1
|
Indelicato E, Delatycki MB, Farmer J, França MC, Perlman S, Rai M, Boesch S. A global perspective on research advances and future challenges in Friedreich ataxia. Nat Rev Neurol 2025; 21:204-215. [PMID: 40032987 DOI: 10.1038/s41582-025-01065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2025] [Indexed: 03/05/2025]
Abstract
Friedreich ataxia (FRDA) is a rare multisystem, life-limiting disease and is the most common early-onset inherited ataxia in populations of European, Arab and Indian descent. In recent years, substantial progress has been made in dissecting the pathogenesis and natural history of FRDA, and several clinical trials have been initiated. A particularly notable recent achievement was the approval of the nuclear factor erythroid 2-related factor 2 activator omaveloxolone as the first disease-specific therapy for FRDA. In light of these developments, we review milestones in FRDA translational and clinical research over the past 10 years, as well as the various therapeutic strategies currently in the pipeline. We also consider the lessons that have been learned from failed trials and other setbacks. We conclude by presenting a global roadmap for future research, as outlined by the recently established Friedreich's Ataxia Global Clinical Consortium, which covers North and South America, Europe, India, Australia and New Zealand.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | | | | | | | - Myriam Rai
- Friedreich's Ataxia Research Alliance, Downingtown, PA, USA
- Laboratory of Experimental Neurology, Brussels, Belgium
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
2
|
Mercado-Ayón E, Talgo E, Flatley L, Coulman J, Lynch DR. Neurochemical alterations in the cerebellum of Friedreich's Ataxia mouse models. Exp Neurol 2025; 386:115176. [PMID: 39904419 DOI: 10.1016/j.expneurol.2025.115176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/29/2025] [Accepted: 02/01/2025] [Indexed: 02/06/2025]
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by frataxin deficiency. Neurological deficits remain the ubiquitous feature of FRDA and include progressive ataxia and dysarthria, both of which are controlled to a large degree by the cerebellum. The precise impact of frataxin deficiency on the cerebellum including Purkinje cells remains unclear. In the present work, we examined the biochemical and structural properties of the cerebellum and Purkinje cells in the doxycycline-inducible (FRDAkd) and the Knock-in/Knockout (KIKO) mouse models of FRDA. Acute systemic knockdown of frataxin in FRDAkd mice and chronic frataxin deficiency in KIKO leads to a significant decrease in levels of AMPA receptors, particularly GluR2, and an increase in glial glutamate transporters. Significant astroglial accumulation occurred in KIKO cerebellum but not in FRDAkd mice. Purkinje cell dendritic arbors in the molecular layer did not change compared to wildtype in either model. The Purkinje cell postsynaptic receptor NMDAR1 significantly decreased only in the FRDAkd cerebellum while other NMDA receptor subunits, largely found in non-Purkinje cells, did not change. Overall, we observed dysregulated levels of glutamate receptors and transporters in the KIKO and FRDAkd mice models of Friedreich ataxia, suggesting the importance of frataxin in maintaining Purkinje cells and cerebellar integrity along with synaptic properties. These results point to conserved but not identical synaptic features between the models that may represent markers or conceivably targets in human FRDA.
Collapse
Affiliation(s)
- Elizabeth Mercado-Ayón
- Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA.
| | - Ellarie Talgo
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Liam Flatley
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Jennifer Coulman
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA.
| | - David R Lynch
- Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Ercanbrack WS, Ramirez M, Dungan A, Gaul E, Ercanbrack SJ, Wingert RA. Frataxin deficiency and the pathology of Friedreich's Ataxia across tissues. Tissue Barriers 2025:2462357. [PMID: 39981684 DOI: 10.1080/21688370.2025.2462357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 02/22/2025] Open
Abstract
Friedreich's Ataxia (FRDA) is a neurodegenerative disease that affects a variety of different organ systems. The disease is caused by GAA repeat expansions in intron 1 of the Frataxin gene (FXN), which results in a decrease in the expression of the FXN protein. FXN is needed for the biogenesis of iron-sulfur clusters (ISC) which are required by key metabolic processes in the mitochondria. Without ISCs those processes do not occur properly. As a result, reactive oxygen species accumulate, and the mitochondria cease to function. Iron is also thought to accumulate in the cells of certain tissue types. These processes are thought to be intimately related to the pathologies affecting a myriad of tissues in FRDA. Most FRDA patients suffer from loss of motor control, cardiomyopathy, scoliosis, foot deformities, and diabetes. In this review, we discuss the known features of FRDA pathology and the current understanding about the basis of these alterations.
Collapse
Affiliation(s)
- Wesley S Ercanbrack
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Mateo Ramirez
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Austin Dungan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Ella Gaul
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Sarah J Ercanbrack
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
4
|
Damásio J, Costa S, Moura J, Santos M, Lemos C, Mendes A, Oliveira J, Barros J, Sequeiros J. Movement Disorders in Hereditary Cerebellar Ataxia. Mov Disord Clin Pract 2025. [PMID: 39936868 DOI: 10.1002/mdc3.14358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/10/2024] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Hereditary cerebellar ataxia (HCA) represents a complex group of disorders, with a wide spectrum of neurological symptoms. Among these, non-ataxia movement disorders (MD) have been increasingly acknowledged, with variable frequency across different forms. OBJECTIVES To characterize the type and frequency of MD in patients with HCA. To identify factors associated with MD and analyze their impact on disability. METHODS We conducted a prospective study starting in 2017, with annual visits according to a structured protocol. Patients were selected from the study database and their clinical and genetic features analyzed. RESULTS The cohort comprised 193 symptomatic patients. Machado-Joseph disease (MJD, also SCA3 or ATX-ATXN3) and cerebellar ataxia, neuropathy and vestibular areflexia syndrome (ATX-RFC1) were the most common autosomal dominant (AD) or recessive forms, with a frequency of 14.0% and 15.0%, respectively. MD were present in 95 (54.4%), with dystonia being the most common (49.2%). Tremor was identified in 10.9%, Parkinsonism in 4.1% and chorea in 3.6% patients. Myoclonus and tics were rare (2.6% and 0.5%). The presence of MD was associated with AD inheritance and ATXN3. MD, regardless of type, correlated with higher SARA score at baseline, increased fall frequency, confinement to wheelchair, and earlier occurrence of falls and of permanent use of walking aid. CONCLUSIONS Movement disorders, particularly dystonia, were common in our cohort. This highlights the possible role of the cerebellum in MD, but also extra-cerebellar involvement in some HCA. Presence of MD significantly worsened motor disability, highlighting the need for strategies of early identification and tailored management.
Collapse
Affiliation(s)
- Joana Damásio
- Neurology Department, Centro Hospitalar Universitário de Santo António, Unidade Local de Saúde de Santo António, Porto, Portugal
- CGPP - Center for Predictive and Preventive Genetics, IBMC - Institute for Molecular and Celll Biology, i3S - Instituto de Investigação e Inovação em Saúde Universidade do Porto, Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, Universidade do Porto, Porto, Portugal
| | - Sara Costa
- Neurology Department, Centro Hospitalar Universitário de Santo António, Unidade Local de Saúde de Santo António, Porto, Portugal
| | - João Moura
- Neurology Department, Centro Hospitalar Universitário de Santo António, Unidade Local de Saúde de Santo António, Porto, Portugal
| | - Mariana Santos
- CGPP - Center for Predictive and Preventive Genetics, IBMC - Institute for Molecular and Celll Biology, i3S - Instituto de Investigação e Inovação em Saúde Universidade do Porto, Porto, Portugal
| | - Carolina Lemos
- ICBAS School of Medicine and Biomedical Sciences, Universidade do Porto, Porto, Portugal
| | - Alexandre Mendes
- Neurology Department, Centro Hospitalar Universitário de Santo António, Unidade Local de Saúde de Santo António, Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, Universidade do Porto, Porto, Portugal
| | - Jorge Oliveira
- CGPP - Center for Predictive and Preventive Genetics, IBMC - Institute for Molecular and Celll Biology, i3S - Instituto de Investigação e Inovação em Saúde Universidade do Porto, Porto, Portugal
| | - José Barros
- Neurology Department, Centro Hospitalar Universitário de Santo António, Unidade Local de Saúde de Santo António, Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, Universidade do Porto, Porto, Portugal
| | - Jorge Sequeiros
- CGPP - Center for Predictive and Preventive Genetics, IBMC - Institute for Molecular and Celll Biology, i3S - Instituto de Investigação e Inovação em Saúde Universidade do Porto, Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, Universidade do Porto, Porto, Portugal
| |
Collapse
|
5
|
Joseph DJ, Mercado-Ayon E, Flatley L, Viaene AN, Hordeaux J, Marsh ED, Lynch DR. Functional Characterization of Parallel Fiber-Purkinje Cell Synapses in Two Friedreich's Ataxia Mouse Models. CEREBELLUM (LONDON, ENGLAND) 2025; 24:42. [PMID: 39907933 PMCID: PMC11799031 DOI: 10.1007/s12311-025-01796-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive disorder caused by GAA expansions in the FXN gene, which codes for the protein frataxin (FXN). These mutations reduce FXN expression, leading to mitochondrial dysfunction and multisystemic disease. Accumulating evidence suggests that neuronal dysfunction, rather than neuronal death, may drive the neurological phenotypes of FRDA, but the mechanisms underlying such neurological phenotypes remain unclear. To investigate the neural circuit basis of this dysfunction, we employed field recordings to measure Purkinje cell (PC) function and synaptic properties along with western blotting and immunohistochemistry to determine their density and structure in two established FRDA mouse models, the shRNA-frataxin (FRDAkd) and the frataxin knock in-knockout (KIKO) mice. Western blotting demonstrated subtle changes in mitochondrial proteins and only a modest reduction in the density of calbindin positive cells PCs in the cerebellar cortex of the FRDAkd mice, with no change in the density of PCs in the KIKO mice. Though PC density differed slightly in the two models, field recordings of parallel fiber-PC synapses in the molecular layer demonstrated concordant hypo-excitability of basal synaptic transmission and impairments of long-term plasticity using induction protocols associated with both potentiation and depression of synaptic strength. These results indicate that synaptic instability might be a common feature in FRDA mouse models.
Collapse
Affiliation(s)
- Donald J Joseph
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elizabeth Mercado-Ayon
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Liam Flatley
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Angela N Viaene
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Juliette Hordeaux
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Eric D Marsh
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David R Lynch
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Pediatrics and Neurology, Perelman School of Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Cherchi M. Possible mechanisms connecting cerebellar ataxias and bilateral vestibular weakness: diagnostic and therapeutic implications. J Neurol 2024; 272:14. [PMID: 39666156 DOI: 10.1007/s00415-024-12794-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 12/13/2024]
Affiliation(s)
- Marcello Cherchi
- Department of Neurology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Ercanbrack WS, Dungan A, Gaul E, Ramirez M, J. DelVecchio A, Grass C, Wingert RA. Frataxin is essential for zebrafish embryogenesis and pronephros formation. Front Cell Dev Biol 2024; 12:1496244. [PMID: 39723241 PMCID: PMC11669007 DOI: 10.3389/fcell.2024.1496244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/29/2024] [Indexed: 12/28/2024] Open
Abstract
Background and objectives Friedreich's Ataxia (FRDA) is a genetic disease that affects a variety of different tissues. The disease is caused by a mutation in the frataxin gene (FXN) which is important for the synthesis of iron-sulfur clusters. The primary pathologies of FRDA are loss of motor control and cardiomyopathy. These occur due to the accumulation of reactive oxygen species (ROS) in the brain and the heart due to their high metabolic rates. Our research aims to understand how developmental processes and the kidney are impacted by a deficiency of FXN. Methods We utilized an antisense oligomer, or morpholino, to knockdown the frataxin gene (fxn) in zebrafish embryos. Knockdown was confirmed via RT-PCR, gel electrophoresis, and Sanger sequencing. To investigate phenotypes, we utilized several staining techniques including whole mount in situ hybridization, Alcian blue, and acridine orange, as well as dextran-FITC clearance assays. Results fxn deficient animals displayed otolith malformations, edema, and reduced survival. Alcian blue staining revealed craniofacial defects in fxn deficient animals, and gene expression studies showed that the pronephros, or embryonic kidney, had several morphological defects. We investigated the function of the pronephros through clearance assays and found that the renal function is disrupted in fxn deficient animals in addition to proximal tubule endocytosis. Utilizing acridine orange staining, we found that cell death is a partial contributor to these phenotypes. Discussion and conclusion This work provides new insights about how fxn deficiency impacts development and kidney morphogenesis. Additionally, this work establishes an additional model system to study FRDA.
Collapse
Affiliation(s)
- Wesley S. Ercanbrack
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | | | | | | | | | | | - Rebecca A. Wingert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
8
|
Osborne KJ, Walther S, Mittal VA. Motor actions across psychiatric disorders: A research domain criteria (RDoC) perspective. Clin Psychol Rev 2024; 114:102511. [PMID: 39510028 DOI: 10.1016/j.cpr.2024.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/19/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024]
Abstract
The motor system is critical for understanding the pathophysiology and treatment of mental illness. Abnormalities in the processes that allow us to plan and execute movement in a goal-directed, context-appropriate manner (i.e., motor actions) are especially central to clinical motor research. Within this context, the NIMH Research Domain Criteria (RDoC) framework now includes a Motor Actions construct within the recently incorporated Sensorimotor Systems Domain, providing a useful framework for conducting research on motor action processes. However, there is limited available resources for understanding or implementing this framework. We address this gap by providing a comprehensive critical review and conceptual integration of the current clinical literature on the subconstructs comprising the Motor Actions construct. This includes a detailed discussion of each Motor Action subconstruct (e.g., action planning/execution) and its measurement across different units of analysis (e.g., molecules to behavior), the temporal and conceptual relationships among the Motor Action subconstructs (and other relevant RDoC domain constructs), and how abnormalities in these Motor Action subconstructs manifest in mental illness. Together, the review illustrates how motor system dysfunction is implicated in the pathophysiology of many psychiatric conditions and demonstrates shared and distinct mechanisms that may account for similar manifestations of motor abnormalities across disorders.
