1
|
Schipani A, Nannini M, Astolfi A, Pantaleo MA. SDHA Germline Mutations in SDH-Deficient GISTs: A Current Update. Genes (Basel) 2023; 14:genes14030646. [PMID: 36980917 PMCID: PMC10048394 DOI: 10.3390/genes14030646] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Loss of function of the succinate dehydrogenase complex characterizes 20–40% of all KIT/PDGFRA-negative GIST. Approximately half of SDH-deficient GIST patients lack SDHx mutations and are caused by a hypermethylation of the SDHC promoter, which causes the repression of SDHC transcription and depletion of SDHC protein levels through a mechanism described as epimutation. The remaining 50% of SDH-deficient GISTs have mutations in one of the SDH subunits and SDHA mutations are the most common (30%), with consequent loss of SDHA and SDHB protein expression immunohistochemically. SDHB, SDHC, and SDHD mutations in GIST occur in only 20–30% of cases and most of these SDH mutations are germline. More recently, germline mutations in SDHA have also been described in several patients with loss of function of the SDH complex. SDHA-mutant patients usually carry two mutational events at the SDHA locus, either the loss of the wild type allele or a second somatic event in compound heterozygosis. This review provides an overview of all data in the literature regarding SDHA-mutated GIST, especially focusing on the prevalence of germline mutations in SDH-deficient GIST populations who harbor SDHA somatic mutations, and offers a view towards understanding the importance of genetic counselling for SDHA-variant carriers and relatives.
Collapse
Affiliation(s)
- Angela Schipani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Margherita Nannini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Annalisa Astolfi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Correspondence: ; Tel.: +39-051-2144520
| | - Maria A. Pantaleo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
2
|
Sturrock BRH, Macnamara EF, McGuire P, Kruk S, Yang I, Murphy J, Tifft CJ, Gordon‐Lipkin E. Progressive cerebellar atrophy in a patient with complex II and III deficiency and a novel deleterious variant in SDHA: A Counseling Conundrum. Mol Genet Genomic Med 2021; 9:e1692. [PMID: 33960148 PMCID: PMC8222855 DOI: 10.1002/mgg3.1692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Complex II is an essential component of the electron transport chain, linking it with the tricarboxylic acid cycle. Its four subunits are encoded in the nuclear genome, and deleterious variants in these genes, including SDHA (OMIM 600857), are associated with a wide range of symptoms including neurological disease, cardiomyopathy, and neoplasia (paraganglioma-pheochromocytomas (PGL/PCC), and gastrointestinal stromal tumors). Deleterious variants of SDHA are most frequently associated with Leigh and Leigh-like syndromes. METHODS AND RESULTS Here, we describe a case of a 9-year-old boy with tremor, nystagmus, hypotonia, developmental delay, significant ataxia, and progressive cerebellar atrophy. He was found to have biallelic variants in SDHA, a known pathogenic variant (c.91C>T (p.R31*)), and a variant of unknown significance (c.454G>A (p.E152K)). Deficient activity of complexes II and III was detected in fibroblasts from the patient consistent with a diagnosis of a respiratory chain disorder. CONCLUSION We, therefore, consider whether c.454G>A (p.E152K) is, indeed, a pathogenic variant, and what implications it has for family members who carry the same variant.
Collapse
Affiliation(s)
- Beattie R. H. Sturrock
- National Institutes of Health Undiagnosed Diseases ProgramCommon FundOffice of the DirectorNIHBethesdaMDUSA
- Brighton and Sussex University Hospitals NHS TrustBrightonEngland
| | - Ellen F. Macnamara
- National Institutes of Health Undiagnosed Diseases ProgramCommon FundOffice of the DirectorNIHBethesdaMDUSA
| | - Peter McGuire
- Metabolism, Infection and Immunity SectionNational Human Genome Research InstituteNIHBethesdaMDUSA
| | - Shannon Kruk
- Metabolism, Infection and Immunity SectionNational Human Genome Research InstituteNIHBethesdaMDUSA
| | - Ivan Yang
- Metabolism, Infection and Immunity SectionNational Human Genome Research InstituteNIHBethesdaMDUSA
| | - Jennifer Murphy
- National Institutes of Health Undiagnosed Diseases ProgramCommon FundOffice of the DirectorNIHBethesdaMDUSA
| | - Cyndi J. Tifft
- National Institutes of Health Undiagnosed Diseases ProgramCommon FundOffice of the DirectorNIHBethesdaMDUSA
- Office of the Clinical DirectorNational Human Genome Research InstituteNIHBethesdaMDUSA
| | - Eliza Gordon‐Lipkin
- Metabolism, Infection and Immunity SectionNational Human Genome Research InstituteNIHBethesdaMDUSA
| |
Collapse
|
3
