1
|
Lucà S, Pignata G, Cioce A, Salzillo C, De Cecio R, Ferrara G, Della Corte CM, Morgillo F, Fiorelli A, Montella M, Franco R. Diagnostic Challenges in the Pathological Approach to Pleural Mesothelioma. Cancers (Basel) 2025; 17:481. [PMID: 39941848 PMCID: PMC11816244 DOI: 10.3390/cancers17030481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Malignant pleural mesothelioma (MPM) still represents a complex diagnostic challenge for pathologists in routine practice. This diagnosis requires a multidisciplinary approach, and pathological evaluation is mandatory. The histopathological diagnosis is stepwise and should be based on morphological and immunohistochemical assessment, sometimes associated with molecular tests, and supported by clinical and radiological findings. A correct morphological approach aims to exclude pleural metastasis or benign mesothelial proliferations, which are the main differential diagnoses. While certain histological features are diagnostic of MPM, others are highly suggestive but not definitive. Immunohistochemistry plays a pivotal role, with a panel of both traditional and newer markers being used to assess mesothelial differentiation and to differentiate malignant from benign proliferations. In more challenging cases, molecular tests, such as fluorescent in situ hybridization (FISH) to detect CDKN2A deletion, can be helpful in distinguishing malignant from benign pleural lesions. This review summarizes the key morphological, immunohistochemical, and molecular features that should be considered when pleural biopsy samples are examined, with the aim of improving diagnostic accuracy in this complex area.
Collapse
Affiliation(s)
- Stefano Lucà
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (S.L.); (A.C.); (M.M.)
- Department of Experimental Medicine, PhD Course in Public Health, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Giovanna Pignata
- Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (G.P.); (R.D.C.); (G.F.)
| | - Alessandro Cioce
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (S.L.); (A.C.); (M.M.)
- Department of Experimental Medicine, PhD Course in Public Health, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Cecilia Salzillo
- Department of Experimental Medicine, PhD Course in Public Health, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
- Department of Precision and Regenerative Medicine and Ionian Area, Pathology Unit, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Rossella De Cecio
- Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (G.P.); (R.D.C.); (G.F.)
| | - Gerardo Ferrara
- Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (G.P.); (R.D.C.); (G.F.)
| | - Carminia Maria Della Corte
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (C.M.D.C.); (F.M.)
| | - Floriana Morgillo
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (C.M.D.C.); (F.M.)
| | - Alfonso Fiorelli
- Thoracic Surgery Unit, Department of Translational Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Marco Montella
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (S.L.); (A.C.); (M.M.)
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (S.L.); (A.C.); (M.M.)
| |
Collapse
|
2
|
Shioya A, Takata M, Kumagai M, Hoshi D, Han J, Oyama T, Haba Y, Morioka E, Inokuchi M, Noguchi M, Yamada S. Periarterial or perivenous invasion is an independent indicator of lymph node metastasis in invasive breast carcinoma of no special type. Pathol Res Pract 2024; 260:155407. [PMID: 38936093 DOI: 10.1016/j.prp.2024.155407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024]
Abstract
Pathological diagnosis of breast cancer often includes cases of lymph node metastases without lymphatic or lymphovascular invasion by the primary tumor. In this study, to resolve this discrepancy, we designed a sensitive method to detect lymphatic invasion and correlate it with lymph node metastasis. Elastica van Gieson (EVG) staining and D2-40 immunohistochemistry revealed the abundant distribution of lymphatic vessels around blood vessels in the mammary tissue in close proximity to the elastic fibers around the arteries and veins. Based on the histological location of the blood and lymphatic vessels, we hypothesized that, in breast cancer, perivascular invasion is similar to lymphatic invasion and correlates with the presence of lymph node metastasis. Using EVG staining, perivascular invasion was histologically classified into periarterial invasion (periA), perivenous invasion (periV), and periarterial or perivenous invasion (periA/V). We tested our method and compared it to other methods commonly used for identifying lymphatic invasion in 105 patients with invasive breast carcinoma of no special type (IBC-NST) who received minimal preoperative therapy. The correlation between perivascular invasion and lymph node metastasis in these patients was statistically analyzed, including findings related to lymphatic invasion, such as retractile artifacts and perineural invasion. PeriA, periV, and periA/V showed significant correlations with lymph node metastasis. PeriA/V had high sensitivity and negative predictive value. The odds ratio (OR) for periV was significantly high in the univariate analysis, while the ORs for periA/V, retraction artifacts, and perineural invasion were significantly high in both the univariate and multivariate analyses. In particular, periA/V revealed a strong correlation with lymph node metastasis (OR: 61.8). These findings indicate that the IBC-NST periA/V ratio is a sensitive pointer of lymphatic invasion and could be an independent and reliable indicator of lymph node metastasis.
Collapse
Affiliation(s)
- Akihiro Shioya
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, Japan.
