule cells and mossy cells. Our findings indicate an active role for TLR4 signaling in early post-traumatic dentate hyperexcitability. The novel TLR4 modulation of non-NMDA glutamatergic currents, identified herein, could represent a general mechanism by which immune activation influences neuronal excitability in neurological disorders that recruit sterile inflammatory responses.
Collapse
Affiliation(s)
- Ying Li
- Department of Neurology and Neurosciences, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Akshata A Korgaonkar
- Department of Neurology and Neurosciences, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; Graduate School of Biomedical Sciences, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Bogumila Swietek
- Department of Neurology and Neurosciences, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Jianfeng Wang
- Department of Neurology and Neurosciences, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Fatima S Elgammal
- Department of Neurology and Neurosciences, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Stella Elkabes
- Graduate School of Biomedical Sciences, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Vijayalakshmi Santhakumar
- Department of Neurology and Neurosciences, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; Graduate School of Biomedical Sciences, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; Department of Pharmacology and Physiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
21
|
Oligodendrocyte lineage and subventricular zone response to traumatic axonal injury in the corpus callosum. J Neuropathol Exp Neurol 2014; 72:1106-25. [PMID: 24226267 PMCID: PMC4130339 DOI: 10.1097/nen.0000000000000009] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traumatic brain injury frequently causes traumatic axonal injury (TAI) in white matter tracts. Experimental TAI in the corpus callosum of adult mice was used to examine the effects on oligodendrocyte lineage cells and myelin in conjunction with neuroimaging. The injury targeted the corpus callosum over the subventricular zone, a source of neural stem/progenitor cells. Traumatic axonal injury was produced in the rostral body of the corpus callosum by impact onto the skull at the bregma. During the first week after injury, magnetic resonance diffusion tensor imaging showed that axial diffusivity decreased in the corpus callosum and that corresponding regions exhibited significant axon damage accompanied by hypertrophic microglia and reactive astrocytes. Oligodendrocyte progenitor proliferation increased in the subventricular zone and corpus callosum. Oligodendrocytes in the corpus callosum shifted toward upregulation of myelin gene transcription. Plp/CreERT:R26IAP reporter mice showed normal reporter labeling of myelin sheaths 0 to 2 days after injury but labeling was increased between 2 and 7 days after injury. Electron microscopy revealed axon degeneration, demyelination, and redundant myelin figures. These findings expand the cell types and responses to white matter injuries that inform diffusion tensor imaging evaluation and identify pivotal white matter changes after TAI that may affect axon vulnerability vs. recovery after brain injury.
Collapse
|
22
|
Determination of the phosphorylated neurofilament subunit NF-H (pNF-H) in cerebro-spinal fluid as biomarker in acute traumatic spinal cord injuries / Dozarea neurofilamentelor fosforilate (subunitatea pNF-H) ȋn LCR ca biomarker ȋn traumatismul vertebro-medular acut. ACTA ACUST UNITED AC 2014. [DOI: 10.2478/rrlm-2014-0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|