|
Abstract
Carney-Stratakis Syndrome (CSS) comprises of paragangliomas (PGLs) and gastrointestinal stromal tumors (GISTs). Several of its features overlap with Carney Triad (CT) - PGLs, GISTs, and pulmonary chondromas. CSS has autosomal dominant inheritance, incomplete penetrance, and greater relative frequency of PGL over GISTs. The PGLs in CSS are multicentric and GISTs are multifocal in all the patients, suggesting an inherited susceptibility and associating the two manifestations. In this review, we highlight the clinical, pathological, and molecular characteristics of CSS, along with its diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Arushi Khurana
- VCU Massey Cancer Center - Hematology Oncology, Richmond, Virginia, USA
| | - Lin Mei
- VCU Massey Cancer Center - Hematology Oncology, Richmond, Virginia, USA
| | - Anthony C Faber
- Virginia Commonwealth University - Philips Institute for Oral Health Research, Richmond, Virginia, USA
| | - Steven C Smith
- Virginia Commonwealth University - Pathology, Richmond, Virginia, USA
| | | |
Collapse
|
4
|
Martín-Martín N, Carracedo A, Torrano V. Metabolism and Transcription in Cancer: Merging Two Classic Tales. Front Cell Dev Biol 2018; 5:119. [PMID: 29354634 PMCID: PMC5760552 DOI: 10.3389/fcell.2017.00119] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022] Open
Abstract
Cellular plasticity, or the ability of a cancer cell to adapt to changes in the microenvironment, is a major determinant of cell survival and functionality that require the coordination of transcriptional programs with signaling and metabolic pathways. In this scenario, these pathways sense and integrate nutrient signals for the induction of coordinated gene expression programs in cancer. This minireview focuses on recent advances that shed light on the bidirectional relationship between metabolism and gene transcription, and their biological outcomes in cancer. Specifically, we will discuss how metabolic changes occurring in cancer cells impact on gene expression, both at the level of the epigenetic landscape and transcription factor regulation.
Collapse
Affiliation(s)
- Natalia Martín-Martín
- CIC bioGUNE, Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
| | - Arkaitz Carracedo
- CIC bioGUNE, Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Verónica Torrano
- CIC bioGUNE, Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
| |
Collapse
|
5
|
Bannon AE, Kent J, Forquer I, Town A, Klug LR, McCann K, Beadling C, Harismendy O, Sicklick JK, Corless C, Shinde U, Heinrich MC. Biochemical, Molecular, and Clinical Characterization of Succinate Dehydrogenase Subunit A Variants of Unknown Significance. Clin Cancer Res 2017; 23:6733-6743. [PMID: 28724664 PMCID: PMC6011831 DOI: 10.1158/1078-0432.ccr-17-1397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/20/2017] [Accepted: 07/14/2017] [Indexed: 01/14/2023]
Abstract
Purpose: Patients who inherit a pathogenic loss-of-function genetic variant involving one of the four succinate dehydrogenase (SDH) subunit genes have up to an 86% chance of developing one or more cancers by the age of 50. If tumors are identified and removed early in these high-risk patients, they have a higher potential for cure. Unfortunately, many alterations identified in these genes are variants of unknown significance (VUS), confounding the identification of high-risk patients. If we could identify misclassified SDH VUS as benign or pathogenic SDH mutations, we could better select patients for cancer screening procedures and remove tumors at earlier stages.Experimental Design: In this study, we combine data from clinical observations, a functional yeast model, and a computational model to determine the pathogenicity of 22 SDHA VUS. We gathered SDHA VUS from two primary sources: The OHSU Knight Diagnostics Laboratory and the literature. We used a yeast model to identify the functional effect of a VUS on mitochondrial function with a variety of biochemical assays. The computational model was used to visualize variants' effect on protein structure.Results: We were able to draw conclusions on functional effects of variants using our three-prong approach to understanding VUS. We determined that 16 (73%) of the alterations are actually pathogenic, causing loss of SDH function, and six (27%) have no effect upon SDH function.Conclusions: We thus report the reclassification of the majority of the VUS tested as pathogenic, and highlight the need for more thorough functional assessment of inherited SDH variants. Clin Cancer Res; 23(21); 6733-43. ©2017 AACR.
Collapse
Affiliation(s)
- Amber E Bannon
- Department of Cell and Developmental Biology, Heinrich Lab, Oregon Health and Science University, Portland, Oregon.
