1
|
Raîche-Marcoux G, Guérin S, Boisselier É. [Cellular models used to study the pathogenesis associated with ocular inflammation in the anterior part of the eye]. Med Sci (Paris) 2025; 41:327-335. [PMID: 40294293 DOI: 10.1051/medsci/2025046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Several multifactorial pathologies in ophthalmology that affect the anterior segment of the eye are partly inflammatory. To better understand the role and impact of inflammation in dry eye and corneal healing, many research teams have used in vitro models to mimic different aspects of these diseases. Several in vitro models have been developed to elucidate the signaling cascades involved in pathogenesis. They also offer the experimental flexibility to adjust environmental parameters, facilitating the validation of innovative therapies and the identification of new pharmacological targets. This review focuses on two-dimensional in vitro models, but also highlights the progress made in 3D models obtained by tissue engineering, which mimic inflammation in these ocular pathologies. The origin of the cells (human or animal), their tissue source, the type of cells (epithelial, endothelial, vascular, conjunctival), as well as the various experimental conditions used to mimic an inflammatory aspect according to the stages of progression of these pathologies, are thoroughly reported in this review of the literature.
Collapse
Affiliation(s)
- Gabrielle Raîche-Marcoux
- Centre universitaire d'ophtalmologie (CUO) - recherche, axe médecine régénératrice; Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1S 4L8, Canada - Département d'ophtalmologie et d'oto-rhino-laryngologie - chirurgie cervico-faciale, Faculté de médecine, Université Laval, Québec, Canada
| | - Sylvain Guérin
- Centre universitaire d'ophtalmologie (CUO) - recherche, axe médecine régénératrice; Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1S 4L8, Canada - Département d'ophtalmologie et d'oto-rhino-laryngologie - chirurgie cervico-faciale, Faculté de médecine, Université Laval, Québec, Canada
| | - Élodie Boisselier
- Centre universitaire d'ophtalmologie (CUO) - recherche, axe médecine régénératrice; Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1S 4L8, Canada - Département d'ophtalmologie et d'oto-rhino-laryngologie - chirurgie cervico-faciale, Faculté de médecine, Université Laval, Québec, Canada
| |
Collapse
|
2
|
Wang Y, Xu Z, Wei L, Lu Y, Shi Y, Wen S, Lv X, Huang K, Lu F, Qu J, Hu L. KGF-2 Alleviates Dry Eye Disease by Regulating the HMGB1/TLR4 Pathway. Invest Ophthalmol Vis Sci 2025; 66:28. [PMID: 40227178 PMCID: PMC12007672 DOI: 10.1167/iovs.66.4.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/11/2025] [Indexed: 04/15/2025] Open
Abstract
Purpose This study aimed to investigate the protective effects of keratinocyte growth factor-2 (KGF-2) in dry eye disease (DED) and elucidate its mechanism of action through the regulation of the HMGB1/TLR4 pathway. Methods Two in vitro models were established by stimulating hyperosmolar human corneal epithelial cells (HCECs) and RAW 264.7 cells with lipopolysaccharide. A DED mice model was established using scopolamine and an intelligently controlled environmental system. After KGF-2 treatment, the symptoms of the DED mice were assessed. The changes in inflammatory factors were measured using Western blotting and quantitative reverse-transcription polymerase chain reaction (RT-qPCR). RNA sequencing (RNA-seq) was used to identify the key factors involved in KGF-2 treatment, followed by validation through in vivo and in vitro knockdown of the relevant factors. Results KGF-2 treatment significantly relieved DED in the mice model through increased tear secretion, and improved fluorescein staining scores. In addition, the levels of inflammatory factors were effectively lowered in both in vitro and in vivo models. Bulk RNA-seq analysis suggested that KGF-2 exerts its effects by regulating the HMGB1/TLR4 pathway. Furthermore, KGF-2 treatment inhibited the upregulation and nuclear translocation of HMGB1 in the DED model, thereby suppressing the levels of inflammatory factors associated with the HMGB1/TLR4 pathway. Knockdown of HMGB1 in HCECs and glycyrrhizin treatment in DED mice exhibited therapeutic effects similar to those of KGF-2. Conclusions KGF-2 demonstrated protective effects in both in vivo and in vitro DED models by modulating the HMGB1/TLR4 pathway. These findings suggest its potential as a therapeutic agent for DED, warranting further clinical investigation in this regard.