| | - Mao Takata
- Department of Pathology, Kanazawa Medical University Hospital, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, Japan
| | - Motona Kumagai
- Department of Pathophysiological and Experimental Pathology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, Japan
| | - Daisuke Hoshi
- Department of Oncologic Pathology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, Japan
| | - Jia Han
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, Japan
| | - Takeru Oyama
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, Japan
| | - Yusuke Haba
- Department of Breast and Endocrine Surgery, Breast Center, Kanazawa Medical University Hospital, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, Japan
| | - Emi Morioka
- Department of Breast and Endocrine Surgery, Breast Center, Kanazawa Medical University Hospital, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, Japan
| | - Masafumi Inokuchi
- Department of Breast and Endocrine Surgery, Breast Center, Kanazawa Medical University Hospital, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, Japan
| | - Masakuni Noguchi
- Department of Breast and Endocrine Surgery, Breast Center, Kanazawa Medical University Hospital, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, Japan
| | - Sohsuke Yamada
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, Japan
| |
Collapse
|
3
|
Bekendam RH, Ravid K. Mechanisms of platelet activation in cancer-associated thrombosis: a focus on myeloproliferative neoplasms. Front Cell Dev Biol 2023; 11:1207395. [PMID: 37457287 PMCID: PMC10342211 DOI: 10.3389/fcell.2023.1207395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Platelets are anucleate blood cells that play key roles in thrombosis and hemostasis. Platelets are also effector cells in malignancy and are known to home into the microenvironment of cancers. As such, these cells provide central links between the hemostatic system, inflammation and cancer progression. Activation of platelets by cancers has been postulated to contribute to metastasis and progression of local tumor invasion. Similarly, cancer-activated platelets can increase the risk of development of both arterial and venous thrombosis; a major contributor to cancer-associated morbidity. Platelet granules secretion within the tumor environment or the plasma provide a rich source of potential biomarkers for prediction of thrombotic risk or tumor progression. In the case of myeloproliferative neoplasms (MPNs), which are characterized by clonal expansion of myeloid precursors and abnormal function and number of erythrocytes, leukocytes and platelets, patients suffer from thrombotic and hemorrhagic complications. The mechanisms driving this are likely multifactorial but remain poorly understood. Several mouse models developed to recapitulate MPN phenotype with one of the driving mutations, in JAK2 (JAK2V617F) or in calreticulin (CALR) or myeloproliferative leukemia virus oncogene receptor (MPL), have been studied for their thrombotic phenotype. Variability and discrepancies were identified within different disease models of MPN, emphasizing the complexity of increased risk of clotting and bleeding in these pathologies. Here, we review recent literature on the role of platelets in cancer-associated arterial and venous thrombosis and use MPN as case study to illustrate recent advances in experimental models of thrombosis in a malignant phenotype. We address major mechanisms of tumor-platelet communication leading to thrombosis and focus on the role of altered platelets in promoting thrombosis in MPN experimental models and patients with MPN. Recent identification of platelet-derived biomarkers of MPN-associated thrombosis is also reviewed, with potential therapeutic implications.
Collapse
Affiliation(s)
- Roelof H. Bekendam
- Division of Hematology and Hematologic Malignancies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Katya Ravid
- Department of Medicine and Biochemistry, Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
4
|
Flores-Sanchez JD, Pregúntegui I, Ugas C, Cruzado C, Ramirez A, Poterico JA. Giant cavernous malformation of the posterior fossa with lymphangiomatous phenotype, associated with orbital venolymphatic anomaly in an 11-month-old patient: case report and literature review. Childs Nerv Syst 2023; 39:289-293. [PMID: 35904587 DOI: 10.1007/s00381-022-05623-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/23/2022] [Indexed: 11/25/2022]
Abstract
The synchronous presentation of venolymphatic anomalies of the orbit and noncontiguous intracranial cavernous malformations is uncommon. Herein, we present a case of an 11-month-old female patient diagnosed with orbital venolymphatic anomaly associated with a large cavernous malformation in the posterior fossa, who underwent complete surgical resection of the latter. The immunohistochemical analysis was positive for podoplanin, a marker expressed by lymphatic endothelial cells, but not vascular endothelium. This exceptional finding suggests lymphatic involvement in the etiology of the lesion. In our review of the literature, we did not find similar cases in patients under 1 year of age.
Collapse
Affiliation(s)
| | - Ivethe Pregúntegui
- Department of Pediatric Neurosurgery, Instituto Nacional de Salud del Niño San Borja, Lima, Peru
| | - Carlos Ugas
- Department of Radiology, Instituto Nacional de Salud del Niño San Borja, Lima, Peru
| | - Carla Cruzado
- Department of Pathology, Instituto Nacional de Salud del Niño San Borja, Lima, Peru
| | - Alberto Ramirez
- Department of Pediatric Neurosurgery, Instituto Nacional de Salud del Niño San Borja, Lima, Peru
| | - Julio A Poterico
- Genetics Service, Hospital Nacional Docente Madre Niño San Bartolome, Lima, Peru
| |
Collapse
|
5
|
Amer S, Nabil M, Negm M. Expression of Podoplanin in Hepatocellular Carcinoma in a Sample of Egyptian Population – Immunohistopathological Study. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Hepatocellular carcinoma (HCC) is a highly incident malignancy with a dreadful prognosis. It evolves through a multistep process, with a contribution from different stromal cells like cancer associated fibroblasts. Podoplanin is a glycoprotein that influences epithelial mesenchymal interplay facilitating the tumor invasion.
AIM: The aim of the study was to evaluate the immunohistochemical expression of Podoplanin in HCC in cancer associated fibroblasts (CAFs) and malignant hepatocytes as well as assessing the lymphovascular density, and correlating them with the clinicopathological parameters.
METHODS: Sixty formalin-fixed paraffin-embedded HCC tissue blocks were retrieved from the pathology Department of the National Hepatology and Tropical Medicine Research Institute and Kasr Al-aini Hospital during the period of January 2012 till December 2019. The specimens were obtained through partial or total hepatectomy inclusion criteria included HCC cases obtained through resection type biopsy and those having no history of pre-operative cancer therapy, while cases with insufficient data, core biopsy, and marked necrosis were excluded from the study. Tumor tissue blocks were immunostained for Podoplanin and its expression was interpreted in lymphatic vessels, CAFs, and malignant hepatocytes.