| | - Jason Kent
- Department of Cell and Developmental Biology, Heinrich Lab, Oregon Health and Science University, Portland, Oregon
| | - Isaac Forquer
- Portland VA Medical Center and Oregon Health and Science University, Portland, Oregon
| | - Ajia Town
- Heinrich Lab, Oregon Health and Science University, Portland, Oregon
| | - Lillian R Klug
- Department of Cancer Biology, Heinrich Lab, Oregon Health and Science University, Portland, Oregon
| | - Kelly McCann
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Carol Beadling
- Department of Pathology, Oregon Health and Science University, Portland, Oregon
| | - Oliver Harismendy
- Division of Biomedical Informatics, Department of Medicine, Moores UCSD Cancer Center, University of California San Diego, La Jolla, California
| | - Jason K Sicklick
- Division of Surgical Oncology, Department of Surgery, Moores UCSD Cancer Center, University of California San Diego, La Jolla, California
| | - Christopher Corless
- Department of Pathology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Ujwal Shinde
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon
| | - Michael C Heinrich
- Departments of Medicine and Cell, Developmental, and Cancer Biology, Portland VA Health Care System and OHSU Knight Cancer Institute, Portland, Oregon
| |
Collapse
|
6
|
Casey RT, Ascher DB, Rattenberry E, Izatt L, Andrews KA, Simpson HL, Challis B, Park S, Bulusu VR, Lalloo F, Pires DEV, West H, Clark GR, Smith PS, Whitworth J, Papathomas TG, Taniere P, Savisaar R, Hurst LD, Woodward ER, Maher ER. SDHA related tumorigenesis: a new case series and literature review for variant interpretation and pathogenicity. Mol Genet Genomic Med 2017; 5:237-250. [PMID: 28546994 PMCID: PMC5441402 DOI: 10.1002/mgg3.279] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/06/2017] [Accepted: 01/13/2017] [Indexed: 12/27/2022] Open
Abstract
PURPOSE To evaluate the role of germline SDHA mutation analysis by (1) comprehensive literature review, (2) description of novel germline SDHA mutations and (3) in silico structural prediction analysis of missense substitutions in SDHA. PATIENTS AND METHODS A systematic literature review and a retrospective review of the molecular and clinical features of patients identified with putative germline variants in UK molecular genetic laboratories was performed. To evaluate the molecular consequences of SDHA missense variants, a novel model of the SDHA/B/C/D complex was generated and the structural effects of missense substitutions identified in the literature, our UK novel cohort and a further 32 "control missense variants" were predicted by the mCSM computational platform. These structural predictions were correlated with the results of tumor studies and other bioinformatic predictions. RESULTS Literature review revealed reports of 17 different germline SDHA variants in 47 affected individuals from 45 kindreds. A further 10 different variants in 15 previously unreported cases (seven novel variants in eight patients) were added from our UK series. In silico structural prediction studies of 11 candidate missense germline mutations suggested that most (63.7%) would destabilize the SDHA protomer, and that most (78.1%) rare SDHA missense variants present in a control data set (ESP6500) were also associated with impaired protein stability. CONCLUSION The clinical spectrum of SDHA-associated neoplasia differs from that of germline mutations in other SDH-subunits. The interpretation of the significance of novel SDHA missense substitutions is challenging. We recommend that multiple investigations (e.g. tumor studies, metabolomic profiling) should be performed to aid classification of rare missense variants before genetic testing results are used to influence clinical management.
Collapse
Affiliation(s)
- Ruth T. Casey
- Department of Medical GeneticsUniversity of Cambridge and NIHR Cambridge Biomedical Research CentreCambridgeCB2 2QQUK
- Department of EndocrinologyUniversity of Cambridge and NIHR Cambridge Biomedical Research CentreAddenbrooke's HospitalCambridgeCB2 2QQUK
| | - David B. Ascher
- Department of BiochemistryUniversity of CambridgeSanger Building, 80 Tennis Court RoadCambridgeCB2 1GAUK
- Department of BiochemistryBio21 InstituteUniversity of MelbourneMelbourneVictoria3010Australia
| | - Eleanor Rattenberry
- West Midlands Region Genetics ServiceBirmingham Women's HospitalBirminghamUK
| | - Louise Izatt
- Department of Medical GeneticsGuy's HospitalLondonUK
| | - Katrina A. Andrews
- Department of Medical GeneticsUniversity of Cambridge and NIHR Cambridge Biomedical Research CentreCambridgeCB2 2QQUK
| | - Helen L. Simpson
- Department of EndocrinologyUniversity of Cambridge and NIHR Cambridge Biomedical Research CentreAddenbrooke's HospitalCambridgeCB2 2QQUK
| | - Benjamen Challis
- Department of EndocrinologyUniversity of Cambridge and NIHR Cambridge Biomedical Research CentreAddenbrooke's HospitalCambridgeCB2 2QQUK
| | - Soo‐Mi Park
- Department of Medical GeneticsUniversity of Cambridge and NIHR Cambridge Biomedical Research CentreCambridgeCB2 2QQUK
| | | | - Fiona Lalloo
- Manchester Centre for Genomic MedicineSt Mary's HospitalCentral Manchester University Hospitals NHS Foundation TrustManchester Academic Health Science CentreManchesterUK
| | - Douglas E. V. Pires
- Centro de Pesquisas René RachouFundação Oswaldo CruzBelo Horizonte30190‐002Brazil
| | - Hannah West
- Department of Medical GeneticsUniversity of Cambridge and NIHR Cambridge Biomedical Research CentreCambridgeCB2 2QQUK
| | - Graeme R. Clark
- Department of Medical GeneticsUniversity of Cambridge and NIHR Cambridge Biomedical Research CentreCambridgeCB2 2QQUK