Collapse
Affiliation(s)
- K Juston Osborne
- Washington University in St. Louis, Department of Psychiatry, 4444 Forest Park Ave., St. Louis, MO, USA; Northwestern University, Department of Psychology, 633 Clark St. Evanston, IL, USA.
| | - Sebastian Walther
- University Hospital Würzburg, Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany
| | - Vijay A Mittal
- Northwestern University, Department of Psychology, 633 Clark St. Evanston, IL, USA; Northwestern University, Department of Psychiatry, 676 N. St. Claire, Chicago, IL, USA; Northwestern University, Department of Psychiatry, Institute for Policy Research, Department of Medical Social Sciences, Institute for Innovations in Developmental Sciences (DevSci), 633 Clark St., Evanston, Chicago, IL, USA
| |
Collapse
|
9
|
Salvalaggio A, Cacciavillani M, Tierro B, Coraci D, Currò R, Ferrarini M, Pegoraro E, Bello L, Fabrizi GM, Filla A, Padua L, Manganelli F, Cortese A, Briani C. Nerve ultrasound in CANVAS-spectrum disease: Reduced nerve size distinguishes genetically confirmed CANVAS from other axonal polyneuropathies. J Peripher Nerv Syst 2024; 29:464-471. [PMID: 39219417 DOI: 10.1111/jns.12655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND AIMS Ultrasound nerve cross-sectional area (CSA) of patients affected with axonal neuropathy usually shows normal value. Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) seems to represent an exception, showing smaller CSA, but previous reports did not test for biallelic RFC1 gene repeat expansions. METHODS We compared nerve CSA from CANVAS patients (tested positive for biallelic RFC1 gene repeat expansions) with the CSA from a group of patients with chronic idiopathic axonal polyneuropathy (CIAP) who tested negative for RFC1 gene repeat expansions, hereditary axonal neuropathy (Charcot-Marie-Tooth type 2, CMT2), and Friedreich ataxia (FRDA). RESULTS We enrolled 15 CANVAS patients (eight men, mean age 66.3 ± 11.5 years, mean disease duration 9.3 ± 4.1 years), affected with sensory axonal neuronopathy. Controls consisted of 13 CIAP (mean age 68.5 ± 12.8 years, seven men), seven CMT2 (mean age 47.9 ± 18.1 years, four men), 12 FRDA (mean age 33.7 ± 8.8, five men). Nerve ultrasound was performed at median, ulnar, sciatic, sural, and tibial nerves and brachial plexus, bilaterally. The nerve CSA from CANVAS patients was significantly smaller than the one from the other cohorts at several sites with significant and high accuracy at Receiver-operating characteristic (ROC) curve analyses. RFC1 AAGGG pentanucleotide expansion, disease duration, and disability did not correlate with CSA at any site, after Bonferroni correction. INTERPRETATION Decreased sonographic nerve sizes, in arms and legs, in patients with sensory neuropathy and normal motor conduction studies could point to CANVAS-spectrum disease and help guide appropriate genetic testing.
Collapse
Affiliation(s)
- Alessandro Salvalaggio
- Department of Neuroscience, University of Padova, Padova, Italy
- Neurology Unit, University-Hospital of Padova, Padova, Italy
| | | | - Benedetta Tierro
- Department of Neuroscience, University of Padova, Padova, Italy
- Neurology Unit, University-Hospital of Padova, Padova, Italy
| | - Daniele Coraci
- Department of Neuroscience, Section of Rehabilitation, University of Padova, Padova, Italy
| | - Riccardo Currò
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Moreno Ferrarini
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Elena Pegoraro
- Department of Neuroscience, University of Padova, Padova, Italy
- Neurology Unit, University-Hospital of Padova, Padova, Italy
| | - Luca Bello
- Department of Neuroscience, University of Padova, Padova, Italy
- Neurology Unit, University-Hospital of Padova, Padova, Italy
| | - Gian Maria Fabrizi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Alessandro Filla
- Department of Neurosciences Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Luca Padua
- Department of Geriatrics and Orthopaedics, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC Neuroriabilitazione Alta Intensità, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Fiore Manganelli
- Department of Neurosciences Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Andrea Cortese
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Chiara Briani
- Department of Neuroscience, University of Padova, Padova, Italy
- Neurology Unit, University-Hospital of Padova, Padova, Italy
| |
Collapse
|
10
|
Vicente-Acosta A, Herranz-Martín S, Pazos MR, Galán-Cruz J, Amores M, Loria F, Díaz-Nido J. Glial cell activation precedes neurodegeneration in the cerebellar cortex of the YG8-800 murine model of Friedreich ataxia. Neurobiol Dis 2024; 200:106631. [PMID: 39111701 DOI: 10.1016/j.nbd.2024.106631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Friedreich ataxia is a hereditary neurodegenerative disorder resulting from reduced levels of the protein frataxin due to an expanded GAA repeat in the FXN gene. This deficiency causes progressive degeneration of specific neuronal populations in the cerebellum and the consequent loss of movement coordination and equilibrium, which are some of the main symptoms observed in affected individuals. Like in other neurodegenerative diseases, previous studies suggest that glial cells could be involved in the neurodegenerative process and disease progression in patients with Friedreich ataxia. In this work, we followed and characterized the progression of changes in the cerebellar cortex in the latest version of Friedreich ataxia humanized mouse model, YG8-800 (Fxnnull:YG8s(GAA)>800), which carries a human FXN transgene containing >800 GAA repeats. Comparative analyses of behavioral, histopathological, and biochemical parameters were conducted between the control strain Y47R and YG8-800 mice at different time points. Our findings revealed that YG8-800 mice exhibit an ataxic phenotype characterized by poor motor coordination, decreased body weight, cerebellar atrophy, neuronal loss, and changes in synaptic proteins. Additionally, early activation of glial cells, predominantly astrocytes and microglia, was observed preceding neuronal degeneration, as was increased expression of key proinflammatory cytokines and downregulation of neurotrophic factors. Together, our results show that the YG8-800 mouse model exhibits a stronger phenotype than previous experimental murine models, reliably recapitulating some of the features observed in humans. Accordingly, this humanized model could represent a valuable tool for studying Friedreich ataxia molecular disease mechanisms and for preclinical evaluation of possible therapies.
Collapse
Affiliation(s)
- Andrés Vicente-Acosta
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain; Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Budapest 1, Alcorcón, 28922 Madrid, Spain
| | - Saúl Herranz-Martín
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Maria Ruth Pazos
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Budapest 1, Alcorcón, 28922 Madrid, Spain
| | - Jorge Galán-Cruz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain; Departamento de Biología Molecular, Universidad Autónoma de Madrid, Francisco Tomás y Valiente, 7, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Mario Amores
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Budapest 1, Alcorcón, 28922 Madrid, Spain
| | - Frida Loria
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Budapest 1, Alcorcón, 28922 Madrid, Spain.
| | - Javier Díaz-Nido
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain; Departamento de Biología Molecular, Universidad Autónoma de Madrid, Francisco Tomás y Valiente, 7, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Puerta de Hierro, Segovia de Arana, Hospital Universitario Puerta de Hierro, Joaquín Rodrigo 1, Majadahonda, 28222 Madrid, Spain.
| |
Collapse
|
11
|
Sanz-Alcázar A, Portillo-Carrasquer M, Delaspre F, Pazos-Gil M, Tamarit J, Ros J, Cabiscol E. Deciphering the ferroptosis pathways in dorsal root ganglia of Friedreich ataxia models. The role of LKB1/AMPK, KEAP1, and GSK3β in the impairment of the NRF2 response. Redox Biol 2024; 76:103339. [PMID: 39243573 PMCID: PMC11408871 DOI: 10.1016/j.redox.2024.103339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
Friedreich ataxia (FA) is a rare neurodegenerative disease caused by decreased levels of the mitochondrial protein frataxin. Frataxin has been related in iron homeostasis, energy metabolism, and oxidative stress. Ferroptosis has recently been shown to be involved in FA cellular degeneration; however, its role in dorsal root ganglion (DRG) sensory neurons, the cells that are affected the most and the earliest, is mostly unknown. In this study, we used primary cultures of frataxin-deficient DRG neurons as well as DRG from the FXNI151F mouse model to study ferroptosis and its regulatory pathways. A lack of frataxin induced upregulation of transferrin receptor 1 and decreased ferritin and mitochondrial iron accumulation, a source of oxidative stress. However, there was impaired activation of NRF2, a key transcription factor involved in the antioxidant response pathway. Decreased total and nuclear NRF2 explains the downregulation of both SLC7A11 (a member of the system Xc, which transports cystine required for glutathione synthesis) and glutathione peroxidase 4, responsible for increased lipid peroxidation, the main markers of ferroptosis. Such dysregulation could be due to the increase in KEAP1 and the activation of GSK3β, which promote cytosolic localization and degradation of NRF2. Moreover, there was a deficiency in the LKB1/AMPK pathway, which would also impair NRF2 activity. AMPK acts as a positive regulator of NRF2 and it is activated by the upstream kinase LKB1. The levels of LKB1 were reduced when frataxin decreased, in agreement with reduced pAMPK (Thr172), the active form of AMPK. SIRT1, a known activator of LKB1, was also reduced when frataxin decreased. MT-6378, an AMPK activator, restored NRF2 levels, increased GPX4 levels and reduced lipid peroxidation. In conclusion, this study demonstrated that frataxin deficiency in DRG neurons disrupts iron homeostasis and the intricate regulation of molecular pathways affecting NRF2 activation and the cellular response to oxidative stress, leading to ferroptosis.
Collapse
Affiliation(s)
- Arabela Sanz-Alcázar
- Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Catalonia, Spain.
| | | | - Fabien Delaspre
- Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Catalonia, Spain.
| | - Maria Pazos-Gil
- Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Catalonia, Spain.
| | - Jordi Tamarit
- Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Catalonia, Spain.
| | - Joaquim Ros
- Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Catalonia, Spain.
| | - Elisa Cabiscol
- Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Catalonia, Spain.
| |
Collapse
|
12
|
Beaudin M, Dupre N, Manto M. The importance of synthetic pharmacotherapy for recessive cerebellar ataxias. Expert Rev Neurother 2024; 24:897-912. [PMID: 38980086 DOI: 10.1080/14737175.2024.2376840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION The last decade has witnessed major breakthroughs in identifying novel genetic causes of hereditary ataxias, deepening our understanding of disease mechanisms, and developing therapies for these debilitating disorders. AREAS COVERED This article reviews the currently approved and most promising candidate pharmacotherapies in relation to the known disease mechanisms of the most prevalent autosomal recessive ataxias. Omaveloxolone is an Nrf2 activator that increases antioxidant defense and was recently approved for treatment of Friedreich ataxia. Its therapeutic effect is modest, and further research is needed to find synergistic treatments that would halt or reverse disease progression. Promising approaches include upregulation of frataxin expression by epigenetic mechanisms, direct protein replacement, and gene replacement therapy. For ataxia-telangiectasia, promising approaches include splice-switching antisense oligonucleotides and small molecules targeting oxidative stress, inflammation, and mitochondrial function. Rare recessive ataxias for which disease-modifying therapies exist are also reviewed, emphasizing recently approved therapies. Evidence supporting the use of riluzole and acetyl-leucine in recessive ataxias is discussed. EXPERT OPINION Advances in genetic therapies for other neurogenetic conditions have paved the way to implement feasible approaches with potential dramatic benefits. Particularly, as we develop effective treatments for these conditions, we may need to combine therapies, consider newborn testing for pre-symptomatic treatment, and optimize non-pharmacological approaches.
Collapse
Affiliation(s)
- Marie Beaudin
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Nicolas Dupre
- Neuroscience axis, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Mario Manto
- Service des Neurosciences, Université de Mons, Mons, Belgique
- Unité des Ataxies Cérébelleuses, Service de Neurologie, CHU-Charleroi, Charleroi, Belgique
| |
Collapse
|
13
|
Wu L, Huang F, Sun Z, Zhang J, Xia S, Zhao H, Liu Y, Yang L, Ding Y, Bian D, Li K, Sun Y. Downregulation of Iron-Sulfur Cluster Biogenesis May Contribute to Hyperglycemia-Mediated Diabetic Peripheral Neuropathy in Murine Models. Antioxidants (Basel) 2024; 13:1036. [PMID: 39334695 PMCID: PMC11446412 DOI: 10.3390/antiox13091036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/06/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is considered one of the most common chronic complications of diabetes. Impairment of mitochondrial function is regarded as one of the causes. Iron-sulfur clusters are essential cofactors for numerous iron-sulfur (Fe-S)-containing proteins/enzymes, including mitochondrial electron transport chain complex I, II, and III and aconitase. METHODS To determine the impact of hyperglycemia on peripheral nerves, we used Schwann-like RSC96 cells and classical db/db mice to detect the expression of Fe-S-related proteins, mitochondrially enzymatic activities, and iron metabolism. Subsequently, we treated high-glucose-induced RSC96 cells and db/db mice with pioglitazone (PGZ), respectively, to evaluate the effects on Fe-S cluster biogenesis, mitochondrial function, and animal behavior. RESULTS We found that the core components of Fe-S biogenesis machinery, such as frataxin (Fxn) and scaffold protein IscU, significantly decreased in high-glucose-induced RSC96 cells and db/db mice, accompanied by compromised mitochondrial Fe-S-containing enzymatic activities, such as complex I and II and aconitase. Consequently, oxidative stress and inflammation increased. PGZ not only has antidiabetic effects but also increases the expression of Fxn and IscU to enhance mitochondrial function in RSC96 cells and db/db mice. Meanwhile, PGZ significantly alleviated sciatic nerve injury and improved peripheral neuronal behavior, accompanied by suppressed oxidative stress and inflammation in the sciatic nerve of the db/db mice. CONCLUSIONS Iron-sulfur cluster deficiency may contribute to hyperglycemia-mediated DPN.