Collapse
Affiliation(s)
- Yuzhou Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhiqiang Xu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Linzhi Wei
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Lu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yizhou Shi
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shiyu Wen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiujuan Lv
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Kaiyan Huang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fan Lu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jia Qu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Liang Hu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Kwon J, Moghtader A, Kang C, Bibak Bejandi Z, Shahjahan S, Alzein A, Djalilian AR. Overview of Dry Eye Disease for Primary Care Physicians. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:460. [PMID: 40142272 PMCID: PMC11943967 DOI: 10.3390/medicina61030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/03/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025]
Abstract
Dry eye disease (DED), also known as keratoconjunctivitis sicca, is a multifactorial ocular disease characterized by tear film insufficiency due to diverse etiologies including aging, incomplete and infrequent blinking, hormonal changes, medications, and systemic diseases. Classified into aqueous-deficient dry eye (ADDE), evaporative dry eye (EDE), and mixed subtypes, DED presents with symptoms such as irritation, stinging, redness, foreign body sensation, sensitivity to light, and blurred or fluctuating vision. While rare, severe cases may lead to vision loss. With its rising global prevalence across age groups, DED poses a significant public health challenge. Primary care physicians (PCPs), often the first point of contact for DED patients, require timely screening and management strategies. This review explores the epidemiology, pathophysiology, clinical manifestations, diagnosis, and management of DED, emphasizing practical approaches for PCPs. This narrative review was conducted by searching MEDLINE, PubMed, and Google Scholar databases for relevant articles. Diagnostic approaches, including detailed history taking, patient-reported questionnaires, differential diagnosis, and assessments are discussed alongside management strategies, including symptomatic ophthalmic treatment, risk factor mitigation (e.g., reduced digital device screen time), prevention, and nutrition. By providing a synopsis of early symptoms that PCPs are often the first to encounter, practical approaches to screening and managing DED in the primary care setting, and guidelines on when to refer to specialty care, this comprehensive review aims to equip PCPs with the knowledge to improve DED screening and optimize patient outcomes.
Collapse
Affiliation(s)
- Jeonghyun Kwon
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.K.); (A.M.); (Z.B.B.); (S.S.); (A.A.)
| | - Amirhossein Moghtader
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.K.); (A.M.); (Z.B.B.); (S.S.); (A.A.)
| | - Christie Kang
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Zahra Bibak Bejandi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.K.); (A.M.); (Z.B.B.); (S.S.); (A.A.)
| | - Sumaiya Shahjahan
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.K.); (A.M.); (Z.B.B.); (S.S.); (A.A.)
| | - Ahmad Alzein
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.K.); (A.M.); (Z.B.B.); (S.S.); (A.A.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.K.); (A.M.); (Z.B.B.); (S.S.); (A.A.)