| | - Philip S. Smith
- Department of Medical GeneticsUniversity of Cambridge and NIHR Cambridge Biomedical Research CentreCambridgeCB2 2QQUK
| | - James Whitworth
- Department of Medical GeneticsUniversity of Cambridge and NIHR Cambridge Biomedical Research CentreCambridgeCB2 2QQUK
| | | | - Phillipe Taniere
- Histopathology and Cellular PathologyUniversity Hospitals Birmingham NHS Foundation TrustQueen Elizabeth HospitalBirminghamUK
| | - Rosina Savisaar
- The Milner Centre for EvolutionDepartment of Biology and BiochemistryUniversity of BathBathBA2 7AYUK
| | - Laurence D. Hurst
- The Milner Centre for EvolutionDepartment of Biology and BiochemistryUniversity of BathBathBA2 7AYUK
| | - Emma R. Woodward
- West Midlands Region Genetics ServiceBirmingham Women's HospitalBirminghamUK
- Manchester Centre for Genomic MedicineSt Mary's HospitalCentral Manchester University Hospitals NHS Foundation TrustManchester Academic Health Science CentreManchesterUK
| | - Eamonn R. Maher
- Department of Medical GeneticsUniversity of Cambridge and NIHR Cambridge Biomedical Research CentreCambridgeCB2 2QQUK
| |
Collapse
|
7
|
Use of monoclonal antibodies to detect specific mutations in formalin-fixed, paraffin-embedded tissue sections. Hum Pathol 2016; 53:168-77. [DOI: 10.1016/j.humpath.2016.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/10/2016] [Accepted: 03/12/2016] [Indexed: 02/08/2023]
|
8
|
Benn DE, Robinson BG, Clifton-Bligh RJ. 15 YEARS OF PARAGANGLIOMA: Clinical manifestations of paraganglioma syndromes types 1-5. Endocr Relat Cancer 2015; 22:T91-103. [PMID: 26273102 PMCID: PMC4532956 DOI: 10.1530/erc-15-0268] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The paraganglioma (PGL) syndromes types 1-5 are autosomal dominant disorders characterized by familial predisposition to PGLs, phaeochromocytomas (PCs), renal cell cancers, gastrointestinal stromal tumours and, rarely, pituitary adenomas. Each syndrome is associated with mutation in a gene encoding a particular subunit (or assembly factor) of succinate dehydrogenase (SDHx). The clinical manifestations of these syndromes are protean: patients may present with features of catecholamine excess (including the classic triad of headache, sweating and palpitations), or with symptoms from local tumour mass, or increasingly as an incidental finding on imaging performed for some other purpose. As genetic testing for these syndromes becomes more widespread, presymptomatic diagnosis is also possible, although penetrance of disease in these syndromes is highly variable and tumour development does not clearly follow a predetermined pattern. PGL1 syndrome (SDHD) and PGL2 syndrome (SDHAF2) are notable for high frequency of multifocal tumour development and for parent-of-origin inheritance: disease is almost only ever manifest in subjects inheriting the defective allele from their father. PGL4 syndrome (SDHB) is notable for an increased risk of malignant PGL or PC. PGL3 syndrome (SDHC) and PGL5 syndrome (SDHA) are less common and appear to be associated with lower penetrance of tumour development. Although these syndromes are all associated with SDH deficiency, few genotype-phenotype relationships have yet been established, and indeed it is remarkable that such divergent phenotypes can arise from disruption of a common molecular pathway. This article reviews the clinical presentations of these syndromes, including their component tumours and underlying genetic basis.
Collapse
Affiliation(s)
- Diana E Benn
- Cancer GeneticsKolling Institute, Royal North Shore Hospital, University of Sydney, St Leonards, New South Wales 2065, Australia
| | - Bruce G Robinson
- Cancer GeneticsKolling Institute, Royal North Shore Hospital, University of Sydney, St Leonards, New South Wales 2065, Australia
| | - Roderick J Clifton-Bligh
- Cancer GeneticsKolling Institute, Royal North Shore Hospital, University of Sydney, St Leonards, New South Wales 2065, Australia
| |
Collapse
|
9
|
Alturkmani HJ, Pessetto ZY, Godwin AK. Beyond standard therapy: drugs under investigation for the treatment of gastrointestinal stromal tumor. Expert Opin Investig Drugs 2015; 24:1045-58. [PMID: 26098203 DOI: 10.1517/13543784.2015.1046594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Gastrointestinal stromal tumor (GIST) is the most common nonepithelial malignancy of the GI tract. With the discovery of KIT and later platelet-derived growth factor α (PDGFRA) gain-of-function mutations as factors in the pathogenesis of the disease, GIST was the quintessential model for targeted therapy. Despite the successful clinical use of imatinib mesylate, a selective receptor tyrosine kinase (RTK) inhibitor that targets KIT, PDGFRA and BCR-ABL, we still do not have treatment for the long-term control of advanced GIST. AREAS COVERED This review summarizes the drugs that are under investigation or have been assessed in trials for GIST treatment. The article focuses on their mechanisms of actions, the preclinical evidence of efficacy, and the clinical trials concerning safety and efficacy in humans. EXPERT OPINION It is known that KIT and PDGFRA mutations in GIST patients influence the response to treatment. This observation should be taken into consideration when investigating new drugs. RECIST was developed to help uniformly report efficacy trials in oncology. Despite the usefulness of this system, many questions are being addressed about its validity in evaluating the true efficacy of drugs knowing that new targeted therapies do not affect the tumor size as much as they halt progression and prolong survival.