Collapse
Affiliation(s)
- Lin Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Fei Huang
- Endocrinology Department, Yancheng First People’s Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng 224000, China
| | - Zichen Sun
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Jinghua Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Siyu Xia
- Endocrinology Department, Yancheng First People’s Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng 224000, China
| | - Hongting Zhao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Yutong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Vascular Surgery, Nanjing Drum Tower Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Lu Yang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Yibing Ding
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Dezhi Bian
- Endocrinology Department, Yancheng First People’s Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng 224000, China
| | - Kuanyu Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
- Suqian Scientific Research Institute of Nanjing University Medical School, Nanjing University, Suqian 223800, China
| | - Yu Sun
- Suqian Scientific Research Institute of Nanjing University Medical School, Nanjing University, Suqian 223800, China
| |
Collapse
|
14
|
Nishiyama M, Kalambogias J, Imai F, Yang E, Lang S, de Nooij JC, Yoshida Y. Anatomical and functional analysis of the corticospinal tract in an FRDA mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601178. [PMID: 39005321 PMCID: PMC11244874 DOI: 10.1101/2024.06.28.601178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Friedreich's ataxia (FRDA) is one of the most common hereditary ataxias. It is caused by a GAA repeat in the first intron of the FXN gene, which encodes an essential mitochondrial protein. Patients suffer from progressive motor dysfunction due to the degeneration of mechanoreceptive and proprioceptive neurons in dorsal root ganglia (DRG) and cerebellar dentate nucleus neurons, especially at early disease stages. Postmortem analyses of FRDA patients also indicate pathological changes in motor cortex including in the projection neurons that give rise to the cortical spinal tract (CST). Yet, it remains poorly understood how early in the disease cortical spinal neurons (CSNs) show these alterations, or whether CSN/CST pathology resembles the abnormalities observed in other tissues affected by FXN loss. To address these questions, we examined CSN driven motor behaviors and pathology in the YG8JR FRDA mouse model. We find that FRDA mice show impaired motor skills, exhibit significant reductions in CSN functional output, and, among other pathological changes, show abnormal mitochondrial distributions in CSN neurons and CST axonal tracts. Moreover, some of these alterations were observed as early as two months of age, suggesting that CSN/CST pathology may be an earlier event in FRDA disease than previously appreciated. These studies warrant a detailed mechanistic understanding of how FXN loss impacts CSN health and functionality.
Collapse
Affiliation(s)
- Misa Nishiyama
- Burke Neurological Institute, White Plains, New York, United States
| | - John Kalambogias
- Burke Neurological Institute, White Plains, New York, United States
- Department of Neurology, Columbia University, New York, NY, USA
| | - Fumiyasu Imai
- Burke Neurological Institute, White Plains, New York, United States
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, United States
| | - Emily Yang
- Burke Neurological Institute, White Plains, New York, United States
| | - Sonia Lang
- Burke Neurological Institute, White Plains, New York, United States
| | | | - Yutaka Yoshida
- Burke Neurological Institute, White Plains, New York, United States
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, United States
- Neural Circuit Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
15
|
Harding IH, Nur Karim MI, Selvadurai LP, Corben LA, Delatycki MB, Monti S, Saccà F, Georgiou-Karistianis N, Cocozza S, Egan GF. Localized Changes in Dentate Nucleus Shape and Magnetic Susceptibility in Friedreich Ataxia. Mov Disord 2024; 39:1109-1118. [PMID: 38644761 DOI: 10.1002/mds.29816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/07/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND The dentate nuclei of the cerebellum are key sites of neuropathology in Friedreich ataxia (FRDA). Reduced dentate nucleus volume and increased mean magnetic susceptibility, a proxy of iron concentration, have been reported by magnetic resonance imaging studies in people with FRDA. Here, we investigate whether these changes are regionally heterogeneous. METHODS Quantitative susceptibility mapping data were acquired from 49 people with FRDA and 46 healthy controls. The dentate nuclei were manually segmented and analyzed using three dimensional vertex-based shape modeling and voxel-based assessments to identify regional changes in morphometry and susceptibility, respectively. RESULTS Individuals with FRDA, relative to healthy controls, showed significant bilateral surface contraction most strongly at the rostral and caudal boundaries of the dentate nuclei. The magnitude of this surface contraction correlated with disease duration, and to a lesser extent, ataxia severity. Significantly greater susceptibility was also evident in the FRDA cohort relative to controls, but was instead localized to bilateral dorsomedial areas, and also correlated with disease duration and ataxia severity. CONCLUSIONS Changes in the structure of the dentate nuclei in FRDA are not spatially uniform. Atrophy is greatest in areas with high gray matter density, whereas increases in susceptibility-reflecting iron concentration, demyelination, and/or gliosis-predominate in the medial white matter. These findings converge with established histological reports and indicate that regional measures of dentate nucleus substructure are more sensitive measures of disease expression than full-structure averages. Biomarker development and therapeutic strategies that directly target the dentate nuclei, such as gene therapies, may be optimized by targeting these areas of maximal pathology. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Muhammad Ikhsan Nur Karim
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Louisa P Selvadurai
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Louise A Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Australia
- Department of Pediatrics, University of Melbourne, Parkville, Australia
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Australia
- Department of Pediatrics, University of Melbourne, Parkville, Australia
| | - Serena Monti
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | - Francesco Saccà
- Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Nellie Georgiou-Karistianis
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| |
Collapse
|
16
|
Dong YN, Mercado-Ayón E, Coulman J, Flatley L, Ngaba LV, Adeshina MW, Lynch DR. The Regulation of the Disease-Causing Gene FXN. Cells 2024; 13:1040. [PMID: 38920668 PMCID: PMC11202134 DOI: 10.3390/cells13121040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease caused in almost all patients by expanded guanine-adenine-adenine (GAA) trinucleotide repeats within intron 1 of the FXN gene. This results in a relative deficiency of frataxin, a small nucleus-encoded mitochondrial protein crucial for iron-sulfur cluster biogenesis. Currently, there is only one medication, omaveloxolone, available for FRDA patients, and it is limited to patients 16 years of age and older. This necessitates the development of new medications. Frataxin restoration is one of the main strategies in potential treatment options as it addresses the root cause of the disease. Comprehending the control of frataxin at the transcriptional, post-transcriptional, and post-translational stages could offer potential therapeutic approaches for addressing the illness. This review aims to provide a general overview of the regulation of frataxin and its implications for a possible therapeutic treatment of FRDA.
Collapse
Affiliation(s)
- Yi Na Dong
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Jennifer Coulman
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Liam Flatley
- The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lucie Vanessa Ngaba
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Miniat W. Adeshina
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David R. Lynch
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Casey HL, Shah VV, Muzyka D, McNames J, El-Gohary M, Sowalsky K, Safarpour D, Carlson-Kuhta P, Schmahmann JD, Rosenthal LS, Perlman S, Rummey C, Horak FB, Gomez CM. Standing Balance Conditions and Digital Sway Measures for Clinical Trials of Friedreich's Ataxia. Mov Disord 2024; 39:996-1005. [PMID: 38469957 DOI: 10.1002/mds.29777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Progressive loss of standing balance is a feature of Friedreich's ataxia (FRDA). OBJECTIVES This study aimed to identify standing balance conditions and digital postural sway measures that best discriminate between FRDA and healthy controls (HC). We assessed test-retest reliability and correlations between sway measures and clinical scores. METHODS Twenty-eight subjects with FRDA and 20 HC completed six standing conditions: feet apart, feet together, and feet tandem, both with eyes opened (EO) and eyes closed. Sway was measured using a wearable sensor on the lumbar spine for 30 seconds. Test completion rate, test-retest reliability with intraclass correlation coefficients, and areas under the receiver operating characteristic curves (AUCs) for each measure were compared to identify distinguishable FRDA sway characteristics from HC. Pearson correlations were used to evaluate the relationships between discriminative measures and clinical scores. RESULTS Three of the six standing conditions had completion rates over 70%. Of these three conditions, natural stance and feet together with EO showed the greatest completion rates. All six of the sway measures' mean values were significantly different between FRDA and HC. Four of these six measures discriminated between groups with >0.9 AUC in all three conditions. The Friedreich Ataxia Rating Scale Upright Stability and Total scores correlated with sway measures with P-values <0.05 and r-values (0.63-0.86) and (0.65-0.81), respectively. CONCLUSION Digital postural sway measures using wearable sensors are discriminative and reliable for assessing standing balance in individuals with FRDA. Natural stance and feet together stance with EO conditions suggest use in clinical trials for FRDA. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Hannah L Casey
- Department of Neurology, The University of Chicago, Chicago, Illinois, USA
| | - Vrutangkumar V Shah
- Precision Motion, APDM Wearable Technologies - a Clario company, Portland, Oregon, USA
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, USA
| | - Daniel Muzyka
- Precision Motion, APDM Wearable Technologies - a Clario company, Portland, Oregon, USA
| | - James McNames
- Precision Motion, APDM Wearable Technologies - a Clario company, Portland, Oregon, USA
- Department of Electrical and Computer Engineering, Portland State University, Portland, Oregon, USA
| | - Mahmoud El-Gohary
- Precision Motion, APDM Wearable Technologies - a Clario company, Portland, Oregon, USA
| | - Kristen Sowalsky
- Precision Motion, APDM Wearable Technologies - a Clario company, Portland, Oregon, USA
| | - Delaram Safarpour
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, USA
| | | | - Jeremy D Schmahmann
- Ataxia Center, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susan Perlman
- Department of Neurology, University of California, Los Angeles, California, USA
| | | | - Fay B Horak
- Precision Motion, APDM Wearable Technologies - a Clario company, Portland, Oregon, USA
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, USA
| | | |
Collapse
|
18
|
Koka M, Li H, Akther R, Perlman S, Wong D, Fogel BL, Lynch DR, Chandran V. Long non-coding RNA TUG1 is downregulated in Friedreich's ataxia. Brain Commun 2024; 6:fcae170. [PMID: 38846537 PMCID: PMC11154142 DOI: 10.1093/braincomms/fcae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/25/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Friedreich's ataxia is a neurodegenerative disorder caused by reduced frataxin levels. It leads to motor and sensory impairments and has a median life expectancy of around 35 years. As the most common inherited form of ataxia, Friedreich's ataxia lacks reliable, non-invasive biomarkers, prolonging and inflating the cost of clinical trials. This study proposes TUG1, a long non-coding RNA, as a promising blood-based biomarker for Friedreich's ataxia, which is known to regulate various cellular processes. In a previous study using a frataxin knockdown mouse model, we observed several hallmark Friedreich's ataxia symptoms. Building on this, we hypothesized that a dual-source approach-comparing the data from peripheral blood samples from Friedreich's ataxia patients with tissue samples from affected areas in Friedreich's ataxia knockdown mice, tissues usually unattainable from patients-would effectively identify robust biomarkers. A comprehensive reanalysis was conducted on gene expression data from 183 age- and sex-matched peripheral blood samples of Friedreich's ataxia patients, carriers and controls and 192 tissue data sets from Friedreich's ataxia knockdown mice. Blood and tissue samples underwent RNA isolation and quantitative reverse transcription polymerase chain reaction, and frataxin knockdown was confirmed through enzyme-linked immunosorbent assays. Tug1 RNA interaction was explored via RNA pull-down assays. Validation was performed in serum samples on an independent set of 45 controls and 45 Friedreich's ataxia patients and in blood samples from 66 heterozygous carriers and 72 Friedreich's ataxia patients. Tug1 and Slc40a1 emerged as potential blood-based biomarkers, confirmed in the Friedreich's ataxia knockdown mouse model (one-way ANOVA, P ≤ 0.05). Tug1 was consistently downregulated after Fxn knockdown and correlated strongly with Fxn levels (R 2 = 0.71 during depletion, R 2 = 0.74 during rescue). Slc40a1 showed a similar but tissue-specific pattern. Further validation of Tug1's downstream targets strengthened its biomarker candidacy. In additional human samples, TUG1 levels were significantly downregulated in both whole blood and serum of Friedreich's ataxia patients compared with controls (Wilcoxon signed-rank test, P < 0.05). Regression analyses revealed a negative correlation between TUG1 fold-change and disease onset (P < 0.0037) and positive correlations with disease duration and functional disability stage score (P < 0.04). This suggests that elevated TUG1 levels correlate with earlier onset and more severe cases. This study identifies TUG1 as a potential blood-based biomarker for Friedreich's ataxia, showing consistent expression variance in human and mouse tissues related to disease severity and key Friedreich's ataxia pathways. It correlates with frataxin levels, indicating its promise as an early, non-invasive marker. TUG1 holds potential for Friedreich's ataxia monitoring and therapeutic development, meriting additional research.
Collapse
Affiliation(s)
- Mert Koka
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Hui Li
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rumana Akther
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Susan Perlman
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Darice Wong
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Clinical Neurogenomics Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Brent L Fogel
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Clinical Neurogenomics Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - David R Lynch
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Vijayendran Chandran
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Neuroscience, College of Medicine, University of Florida, and McKnight Brain Institute, Gainesville, FL 32610, USA
| |
Collapse
|
19
|
Kebschull JM, Casoni F, Consalez GG, Goldowitz D, Hawkes R, Ruigrok TJH, Schilling K, Wingate R, Wu J, Yeung J, Uusisaari MY. Cerebellum Lecture: the Cerebellar Nuclei-Core of the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:620-677. [PMID: 36781689 PMCID: PMC10951048 DOI: 10.1007/s12311-022-01506-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 02/15/2023]
Abstract
The cerebellum is a key player in many brain functions and a major topic of neuroscience research. However, the cerebellar nuclei (CN), the main output structures of the cerebellum, are often overlooked. This neglect is because research on the cerebellum typically focuses on the cortex and tends to treat the CN as relatively simple output nuclei conveying an inverted signal from the cerebellar cortex to the rest of the brain. In this review, by adopting a nucleocentric perspective we aim to rectify this impression. First, we describe CN anatomy and modularity and comprehensively integrate CN architecture with its highly organized but complex afferent and efferent connectivity. This is followed by a novel classification of the specific neuronal classes the CN comprise and speculate on the implications of CN structure and physiology for our understanding of adult cerebellar function. Based on this thorough review of the adult literature we provide a comprehensive overview of CN embryonic development and, by comparing cerebellar structures in various chordate clades, propose an interpretation of CN evolution. Despite their critical importance in cerebellar function, from a clinical perspective intriguingly few, if any, neurological disorders appear to primarily affect the CN. To highlight this curious anomaly, and encourage future nucleocentric interpretations, we build on our review to provide a brief overview of the various syndromes in which the CN are currently implicated. Finally, we summarize the specific perspectives that a nucleocentric view of the cerebellum brings, move major outstanding issues in CN biology to the limelight, and provide a roadmap to the key questions that need to be answered in order to create a comprehensive integrated model of CN structure, function, development, and evolution.