RESULTS: Podoplanin expression in CAFs and malignant hepatocytes was detected in the majority of HCC cases (81.7%) and (88.3%), respectively. The malignant hepatocytes showed increased expression of Grade 1 immunostaining (36.7%). High lymphovascular density was detected over the majority of the cases (73.3%). Podoplanin expression was significantly correlated with higher mean age, male gender, presence of viral infection, cirrhosis, and higher tumor grade. Unifocal tumor mass, tumor size <5 cm, and presence of invasion showed a significant correlation with Podoplanin in malignant hepatocytes and CAFs for the formers and the later, respectively.
CONCLUSION: Podoplanin is highly expressed in HCC, which could be used as a prognostic marker for lymphangiogenesis. Furthermore, within the malignant hepatocytes and CAFs suggesting a role in hepatocellular tumorigenesis. Podoplanin targeted therapy can be investigated to slow down the tumor progression and metastasis.
Collapse
|
6
|
Kamoto S, Shinada M, Kato D, Tsuboi M, Yoshimoto S, Yoshitake R, Eto S, Ikeda N, Takahashi Y, Hashimoto Y, Chambers J, Uchida K, Yamada S, Kaneko MK, Nishimura R, Kato Y, Nakagawa T. Expression of podoplanin in various types of feline tumor tissues. J Vet Med Sci 2021; 83:1795-1799. [PMID: 34657899 PMCID: PMC8636872 DOI: 10.1292/jvms.20-0608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Podoplanin is expressed in various human tumors where it promotes tumor progression, epithelial-mesenchymal transition, and distant metastasis. Podoplanin is also expressed in cancer-associated fibroblasts and induces tumor malignancy. The objective of this study was to evaluate podoplanin expression in various types of feline tumor tissues. Immunohistochemical analysis revealed that podoplanin was expressed in cells of 13/15 (87%) squamous cell carcinomas and 5/19 (26%) fibrosarcomas. Moreover, cancer-associated fibroblasts expressed podoplanin in most tumor types, including 18/21 (86%) mammary adenocarcinoma tissues. Our findings demonstrate that various types of feline tumor tissues expressed podoplanin, indicating the importance of the comparative aspects of podoplanin expression, which may be used as a novel research model for podoplanin biology.
Collapse
Affiliation(s)
- Satoshi Kamoto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masahiro Shinada
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Daiki Kato
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaya Tsuboi
- Veterinary Medical Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Sho Yoshimoto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryohei Yoshitake
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shotaro Eto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Namiko Ikeda
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yosuke Takahashi
- Veterinary Medical Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuko Hashimoto
- Veterinary Medical Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - James Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shinji Yamada
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.,New Industry Creation Hatchery Center, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
7
|
Watanabe N, Kidokoro M, Tanaka M, Inoue S, Tsuji T, Akatuska H, Okada C, Iida Y, Okada Y, Suzuki Y, Sato T, Yahata T, Hirayama N, Nakagawa Y, Inokuchi S. Podoplanin is indispensable for cell motility and platelet-induced epithelial-to-mesenchymal transition-related gene expression in esophagus squamous carcinoma TE11A cells. Cancer Cell Int 2020; 20:263. [PMID: 32581653 PMCID: PMC7310449 DOI: 10.1186/s12935-020-01328-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/07/2020] [Indexed: 01/08/2023] Open
Abstract
Background The transmembrane glycoprotein podoplanin (PDPN) is upregulated in some tumors and has gained attention as a malignant tumor biomarker. PDPN molecules have platelet aggregation-stimulating domains and, are therefore, suggested to play a role in tumor-induced platelet activation, which in turn triggers epithelial-to-mesenchymal transition (EMT) and enhances the invasive and metastatic activities of tumor cells. In addition, as forced PDPN expression itself can alter the propensity of certain tumor cells in favor of EMT and enhance their invasive ability, it is also considered to be involved in the cell signaling system. Nevertheless, underlying mechanisms of PDPN in tumor cell invasive ability as well as EMT induction, especially by platelets, are still not fully understood. Methods Subclonal TE11A cells were isolated from the human esophageal squamous carcinoma cell line TE11 and the effects of anti-PDPN neutralizing antibody as well as PDPN gene knockout on platelet-induced EMT-related gene expression were measured. Also, the effects of PDPN deficiency on cellular invasive ability and motility were assessed. Results PDPN-null cells were able to provoke platelet aggregation, suggesting that PDPN contribution to platelet activation in these cells is marginal. Nevertheless, expression of platelet-induced EMT-related genes, including vimentin, was impaired by PDPN-neutralizing antibody as well as PDPN deficiency, while their effects on TGF-β-induced gene expression were marginal. Unexpectedly, PDPN gene ablation, at least in either allele, engendered spontaneous N-cadherin upregulation and claudin-1 downregulation. Despite these seemingly EMT-like alterations, PDPN deficiency impaired cellular motility and invasive ability even after TGF-β-induced EMT induction. Conclusions These results suggested that, while PDPN seems to function in favor of maintaining the epithelial state of this cell line, it is indispensable for platelet-mediated induction of particular mesenchymal marker genes as well as the potentiation of motility and invasion capacity.