Collapse
Affiliation(s)
- Hani J Alturkmani
- University of Kansas Medical Center, Department of Pathology and Laboratory Medicine , Kansas City, Kansas , USA
| | | | | |
Collapse
|
10
|
Lin G, Doyle LA. An update on the application of newly described immunohistochemical markers in soft tissue pathology. Arch Pathol Lab Med 2015; 139:106-21. [PMID: 25549147 DOI: 10.5858/arpa.2014-0488-ra] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT During the last 5 to 10 years, significant progress has been made in the molecular characterization of soft tissue tumors, predominantly with the identification of recurrent translocations or amplification of certain genes in different tumor types. Alongside this, translational efforts have identified many novel and diagnostically useful immunohistochemical markers for many of these tumor types. OBJECTIVE This article reviews a select group of recently described immunohistochemical markers of particular use in the evaluation of mesenchymal neoplasms; the underlying biology of the protein product, practical utility, and limitations of each marker are discussed in detail. DATA SOURCES Literature review, authors' research data, and personal practice experience serve as sources. CONCLUSIONS There are many diagnostically useful immunohistochemical markers to help confirm the diagnosis of many different soft tissue tumor types, some of which have reduced the need for additional, and more costly, studies, such as fluorescence in situ hybridization. However, no one marker is 100% specific for a given tumor, and knowledge of potential pitfalls and overlap in patterns of staining among other tumor types is crucial to ensure the appropriate application of these markers in clinical practice.
Collapse
Affiliation(s)
- George Lin
- From the Department of Laboratory Medicine, Geisinger Medical Center, Danville, Pennsylvania (Dr Lin); and the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts (Dr Doyle)
| | | |
Collapse
|
11
|
Nannini M, Biasco G, Pantaleo MA. An immunohistochemical study of potential diagnostic and therapeutic biomarkers of wild-type gastrointestinal stromal tumours. Histopathology 2015; 67:746-7. [PMID: 25753247 DOI: 10.1111/his.12682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Margherita Nannini
- Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Guido Biasco
- Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, Bologna, Italy.,'Giorgio Prodi' Cancer Research Centre, University of Bologna, Bologna, Italy
| | - Maria A Pantaleo
- Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, Bologna, Italy.,'Giorgio Prodi' Cancer Research Centre, University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Wang YM, Gu ML, Ji F. Succinate dehydrogenase-deficient gastrointestinal stromal tumors. World J Gastroenterol 2015; 21:2303-2314. [PMID: 25741136 PMCID: PMC4342905 DOI: 10.3748/wjg.v21.i8.2303] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/22/2014] [Accepted: 12/16/2014] [Indexed: 02/07/2023] Open
Abstract
Most gastrointestinal stromal tumors (GISTs) are characterized by KIT or platelet-derived growth factor alpha (PDGFRA) activating mutations. However, there are still 10%-15% of GISTs lacking KIT and PDGFRA mutations, called wild-type GISTs (WT GISTs). Among these so-called WT GISTs, a small subset is associated with succinate dehydrogenase (SDH) deficiency, known as SDH-deficient GISTs. In addition, GISTs that occur in Carney triad and Carney-Stratakis syndrome represent specific examples of SDH-deficient GISTs. SDH-deficient GISTs locate exclusively in the stomach, showing predilection for children and young adults with female preponderance. The tumor generally pursues an indolent course and exhibits primary resistance to imatinib therapy in most cases. Loss of succinate dehydrogenase subunit B expression and overexpression of insulin-like growth factor 1 receptor (IGF1R) are common features of SDH-deficient GISTs. In WT GISTs without succinate dehydrogenase activity, upregulation of hypoxia-inducible factor 1α may lead to increased growth signaling through IGF1R and vascular endothelial growth factor receptor (VEGFR). As a result, IGF1R and VEGFR are promising to be the novel therapeutic targets of GISTs. This review will update the current knowledge on characteristics of SDH-deficient GISTs and further discuss the possible mechanisms of tumorigenesis and clinical management of SDH-deficient GISTs.