Collapse
Affiliation(s)
- Justus M Kebschull
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Filippo Casoni
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - Daniel Goldowitz
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Karl Schilling
- Department of Anatomy, Anatomy & Cell Biology, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Federal Republic of Germany
| | - Richard Wingate
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joshua Wu
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Joanna Yeung
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Marylka Yoe Uusisaari
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami-Gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
20
|
Hanani M. Satellite Glial Cells in Human Disease. Cells 2024; 13:566. [PMID: 38607005 PMCID: PMC11011452 DOI: 10.3390/cells13070566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
Satellite glial cells (SGCs) are the main type of glial cells in sensory ganglia. Animal studies have shown that these cells play essential roles in both normal and disease states. In a large number of pain models, SGCs were activated and contributed to the pain behavior. Much less is known about SGCs in humans, but there is emerging recognition that SGCs in humans are altered in a variety of clinical states. The available data show that human SGCs share some essential features with SGCs in rodents, but many differences do exist. SGCs in DRG from patients suffering from common painful diseases, such as rheumatoid arthritis and fibromyalgia, may contribute to the pain phenotype. It was found that immunoglobulins G (IgG) from fibromyalgia patients can induce pain-like behavior in mice. Moreover, these IgGs bind preferentially to SGCs and activate them, which can sensitize the sensory neurons, causing nociception. In other human diseases, the evidence is not as direct as in fibromyalgia, but it has been found that an antibody from a patient with rheumatoid arthritis binds to mouse SGCs, which leads to the release of pronociceptive factors from them. Herpes zoster is another painful disease, and it appears that the zoster virus resides in SGCs, which acquire an abnormal morphology and may participate in the infection and pain generation. More work needs to be undertaken on SGCs in humans, and this review points to several promising avenues for better understanding disease mechanisms and developing effective pain therapies.
Collapse
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel; ; Tel.: +972-2-5844721
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
21
|
Trantham SJ, Coker MA, Norman S, Crowley E, Berthy J, Byrne BJ, Subramony S, Lou X, Corti M. Perspectives of the Friedreich ataxia community on gene therapy clinical trials. Mol Ther Methods Clin Dev 2024; 32:101179. [PMID: 38261944 PMCID: PMC10797190 DOI: 10.1016/j.omtm.2023.101179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
Gene therapy is a potential treatment for Friedreich ataxia, with multiple programs on the horizon. The purpose of this study was to collect opinions about gene therapy from individuals 14 years or older with Friedreich ataxia or parents/caregivers of Friedreich ataxia patients who were diagnosed as children 17 or younger. Participants were asked to complete a survey after reading brief educational materials regarding gene therapy. Most of the patients captured in this survey have an early-onset (classical) presentation of the disease. Participants expressed urgency in participating in gene therapy clinical trials despite the associated risks. About half of the respondents believed that gene therapy would cease progression or minimize symptoms, whereas nearly one-fourth expected to be cured. The survey also revealed how participants perceive their symptom burden, because a substantial majority reported that balance/walking issues most interfere with their quality of life and would be the symptom they would prioritize treating. Although not statistically significant, more caregivers prioritized treating cardiomyopathy than patients. This study provides valuable information on priorities, beliefs, and expectations regarding gene therapy and serves to guide future gene therapy opinion studies and gene therapy trial design.
Collapse
Affiliation(s)
- Shandra J. Trantham
- Genetics and Genomics Graduate Program, University of Florida, Gainesville, FL 32611, USA
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Mackenzi A. Coker
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Samantha Norman
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Emma Crowley
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Julie Berthy
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Barry J. Byrne
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Sub Subramony
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - XiangYang Lou
- Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA
| | - Manuela Corti
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
22
|
Mishra P, Sivakumar A, Johnson A, Pernaci C, Warden AS, El-Hachem LR, Hansen E, Badell-Grau RA, Khare V, Ramirez G, Gillette S, Solis AB, Guo P, Coufal N, Cherqui S. Gene editing improves endoplasmic reticulum-mitochondrial contacts and unfolded protein response in Friedreich's ataxia iPSC-derived neurons. Front Pharmacol 2024; 15:1323491. [PMID: 38420191 PMCID: PMC10899513 DOI: 10.3389/fphar.2024.1323491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
Friedreich ataxia (FRDA) is a multisystemic, autosomal recessive disorder caused by homozygous GAA expansion mutation in the first intron of frataxin (FXN) gene. FXN is a mitochondrial protein critical for iron-sulfur cluster biosynthesis and deficiency impairs mitochondrial electron transport chain functions and iron homeostasis within the organelle. Currently, there is no effective treatment for FRDA. We have previously demonstrated that single infusion of wild-type hematopoietic stem and progenitor cells (HSPCs) resulted in prevention of neurologic and cardiac complications of FRDA in YG8R mice, and rescue was mediated by FXN transfer from tissue engrafted, HSPC-derived microglia/macrophages to diseased neurons/myocytes. For a future clinical translation, we developed an autologous stem cell transplantation approach using CRISPR/Cas9 for the excision of the GAA repeats in FRDA patients' CD34+ HSPCs; this strategy leading to increased FXN expression and improved mitochondrial functions. The aim of the current study is to validate the efficiency and safety of our gene editing approach in a disease-relevant model. We generated a cohort of FRDA patient-derived iPSCs and isogenic lines that were gene edited with our CRISPR/Cas9 approach. iPSC derived FRDA neurons displayed characteristic apoptotic and mitochondrial phenotype of the disease, such as non-homogenous microtubule staining in neurites, increased caspase-3 expression, mitochondrial superoxide levels, mitochondrial fragmentation, and partial degradation of the cristae compared to healthy controls. These defects were fully prevented in the gene edited neurons. RNASeq analysis of FRDA and gene edited neurons demonstrated striking improvement in gene clusters associated with endoplasmic reticulum (ER) stress in the isogenic lines. Gene edited neurons demonstrated improved ER-calcium release, normalization of ER stress response gene, XBP-1, and significantly increased ER-mitochondrial contacts that are critical for functional homeostasis of both organelles, as compared to FRDA neurons. Ultrastructural analysis for these contact sites displayed severe ER structural damage in FRDA neurons, that was undetected in gene edited neurons. Taken together, these results represent a novel finding for disease pathogenesis showing dramatic ER structural damage in FRDA, validate the efficacy profile of our FXN gene editing approach in a disease relevant model, and support our approach as an effective strategy for therapeutic intervention for Friedreich's ataxia.
Collapse
Affiliation(s)
- Priyanka Mishra
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Anusha Sivakumar
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Avalon Johnson
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Carla Pernaci
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Anna S. Warden
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Lilas Rony El-Hachem
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Emily Hansen
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Rafael A. Badell-Grau
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Veenita Khare
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Gabriela Ramirez
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Sydney Gillette
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Angelyn B. Solis
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Peng Guo
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States
| | - Nicole Coufal
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Stephanie Cherqui
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
23
|
Edzeamey FJ, Ramchunder Z, Pourzand C, Anjomani Virmouni S. Emerging antioxidant therapies in Friedreich's ataxia. Front Pharmacol 2024; 15:1359618. [PMID: 38379897 PMCID: PMC10876797 DOI: 10.3389/fphar.2024.1359618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/25/2024] [Indexed: 02/22/2024] Open
Abstract
Friedreich's ataxia (FRDA) is a rare childhood neurologic disorder, affecting 1 in 50,000 Caucasians. The disease is caused by the abnormal expansion of the GAA repeat sequence in intron 1 of the FXN gene, leading to the reduced expression of the mitochondrial protein frataxin. The disease is characterised by progressive neurodegeneration, hypertrophic cardiomyopathy, diabetes mellitus and musculoskeletal deformities. The reduced expression of frataxin has been suggested to result in the downregulation of endogenous antioxidant defence mechanisms and mitochondrial bioenergetics, and the increase in mitochondrial iron accumulation thereby leading to oxidative stress. The confirmation of oxidative stress as one of the pathological signatures of FRDA led to the search for antioxidants which can be used as therapeutic modality. Based on this observation, antioxidants with different mechanisms of action have been explored for FRDA therapy since the last two decades. In this review, we bring forth all antioxidants which have been investigated for FRDA therapy and have been signed off for clinical trials. We summarise their various target points in FRDA disease pathway, their performances during clinical trials and possible factors which might have accounted for their failure or otherwise during clinical trials. We also discuss the limitation of the studies completed and propose possible strategies for combinatorial therapy of antioxidants to generate synergistic effect in FRDA patients.
Collapse
Affiliation(s)
- Fred Jonathan Edzeamey
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health, Medicine, and Life Sciences (CHMLS), Brunel University London, Uxbridge, United Kingdom
| | - Zenouska Ramchunder
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health, Medicine, and Life Sciences (CHMLS), Brunel University London, Uxbridge, United Kingdom
| | - Charareh Pourzand
- Department of Life Sciences, University of Bath, Bath, United Kingdom
- Centre for Therapeutic Innovation, University of Bath, Bath, United Kingdom
| | - Sara Anjomani Virmouni
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health, Medicine, and Life Sciences (CHMLS), Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
24
|
Nolan M, Scott C, Hof PR, Ansorge O. Betz cells of the primary motor cortex. J Comp Neurol 2024; 532:e25567. [PMID: 38289193 PMCID: PMC10952528 DOI: 10.1002/cne.25567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 02/01/2024]
Abstract
Betz cells, named in honor of Volodymyr Betz (1834-1894), who described them as "giant pyramids" in the primary motor cortex of primates and other mammalian species, are layer V extratelencephalic projection (ETP) neurons that directly innervate α-motoneurons of the brainstem and spinal cord. Despite their large volume and circumferential dendritic architecture, to date, no single molecular criterion has been established that unequivocally distinguishes adult Betz cells from other layer V ETP neurons. In primates, transcriptional signatures suggest the presence of at least two ETP neuron clusters that contain mature Betz cells; these are characterized by an abundance of axon guidance and oxidative phosphorylation transcripts. How neurodevelopmental programs drive the distinct positional and morphological features of Betz cells in humans remains unknown. Betz cells display a distinct biphasic firing pattern involving early cessation of firing followed by delayed sustained acceleration in spike frequency and magnitude. Few cell type-specific transcripts and electrophysiological characteristics are conserved between rodent layer V ETP neurons of the motor cortex and primate Betz cells. This has implications for the modeling of disorders that affect the motor cortex in humans, such as amyotrophic lateral sclerosis (ALS). Perhaps vulnerability to ALS is linked to the evolution of neural networks for fine motor control reflected in the distinct morphomolecular architecture of the human motor cortex, including Betz cells. Here, we discuss histological, molecular, and functional data concerning the position of Betz cells in the emerging taxonomy of neurons across diverse species and their role in neurological disorders.
Collapse
Affiliation(s)
- Matthew Nolan
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Connor Scott
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Patrick. R. Hof
- Nash Family Department of Neuroscience and Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Olaf Ansorge
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| |
Collapse
|
25
|
Destrebecq V, Rovai A, Trotta N, Comet C, Naeije G. Proprioceptive and tactile processing in individuals with Friedreich ataxia: an fMRI study. Front Neurol 2023; 14:1224345. [PMID: 37808498 PMCID: PMC10556689 DOI: 10.3389/fneur.2023.1224345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Objective Friedreich ataxia (FA) neuropathology affects dorsal root ganglia, posterior columns in the spinal cord, the spinocerebellar tracts, and cerebellar dentate nuclei. The impact of the somatosensory system on ataxic symptoms remains debated. This study aims to better evaluate the contribution of somatosensory processing to ataxia clinical severity by simultaneously investigating passive movement and tactile pneumatic stimulation in individuals with FA. Methods Twenty patients with FA and 20 healthy participants were included. All subjects underwent two 6 min block-design functional magnetic resonance imaging (fMRI) paradigms consisting of twelve 30 s alternating blocks (10 brain volumes per block, 120 brain volumes per paradigm) of a tactile oddball paradigm and a passive movement paradigm. Spearman rank correlation tests were used for correlations between BOLD levels and ataxia severity. Results The passive movement paradigm led to the lower activation of primary (cSI) and secondary somatosensory cortices (cSII) in FA compared with healthy subjects (respectively 1.1 ± 0.78 vs. 0.61 ± 1.02, p = 0.04, and 0.69 ± 0.5 vs. 0.3 ± 0.41, p = 0.005). In the tactile paradigm, there was no significant difference between cSI and cSII activation levels in healthy controls and FA (respectively 0.88 ± 0.73 vs. 1.14 ± 0.99, p = 0.33, and 0.54 ± 0.37 vs. 0.55 ± 0.54, p = 0.93). Correlation analysis showed a significant correlation between cSI activation levels in the tactile paradigm and the clinical severity (R = 0.481, p = 0.032). Interpretation Our study captured the difference between tactile and proprioceptive impairments in FA using somatosensory fMRI paradigms. The lack of correlation between the proprioceptive paradigm and ataxia clinical parameters supports a low contribution of afferent ataxia to FA clinical severity.
Collapse
Affiliation(s)
- Virginie Destrebecq
- Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LNT), UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
- Department of Neurology, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Antonin Rovai
- Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LNT), UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Nicola Trotta
- Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LNT), UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Camille Comet
- Department of Neurology, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Gilles Naeije
- Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LNT), UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
- Department of Neurology, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
26
|
Maheshwari S, Vilema-Enríquez G, Wade-Martins R. Patient-derived iPSC models of Friedreich ataxia: a new frontier for understanding disease mechanisms and therapeutic application. Transl Neurodegener 2023; 12:45. [PMID: 37726850 PMCID: PMC10510273 DOI: 10.1186/s40035-023-00376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023] Open
Abstract
Friedreich ataxia (FRDA) is a rare genetic multisystem disorder caused by a pathological GAA trinucleotide repeat expansion in the FXN gene. The numerous drawbacks of historical cellular and rodent models of FRDA have caused difficulty in performing effective mechanistic and translational studies to investigate the disease. The recent discovery and subsequent development of induced pluripotent stem cell (iPSC) technology provides an exciting platform to enable enhanced disease modelling for studies of rare genetic diseases. Utilising iPSCs, researchers have created phenotypically relevant and previously inaccessible cellular models of FRDA. These models enable studies of the molecular mechanisms underlying GAA-induced pathology, as well as providing an exciting tool for the screening and testing of novel disease-modifying therapies. This review explores how the use of iPSCs to study FRDA has developed over the past decade, as well as discussing the enormous therapeutic potentials of iPSC-derived models, their current limitations and their future direction within the field of FRDA research.