| |
Collapse
|
4
|
Qu L, Huang Y, Wu Y, He L, Liu Y, Chen Z, Ma X, Fan D. Ginsenoside Rk3 Treats Corneal Injury Through the HMGB1/TLR4/NF-κB Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24387-24399. [PMID: 39435975 DOI: 10.1021/acs.jafc.4c04250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The cornea serves as a vital protective shield for the eye, safeguarding its intricate internal structures from external threats. Damage to the cornea compromises this protective function, triggering inflammation and potentially causing long-term harm. While ginsenoside Rk3 has demonstrated potential for repairing the corneal barrier and reducing inflammation, its effectiveness in treating corneal damage remains relatively unexplored. This comprehensive study uses both in vivo and in vitro models to investigate the therapeutic capabilities of ginsenoside Rk3. Using two models of corneal damage, a benzalkonium chloride-induced mouse model and a high osmolarity-induced human corneal epithelial cell model, we scrutinized the effects of ginsenoside Rk3 treatment. Our results showed that ginsenoside Rk3-treated mice manifested reduced corneal damage and inflammation compared with their untreated counterparts. Furthermore, mice treated with ginsenoside Rk3 exhibited an organized arrangement of corneal cells and diminished stromal layer thickness, indicating reparative properties of ginsenoside Rk3. Additionally, ginsenoside Rk3 increased the expression of tight junction proteins, suppressed inflammatory factors, and decreased HMGB1 protein expression, thereby modulating downstream signaling pathways. Collectively, our findings present compelling evidence that ginsenoside Rk3 is a promising therapeutic option for corneal injury. By repairing the corneal barrier, mitigating inflammation, and modulating specific protein levels, ginsenoside Rk3 opens new avenues for managing corneal damage.
Collapse
Affiliation(s)
- Linlin Qu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
- Xi'an Giant Biotechnology Co., Ltd., Xi'an 710076, China
| | - Yingcong Huang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| | - Yuqing Wu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| | - Lei He
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| | - Yannan Liu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| | - Zhiqi Chen
- Shaanxi Giant Biotechnology Co., Ltd., Xi'an 710065, China
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| |
Collapse
|
5
|
Chao C, Lema C, Redfern R, Richdale K. Changes in tear glucose and insulin concentrations following an oral glucose tolerance test. Clin Exp Optom 2023; 106:752-758. [PMID: 35977531 PMCID: PMC11970258 DOI: 10.1080/08164622.2022.2111204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/15/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022] Open
Abstract
CLINICAL RELEVANCE Tear glucose and insulin are responsible for the health of the ocular surface; thus, it is important for clinicians to detect the tear glucose and insulin using point-of-care methods. AIM To determine if changes in blood glucose and insulin levels following an oral glucose tolerance test are reflected in the tears and to test the association between gene expression and tear insulin and glucose. METHODS Twenty healthy young adults were enrolled. Basal tears and peripheral blood samples were collected to assess glucose and insulin using a point-of-care glucometer and ELISA assays in fasted subjects, and 1.5 and 3 h after an oral glucose challenge. Conjunctival impression cytology was collected to determine gene expression of insulin receptor (INSR) and glucose transporters (GLUT1 and GLUT4). Changes were examined using non-parametric one-way ANOVA. Spearman tests were conducted to examine associations between variables. RESULTS Glucose and insulin levels increased 1.5 h after oral glucose in both blood (P < 0.001) and tears (P < 0.049) and returned to near baseline values after 3 h. There was a positive correlation between glucose levels in the blood and tears (rho = 0.57, P < 0.001), but not between blood and tear insulin levels (P = 0.18). Glucose and insulin levels in tears were correlated (rho = 0.32, P = 0.048). Tear glucose concentration at 1.5 h after oral glucose was associated with INSR expression (rho = 0.49, P = 0.03), and there was a trend with GLUT1 (P = 0.06) but not GLUT4. CONCLUSION Tear glucose reflected blood glucose levels but this correspondence was not observed for insulin. Further studies are required to determine the role of glucose and insulin on the ocular surface in both health and diabetes.