Collapse
|
13
|
Nannini M, Astolfi A, Urbini M, Indio V, Santini D, Heinrich MC, Corless CL, Ceccarelli C, Saponara M, Mandrioli A, Lolli C, Ercolani G, Brandi G, Biasco G, Pantaleo MA. Integrated genomic study of quadruple-WT GIST (KIT/PDGFRA/SDH/RAS pathway wild-type GIST). BMC Cancer 2014; 14:685. [PMID: 25239601 PMCID: PMC4181714 DOI: 10.1186/1471-2407-14-685] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 09/17/2014] [Indexed: 12/24/2022] Open
Abstract
Background About 10-15% of adult gastrointestinal stromal tumors (GIST) and the vast majority of pediatric GIST do not harbour KIT or platelet-derived growth factor receptor alpha (PDGFRA) mutations (J Clin Oncol 22:3813–3825, 2004; Hematol Oncol Clin North Am 23:15–34, 2009). The molecular biology of these GIST, originally defined as KIT/PDGFRA wild-type (WT), is complex due to the existence of different subgroups with distinct molecular hallmarks, including defects in the succinate dehydrogenase (SDH) complex and mutations of neurofibromatosis type 1 (NF1), BRAF, or KRAS genes (RAS-pathway or RAS-P). In this extremely heterogeneous landscape, the clinical profile and molecular abnormalities of the small subgroup of WT GIST suitably referred to as quadruple wild-type GIST (quadrupleWT or KITWT/PDGFRAWT/SDHWT/RAS-PWT) remains undefined. The aim of this study is to investigate the genomic profile of KITWT/PDGFRAWT/SDHWT/RAS-PWT GIST, by using a massively parallel sequencing and microarray approach, and compare it with the genomic profile of other GIST subtypes. Methods We performed a whole genome analysis using a massively parallel sequencing approach on a total of 16 GIST cases (2 KITWT/PDGFRAWT/SDHWT and SDHBIHC+/SDHAIHC+, 2 KITWT/PDGFRAWT/SDHAmut and SDHBIHC-/SDHAIHC- and 12 cases of KITmut or PDGFRAmut GIST). To confirm and extend the results, whole-genome gene expression analysis by microarray was performed on 9 out 16 patients analyzed by RNAseq and an additional 20 GIST patients (1 KITWT/PDGFRAWTSDHAmut GIST and 19 KITmut or PDGFRAmut GIST). The most impressive data were validated by quantitave PCR and Western Blot analysis. Results We found that both cases of quadrupleWT GIST had a genomic profile profoundly different from both either KIT/PDGFRA mutated or SDHA-mutated GIST. In particular, the quadrupleWT GIST tumors are characterized by the overexpression of molecular markers (CALCRL and COL22A1) and of specific oncogenes including tyrosine and cyclin- dependent kinases (NTRK2 and CDK6) and one member of the ETS-transcription factor family (ERG). Conclusion We report for the first time an integrated genomic picture of KITWT/PDGFRAWT/SDHWT/RAS-PWT GIST, using massively parallel sequencing and gene expression analyses, and found that quadrupleWT GIST have an expression signature that is distinct from SDH-mutant GIST as well as GIST harbouring mutations in KIT or PDGFRA. Our findings suggest that quadrupleWT GIST represent another unique group within the family of gastrointestintal stromal tumors. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-685) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Maria A Pantaleo
- Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| |
Collapse
|
14
|
Renkema GH, Wortmann SB, Smeets RJ, Venselaar H, Antoine M, Visser G, Ben-Omran T, van den Heuvel LP, Timmers HJLM, Smeitink JA, Rodenburg RJT. SDHA mutations causing a multisystem mitochondrial disease: novel mutations and genetic overlap with hereditary tumors. Eur J Hum Genet 2014; 23:202-9. [PMID: 24781757 DOI: 10.1038/ejhg.2014.80] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 03/21/2014] [Accepted: 04/04/2014] [Indexed: 11/09/2022] Open
Abstract
Defects in complex II of the mitochondrial respiratory chain are a rare cause of mitochondrial disorders. Underlying autosomal-recessive genetic defects are found in most of the 'SDHx' genes encoding complex II (SDHA, SDHB, SDHC, and SDHD) and its assembly factors. Interestingly, SDHx genes also function as tumor suppressor genes in hereditary paragangliomas, pheochromocytomas, and gastrointestinal stromal tumors. In these cases, the affected patients are carrier of a heterozygeous SDHx germline mutation. Until now, mutations in SDHx associated with mitochondrial disease have not been reported in association with hereditary tumors and vice versa. Here, we characterize four patients with isolated complex II deficiency caused by mutations in SDHA presenting with multisystem mitochondrial disease including Leigh syndrome (LS) and/or leukodystrophy. Molecular genetic analysis revealed three novel mutations in SDHA. Two mutations (c.64-2A>G and c.1065-3C>A) affect mRNA splicing and result in loss of protein expression. These are the first mutations described affecting SDHA splicing. For the third new mutation, c.565T>G, we show that it severely affects enzyme activity. Its pathogenicity was confirmed by lentiviral complementation experiments on the fibroblasts of patients carrying this mutation. It is of special interest that one of our LS patients harbored the c.91C>T (p.Arg31*) mutation that was previously only reported in association with paragangliomas and pheochromocytomas, tightening the gap between these two rare disorders. As tumor screening is recommended for SDHx mutation carriers, this should also be considered for patients with mitochondrial disorders and their family members.