Collapse
Affiliation(s)
- Saumya Maheshwari
- Department of Physiology, Anatomy and Genetics, Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Gabriela Vilema-Enríquez
- Department of Physiology, Anatomy and Genetics, Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
27
|
Naeije G, Rovai A, Destrebecq V, Trotta N, De Tiège X. Anodal Cerebellar Transcranial Direct Current Stimulation Reduces Motor and Cognitive Symptoms in Friedreich's Ataxia: A Randomized, Sham-Controlled Trial. Mov Disord 2023; 38:1443-1450. [PMID: 37310043 DOI: 10.1002/mds.29453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Friedreich Ataxia is the most common recessive ataxia with only one therapeutic drug approved solely in the United States. OBJECTIVE The aim of this work was to investigate whether anodal cerebellar transcranial direct current stimulation (ctDCS) reduces ataxic and cognitive symptoms in individuals with Friedreich's ataxia (FRDA) and to assess the effects of ctDCS on the activity of the secondary somatosensory (SII) cortex. METHODS We performed a single-blind, randomized, sham-controlled, crossover trial with anodal ctDCS (5 days/week for 1 week, 20 min/day, density current: 0.057 mA/cm2 ) in 24 patients with FRDA. Each patient underwent a clinical evaluation (Scale for the Assessment and Rating of Ataxia, composite cerebellar functional severity score, cerebellar cognitive affective syndrome scale) before and after anodal and sham ctDCS. Activity of the SII cortex contralateral to a tactile oddball stimulation of the right index finger was evaluated with brain functional magnetic resonance imaging at baseline and after anodal/sham ctDCS. RESULTS Anodal ctDCS led to a significant improvement in the Scale for the Assessment and Rating of Ataxia (-6.5%) and in the cerebellar cognitive affective syndrome scale (+11%) compared with sham ctDCS. It also led to a significant reduction in functional magnetic resonance imaging signal at the SII cortex contralateral to tactile stimulation (-26%) compared with sham ctDCS. CONCLUSIONS One week of treatment with anodal ctDCS reduces motor and cognitive symptoms in individuals with FRDA, likely by restoring the neocortical inhibition normally exerted by cerebellar structures. This study provides class I evidence that ctDCS stimulation is effective and safe in FRDA. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Gilles Naeije
- Université libre de Bruxelles, UNI-ULB Neuroscience Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles, Brussels, Belgium
- Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, CUB Hôpital Erasme, Department of Neurology, Brussels, Belgium
| | - Antonin Rovai
- Université libre de Bruxelles, UNI-ULB Neuroscience Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles, Brussels, Belgium
- Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, CUB Hôpital Erasme, Department of Translational Neuroimaging, Brussels, Belgium
| | - Virginie Destrebecq
- Université libre de Bruxelles, UNI-ULB Neuroscience Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles, Brussels, Belgium
- Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, CUB Hôpital Erasme, Department of Neurology, Brussels, Belgium
| | - Nicola Trotta
- Université libre de Bruxelles, UNI-ULB Neuroscience Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles, Brussels, Belgium
| | - Xavier De Tiège
- Université libre de Bruxelles, UNI-ULB Neuroscience Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles, Brussels, Belgium
- Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, CUB Hôpital Erasme, Department of Translational Neuroimaging, Brussels, Belgium
| |
Collapse
|
28
|
Tiberi J, Segatto M, Fiorenza MT, La Rosa P. Apparent Opportunities and Hidden Pitfalls: The Conflicting Results of Restoring NRF2-Regulated Redox Metabolism in Friedreich's Ataxia Pre-Clinical Models and Clinical Trials. Biomedicines 2023; 11:biomedicines11051293. [PMID: 37238963 DOI: 10.3390/biomedicines11051293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Friedreich's ataxia (FRDA) is an autosomal, recessive, inherited neurodegenerative disease caused by the loss of activity of the mitochondrial protein frataxin (FXN), which primarily affects dorsal root ganglia, cerebellum, and spinal cord neurons. The genetic defect consists of the trinucleotide GAA expansion in the first intron of FXN gene, which impedes its transcription. The resulting FXN deficiency perturbs iron homeostasis and metabolism, determining mitochondrial dysfunctions and leading to reduced ATP production, increased reactive oxygen species (ROS) formation, and lipid peroxidation. These alterations are exacerbated by the defective functionality of the nuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor acting as a key mediator of the cellular redox signalling and antioxidant response. Because oxidative stress represents a major pathophysiological contributor to FRDA onset and progression, a great effort has been dedicated to the attempt to restore the NRF2 signalling axis. Despite this, the beneficial effects of antioxidant therapies in clinical trials only partly reflect the promising results obtained in preclinical studies conducted in cell cultures and animal models. For these reasons, in this critical review, we overview the outcomes obtained with the administration of various antioxidant compounds and critically analyse the aspects that may have contributed to the conflicting results of preclinical and clinical studies.
Collapse
Affiliation(s)
- Jessica Tiberi
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Marco Segatto
- Department of Bioscience and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00179 Rome, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00179 Rome, Italy
| |
Collapse
|
29
|
Kerestes R, Cummins H, Georgiou-Karistianis N, Selvadurai LP, Corben LA, Delatycki MB, Egan GF, Harding IH. Reduced cerebello-cerebral functional connectivity correlates with disease severity and impaired white matter integrity in Friedreich ataxia. J Neurol 2023; 270:2360-2369. [PMID: 36859626 PMCID: PMC10130106 DOI: 10.1007/s00415-023-11637-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/07/2023] [Accepted: 02/19/2023] [Indexed: 03/03/2023]
Abstract
Friedreich ataxia (FRDA) is a rare, inherited neurodegenerative disease characterised in most cases by progressive and debilitating motor dysfunction. Degeneration of cerebellar white matter pathways have been previously reported, alongside indications of cerebello-cerebral functional alterations. In this work, we examine resting-state functional connectivity changes within cerebello-cerebral circuits, and their associations with disease severity (Scale for the Assessment and Rating of Ataxia [SARA]), psychomotor function (speeded and paced finger tapping), and white matter integrity (diffusion tensor imaging) in 35 adults with FRDA and 45 age and sex-matched controls. Voxel-wise seed-based functional connectivity was assessed for three cerebellar cortical regions (anterior lobe, lobules I-V; superior posterior lobe, lobules VI-VIIB; inferior posterior lobe, lobules VIIIA-IX) and two dentate nucleus seeds (dorsal and ventral). Compared to controls, people with FRDA showed significantly reduced connectivity between the anterior cerebellum and bilateral pre/postcentral gyri, and between the superior posterior cerebellum and left dorsolateral PFC. Greater disease severity correlated with lower connectivity in these circuits. Lower anterior cerebellum-motor cortex functional connectivity also correlated with slower speeded finger tapping and less fractional anisotropy in the superior cerebellar peduncles, internal capsule, and precentral white matter in the FRDA cohort. There were no significant between-group differences in inferior posterior cerebellar or dentate nucleus connectivity. This study indicates that altered cerebello-cerebral functional connectivity is associated with functional status and white matter damage in cerebellar efferent pathways in people with FRDA, particularly in motor circuits.
Collapse
Affiliation(s)
- Rebecca Kerestes
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Hannah Cummins
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Nellie Georgiou-Karistianis
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Louisa P Selvadurai
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Louise A Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Gary F Egan
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia.,Monash Biomedical Imaging, Monash University, Melbourne, VIC, 3800, Australia
| | - Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia. .,Monash Biomedical Imaging, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
30
|
Louis ED, Martuscello RT, Gionco JT, Hartstone WG, Musacchio JB, Portenti M, McCreary M, Kuo SH, Vonsattel JPG, Faust PL. Histopathology of the cerebellar cortex in essential tremor and other neurodegenerative motor disorders: comparative analysis of 320 brains. Acta Neuropathol 2023; 145:265-283. [PMID: 36607423 PMCID: PMC10461794 DOI: 10.1007/s00401-022-02535-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
In recent years, numerous morphologic changes have been identified in the essential tremor (ET) cerebellar cortex, distinguishing ET from control brains. These findings have not been fully contextualized within a broader degenerative disease spectrum, thus limiting their interpretability. Building off our prior study and now doubling the sample size, we conducted comparative analyses in a postmortem series of 320 brains on the severity and patterning of cerebellar cortex degenerative changes in ET (n = 100), other neurodegenerative disorders of the cerebellum [spinocerebellar ataxias (SCAs, n = 47, including 13 SCA3 and 34 SCA1, 2, 6, 7, 8, 14); Friedreich's ataxia (FA, n = 13); multiple system atrophy (MSA), n = 29], and other disorders that may involve the cerebellum [Parkinson's disease (PD), n = 62; dystonia, n = 19] versus controls (n = 50). We generated data on 37 quantitative morphologic metrics, grouped into 8 broad categories: Purkinje cell (PC) loss, heterotopic PCs, PC dendritic changes, PC axonal changes (torpedoes), PC axonal changes (other than torpedoes), PC axonal changes (torpedo-associated), basket cell axonal hypertrophy, and climbing fiber-PC synaptic changes. Principal component analysis of z scored raw data across all diagnoses (11,651 data items) revealed that diagnostic groups were not uniform with respect to pathology. Dystonia and PD each differed from controls in only 4/37 and 5/37 metrics, respectively, whereas ET differed in 21, FA in 10, SCA3 in 10, MSA in 21, and SCA1/2/6/7/8/14 in 27. Pathological changes were generally on the milder end of the degenerative spectrum in ET, FA and SCA3, and on the more severe end of that spectrum in SCA1/2/6/7/8/14. Comparative analyses across morphologic categories demonstrated differences in relative expression, defining distinctive patterns of changes in these groups. In summary, we present a robust and reproducible method that identifies somewhat distinctive signatures of degenerative changes in the cerebellar cortex that mark each of these disorders.
Collapse
Affiliation(s)
- Elan D Louis
- Department of Neurology, University of Texas Southwestern, 5323 Harry Hines Blvd, Dallas, TX, 75390-8813, USA.
| | - Regina T Martuscello
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - John T Gionco
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Whitney G Hartstone
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Jessica B Musacchio
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Marisa Portenti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Morgan McCreary
- Department of Neurology, University of Texas Southwestern, 5323 Harry Hines Blvd, Dallas, TX, 75390-8813, USA
| | - Sheng-Han Kuo
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jean-Paul G Vonsattel
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
31
|
Weil EL, Nakawah MO, Masdeu JC. Advances in the neuroimaging of motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:359-381. [PMID: 37562878 DOI: 10.1016/b978-0-323-98818-6.00039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Neuroimaging is a valuable adjunct to the history and examination in the evaluation of motor system disorders. Conventional imaging with computed tomography or magnetic resonance imaging depicts important anatomic information and helps to identify imaging patterns which may support diagnosis of a specific motor disorder. Advanced imaging techniques can provide further detail regarding volume, functional, or metabolic changes occurring in nervous system pathology. This chapter is an overview of the advances in neuroimaging with particular emphasis on both standard and less well-known advanced imaging techniques and findings, such as diffusion tensor imaging or volumetric studies, and their application to specific motor disorders. In addition, it provides reference to emerging imaging biomarkers in motor system disorders such as Parkinson disease, amyotrophic lateral sclerosis, and Huntington disease, and briefly reviews the neuroimaging findings in different causes of myelopathy and peripheral nerve disorders.
Collapse
Affiliation(s)
- Erika L Weil
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States; Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States.