Collapse
Affiliation(s)
- Cecilia Chao
- College of Optometry, University of Houston, Houston, TX, USA
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Carolina Lema
- College of Optometry, University of Houston, Houston, TX, USA
| | - Rachel Redfern
- College of Optometry, University of Houston, Houston, TX, USA
| | | |
Collapse
|
6
|
Henrioux F, Navel V, Belville C, Charnay C, Antoine A, Chiambaretta F, Sapin V, Blanchon L. Inflammation of Dry Eye Syndrome: A Cellular Study of the Epithelial and Macrophagic Involvement of NFAT5 and RAGE. Int J Mol Sci 2023; 24:11052. [PMID: 37446230 DOI: 10.3390/ijms241311052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Dry eye inflammation is a key step in a vicious circle and needs to be better understood in order to break it. The goals of this work were to, first, characterize alarmins and cytokines released by ocular surface cells in the hyperosmolar context and, second, study the role of NFAT5 in this process. Finally, we studied the potential action of these alarmins in ocular surface epithelial cells and macrophages via RAGE pathways. HCE and WKD cell lines were cultured in a NaCl-hyperosmolar medium and the expression of alarmins (S100A4, S100A8, S100A9, and HMGB1), cytokines (IL6, IL8, TNFα, and MCP1), and NFAT5 were assessed using RT-qPCR, ELISA and multiplex, Western blot, immunofluorescence, and luciferase assays. In selected experiments, an inhibitor of RAGE (RAP) or NFAT5 siRNAs were added before the hyperosmolar stimulations. HCE and WKD cells or macrophages were treated with recombinant proteins of alarmins (with or without RAP) and analyzed for cytokine expression and chemotaxis, respectively. Hyperosmolarity induced epithelial cell inflammation depending on cell type. NFAT5, but not RAGE or alarmins, participated in triggering epithelial inflammation. Furthermore, the release of alarmins induced macrophage migration through RAGE. These in vitro results suggest that NFAT5 and RAGE have a role in dry eye inflammation.
Collapse
Affiliation(s)
- Fanny Henrioux
- Team "Translational Approach to Epithelial Injury and Repair", Institute Genetics, Reproduction and Development (iGReD), Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Valentin Navel
- Team "Translational Approach to Epithelial Injury and Repair", Institute Genetics, Reproduction and Development (iGReD), Université Clermont Auvergne, 63000 Clermont-Ferrand, France
- Ophthalmology Department, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Corinne Belville
- Team "Translational Approach to Epithelial Injury and Repair", Institute Genetics, Reproduction and Development (iGReD), Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Coline Charnay
- Team "Translational Approach to Epithelial Injury and Repair", Institute Genetics, Reproduction and Development (iGReD), Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Audrey Antoine
- Team "Translational Approach to Epithelial Injury and Repair", Institute Genetics, Reproduction and Development (iGReD), Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Frédéric Chiambaretta
- Team "Translational Approach to Epithelial Injury and Repair", Institute Genetics, Reproduction and Development (iGReD), Université Clermont Auvergne, 63000 Clermont-Ferrand, France
- Ophthalmology Department, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Vincent Sapin
- Team "Translational Approach to Epithelial Injury and Repair", Institute Genetics, Reproduction and Development (iGReD), Université Clermont Auvergne, 63000 Clermont-Ferrand, France
- Biochemistry and Molecular Genetics Department, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Loïc Blanchon
- Team "Translational Approach to Epithelial Injury and Repair", Institute Genetics, Reproduction and Development (iGReD), Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
7
|
Zhuang D, Misra SL, Mugisho OO, Rupenthal ID, Craig JP. NLRP3 Inflammasome as a Potential Therapeutic Target in Dry Eye Disease. Int J Mol Sci 2023; 24:10866. [PMID: 37446038 DOI: 10.3390/ijms241310866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Dry eye disease (DED) is a multifactorial ocular surface disorder arising from numerous interrelated underlying pathologies that trigger a self-perpetuating cycle of instability, hyperosmolarity, and ocular surface damage. Associated ocular discomfort and visual disturbance contribute negatively to quality of life. Ocular surface inflammation has been increasingly recognised as playing a key role in the pathophysiology of chronic DED. Current readily available anti-inflammatory agents successfully relieve symptoms, but often without addressing the underlying pathophysiological mechanism. The NOD-like receptor protein-3 (NLRP3) inflammasome pathway has recently been implicated as a key driver of ocular surface inflammation, as reported in pre-clinical and clinical studies of DED. This review discusses the intimate relationship between DED and inflammation, highlights the involvement of the inflammasome in the development of DED, describes existing anti-inflammatory therapies and their limitations, and evaluates the potential of the inflammasome in the context of the existing anti-inflammatory therapeutic landscape as a therapeutic target for effective treatment of the disease.