Collapse
Affiliation(s)
- G Herma Renkema
- 1] Nijmegen Center for Mitochondrial Disorders (NCMD) at the Department of Pediatrics, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands [2] Centre for Systems Biology and Bioenergetics, Radboudumc, Nijmegen, The Netherlands
| | - Saskia B Wortmann
- Nijmegen Center for Mitochondrial Disorders (NCMD) at the Department of Pediatrics, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Roel J Smeets
- Nijmegen Center for Mitochondrial Disorders (NCMD) at the Department of Pediatrics, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Hanka Venselaar
- Centre for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, The Netherlands
| | - Marion Antoine
- 1] Nijmegen Center for Mitochondrial Disorders (NCMD) at the Department of Pediatrics, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands [2] Centre for Systems Biology and Bioenergetics, Radboudumc, Nijmegen, The Netherlands
| | - Gepke Visser
- Department of Pediatric Gastroenterology and Metabolic Diseases, Wilhelmina Children's Hospital/UMCU, Utrecht, The Netherlands
| | - Tawfeg Ben-Omran
- Section of Clinical and Metabolic Genetics and Department of Pediatrics and Genetic Medicine, Weil-Cornell Medical College, Doha, Qatar
| | - Lambert P van den Heuvel
- Nijmegen Center for Mitochondrial Disorders (NCMD) at the Department of Pediatrics, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Henri J L M Timmers
- Department of Medicine, Division of Endocrinology, Radboudumc, Nijmegen, The Netherlands
| | - Jan A Smeitink
- Nijmegen Center for Mitochondrial Disorders (NCMD) at the Department of Pediatrics, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Richard J T Rodenburg
- Nijmegen Center for Mitochondrial Disorders (NCMD) at the Department of Pediatrics, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| |
Collapse
|
15
|
Papathomas TG, de Krijger RR, Tischler AS. Paragangliomas: update on differential diagnostic considerations, composite tumors, and recent genetic developments. Semin Diagn Pathol 2013; 30:207-23. [PMID: 24144290 DOI: 10.1053/j.semdp.2013.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent developments in molecular genetics have expanded the spectrum of disorders associated with pheochromocytomas (PCCs) and extra-adrenal paragangliomas (PGLs) and have increased the roles of pathologists in helping to guide patient care. At least 30% of these tumors are now known to be hereditary, and germline mutations of at least 10 genes are known to cause the tumors to develop. Genotype-phenotype correlations have been identified, including differences in tumor distribution, catecholamine production, and risk of metastasis, and types of tumors not previously associated with PCC/PGL are now considered in the spectrum of hereditary disease. Important new findings are that mutations of succinate dehydrogenase genes SDHA, SDHB, SDHC, SDHD, and SDHAF2 (collectively "SDHx") are responsible for a large percentage of hereditary PCC/PGL and that SDHB mutations are strongly correlated with extra-adrenal tumor location, metastasis, and poor prognosis. Further, gastrointestinal stromal tumors and renal tumors are now associated with SDHx mutations. A PCC or PGL caused by any of the hereditary susceptibility genes can present as a solitary, apparently sporadic, tumor, and substantial numbers of patients presenting with apparently sporadic tumors harbor occult germline mutations of susceptibility genes. Current roles of pathologists are differential diagnosis of primary tumors and metastases, identification of clues to occult hereditary disease, and triaging of patients for optimal genetic testing by immunohistochemical staining of tumor tissue for the loss of SDHB and SDHA protein. Diagnostic pitfalls are posed by morphological variants of PCC/PGL, unusual anatomic sites of occurrence, and coexisting neuroendocrine tumors of other types in some hereditary syndromes. These pitfalls can be avoided by judicious use of appropriate immunohistochemical stains. Aside from loss of staining for SDHB, criteria for predicting risk of metastasis are still controversial, and "malignancy" is diagnosed only after metastases have occurred. All PCCs/PGLs are considered to pose some risk of metastasis, and long-term follow-up is advised.
Collapse
Affiliation(s)
- Thomas G Papathomas
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC-University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
16
|
Mason EF, Hornick JL. Succinate dehydrogenase deficiency is associated with decreased 5-hydroxymethylcytosine production in gastrointestinal stromal tumors: implications for mechanisms of tumorigenesis. Mod Pathol 2013; 26:1492-7. [PMID: 23743927 DOI: 10.1038/modpathol.2013.86] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 01/09/2023]
Abstract
Gastrointestinal stromal tumors (GISTs) usually harbor activating mutations in KIT or PDGFRA, which promote tumorigenesis through activation of growth factor receptor signaling pathways. Around 15% of GISTs in adults and >90% in children lack such mutations ('wild-type' GISTs). Most gastric wild-type GISTs show loss of function of the Krebs cycle enzyme complex succinate dehydrogenase (SDH). However, the mechanism by which SDH deficiency drives tumorigenesis is unclear. Loss of SDH leads to succinate accumulation, which is thought to inhibit α-ketoglutarate-dependent dioxygenase enzymes, such as the TET family of DNA hydroxylases. TET proteins catalyze the conversion of 5-methylcytosine to 5-hydroxymethylcytosine (5-hmC), which is required for subsequent DNA demethylation. Thus, TET-mediated 5-hmC production alters global DNA methylation patterns and may thereby influence gene expression. We investigated 5-hmC levels in a cohort of genotyped GISTs to determine whether loss of SDH was associated with inhibition of TET activity. 5-hmC levels were examined via immunohistochemistry in a cohort of 30 genotyped GISTs, including 10 SDH-deficient tumors (5 SDHA mutant; 1 SDHB mutant; 1 SDHC mutant; 3 unknown), 14 tumors with KIT mutations (10 in exon 11; 3 in exon 9; 1 in exon 17), and 6 tumors with PDGFRA mutations (all in exon 18). Staining for 5-hmC was negative in 9 of 10 (90%) SDH-deficient GISTs, 3 of 14 (21%) KIT-mutant GISTs, and 1 of 6 (17%) PDGFRA-mutant GISTs. The other SDH-deficient GIST showed weak staining for 5-hmC. Thus, 5-hmC was absent in nearly all SDH-deficient GISTs. These findings suggest that SDH deficiency may promote tumorigenesis through accumulation of succinate and inhibition of dioxygenase enzymes. Inhibition of TET activity may, in turn, alter global DNA methylation and gene expression in SDH-deficient tumors.