| | - Mohammad Obadah Nakawah
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States; Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Joseph C Masdeu
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States; Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
32
|
Rezende TJR, Adanyeguh IM, Arrigoni F, Bender B, Cendes F, Corben LA, Deistung A, Delatycki M, Dogan I, Egan GF, Göricke SL, Georgiou-Karistianis N, Henry PG, Hutter D, Jahanshad N, Joers JM, Lenglet C, Lindig T, Martinez ARM, Martinuzzi A, Paparella G, Peruzzo D, Reetz K, Romanzetti S, Schöls L, Schulz JB, Synofzik M, Thomopoulos SI, Thompson PM, Timmann D, Harding IH, França MC. Progressive Spinal Cord Degeneration in Friedreich's Ataxia: Results from ENIGMA-Ataxia. Mov Disord 2023; 38:45-56. [PMID: 36308733 PMCID: PMC9852007 DOI: 10.1002/mds.29261] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/23/2022] [Accepted: 10/04/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Spinal cord damage is a hallmark of Friedreich's ataxia (FRDA), but its progression and clinical correlates remain unclear. OBJECTIVE The objective of this study was to perform a characterization of cervical spinal cord structural damage in a large multisite FRDA cohort. METHODS We performed a cross-sectional analysis of cervical spinal cord (C1-C4) cross-sectional area (CSA) and eccentricity using magnetic resonance imaging data from eight sites within the ENIGMA-Ataxia initiative, including 256 individuals with FRDA and 223 age- and sex-matched control subjects. Correlations and subgroup analyses within the FRDA cohort were undertaken based on disease duration, ataxia severity, and onset age. RESULTS Individuals with FRDA, relative to control subjects, had significantly reduced CSA at all examined levels, with large effect sizes (d > 2.1) and significant correlations with disease severity (r < -0.4). Similarly, we found significantly increased eccentricity (d > 1.2), but without significant clinical correlations. Subgroup analyses showed that CSA and eccentricity are abnormal at all disease stages. However, although CSA appears to decrease progressively, eccentricity remains stable over time. CONCLUSIONS Previous research has shown that increased eccentricity reflects dorsal column (DC) damage, while decreased CSA reflects either DC or corticospinal tract (CST) damage, or both. Hence our data support the hypothesis that damage to the DC and damage to CST follow distinct courses in FRDA: developmental abnormalities likely define the DC, while CST alterations may be both developmental and degenerative. These results provide new insights about FRDA pathogenesis and indicate that CSA of the cervical spinal cord should be investigated further as a potential biomarker of disease progression. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Thiago JR Rezende
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Isaac M Adanyeguh
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Filippo Arrigoni
- Neuroimaging Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Fernando Cendes
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Louise A Corben
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Andreas Deistung
- University Clinic and Outpatient Clinic for Radiology, Department for Radiation Medicine, University Hospital Halle (Saale), Halle (Saale), Germany
- Department of Neurology and Center for Translational and Behavioral Neuroscience “(C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Martin Delatycki
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich GmbH, Jülich, Germany
| | - Gary F Egan
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
- Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
| | - Sophia L Göricke
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Nellie Georgiou-Karistianis
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Diane Hutter
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - James M Joers
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Tobias Lindig
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Alberto RM Martinez
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Andrea Martinuzzi
- Scientific Institute, IRCCS Eugenio Medea, Conegliano-Pieve di Soligo Research Centre, Conegliano, Italy
| | - Gabriella Paparella
- Scientific Institute, IRCCS Eugenio Medea, Conegliano-Pieve di Soligo Research Centre, Conegliano, Italy
| | - Denis Peruzzo
- Neuroimaging Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich GmbH, Jülich, Germany
| | - Sandro Romanzetti
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich GmbH, Jülich, Germany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Center of Neurology and Hertie Institute for Clinical Brain Research,University Tuübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Jörg B Schulz
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich GmbH, Jülich, Germany
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Center of Neurology and Hertie Institute for Clinical Brain Research,University Tuübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Dagmar Timmann
- Department of Neurology and Center for Translational and Behavioral Neuroscience “(C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Ian H Harding
- Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Marcondes C. França
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
33
|
Pandolfo M, Reetz K, Darling A, Rodriguez de Rivera FJ, Henry PG, Joers J, Lenglet C, Adanyeguh I, Deelchand D, Mochel F, Pousset F, Pascual S, Van den Eede D, Martin-Ugarte I, Vilà-Brau A, Mantilla A, Pascual M, Martinell M, Meya U, Durr A. Efficacy and Safety of Leriglitazone in Patients With Friedreich Ataxia. Neurol Genet 2022; 8:e200034. [DOI: 10.1212/nxg.0000000000200034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/18/2022] [Indexed: 11/06/2022]
Abstract
Background and ObjectivesFriedreich ataxia (FRDA) is an autosomal recessive ataxia with no approved treatments. Leriglitazone is a selective peroxisome proliferator–activated receptor γ agonist that crosses the blood-brain barrier and, in preclinical models, improved mitochondrial function and energy production. We assessed effects of leriglitazone in patients with FRDA in a proof-of-concept study.MethodsIn this double-blind, randomized controlled trial, eligible participants (age 12–60 years) had genetically confirmed FRDA, a Scale for the Assessment and Rating of Ataxia (SARA) total score <25, and a SARA item 1 score of 2–6, inclusive. Key exclusion criteria were age at FRDA onset ≥25 years and history of cardiac dysfunction. Participants were randomly assigned (2:1) to receive a daily, oral, individualized dose of leriglitazone or placebo for 48 weeks. The primary endpoint was the change from baseline to week 48 in spinal cord area (C2-C3) (measured by MRI). Secondary endpoints included the change from baseline to week 48 in iron accumulation in the dentate nucleus (quantitative susceptibility mapping) and totalN-acetylaspartate to myo-inositol (tNAA/mIns) ratio.ResultsOverall, 39 patients were enrolled (mean age 24 years; 43.6% women; mean time since symptom onset 10.5 years): 26 patients received leriglitazone (20 completed) and 13 received placebo (12 completed). There was no difference between groups in spinal cord area from baseline to week 48 (least-squares [LS] mean change [standard error (SE)]: leriglitazone, −0.39 [0.55] mm2; placebo, 0.08 [0.72] mm2;p= 0.61). Iron accumulation in the dentate nucleus was greater with placebo (LS mean change [SE]: leriglitazone, 0.10 [1.33] ppb; placebo, 4.86 [1.84] ppb;p= 0.05), and a numerical difference was seen in tNAA/mIns ratio (LS mean change [SE]: leriglitazone, 0.03 [0.02]; placebo, −0.02 [0.03];p= 0.25). The most frequent adverse event was peripheral edema (leriglitazone 73.1%, placebo 0%).DiscussionThe primary endpoint of change in spinal cord area was not met. Secondary endpoints provide evidence supporting proof of concept for leriglitazone mode of action and, with acceptable safety data, support larger studies in patients with FRDA.Trial Registration InformationClinicalTrials.gov:NCT03917225; EudraCT: 2018-004405-64; submitted April 17, 2019; first patient enrolled April 2, 2019.clinicaltrials.gov/ct2/show/NCT03917225?term=NCT03917225&draw=2&rank=1.Classification of EvidenceThis study provides Class I evidence that individualized dosing of leriglitazone, compared with placebo, is not associated with changes in spinal cord area in patients with FRDA.
Collapse
|
34
|
Georgiou-Karistianis N, Corben LA, Reetz K, Adanyeguh IM, Corti M, Deelchand DK, Delatycki MB, Dogan I, Evans R, Farmer J, França MC, Gaetz W, Harding IH, Harris KS, Hersch S, Joules R, Joers JJ, Krishnan ML, Lax M, Lock EF, Lynch D, Mareci T, Muthuhetti Gamage S, Pandolfo M, Papoutsi M, Rezende TJR, Roberts TPL, Rosenberg JT, Romanzetti S, Schulz JB, Schilling T, Schwarz AJ, Subramony S, Yao B, Zicha S, Lenglet C, Henry PG. A natural history study to track brain and spinal cord changes in individuals with Friedreich's ataxia: TRACK-FA study protocol. PLoS One 2022; 17:e0269649. [PMID: 36410013 PMCID: PMC9678384 DOI: 10.1371/journal.pone.0269649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Drug development for neurodegenerative diseases such as Friedreich's ataxia (FRDA) is limited by a lack of validated, sensitive biomarkers of pharmacodynamic response in affected tissue and disease progression. Studies employing neuroimaging measures to track FRDA have thus far been limited by their small sample sizes and limited follow up. TRACK-FA, a longitudinal, multi-site, and multi-modal neuroimaging natural history study, aims to address these shortcomings by enabling better understanding of underlying pathology and identifying sensitive, clinical trial ready, neuroimaging biomarkers for FRDA. METHODS 200 individuals with FRDA and 104 control participants will be recruited across seven international study sites. Inclusion criteria for participants with genetically confirmed FRDA involves, age of disease onset ≤ 25 years, Friedreich's Ataxia Rating Scale (FARS) functional staging score of ≤ 5, and a total modified FARS (mFARS) score of ≤ 65 upon enrolment. The control cohort is matched to the FRDA cohort for age, sex, handedness, and years of education. Participants will be evaluated at three study visits over two years. Each visit comprises of a harmonized multimodal Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) scan of the brain and spinal cord; clinical, cognitive, mood and speech assessments and collection of a blood sample. Primary outcome measures, informed by previous neuroimaging studies, include measures of: spinal cord and brain morphometry, spinal cord and brain microstructure (measured using diffusion MRI), brain iron accumulation (using Quantitative Susceptibility Mapping) and spinal cord biochemistry (using MRS). Secondary and exploratory outcome measures include clinical, cognitive assessments and blood biomarkers. DISCUSSION Prioritising immediate areas of need, TRACK-FA aims to deliver a set of sensitive, clinical trial-ready neuroimaging biomarkers to accelerate drug discovery efforts and better understand disease trajectory. Once validated, these potential pharmacodynamic biomarkers can be used to measure the efficacy of new therapeutics in forestalling disease progression. CLINICAL TRIAL REGISTRATION ClinicalTrails.gov Identifier: NCT04349514.
Collapse
Affiliation(s)
- Nellie Georgiou-Karistianis
- School of Psychological Sciences, The Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia
| | - Louise A. Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Isaac M. Adanyeguh
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Manuela Corti
- Powell Gene Therapy Centre, University of Florida, Gainesville, Florida, United States of America
| | - Dinesh K. Deelchand
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Martin B. Delatycki
- School of Psychological Sciences, The Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Rebecca Evans
- Takeda Pharmaceutical Company Ltd, Cambridge, Massachusetts, United States of America
| | - Jennifer Farmer
- Friedreich’s Ataxia Research Alliance (FARA), Downingtown, Pennsylvania, United States of America
| | - Marcondes C. França
- Department of Neurology, University of Campinas, Campinas, Sao Paulo, Brazil
| | - William Gaetz
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Ian H. Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Karen S. Harris
- School of Psychological Sciences, The Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia
| | - Steven Hersch
- Neurology Business Group, Eisai Inc., Nutley, New Jersey, United States of America
| | | | - James J. Joers
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michelle L. Krishnan
- Translational Medicine, Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | | | - Eric F. Lock
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States of America
| | - David Lynch
- Department of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Thomas Mareci
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - Sahan Muthuhetti Gamage
- School of Psychological Sciences, The Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia
| | - Massimo Pandolfo
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | | | | | - Timothy P. L. Roberts
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Jens T. Rosenberg
- McKnight Brain Institute, Department of Neurology, University of Florida, Gainesville, Florida, United States of America
| | - Sandro Romanzetti
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Jörg B. Schulz
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Traci Schilling
- PTC Therapeutics, Inc, South Plainfield, New Jersey, United States of America
| | - Adam J. Schwarz
- Takeda Pharmaceutical Company Ltd, Cambridge, Massachusetts, United States of America
| | - Sub Subramony
- McKnight Brain Institute, Department of Neurology, University of Florida, Gainesville, Florida, United States of America
| | - Bert Yao
- PTC Therapeutics, Inc, South Plainfield, New Jersey, United States of America
| | - Stephen Zicha
- Takeda Pharmaceutical Company Ltd, Cambridge, Massachusetts, United States of America
| | - Christophe Lenglet
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
35
|
Angulo MB, Bertalovitz A, Argenziano MA, Yang J, Patel A, Zesiewicz T, McDonald TV. Frataxin deficiency alters gene expression in Friedreich ataxia derived IPSC-neurons and cardiomyocytes. Mol Genet Genomic Med 2022; 11:e2093. [PMID: 36369844 PMCID: PMC9834160 DOI: 10.1002/mgg3.2093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/16/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Friedreich's ataxia (FRDA) is an autosomal recessive disease, whereby homozygous inheritance of an expanded GAA trinucleotide repeat expansion in the first intron of the FXN gene leads to transcriptional repression of the encoded protein frataxin. FRDA is a progressive neurodegenerative disorder, but the primary cause of death is heart disease which occurs in 60% of the patients. Several functions of frataxin have been proposed, but none of them fully explain why its deficiency causes the FRDA phenotypes nor why the most affected cell types are neurons and cardiomyocytes. METHODS To investigate, we generated iPSC-derived neurons (iNs) and cardiomyocytes (iCMs) from an FRDA patient and upregulated FXN expression via lentivirus without altering genomic GAA repeats at the FXN locus. RESULTS RNA-seq and differential gene expression enrichment analyses demonstrated that frataxin deficiency affected the expression of glycolytic pathway genes in neurons and extracellular matrix pathway genes in cardiomyocytes. Genes in these pathways were differentially expressed when compared to a control and restored to control levels when FRDA cells were supplemented with frataxin. CONCLUSIONS These results offer novel insight into specific roles of frataxin deficiency pathogenesis in neurons and cardiomyocytes.
Collapse
Affiliation(s)
- Mariana B. Angulo
- Heart Institute, Morsani College of Medicine, University of South FloridaTampaFloridaUSA,Department of Molecular Pharmacology & PhysiologyMorsani College of Medicine, University of South FloridaTampaFloridaUSA
| | - Alexander Bertalovitz
- Heart Institute, Morsani College of Medicine, University of South FloridaTampaFloridaUSA,Department of Medicine (Cardiology)Morsani College of Medicine, University of South FloridaTampaFloridaUSA
| | - Mariana A. Argenziano
- Heart Institute, Morsani College of Medicine, University of South FloridaTampaFloridaUSA
| | - Jiajia Yang
- Heart Institute, Morsani College of Medicine, University of South FloridaTampaFloridaUSA,Department of Molecular Pharmacology & PhysiologyMorsani College of Medicine, University of South FloridaTampaFloridaUSA
| | - Aarti Patel
- Department of Medicine (Cardiology)Morsani College of Medicine, University of South FloridaTampaFloridaUSA
| | - Theresa Zesiewicz
- Department of NeurologyMorsani College of Medicine, University of South FloridaTampaFloridaUSA
| | - Thomas V. McDonald
- Heart Institute, Morsani College of Medicine, University of South FloridaTampaFloridaUSA,Department of Molecular Pharmacology & PhysiologyMorsani College of Medicine, University of South FloridaTampaFloridaUSA,Department of Medicine (Cardiology)Morsani College of Medicine, University of South FloridaTampaFloridaUSA
| |
Collapse
|
36
|
Antoine JC. Sensory neuronopathies, diagnostic criteria and causes. Curr Opin Neurol 2022; 35:553-561. [PMID: 35950727 DOI: 10.1097/wco.0000000000001105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To stress on the diagnostic strategy of sensory neuronopathies (SNN), including new genes and antibodies. RECENT FINDING SNN involve paraneoplastic, dysimmune, toxic, viral and genetic mechanisms. About one-third remains idiopathic. Recently, new antibodies and genes have reduced this proportion. Anti-FGFR3 and anti-AGO antibodies are not specific of SNN, although SNN is predominant and may occur with systemic autoimmune diseases. These antibodies are the only marker of an underlying dysimmune context in two-thirds (anti-FGFR3 antibodies) and one-third of the cases (anti-AGO antibodies), respectively. Patients with anti-AGO antibodies may improve with treatment, which is less clear with anti-FGFR3 antibodies. A biallelic expansion in the RFC1 gene is responsible for the cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) in which SNN is a predominant manifestation. Most of the patients have an adult onset and are sporadic. The RFC1 mutation may represent one-third of idiopathic sensory neuropathies. Finally, the criteria for the diagnosis of paraneoplastic SNN have recently been updated. SUMMARY The diagnostic of SNN relies on criteria distinguishing SNN from other neuropathies. The strategy in search of their cause now needs to include these recent findings.