Collapse
Affiliation(s)
- Nobuo Watanabe
- Department of Emergency and Critical Care Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193 Japan
| | - Masako Kidokoro
- Department of Emergency and Critical Care Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193 Japan
| | - Makiko Tanaka
- Department of Emergency and Critical Care Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193 Japan
| | - Shigeaki Inoue
- Department of Emergency and Critical Care Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193 Japan
| | - Tomoatsu Tsuji
- Department of Emergency and Critical Care Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193 Japan
| | - Hisako Akatuska
- Department of Host Defense Mechanism, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193 Japan
| | - Chisa Okada
- Support Center for Medical Research and Education, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193 Japan
| | - Yumi Iida
- Support Center for Medical Research and Education, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193 Japan
| | - Yoshinori Okada
- Support Center for Medical Research and Education, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193 Japan
| | - Yusuke Suzuki
- Support Center for Medical Research and Education, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193 Japan
| | - Takehito Sato
- Department of Host Defense Mechanism, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193 Japan
| | - Takashi Yahata
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193 Japan
| | - Noriaki Hirayama
- Institute of Advanced Biosciences, Tokai University, 411 Kitakaname, Hiratsuka, Kanagawa 259-1292 Japan
| | - Yoshihide Nakagawa
- Department of Emergency and Critical Care Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193 Japan
| | - Sadaki Inokuchi
- Department of Emergency and Critical Care Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193 Japan
| |
Collapse
|
8
|
Hjerpe A, Abd Own S, Dobra K. Integrative approach to cytologic and molecular diagnosis of malignant pleural mesothelioma. Transl Lung Cancer Res 2020; 9:934-943. [PMID: 32676359 PMCID: PMC7354145 DOI: 10.21037/tlcr-2019-pps-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The global incidence of malignant mesothelioma (MM) causes considerable disease burden, suffering and health care costs. Beside preventive measures and ban the use of asbestos, early diagnosis would largely improve the chance of curative treatment. Current histologic criteria, however, requiring presence of invasion in the surrounding fatty tissue fail to identify MM in sufficiently early stage. Unilateral accumulation of pleural effusion is one of the earliest clinical manifestations of MM that occurs in approximately 90% of the patients. Therapeutic thoracocenthesis is necessary to remove the fluid and to relieve patients’ symptoms. This effusion is easily accessible and offers early and minimally invasive diagnosis by combining cytology with immunologic, molecular- and biomarker analyses. Typically, the fluid is rich in malignant cells and cell groups, but incipient stages of the disease may be difficult to recognize as the malignant cells can be masked by presence of inflammatory or reactive mesothelial cells. Recurrent, hemorrhagic and cell rich effusion should always be suspicious for MM and adequately prepared and analyzed to provide necessary information for subsequent therapy. Importantly, early detection of MM by integrating cytology and molecular approaches has high sensitivity and positive predictive value and has a major impact on patient survival. Thus, a conclusive positive MM cytology should lead to treatment without delay. This review summarizes molecular and diagnostic criteria of MM diagnosis.
Collapse
Affiliation(s)
- Anders Hjerpe
- Department of Laboratory Medicine, Division of Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Sulaf Abd Own
- Department of Laboratory Medicine, Division of Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Katalin Dobra
- Department of Laboratory Medicine, Division of Pathology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Oleynikova NA, Danilova NV, Mikhailov IA, Semina EV, Malkov PG. [Cancer-associated fibroblasts and their significance in tumor progression]. Arkh Patol 2020; 82:68-77. [PMID: 32096494 DOI: 10.17116/patol20208201168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carcinogenesis and tumor progression are not caused not only by malignant epithelial cells, but also by the tumor stroma around cancer stem cells which performs regulatory, nutritional and 'framework' functions. It is represented by mesenchymal cells of various types predominantly by cancer-associated fibroblasts (CAF). αSMA, FAP-1, desmin, podoplanin, neuron-glial antigen 2 (NG2), PDGFR-α and -β are used for CAF identification but there is no universal markers due to the plasticity of the cell population that underlies the subpopulation division CAF. CAF subpopulations are not described for many tumor types. Recently, evidence has accumulated that CAFs mediate many adverse processes in the tumor, including can support stromal inflammation and cause fibrosis. By forming a niche in cancer stem cells, CAFs mediate chemoresistance and the appearance of dormant metastases. The study of the role of CAF will allow not only to form a fundamentally new understanding of the mechanisms of carcinogenesis, but also to create new diagnostic and therapeutic targets for treating tumors.
Collapse
Affiliation(s)
| | - N V Danilova
- M.V. Lomonosov Moscow State University, Moscow, Russia
| | - I A Mikhailov
- M.V. Lomonosov Moscow State University, Moscow, Russia
| | - E V Semina
- M.V. Lomonosov Moscow State University, Moscow, Russia; National Medical Research Center for Cardiology, Ministry of Health of Russia, Moscow, Russia
| | - P G Malkov
- M.V. Lomonosov Moscow State University, Moscow, Russia; Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
10
|
Suárez-Vilela D, Izquierdo FM. Mediastinal and pleuropulmonary myeloid sarcoma with HBME1 and podoplanin expression. A diagnostic pitfall. APMIS 2019; 128:65-68. [PMID: 31628821 DOI: 10.1111/apm.13002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/07/2019] [Indexed: 11/30/2022]
|
11
|
Xu L, Wen Y, Pandit S, Mokkapati VRSS, Mijakovic I, Li Y, Ding M, Ren S, Li W, Liu G. Graphene-based biosensors for the detection of prostate cancer protein biomarkers: a review. BMC Chem 2019; 13:112. [PMID: 31508598 PMCID: PMC6720397 DOI: 10.1186/s13065-019-0611-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 07/15/2019] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PC) is the sixth most common cancer type in the world, which causes approximately 10% of total cancer fatalities. The detection of protein biomarkers in body fluids is the key topic for the diagnosis and prognosis of PC. Highly sensitive screening of PC is the most effective approach for reducing mortality. Thus, there are a growing number of literature that recognizes the importance of new technologies for early diagnosis of PC. Graphene is playing an important role in the biosensor field with remarkable physical, optical, electrochemical and magnetic properties. Many recent studies demonstrated the potential of graphene materials for sensitive detection of protein biomarkers. In this review, the graphene-based biosensors toward PC analysis are mainly discussed in two groups: Firstly, novel biosensor interfaces were constructed through the modification of graphene materials onto sensor surfaces. Secondly, ingenious signal amplification strategies were developed using graphene materials as catalysts or carriers. Graphene-based biosensors have exhibited remarkable performance with high sensitivities, wide detection ranges, and long-term stabilities.