Collapse
Affiliation(s)
- Dian Zhuang
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Stuti L Misra
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Jennifer P Craig
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
8
|
Sonkodi B, Marsovszky L, Csorba A, Balog A, Kopper B, Nagy ZZ, Resch MD. Neural Regeneration in Dry Eye Secondary to Systemic Lupus Erythematosus Is Also Disrupted like in Rheumatoid Arthritis, but in a Progressive Fashion. Int J Mol Sci 2023; 24:10680. [PMID: 37445856 DOI: 10.3390/ijms241310680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Our objective in this study was to analyze the aberrant neural regeneration activity in the cornea by means of in vivo confocal microscopy in systemic lupus erythematosus patients with concurrent dry eye disease. We examined 29 systemic lupus erythematosus patients and 29 age-matched healthy control subjects. Corneal nerve fiber density (CNFD, the number of fibers/mm2) and peripheral Langerhans cell morphology were lower (p < 0.05) in systemic lupus erythematosus patients compared to the control group. Interestingly, corneal nerve branch density, corneal nerve fiber length, corneal nerve fiber total branch density, and corneal nerve fiber area showed a negative correlation with disease duration. A negative correlation was also demonstrated between average corneal nerve fiber density and central Langerhans cell density. This is in line with our hypothesis that corneal somatosensory terminal Piezo2 channelopathy-induced impaired Piezo2-Piezo1 crosstalk not only disrupts regeneration and keeps transcription activated, but could lead to Piezo1 downregulation and cell activation on Langerhans cells when we consider a chronic path. Hence, Piezo2 containing mechanosensory corneal nerves and dendritic Langerhans cells could also be regarded as central players in shaping the ocular surface neuroimmune homeostasis through the Piezo system. Moreover, lost autoimmune neuroinflammation compensation, lost phagocytic self-eating capacity, and lost transcription regulation, not to mention autoantibodies against vascular heparin sulfate proteoglycans and phospholipids, could all contribute to the progressive fashion of dry eye disease in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - László Marsovszky
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| | - Anita Csorba
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| | - Attila Balog
- Department of Rheumatology and Immunology, Faculty of Medicine, Albert Szent-Györgyi Health Center, University of Szeged, 6725 Szeged, Hungary
| | - Bence Kopper
- Faculty of Kinesiology, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| | - Miklós D Resch
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
9
|
Rauchman SH, Locke B, Albert J, De Leon J, Peltier MR, Reiss AB. Toxic External Exposure Leading to Ocular Surface Injury. Vision (Basel) 2023; 7:vision7020032. [PMID: 37092465 PMCID: PMC10123707 DOI: 10.3390/vision7020032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
The surface of the eye is directly exposed to the external environment, protected only by a thin tear film, and may therefore be damaged by contact with ambient particulate matter, liquids, aerosols, or vapors. In the workplace or home, the eye is subject to accidental or incidental exposure to cleaning products and pesticides. Organic matter may enter the eye and cause infection. Ocular surface damage can trigger a range of symptoms such as itch, discharge, hyperemia, photophobia, blurred vision, and foreign body sensation. Toxin exposure can be assessed clinically in multiple ways, including via measurement of tear production, slit-lamp examination, corneal staining, and conjunctival staining. At the cellular level, environmental toxins can cause oxidative damage, apoptosis of corneal and conjunctival cells, cell senescence, and impaired motility. Outcomes range from transient and reversible with complete healing to severe and sight-compromising structural changes. Classically, evaluation of tolerance and safety was carried out using live animal testing; however, new in vitro and computer-based, in silico modes are superseding the gold standard Draize test. This review examines how environmental features such as pollutants, temperature, and seasonality affect the ocular surface. Chemical burns to the eye are considered, and approaches to protect the ocular surface are detailed.