Collapse
Affiliation(s)
- Jean-Christophe Antoine
- University Hospital of Saint-Etienne, European Reference Network for Rare Diseases- Euro-NMD, INSERM U1314/CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
37
|
Zhao J, Zhang H, Fan X, Yu X, Huai J. Lipid Dyshomeostasis and Inherited Cerebellar Ataxia. Mol Neurobiol 2022; 59:3800-3828. [PMID: 35420383 PMCID: PMC9148275 DOI: 10.1007/s12035-022-02826-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/01/2022] [Indexed: 12/04/2022]
Abstract
Cerebellar ataxia is a form of ataxia that originates from dysfunction of the cerebellum, but may involve additional neurological tissues. Its clinical symptoms are mainly characterized by the absence of voluntary muscle coordination and loss of control of movement with varying manifestations due to differences in severity, in the site of cerebellar damage and in the involvement of extracerebellar tissues. Cerebellar ataxia may be sporadic, acquired, and hereditary. Hereditary ataxia accounts for the majority of cases. Hereditary ataxia has been tentatively divided into several subtypes by scientists in the field, and nearly all of them remain incurable. This is mainly because the detailed mechanisms of these cerebellar disorders are incompletely understood. To precisely diagnose and treat these diseases, studies on their molecular mechanisms have been conducted extensively in the past. Accumulating evidence has demonstrated that some common pathogenic mechanisms exist within each subtype of inherited ataxia. However, no reports have indicated whether there is a common mechanism among the different subtypes of inherited cerebellar ataxia. In this review, we summarize the available references and databases on neurological disorders characterized by cerebellar ataxia and show that a subset of genes involved in lipid homeostasis form a new group that may cause ataxic disorders through a common mechanism. This common signaling pathway can provide a valuable reference for future diagnosis and treatment of ataxic disorders.
Collapse
Affiliation(s)
- Jin Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huan Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xueyu Fan
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xue Yu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jisen Huai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
38
|
Sivakumar A, Cherqui S. Advantages and Limitations of Gene Therapy and Gene Editing for Friedreich's Ataxia. Front Genome Ed 2022; 4:903139. [PMID: 35663795 PMCID: PMC9157421 DOI: 10.3389/fgeed.2022.903139] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 12/26/2022] Open
Abstract
Friedreich's ataxia (FRDA) is an inherited, multisystemic disorder predominantly caused by GAA hyper expansion in intron 1 of frataxin (FXN) gene. This expansion mutation transcriptionally represses FXN, a mitochondrial protein that is required for iron metabolism and mitochondrial homeostasis, leading to neurodegerative and cardiac dysfunction. Current therapeutic options for FRDA are focused on improving mitochondrial function and increasing frataxin expression through pharmacological interventions but are not effective in delaying or preventing the neurodegeneration in clinical trials. Recent research on in vivo and ex vivo gene therapy methods in FRDA animal and cell models showcase its promise as a one-time therapy for FRDA. In this review, we provide an overview on the current and emerging prospects of gene therapy for FRDA, with specific focus on advantages of CRISPR/Cas9-mediated gene editing of FXN as a viable option to restore endogenous frataxin expression. We also assess the potential of ex vivo gene editing in hematopoietic stem and progenitor cells as a potential autologous transplantation therapeutic option and discuss its advantages in tackling FRDA-specific safety aspects for clinical translation.
Collapse
Affiliation(s)
| | - Stephanie Cherqui
- Division of Genetics, Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
39
|
Krahe J, Dogan I, Didszun C, Mirzazade S, Haeger A, Joni Shah N, Giordano IA, Klockgether T, Madelin G, Schulz JB, Romanzetti S, Reetz K. Increased brain tissue sodium concentration in Friedreich ataxia: A multimodal MR imaging study. NEUROIMAGE: CLINICAL 2022; 34:103025. [PMID: 35500368 PMCID: PMC9065922 DOI: 10.1016/j.nicl.2022.103025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/01/2022] [Accepted: 04/24/2022] [Indexed: 11/28/2022] Open
Abstract
In patients with Friedreich ataxia, structural MRI is typically used to detect abnormalities primarily in the brainstem, cerebellum, and spinal cord. The aim of the present study was to additionally investigate possible metabolic changes in Friedreich ataxia using in vivo sodium MRI that may precede macroanatomical alterations, and to explore potential associations with clinical parameters of disease progression. Tissue sodium concentration across the whole brain was estimated from sodium MRI maps acquired at 3 T and compared between 24 patients with Friedreich ataxia (21-57 years old, 13 females) and 23 controls (21-60 years old, 12 females). Tensor-based morphometry was used to assess volumetric changes. Total sodium concentrations and volumetric data in brainstem and cerebellum were correlated with clinical parameters, such as severity of ataxia, activity of daily living and disability stage, age, age at onset, and disease duration. Compared to controls, patients showed reduced brain volume in the right cerebellar lobules I-V (difference in means: -0.039% of total intracranial volume [TICV]; Cohen's d = 0.83), cerebellar white matter (WM) (-0.105%TICV; d = 1.16), and brainstem (-0.167%TICV; d = 1.22), including pons (-0.102%TICV; d = 1.00), medulla (-0.036%TICV; d = 1.72), and midbrain (-0.028%TICV; d = 1.05). Increased sodium concentration was additionally detected in the total cerebellum (difference in means: 2.865 mmol; d = 0.68), and in several subregions with highest effect sizes in left (5.284 mmol; d = 1.01) and right cerebellar lobules I-V (5.456 mmol; d = 1.00), followed by increases in the vermis (4.261 mmol; d = 0.72), and in left (2.988 mmol; d = 0.67) and right lobules VI-VII (2.816 mmol; d = 0.68). In addition, sodium increases were also detected in all brainstem areas (3.807 mmol; d = 0.71 to 5.42 mmol; d = 1.19). After controlling for age, elevated total sodium concentrations in right cerebellar lobules IV were associated with younger age at onset (r = -0.43) and accordingly with longer disease duration in patients (r = 0.43). Our findings support the potential of in vivo sodium MRI to detect metabolic changes of increased total sodium concentration in the cerebellum and brainstem, the key regions in Friedreich ataxia. In addition to structural changes, sodium changes were present in cerebellar hemispheres and vermis without concomitant significant atrophy. Given the association with age at disease onset or disease duration, metabolic changes should be further investigated longitudinally and in larger cohorts of early disease stages to determine the usefulness of sodium MRI as a biomarker for early neuropathological changes in Friedreich ataxia and efficacy measure for future clinical trials.
Collapse
Affiliation(s)
- Janna Krahe
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Claire Didszun
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Shahram Mirzazade
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Alexa Haeger
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Nadim Joni Shah
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany,Institute of Neuroscience and Medicine 4 (INM-4), Research Centre Juelich GmbH, 52428 Juelich, Germany,Monash Institute of Medical Engineering, Department of Electrical and Computer Systems Engineering, and Monash Biomedical Imaging, School of Psychological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Ilaria A. Giordano
- Department of Neurology, University Hospital of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany,German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Thomas Klockgether
- Department of Neurology, University Hospital of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany,German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Guillaume Madelin
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York NY10016, USA
| | - Jörg B. Schulz
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Sandro Romanzetti
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
40
|
Vicente-Acosta A, Giménez-Cassina A, Díaz-Nido J, Loria F. The smoothened agonist SAG reduces mitochondrial dysfunction and neurotoxicity of frataxin-deficient astrocytes. J Neuroinflammation 2022; 19:93. [PMID: 35413853 PMCID: PMC9006607 DOI: 10.1186/s12974-022-02442-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Friedreich's ataxia is a rare hereditary neurodegenerative disease caused by decreased levels of the mitochondrial protein frataxin. Similar to other neurodegenerative pathologies, previous studies suggested that astrocytes might contribute to the progression of the disease. To fully understand the mechanisms underlying neurodegeneration in Friedreich's ataxia, we investigated the reactivity status and functioning of cultured human astrocytes after frataxin depletion using an RNA interference-based approach and tested the effect of pharmacologically modulating the SHH pathway as a novel neuroprotective strategy. RESULTS We observed loss of cell viability, mitochondrial alterations, increased autophagy and lipid accumulation in cultured astrocytes upon frataxin depletion. Besides, frataxin-deficient cells show higher expression of several A1-reactivity markers and release of pro-inflammatory cytokines. Interestingly, most of these defects were prevented by chronically treating the cells with the smoothened agonist SAG. Furthermore, in vitro culture of neurons with conditioned medium from frataxin-deficient astrocytes results in a reduction of neuronal survival, neurite length and synapse formation. However, when frataxin-deficient astrocytes were chronically treated with SAG, we did not observe these alterations in neurons. CONCLUSIONS Our results demonstrate that the pharmacological activation of the SHH pathway could be used as a target to modulate astrocyte reactivity and neuron-glia interactions to prevent neurodegeneration in Friedreich's ataxia.
Collapse
Affiliation(s)
- Andrés Vicente-Acosta
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Francisco Tomás y Valiente, 7, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Instituto de Investigación Sanitaria Puerta de Hierro, Segovia de Arana, Hospital Universitario Puerta de Hierro, Joaquín Rodrigo 1, Majadahonda, 28222 Madrid, Spain
- Program in Molecular Biosciences, Doctoral School, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alfredo Giménez-Cassina
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Francisco Tomás y Valiente, 7, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Javier Díaz-Nido
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Francisco Tomás y Valiente, 7, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Instituto de Investigación Sanitaria Puerta de Hierro, Segovia de Arana, Hospital Universitario Puerta de Hierro, Joaquín Rodrigo 1, Majadahonda, 28222 Madrid, Spain
| | - Frida Loria
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Francisco Tomás y Valiente, 7, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Budapest 1, Alcorcón, 28922 Madrid, Spain
| |
Collapse
|
41
|
Recessive cerebellar and afferent ataxias - clinical challenges and future directions. Nat Rev Neurol 2022; 18:257-272. [PMID: 35332317 DOI: 10.1038/s41582-022-00634-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
Abstract
Cerebellar and afferent ataxias present with a characteristic gait disorder that reflects cerebellar motor dysfunction and sensory loss. These disorders are a diagnostic challenge for clinicians because of the large number of acquired and inherited diseases that cause cerebellar and sensory neuron damage. Among such conditions that are recessively inherited, Friedreich ataxia and RFC1-associated cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) include the characteristic clinical, neuropathological and imaging features of ganglionopathies, a distinctive non-length-dependent type of sensory involvement. In this Review, we discuss the typical and atypical phenotypes of Friedreich ataxia and CANVAS, along with the features of other recessive ataxias that present with a ganglionopathy or polyneuropathy, with an emphasis on recently described clinical features, natural history and genotype-phenotype correlations. We review the main developments in understanding the complex pathology that affects the sensory neurons and cerebellum, which seem to be most vulnerable to disorders that affect mitochondrial function and DNA repair mechanisms. Finally, we discuss disease-modifying therapeutic advances in Friedreich ataxia, highlighting the most promising candidate molecules and lessons learned from previous clinical trials.
Collapse
|
42
|
Naeije G, Schulz JB, Corben LA. The cognitive profile of Friedreich ataxia: a systematic review and meta-analysis. BMC Neurol 2022; 22:97. [PMID: 35300598 PMCID: PMC8928653 DOI: 10.1186/s12883-022-02615-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Study the cognitive profile of individuals with Friedreich ataxia (FRDA) and seek evidence for correlations between clinical, genetic and imaging characteristics and neuropsychological impairments. METHODS Based on PRISMA guidelines, a meta-analysis was realized using the Pubmed and Scopus databases to identify studies (1950-2021) reporting neuropsychological test results in genetically confirmed FRDA and control participants in at least one of the following cognitive domains: attention/executive, language, memory and visuo-spatial functions as well as emotion. Studies using identical outcomes in a minimum of two studies were pooled. Pooled effect sizes were calculated with Cohen's d. RESULTS Eighteen studies were included. Individuals with FRDA displayed significantly lower performance than individuals without FRDA in most language, attention, executive function, memory visuospatial function, emotion regulation and social cognitive tasks. Among the included studies, thirteen studies examined the relationship between neuropsychological test results and clinical parameters and reported significant association with disease severity and six studies reviewed the relationship between neuroimaging measures and cognitive performance and mainly reported links between reduced cognitive performance and changes in cerebellar structure. CONCLUSIONS Individuals with FRDA display significantly lower performances in many cognitive domains compared to control participants. The spectrum of the cognitive profile alterations in FRDA and its correlation with disease severity and cerebellar structural parameters suggest a cerebellar role in the pathophysiology of FRDA cognitive impairments.
Collapse
Affiliation(s)
- Gilles Naeije
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Lennik Street, 1070, Brussels, Belgium.
| | - Jörg B Schulz
- Department of Neurology, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, Germany
- JARA Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074, Aachen, Germany
| | - Louise A Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
| |
Collapse
|
43
|
Rufini A, Malisan F, Condò I, Testi R. Drug Repositioning in Friedreich Ataxia. Front Neurosci 2022; 16:814445. [PMID: 35221903 PMCID: PMC8863941 DOI: 10.3389/fnins.2022.814445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
Friedreich ataxia is a rare neurodegenerative disorder caused by insufficient levels of the essential mitochondrial protein frataxin. It is a severely debilitating disease that significantly impacts the quality of life of affected patients and reduces their life expectancy, however, an adequate cure is not yet available for patients. Frataxin function, although not thoroughly elucidated, is associated with assembly of iron-sulfur cluster and iron metabolism, therefore insufficient frataxin levels lead to reduced activity of many mitochondrial enzymes involved in the electron transport chain, impaired mitochondrial metabolism, reduced ATP production and inefficient anti-oxidant response. As a consequence, neurons progressively die and patients progressively lose their ability to coordinate movement and perform daily activities. Therapeutic strategies aim at restoring sufficient frataxin levels or at correcting some of the downstream consequences of frataxin deficiency. However, the classical pathways of drug discovery are challenging, require a significant amount of resources and time to reach the final approval, and present a high failure rate. Drug repositioning represents a viable alternative to boost the identification of a therapy, particularly for rare diseases where resources are often limited. In this review we will describe recent efforts aimed at the identification of a therapy for Friedreich ataxia through drug repositioning, and discuss the limitation of such strategies.