Collapse
Affiliation(s)
- Li Xu
- 1Laboratory of Biometrory, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203 People's Republic of China.,2Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41126 Gothenburg, Sweden
| | - Yanli Wen
- 1Laboratory of Biometrory, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203 People's Republic of China
| | - Santosh Pandit
- 2Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41126 Gothenburg, Sweden
| | - Venkata R S S Mokkapati
- 2Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41126 Gothenburg, Sweden
| | - Ivan Mijakovic
- 2Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41126 Gothenburg, Sweden.,3The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Yan Li
- 1Laboratory of Biometrory, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203 People's Republic of China
| | - Min Ding
- 1Laboratory of Biometrory, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203 People's Republic of China
| | - Shuzhen Ren
- 1Laboratory of Biometrory, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203 People's Republic of China
| | - Wen Li
- 1Laboratory of Biometrory, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203 People's Republic of China
| | - Gang Liu
- 1Laboratory of Biometrory, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203 People's Republic of China
| |
Collapse
|
12
|
Podoplanin in Inflammation and Cancer. Int J Mol Sci 2019; 20:ijms20030707. [PMID: 30736372 PMCID: PMC6386838 DOI: 10.3390/ijms20030707] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Podoplanin is a small cell-surface mucin-like glycoprotein that plays a crucial role in the development of the alveoli, heart, and lymphatic vascular system. Emerging evidence indicates that it is also involved in the control of mammary stem-cell activity and biogenesis of platelets in the bone marrow, and exerts an important function in the immune response. Podoplanin expression is upregulated in different cell types, including fibroblasts, macrophages, T helper cells, and epithelial cells, during inflammation and cancer, where it plays important roles. Podoplanin is implicated in chronic inflammatory diseases, such as psoriasis, multiple sclerosis, and rheumatoid arthritis, promotes inflammation-driven and cancer-associated thrombosis, and stimulates cancer cell invasion and metastasis through a variety of strategies. To accomplish its biological functions, podoplanin must interact with other proteins located in the same cell or in neighbor cells. The binding of podoplanin to its ligands leads to modulation of signaling pathways that regulate proliferation, contractility, migration, epithelial⁻mesenchymal transition, and remodeling of the extracellular matrix. In this review, we describe the diverse roles of podoplanin in inflammation and cancer, depict the protein ligands of podoplanin identified so far, and discuss the mechanistic basis for the involvement of podoplanin in all these processes.
Collapse
|
13
|
Krishnan H, Miller WT, Blanco FJ, Goldberg GS. Src and podoplanin forge a path to destruction. Drug Discov Today 2019; 24:241-249. [DOI: 10.1016/j.drudis.2018.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/18/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022]
|
14
|
Podoplanin and SOX2 Expression in CIN 3-like Squamous Cell Carcinoma of the Cervix. Int J Gynecol Pathol 2018; 37:59-67. [PMID: 28319578 DOI: 10.1097/pgp.0000000000000383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Squamous cell carcinoma (SCC) of the uterine cervix occasionally demonstrates a deceptive growth pattern that mimics endocervical crypt involvement by cervical intraepithelial neoplasia, grade 3 (CIN 3). Such CIN 3-like SCCs may be misinterpreted as noninvasive or minimally invasive leading to delays in diagnosis. Little is known of the factors that influence the growth patterns of cervical SCC but we suggested recently that CIN 3-like tumors might demonstrate "collective cellular invasion," which is characterized by a retained epithelial phenotype. This contrasts with the more overtly infiltrative growth of conventional SCC, which exhibits features suggestive of epithelial-mesenchymal transition. In the current study we investigated podoplanin (PP) and SOX2 expression in normal squamous epithelium, in CIN 3 and in 16 CIN 3-like SCCs 11 of which also showed a conventional invasive component. Compared with normal epithelium, CIN 3 often showed a focal loss of basal PP staining and most cases showed increased, typically diffuse, SOX2 expression. Although the immunohistochemical findings were not uniform, they generally supported collective cellular invasion in CIN 3-like tumor areas as these were often PP positive and showed diffuse SOX2 expression. In contrast, most conventional SCCs showed only focal SOX2 staining and they were typically negative, or only focally positive, for PP. The staining patterns did not reliably distinguish CIN 3 from CIN 3-like SCC. Small infiltrative tumor nests around the margins of CIN 3 or deeply invasive CIN 3-like SCC often showed a localized reduction in SOX2 expression suggesting SOX2 downregulation during the transition to invasive growth.
Collapse
|
15
|
Krishnan H, Rayes J, Miyashita T, Ishii G, Retzbach EP, Sheehan SA, Takemoto A, Chang Y, Yoneda K, Asai J, Jensen L, Chalise L, Natsume A, Goldberg GS. Podoplanin: An emerging cancer biomarker and therapeutic target. Cancer Sci 2018; 109:1292-1299. [PMID: 29575529 PMCID: PMC5980289 DOI: 10.1111/cas.13580] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/02/2018] [Accepted: 03/10/2018] [Indexed: 01/13/2023] Open
Abstract
Podoplanin (PDPN) is a transmembrane receptor glycoprotein that is upregulated on transformed cells, cancer associated fibroblasts and inflammatory macrophages that contribute to cancer progression. In particular, PDPN increases tumor cell clonal capacity, epithelial mesenchymal transition, migration, invasion, metastasis and inflammation. Antibodies, CAR-T cells, biologics and synthetic compounds that target PDPN can inhibit cancer progression and septic inflammation in preclinical models. This review describes recent advances in how PDPN may be used as a biomarker and therapeutic target for many types of cancer, including glioma, squamous cell carcinoma, mesothelioma and melanoma.