Collapse
Affiliation(s)
| | - Brandon Locke
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Jacqueline Albert
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Morgan R. Peltier
- Department of Psychiatry and Behavioral Health, Jersey Shore University Medical Center, Neptune, NJ 07753, USA
| | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| |
Collapse
|
10
|
Shen J, Liang Y, Bi Z, Yin X, Chen C, Zhao X, Liu S, Li Y. Cyclosporin A improves the hyperosmotic response in an experimental dry eye model by inhibiting the HMGB1/TLR4/NF-κB signaling pathway. Exp Eye Res 2023; 229:109418. [PMID: 36806672 DOI: 10.1016/j.exer.2023.109418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/29/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Hyperosmolarity is closely related to dry eye disease (DED), which induces corneal epithelial cell structure and dysfunction leading to ocular surface inflammation. Cyclosporine A (CSA) is a cyclopeptide consisting of 11 deduced amino acids. It has an immunosuppressive effect and shows a vital function in inhibiting the inflammatory response. The mechanism of CSA in DED is still not entirely clear. This experiment aimed to investigate the possible mechanism of CSA in the hyperosmotic DED model. This study found that CSA can inhibit the transcript levels of DED high mobility group protein 1 (HMGB1), Toll-like receptor 4 (TLR4) and nuclear transcription factor κB (NF-κB) in signaling pathways. In addition, the study also found that 550 mOsm/L can induce the formation of DED models in vivo or in vitro. Furthermore, different concentrations of CSA have different effects on the expression of HMGB1 in human corneal epithelial cells under hyperosmotic stimulation, and high concentrations of CSA may increase the expression of HMGB1. In addition, CSA effectively reduced the corneal fluorescence staining score of the DE group and increased the tear volume of mice. Therefore, this experimental investigation might supply new evidence for the mechanism of CSA in DED, provide a potential new therapy for treating DED, and provide a theoretical basis for CSA treatment of DED.
Collapse
Affiliation(s)
- Jiachao Shen
- Department of Ophthalmology, Binzhou Medical College, Yantai, 264000, China; Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China
| | - Yan Liang
- Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China
| | - Zhaojing Bi
- Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China
| | - Xin Yin
- Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China
| | - Chen Chen
- Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China
| | - Xinmei Zhao
- Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China
| | - Shujun Liu
- Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China.
| | - Yuanbin Li
- Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China.
| |
Collapse
|
11
|
Ballesteros-Sánchez A, Gargallo-Martínez B, Sánchez-González MC, Sánchez-González JM. Intense Pulse Light Combined With Low-Level Light Therapy in Dry Eye Disease: A Systematic Review. Eye Contact Lens 2023; 49:8-13. [PMID: 36455215 DOI: 10.1097/icl.0000000000000958] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/11/2022] [Indexed: 12/05/2022]
Abstract
OBJECTIVES To evaluate the improvement in symptoms and signs associated with intense pulse light (IPL) combined with low-level light therapy (LLLT) in the treatment of dry eye disease (DED). METHODS A systematic review of full-length original studies reporting the effects of IPL combined with LLLT for DED in two databases, PubMed and Scopus, was performed according to the PRISMA statement. The quality assessment tool for case series studies from the National Heart, Lung, and Blood Institute was used to analyze the quality of the studies selected. RESULTS The search provided a total of 393 articles, of which six were included. Significant decreases in the Ocular Surface Disease Index (OSDI) score, meibomian gland dysfunction (MGD) score, MGD grade, and meiboscore and increases in tear film stability, lipid layer thickness, and loss area of the meibomian gland have been reported. Concerning tear volume, tear meniscus height, and Schirmer test remained unchanged. In relation to tear osmolarity and corneal fluorescein staining, contradictory outcomes were found. CONCLUSIONS Intense pulse light combined with LLLT for the treatment of dry eye improves OSDI, tear film stability, and meibomian gland function; thus, this treatment may be recommended for DED patients due to MGD.