Collapse
Affiliation(s)
- Alessandra Rufini
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Fratagene Therapeutics, Rome, Italy
- Saint Camillus International University of Health and Medical Sciences, Rome, Italy
- *Correspondence: Alessandra Rufini,
| | - Florence Malisan
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Ivano Condò
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Roberto Testi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Fratagene Therapeutics, Rome, Italy
| |
Collapse
|
44
|
Seminotti B, Grings M, Tucci P, Leipnitz G, Saso L. Nuclear Factor Erythroid-2-Related Factor 2 Signaling in the Neuropathophysiology of Inherited Metabolic Disorders. Front Cell Neurosci 2021; 15:785057. [PMID: 34955754 PMCID: PMC8693715 DOI: 10.3389/fncel.2021.785057] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/05/2021] [Indexed: 01/14/2023] Open
Abstract
Inherited metabolic disorders (IMDs) are rare genetic conditions that affect multiple organs, predominantly the central nervous system. Since treatment for a large number of IMDs is limited, there is an urgent need to find novel therapeutical targets. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a transcription factor that has a key role in controlling the intracellular redox environment by regulating the expression of antioxidant enzymes and several important genes related to redox homeostasis. Considering that oxidative stress along with antioxidant system alterations is a mechanism involved in the neuropathophysiology of many IMDs, this review focuses on the current knowledge about Nrf2 signaling dysregulation observed in this group of disorders characterized by neurological dysfunction. We review here Nrf2 signaling alterations observed in X-linked adrenoleukodystrophy, glutaric acidemia type I, hyperhomocysteinemia, and Friedreich’s ataxia. Additionally, beneficial effects of different Nrf2 activators are shown, identifying a promising target for treatment of patients with these disorders. We expect that this article stimulates research into the investigation of Nrf2 pathway involvement in IMDs and the use of potential pharmacological modulators of this transcription factor to counteract oxidative stress and exert neuroprotection.
Collapse
Affiliation(s)
- Bianca Seminotti
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mateus Grings
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Guilhian Leipnitz
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
45
|
Liu Y, Cai J, Shen J, Dong W, Xu L, Fang M, Lin Y, Liu J, Ding Y, Qiao T, Li K. SS-31 efficacy in a mouse model of Friedreich ataxia by upregulation of frataxin expression. Hum Mol Genet 2021; 31:176-188. [PMID: 34387346 DOI: 10.1093/hmg/ddab232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/05/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Friedreich ataxia (FRDA) is a serious hereditary neurodegenerative disease, mostly accompanied with hypertrophic cardiomyopathy, caused by the reduced expression of frataxin (FXN). However, there is still no effective treatment. Our previous studies have shown that SS-31, a mitochondrion-targeted peptide, is capable to upregulate the expression of FXN and improve the mitochondrial function in cells derived from FRDA patients. To further explore the potential of SS-31, we used the GAA expansion-based models, including Y47 and YG8R (Fxn KIKO) mice, primary neurons and macrophages from the mice and cells derived from FRDA patients. After once-daily intraperitoneal injection of 1 mg/kg SS-31 for 1 month, we observed the significant improvement of motor function. The vacuolation in dorsal root ganglia, lesions in dentate nuclei and the lost thickness of myelin sheath of spinal cord were all repaired after SS-31 treatment. In addition, the hypertrophic cardiomyocytes and disarrayed abnormal Purkinje cells were dramatically reduced. Interestingly, we found that SS-31 treatment upregulated FXN expression not only at the translational levels as observed in cell culture but also at mRNA levels in vivo. Consequently, mitochondrial morphology and function were greatly improved in all tested tissues. Importantly, our data provided additional evidence that the maintenance of the therapeutic benefits needed continuous drug administration. Taken together, our findings have demonstrated the effectiveness of SS-31 treatment through the upregulation of FXN in vivo and offer guidance of the potential usage in the clinical application for FRDA.
Collapse
Affiliation(s)
- Yutong Liu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Jing Cai
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jiaqi Shen
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Weichen Dong
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Li Xu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Maoxin Fang
- Department of Biological Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yishan Lin
- Department of Biological Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jiali Liu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Yibing Ding
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Tong Qiao
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Kuanyu Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| |
Collapse
|
46
|
Bogdanova-Mihaylova P, Plapp HM, Chen H, Early A, Cassidy L, Walsh RA, Murphy SM. Longitudinal Assessment Using Optical Coherence Tomography in Patients with Friedreich's Ataxia. Tomography 2021; 7:915-931. [PMID: 34941648 PMCID: PMC8706975 DOI: 10.3390/tomography7040076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Ocular abnormalities occur frequently in Friedreich's ataxia (FRDA), although visual symptoms are not always reported. We evaluated a cohort of patients with FRDA to characterise the clinical phenotype and optic nerve findings as detected with optical coherence tomography (OCT). A total of 48 patients from 42 unrelated families were recruited. Mean age at onset was 13.8 years (range 4-40), mean disease duration 19.5 years (range 5-43), mean disease severity as quantified with the Scale for the Assessment and Rating of Ataxia 22/40 (range 4.5-38). All patients displayed variable ataxia and two-thirds had ocular abnormalities. Statistically significant thinning of average retinal nerve fibre layer (RNFL) and thinning in all but the temporal quadrant compared to controls was demonstrated on OCT. Significant RNFL and macular thinning was documented over time in 20 individuals. Disease severity and visual acuity were correlated with RNFL and macular thickness, but no association was found with disease duration. Our results highlight that FDRA is associated with subclinical optic neuropathy. This is the largest longitudinal study of OCT findings in FRDA to date, demonstrating progressive RNFL thickness decline, suggesting that RNFL thickness as measured by OCT has the potential to become a quantifiable biomarker for the evaluation of disease progression in FRDA.
Collapse
Affiliation(s)
- Petya Bogdanova-Mihaylova
- National Ataxia Clinic, Department of Neurology, Tallaght University Hospital, Tallaght, Dublin 24, Ireland; (R.A.W.); (S.M.M.)
| | - Helena Maria Plapp
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland; (H.M.P.); (H.C.)
| | - Hongying Chen
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland; (H.M.P.); (H.C.)
| | - Anne Early
- Department of Ophthalmology, Tallaght University Hospital, Dublin 24, Ireland; (A.E.); (L.C.)
| | - Lorraine Cassidy
- Department of Ophthalmology, Tallaght University Hospital, Dublin 24, Ireland; (A.E.); (L.C.)
| | - Richard A. Walsh
- National Ataxia Clinic, Department of Neurology, Tallaght University Hospital, Tallaght, Dublin 24, Ireland; (R.A.W.); (S.M.M.)
- Dublin Neurological Institute at the Mater Hospital and University College Dublin, Dublin 7, Ireland
- Academic Unit of Neurology, Trinity College Dublin, Dublin 2, Ireland
| | - Sinéad M. Murphy
- National Ataxia Clinic, Department of Neurology, Tallaght University Hospital, Tallaght, Dublin 24, Ireland; (R.A.W.); (S.M.M.)
- Academic Unit of Neurology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
47
|
Monda E, Lioncino M, Rubino M, Passantino S, Verrillo F, Caiazza M, Cirillo A, Fusco A, Di Fraia F, Fimiani F, Amodio F, Borrelli N, Mauriello A, Natale F, Scarano G, Girolami F, Favilli S, Limongelli G. Diagnosis and Management of Cardiovascular Involvement in Friedreich Ataxia. Heart Fail Clin 2021; 18:31-37. [PMID: 34776081 DOI: 10.1016/j.hfc.2021.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a homozygous GAA triplet repeat expansion in the frataxin gene. Cardiac involvement, usually manifesting as hypertrophic cardiomyopathy, can range from asymptomatic cases to severe cardiomyopathy with progressive deterioration of the left ventricular ejection fraction and chronic heart failure. The management of cardiac involvement is directed to prevent disease progression and cardiovascular complications. However, direct-disease therapies are not currently available for FRDA. The present review aims to describe the current state of knowledge regarding cardiovascular involvement of FRDA, focusing on clinical-instrumental features and management of cardiac manifestation.
Collapse
Affiliation(s)
- Emanuele Monda
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Michele Lioncino
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Marta Rubino
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Silvia Passantino
- Department of Pediatric Cardiology, Meyer Children's Hospital, Viale Gaetano Pieraccini, 24, 50139 Florence, Italy
| | - Federica Verrillo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Martina Caiazza
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Annapaola Cirillo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Adelaide Fusco
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Francesco Di Fraia
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Fabio Fimiani
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Federica Amodio
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Nunzia Borrelli
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Alfredo Mauriello
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Francesco Natale
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Gioacchino Scarano
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Francesca Girolami
- Department of Pediatric Cardiology, Meyer Children's Hospital, Viale Gaetano Pieraccini, 24, 50139 Florence, Italy
| | - Silvia Favilli
- Department of Pediatric Cardiology, Meyer Children's Hospital, Viale Gaetano Pieraccini, 24, 50139 Florence, Italy
| | - Giuseppe Limongelli
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy; Institute of Cardiovascular Sciences, University College of London and St. Bartholomew's Hospital, Grower Street, London WC1E 6DD, UK.
| |
Collapse
|
48
|
Hernandez ALCC, Rezende TJR, Martinez ARM, de Brito MR, França MC. Tract-Specific Spinal Cord Diffusion Tensor Imaging in Friedreich's Ataxia. Mov Disord 2021; 37:354-364. [PMID: 34713932 DOI: 10.1002/mds.28841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Spinal cord (SC) damage is a hallmark in Friedreich's ataxia (FRDA). Neuroimaging has been able to capture some SC macroscopic changes, but no study has evaluated microstructural SC white matter (WM) damage in vivo. OBJECTIVES We designed a cross-sectional study to evaluate microstructural integrity in SC WM tracts of FRDA patients using diffusion tensor imaging (DTI) with an automated analysis pipeline. METHODS Thirty patients and 30 matched healthy controls underwent 3 Tesla (T) magnetic resonance imaging (MRI). We obtained cervical SC T2 and diffusion-weighted imaging (DWI) acquisitions. Images were processed using the Spinal Cord Toolbox v.4.3.0. For levels C2-C5, we measured cross-sectional area (CSA) and WM DTI parameters (axial diffusivity [AD], fractional anisotropy [FA], radial diffusivity [RD], and mean diffusivity [MD]). Age, duration, and FARS scores were also obtained. RESULTS Mean age and disease duration of patients were 31 ± 10 and 11 ± 9 years, respectively. There was CSA reduction in FRDA amongst all levels. Between-group differences in FA, MD, and RD in total white matter (TWM), dorsal columns (DC), fasciculus gracilis (FG), fasciculus cuneatus (FC), and corticospinal tracts (CST) were present in all levels. FA and RD from TWM, DC, FC, and CST correlated with FARS scores, and in CST they also correlated with disease duration. CONCLUSION DTI uncovered abnormalities in SC WM tracts, which correlated with clinical features in FRDA. CSA and CST FA in C2 correlated best with disease severity, whereas DC FA showed the largest effect size to differentiate patients and healthy controls. SC WM microstructure is a potential neuroimaging biomarker to be explored in the disease. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ana Luisa C C Hernandez
- Department of Neurology and Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), School of Medical Sciences - University of Campinas (UNICAMP), Campinas, Brazil
| | - Thiago J R Rezende
- Department of Neurology and Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), School of Medical Sciences - University of Campinas (UNICAMP), Campinas, Brazil
| | - Alberto R M Martinez
- Department of Neurology and Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), School of Medical Sciences - University of Campinas (UNICAMP), Campinas, Brazil
| | - Mariana R de Brito
- Department of Neurology and Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), School of Medical Sciences - University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcondes C França
- Department of Neurology and Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), School of Medical Sciences - University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
49
|
Abstract
INTRODUCTION Friedreich ataxia (FRDA) is an autosomal recessive disorder caused by deficiency of frataxin, an essential mitochondrial protein involved in iron sulfur cluster biogenesis, oxidative phosphorylation and other processes. FRDA most notably affects the heart, sensory neurons, spinal cord, cerebellum, and other brain regions, and manifests clinically as ataxia, sensory loss, dysarthria, spasticity, and hypertrophic cardiomyopathy. Therapeutic approaches in FRDA have consisted of two different approaches: (1) augmenting or restoring frataxin production and (2) modulating a variety of downstream processes related to mitochondrial dysfunction, including reactive oxygen species production, ferroptosis, or Nrf2 activation. AREAS COVERED In this review, we summarize data from major phase II clinical trials in FRDA published between 2015 and 2020, which includes A0001/EPI743, Omaveloxolone, RT001, and Actimmune. EXPERT OPINION A growing number of drug candidates are being tested in phase II clinical trials for FRDA; however, most have not met their primary endpoints, and none have received FDA approval. In this review, we aim to summarize completed phase II clinical trials in FRDA, outlining critical lessons that have been learned and that should be incorporated into future trial design to ultimately optimize drug development in FRDA.
Collapse
|
50
|
Shishegar R, Harding IH, Selvadurai LP, Corben LA, Delatycki MB, Egan GF, Georgiou-Karistianis N. Longitudinal investigation of brain activation during motor tasks in Friedreich ataxia: 24-month data from IMAGE-FRDA. Brain Struct Funct 2021; 227:809-819. [PMID: 34687355 DOI: 10.1007/s00429-021-02413-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/08/2021] [Indexed: 11/26/2022]
Abstract
Friedreich ataxia (FRDA) is a progressive autosomal recessive disease. While motor dysfunction is the primary neurological hallmark, little is known about the underlying neurobiological changes associated with motor deficits over the course of disease. We investigated the hypothesis that progressive functional changes in both the cerebellum and cerebrum are related to longitudinal changes in performance on complex motor tasks in individuals with FRDA. Twenty-two individuals with FRDA and 28 controls participated over 24 months. The longitudinal investigation included finger tapping tasks with different levels of complexity (i.e., visually cued, multi-finger; self-paced, single finger), performed in conjunction with fMRI acquisitions, to interrogate changes in the neurobiology of motor and attentional brain networks including the cerebellum and cerebrum. We demonstrated evidence for significant longitudinal decreased cerebral fMRI activity over time in individuals with FRDA, relative to controls, during an attentionally-demanding motor task (visually cued tapping of multiple fingers) in six cerebral regions: right and left superior frontal gyri, right superior temporal gyrus, right primary somatosensory area, right anterior cingulate cortex, and right medial frontal gyrus. Importantly, longitudinal decreased activity was associated with more severe disease status at baseline, higher GAA1 repeat length and earlier age of onset. These findings suggest a dynamic pattern of neuronal activity in motor, attention and executive control networks over time in individuals with FRDA, which is associated with increased disease severity at baseline, increased GAA1 repeat length and earlier age at onset.
Collapse
Affiliation(s)
- Rosita Shishegar
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
- The Australian e-Health Research Centre, CSIRO, Melbourne, VIC, Australia
| | - Ian H Harding
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Louisa P Selvadurai
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
| | - Louise A Corben
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| | - Martin B Delatycki
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
- Victorian Clinical Genetics Service, Melbourne, VIC, Australia
| | - Gary F Egan
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|