Collapse
Affiliation(s)
- Harini Krishnan
- Department of Physiology and BiophysicsStony Brook UniversityStony BrookNYUSA
| | - Julie Rayes
- Institute of Cardiovascular ScienceCollege of Medical and Dental SciencesUniversity of BirminghamEdgbastonBirminghamUK
| | - Tomoyuki Miyashita
- Division of PathologyExploratory Oncology Research and Clinical Trial CenterNational Cancer CenterKashiwaChibaJapan
- Laboratory of Cancer BiologyDepartment of Integrated BiosciencesGraduate School of Frontier SciencesThe University of TokyoKashiwaChibaJapan
| | - Genichiro Ishii
- Division of PathologyExploratory Oncology Research and Clinical Trial CenterNational Cancer CenterKashiwaChibaJapan
- Laboratory of Cancer BiologyDepartment of Integrated BiosciencesGraduate School of Frontier SciencesThe University of TokyoKashiwaChibaJapan
| | - Edward P. Retzbach
- Graduate School of Biomedical Sciences and Department of Molecular BiologyRowan University School of Osteopathic MedicineStratfordNJUSA
| | - Stephanie A. Sheehan
- Graduate School of Biomedical Sciences and Department of Molecular BiologyRowan University School of Osteopathic MedicineStratfordNJUSA
| | - Ai Takemoto
- Division of Experimental ChemotherapyThe Cancer Chemotherapy CenterJapanese Foundation for Cancer ResearchTokyoJapan
| | - Yao‐Wen Chang
- Graduate Institute of Biomedical SciencesCollege of MedicineChang Gung UniversityTaoyuanTaiwanChina
| | - Kazue Yoneda
- Second Department of Surgery (Chest Surgery)University of Occupational and Environmental healthKitakyushuFukuokaJapan
| | - Jun Asai
- Department of DermatologyKyoto Prefectural University of Medicine Graduate School of Medical ScienceKyotoJapan
| | - Lasse Jensen
- Division of Cardiovascular MedicineDepartment of Medical and Health SciencesLinköping UniversityLinköpingSweden
| | - Lushun Chalise
- Department of NeurosurgeryNagoya University School of MedicineNagoyaJapan
| | - Atsushi Natsume
- Department of NeurosurgeryNagoya University School of MedicineNagoyaJapan
| | - Gary S. Goldberg
- Graduate School of Biomedical Sciences and Department of Molecular BiologyRowan University School of Osteopathic MedicineStratfordNJUSA
| |
Collapse
|
16
|
Rivera C, Oliveira AK, Costa RAP, De Rossi T, Paes Leme AF. Prognostic biomarkers in oral squamous cell carcinoma: A systematic review. Oral Oncol 2017; 72:38-47. [DOI: 10.1016/j.oraloncology.2017.07.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 06/21/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022]
|
17
|
Cho Z, Konishi E, Kanemaru M, Isohisa T, Arita T, Kawai M, Tsutsumi M, Mizutani H, Takenaka H, Ozawa T, Tsuruta D, Katoh N, Asai J. Podoplanin expression in peritumoral keratinocytes predicts aggressive behavior in extramammary Paget's disease. J Dermatol Sci 2017; 87:29-35. [PMID: 28381343 DOI: 10.1016/j.jdermsci.2017.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/02/2017] [Accepted: 03/21/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Recent studies have demonstrated podoplanin expression in several tumors, which has been associated with lymph node metastasis and poor prognosis. Podoplanin expression in peritumoral cells such as cancer-associated fibroblasts also correlates with tumor progression in several cancers. However, podoplanin expression and its association with extramammary Paget's disease (EMPD) remain unclear. OBJECTIVE In this study, we examined whether the presence of podoplanin expression in tumor cells or peritumoral basal keratinocytes correlated with aggressive behavior in patients with EMPD and investigated the mechanisms of podoplanin-mediated tumor invasion in this disorder. METHODS Skin samples of 37 patients with EMPD were investigated by immunohistochemical analysis. The functions of podoplanin in keratinocytes were examined in vitro by RT-PCR and with invadopodia gelatin-degradation assays using HaCaT cells. RESULTS Podoplanin was not identified in tumor cells in all cases. Podoplanin expression in peritumoral basal keratinocytes was observed in 25 patients (67.6%). In in situ EMPD, 50% of cases (9 in 18) exhibited podoplanin-positive keratinocytes, whereas 84.2% (16 in 19) demonstrated positive staining in invasive EMPD (P<0.05). Podoplanin expression in peritumoral keratinocytes was also associated with tumor thickness (P<0.005). By immunohistochemical analysis, podoplanin-positive peritumoral keratinocytes were found to be negative for E-cadherin, one of the major adhesion molecules of keratinocytes, which might contribute to tumor invasion into the dermis through a crack in the basal cell layer induced by down-regulation of cell adhesion therein. We further found that podoplanin-positive keratinocytes exhibited invadopodia, which are thought to function in the migration of cancer cells through tissue barriers, indicating that podoplanin-positive peritumoral basal keratinocytes might assist tumor invasion by degrading the extracellular matrix. CONCLUSION The presence of podoplanin expression in peritumoral keratinocytes correlates with aggressive behavior in EMPD and might therefore serve as a useful prognostic marker for patients with EMPD.