Collapse
Affiliation(s)
- Antonio Ballesteros-Sánchez
- Department of Ophthalmology (A.B.S., B.G.M), Clínica Novovisión, Murcia, Spain; Department of Ophthalmology and Optometry (B.G.M.), University of Murcia, Murcia, Spain; and Department of Physics of Condensed Matter (J.M.S.G., M.C.S.G.), Optics Area, University of Seville, Seville, Spain
| | | | | | | |
Collapse
|
12
|
Su J, Li H, Lin B, Li S, Zhou X, Li W, Guo P. Proteomic Analysis of Meibomian Gland Secretions in Patients With Blepharokeratoconjunctivitis. Transl Vis Sci Technol 2022; 11:4. [DOI: 10.1167/tvst.11.12.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Jingjing Su
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Hongwei Li
- Department of Cardiovascular Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Baotao Lin
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Shuiming Li
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Xiaoping Zhou
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Wei Li
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ping Guo
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| |
Collapse
|
13
|
Asiedu K. Role of ocular surface neurobiology in neuronal-mediated inflammation in dry eye disease. Neuropeptides 2022; 95:102266. [PMID: 35728484 DOI: 10.1016/j.npep.2022.102266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 01/18/2023]
Abstract
Inflammation is the consequence of dry eye disease regardless of its etiology. Several injurious or harmless processes to the ocular surface neurons promote ocular surface neurogenic inflammation, leading to the vicious cycle of dry eye disease. These processes include the regular release of neuromediators during the conduction of ocular surface sensations, hyperosmolarity-induced ocular surface neuronal damage, neuro-regenerative activities, and neuronal-mediated dendritic cell activities. Neurogenic inflammation appears to be the main culprit, instigating the self-perpetuating inflammation observed in patients with dry eye disease.
Collapse
Affiliation(s)
- Kofi Asiedu
- School of Optometry & Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
14
|
Sonkodi B, Resch MD, Hortobágyi T. Is the Sex Difference a Clue to the Pathomechanism of Dry Eye Disease? Watch out for the NGF-TrkA-Piezo2 Signaling Axis and the Piezo2 Channelopathy. J Mol Neurosci 2022; 72:1598-1608. [PMID: 35507012 PMCID: PMC9374789 DOI: 10.1007/s12031-022-02015-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/20/2022] [Indexed: 01/11/2023]
Abstract
Dry eye disease (DED) is a multifactorial disorder with recognized pathology, but not entirely known pathomechanism. It is suggested to represent a continuum with neuropathic corneal pain with the paradox that DED is a pain-free disease in most cases, although it is regarded as a pain condition. The current paper puts into perspective that one gateway from physiology to pathophysiology could be a Piezo2 channelopathy, opening the pathway to a potentially quad-phasic non-contact injury mechanism on a multifactorial basis and with a heterogeneous clinical picture. The primary non-contact injury phase could be the pain-free microinjury of the Piezo2 ion channel at the corneal somatosensory nerve terminal. The secondary non-contact injury phase involves harsher corneal tissue damage with C-fiber contribution due to the lost or inadequate intimate cross-talk between somatosensory Piezo2 and peripheral Piezo1. The third injury phase of this non-contact injury is the neuronal sensitization process with underlying repeated re-injury of the Piezo2, leading to the proposed chronic channelopathy. Notably, sensitization may evolve in certain cases in the absence of the second injury phase. Finally, the quadric injury phase is the lingering low-grade neuroinflammation associated with aging, called inflammaging. This quadric phase could clinically initiate or augment DED, explaining why increasing age is a risk factor. We highlight the potential role of the NGF-TrkA axis as a signaling mechanism that could further promote the microinjury of the corneal Piezo2 in a stress-derived hyperexcited state. The NGF-TrkA-Piezo2 axis might explain why female sex represents a risk factor for DED.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, Budapest, Hungary.
| | - Miklós D Resch
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Tibor Hortobágyi
- Institute of Pathology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Insitute of Psychiatry Psychology and Neuroscience, King's College London, London, UK.,Center for Age-Related Medicine, SESAM, Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|