Collapse
Affiliation(s)
- Zaigen Cho
- Department of Dermatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eiichi Konishi
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mai Kanemaru
- Department of Dermatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taro Isohisa
- Department of Dermatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiro Arita
- Department of Dermatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Minako Kawai
- Department of Dermatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Miho Tsutsumi
- Department of Dermatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiromi Mizutani
- Department of Dermatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideya Takenaka
- Department of Dermatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiyuki Ozawa
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Norito Katoh
- Department of Dermatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jun Asai
- Department of Dermatology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| |
Collapse
|
18
|
Nazari B, Rice LM, Stifano G, Barron AMS, Wang YM, Korndorf T, Lee J, Bhawan J, Lafyatis R, Browning JL. Altered Dermal Fibroblasts in Systemic Sclerosis Display Podoplanin and CD90. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2650-64. [PMID: 27565038 DOI: 10.1016/j.ajpath.2016.06.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 05/02/2016] [Accepted: 06/03/2016] [Indexed: 12/21/2022]
Abstract
Tissue injury triggers the activation and differentiation of multiple cell types to minimize damage and initiate repair processes. In systemic sclerosis, these repair processes appear to run unchecked, leading to aberrant remodeling and fibrosis of the skin and multiple internal organs, yet the fundamental pathological defect remains unknown. We describe herein a transition wherein the abundant CD34(+) dermal fibroblasts present in healthy human skin disappear in the skin of systemic sclerosis patients, and CD34(-), podoplanin(+), and CD90(+) fibroblasts appear. This transition is limited to the upper dermis in several inflammatory skin diseases, yet in systemic sclerosis, it can occur in all regions of the dermis. In vitro, primary dermal fibroblasts readily express podoplanin in response to the inflammatory stimuli tumor necrosis factor and IL-1β. Furthermore, we show that on acute skin injury in both human and murine settings, this transition occurs quickly, consistent with a response to inflammatory signaling. Transitioned fibroblasts partially resemble the cells that form the reticular networks in organized lymphoid tissues, potentially linking two areas of fibroblast research. These results allow for the visualization and quantification of a basic stage of fibroblast differentiation in inflammatory and fibrotic diseases in the skin.
Collapse
Affiliation(s)
- Banafsheh Nazari
- Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts
| | - Lisa M Rice
- Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts
| | - Giuseppina Stifano
- Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts
| | - Alexander M S Barron
- Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts; Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts
| | - Yu Mei Wang
- Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts
| | - Tess Korndorf
- Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts
| | - Jungeun Lee
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts
| | - Jag Bhawan
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts
| | - Robert Lafyatis
- Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts; Division of Rheumatology and Clinical Immunology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jeffrey L Browning
- Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts; Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
19
|
Podoplanin is Positive Not Only on Follicular Dendritic Cells and Their Tumoral Counterparts, But Also on Reticular Fibroblasts and in Some Tumors of Reticular Fibroblasts. Appl Immunohistochem Mol Morphol 2016; 24:e11. [PMID: 25493707 DOI: 10.1097/pai.0000000000000142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Sano M, Unno N, Sasaki T, Baba S, Sugisawa R, Tanaka H, Inuzuka K, Yamamoto N, Sato K, Konno H. Topologic distributions of vasa vasorum and lymphatic vasa vasorum in the aortic adventitia – Implications for the prevalence of aortic diseases. Atherosclerosis 2016; 247:127-34. [DOI: 10.1016/j.atherosclerosis.2016.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/27/2016] [Accepted: 02/03/2016] [Indexed: 10/22/2022]
|
21
|
Mrachek EKS, Davis D, Kleinschmidt-DeMasters BK. Dual use of E-cadherin and D2-40 immunostaining in unusual meningioma subtypes. Am J Clin Pathol 2015; 144:923-34. [PMID: 26573000 DOI: 10.1309/ajcpsulj6dw5rehr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Meningiomas usually can be readily diagnosed on H&E alone, although occasionally immunohistochemistry (IHC) confirmation is desirable. Studies exploring the diagnostic utility of either podoplanin (D2-40) or E-cadherin IHC in meningiomas have conflicted, and no studies exist in which the two IHCs have been used in combination for diagnosis. METHODS E-cadherin and D2-40 IHC was performed on 77 meningiomas (31 ordinary; eight microcystic; four rare myxoid; six metaplastic; six invasive of orbit, muscle, and/or soft tissue; two metastatic; six brain-invasive World Health Organization [WHO] grade II, nine non-brain-invasive WHO grade II; and five anaplastic WHO grade III), with semi-quantitative scoring on a three-tier scale (0, focal [1+], strong/diffuse [2+]). RESULTS All meningiomas were either E-cadherin or D2-40 IHC+, with 69 of 77 showing dual immunostaining, most at the 2+ level. No downregulation of E-cadherin IHC was found in invasive or high-grade meningiomas. CONCLUSIONS Dual E-cadherin/D2-40 IHC can supplement diagnosis of meningioma.
Collapse
|
22
|
Multiple congenital granular cell epulis: case report and immunohistochemical profile with emphasis on vascularization. Case Rep Dent 2015; 2015:878192. [PMID: 25722896 PMCID: PMC4334617 DOI: 10.1155/2015/878192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/24/2015] [Indexed: 01/25/2023] Open
Abstract
Congenital granular cell epulis is a rare benign soft tissue lesion arising from the alveolar ridge in neonates. A rare case of multiple congenital granular cell epulis is reported, alongside a description of its vascular immunohistochemical profile. A female newborn presented with two exophytic pedunculated red nodules located on the alveolar ridge between the future eruption sites of the incisors and canines of the mandible and maxilla. A conservative surgical excision was performed on the second day of life. Histology revealed proliferation of round granular cells containing an abundant eosinophilic cytoplasm with basophilic nuclei, ranging from round to oval in shape. Numerous blood vessels were also seen. Immunohistochemical analysis of the granular cells revealed positivity for CD68, D2-40, Ki67, VEGF, and FGF and negativity for S100, CD34, and CD105. Immunostaining for CD34, CD105, and D2-40 confirmed the presence of a large number of blood and lymphatic vessels. Although rare, an understanding of this lesion is paramount for correct diagnosis and appropriate treatment. In the present report, the immunohistochemical profile confirmed increased vascularization, proving that these lesions are composed of not only new and preexisting blood vessels, but also lymphatic vessels.
Collapse
|
23
|
Wermker K, Brauckmann T, Klein M, Haßfeld S, Schulze HJ, Hallermann C. Prognostic value of S100/CD31 and S100/podoplanin double immunostaining in mucosal malignant melanoma of the head and neck. Head Neck 2014; 37:1368-74. [DOI: 10.1002/hed.23761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/17/2014] [Accepted: 05/07/2014] [Indexed: 02/04/2023] Open
Affiliation(s)
- Kai Wermker
- Fachklinik Hornheide, Head and Neck Cancer Centre; Department of Cranio-Maxillofacial Surgery; Muenster Germany
| | - Till Brauckmann
- Fachklinik Hornheide, Head and Neck Cancer Centre; Department of Cranio-Maxillofacial Surgery; Muenster Germany
- University of Witten/Herdecke and Klinikum Dortmund; Department of Cranio-Maxillofacial Surgery; Dortmund Germany
| | - Martin Klein
- Fachklinik Hornheide, Head and Neck Cancer Centre; Department of Cranio-Maxillofacial Surgery; Muenster Germany
| | - Stefan Haßfeld
- University of Witten/Herdecke and Klinikum Dortmund; Department of Cranio-Maxillofacial Surgery; Dortmund Germany
| | - Hans-Joachim Schulze
- Fachklinik Hornheide, Skin Cancer Centre; Department of Dermatology and Dermato-Histo-Pathology; Muenster Germany
| | - Christian Hallermann
- Fachklinik Hornheide, Skin Cancer Centre; Department of Dermatology and Dermato-Histo-Pathology; Muenster Germany
| |
Collapse
|
24
|
Expression of mesothelioma-related markers in meningiomas: an immunohistochemical study. BIOMED RESEARCH INTERNATIONAL 2014; 2014:968794. [PMID: 24987706 PMCID: PMC4022005 DOI: 10.1155/2014/968794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/11/2014] [Indexed: 01/18/2023]
Abstract
Background. Meningiomas are common intracranial tumors. Recently, histogenetic and phenotypic similarities between meningiomas and mesotheliomas have been proposed. We were interested in whether these similarities are reflected on the immunohistochemical level, which would add new potentially diagnostic markers for meningiomas.
Methods. The expression of mesothelioma-related markers (D2-40, Calretinin, Keratin 5/6, WT1, and Methotheioma-Ab1) was investigated in 87 cases of meningiomas and compared to EMA expression. Results. 73.6% of meningioma cases were grade I, 20.7% were grade II, and 5.7% were grade III. 83.9% of meningioma cases were classical and 16.1% had special nonmeningothelial features. D2-40 was expressed in 37.9% of cases and was significantly restricted to classical meningiomas. Calretinin and WT1 were negative while Keratin 5/6 and Mesothelioma-Ab1 were weakly expressed in classical variants (5.7% and 3.4%, resp.). EMA was consistently expressed in all cases. Its expression was significantly higher than that of mesothelioma-related markers; this held true also when D2-40 expression was considered separately. Conclusions. Mesothelioma-related markers are not extensively expressed in meningiomas, a finding that argues against their proposed histogenetic and phenotypic similarities. Compared to EMA, the significantly lower expression of mesothelioma-related markers and their restricted expression to classical meningioma variants hamper their potential future use as diagnostic markers for meningioma.
Collapse
|
25
|
Kan S, Konishi E, Arita T, Ikemoto C, Takenaka H, Yanagisawa A, Katoh N, Asai J. Podoplanin expression in cancer-associated fibroblasts predicts aggressive behavior in melanoma. J Cutan Pathol 2014; 41:561-7. [PMID: 24588302 DOI: 10.1111/cup.12322] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND Recent studies have showed podoplanin expression in several tumors, which has been associated with lymph node metastasis and poor prognosis. Podoplanin expression in cancer-associated fibroblasts also correlates with tumor progression. However, the association of podoplanin expression with melanomas remains unclear. METHODS To clarify the prognostic significance of podoplanin in melanoma, podoplanin expression in tumor cells and cancer-associated fibroblasts was examined by immunohistochemistry in tissue samples collected from 55 melanoma patients. RESULTS Podoplanin expression in tumor cells was identified in 38 patients (69.1%) but did not show correlation with characteristics of tumor progression such as tumor thickness (p = 0.52) and sentinel lymph node (SLN) metastasis (p = 0.79). Podoplanin expression in cancer-associated fibroblasts was observed in 25 patients (45.5%), 11 of whom (44.0%) had SLN metastasis. In contrast, only 4 of 30 patients (13.3%) with podoplanin-negative cancer-associated fibroblasts exhibited SLN metastasis. Podoplanin-positive cancer-associated fibroblasts were associated with increased tumor thickness and SLN metastasis. Furthermore, patients with podoplanin-positive cancer-associated fibroblasts had poorer survival than those with podoplanin-negative cancer-associated fibroblasts (p = 0.0148). CONCLUSION The presence of podoplanin expression in cancer-associated fibroblasts correlates with aggressive behavior in melanoma and might therefore serve as a useful prognostic factor for patients with melanoma.
Collapse
Affiliation(s)
- Saori Kan
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|