Collapse
Affiliation(s)
- Emily F Mason
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
17
|
Vadakara J, von Mehren M. Gastrointestinal stromal tumors: management of metastatic disease and emerging therapies. Hematol Oncol Clin North Am 2013; 27:905-20. [PMID: 24093167 PMCID: PMC3792495 DOI: 10.1016/j.hoc.2013.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastrointestinal stromal tumors (GIST) are the most common mesenchymal tumors of the gastrointestinal tract. Before the advent of tyrosine kinase inhibitors (TKIs) there were few treatment options available to patients with metastatic GIST. Surgery was the mainstay of treatment and the prognosis was dismal. With the advent of imatinib and second-line TKIs the prognosis of metastatic GIST has improved dramatically; however, there is still a need for therapies for patients with disease refractory to TKI therapy. Newer agents are under investigation and may have promise. This article discusses the current standard of care in terms of standard and investigational pharmacotherapy in the management of metastatic GIST.
Collapse
Affiliation(s)
- Joseph Vadakara
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Margaret von Mehren
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| |
Collapse
|
18
|
Rutkowski P, Przybył J, Zdzienicki M. Extended adjuvant therapy with imatinib in patients with gastrointestinal stromal tumors : recommendations for patient selection, risk assessment, and molecular response monitoring. Mol Diagn Ther 2013; 17:9-19. [PMID: 23355099 PMCID: PMC3565084 DOI: 10.1007/s40291-013-0018-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
On the basis of the recently published results of a clinical trial comparing 12 and 36 months of imatinib in adjuvant therapy for gastrointestinal stromal tumors (GISTs), which demonstrated clinical benefit of longer imatinib treatment in terms of delaying recurrences and improving overall survival, both the US Food and Drug Administration and the European Medicines Agency have updated their recommendations and approved 36 months of imatinib treatment in patients with v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT)-positive GISTs (also known as CD117-positive GISTs) at high risk of recurrence after surgical resection of a primary tumor. This article discusses patient selection criteria for extended adjuvant therapy with imatinib, different classifications of risk of recurrence, and assessment of the response to therapy.
Collapse
Affiliation(s)
- Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland.
| | | | | |
Collapse
|
19
|
Nannini M, Biasco G, Astolfi A, Pantaleo MA. An overview on molecular biology of KIT/PDGFRA wild type (WT) gastrointestinal stromal tumours (GIST). J Med Genet 2013; 50:653-61. [DOI: 10.1136/jmedgenet-2013-101695] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Nannini M, Astolfi A, Paterini P, Urbini M, Santini D, Catena F, Indio V, Casadio R, Pinna AD, Biasco G, Pantaleo MA. Expression of IGF-1 receptor in KIT/PDGF receptor-α wild-type gastrointestinal stromal tumors with succinate dehydrogenase complex dysfunction. Future Oncol 2013; 9:121-6. [PMID: 23252569 DOI: 10.2217/fon.12.170] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
KIT/PDGF receptor-α (PDGFRA) wild-type (WT) gastrointestinal stromal tumors (GIST) are characterized by an overexpression of IGF-1 receptor (IGF1R) at the mRNA and protein level. More recently, germline and somatic mutations in succinate dehydrogenase (SDH) subunits A, B and C have been identified in KIT/PDGFRA WT sporadic GIST. Until now, the molecular basis of IGF1R overexpression in KIT/PDGFRA WT GIST has not been explained. In this brief report we investigate the status of the SDH complex at the genomic and protein level in relation to IGF1R expression at the mRNA and protein level in seven KIT/PDGFRA WT sporadic GIST patients. We found that IGF1R was upregulated in all patients harboring SDH mutations or displaying a SDH dysfunction, with respect to KIT/PDGFRA WT GIST without SDH mutations. Western blot analysis confirmed that all patients with an upregulation of IGF1R mRNA had detectable IGF1R protein expression. This report would suggest that IGF1R overexpression in KIT/PDGFRA WT GIST could be driven by the loss-of-function of the SDH mitochondrial complex.
Collapse
Affiliation(s)
- Margherita Nannini
- Department of Hematology & Oncological Sciences L&A Seràgnoli, S. Orsola-Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Belinsky MG, Rink L, von Mehren M. Succinate dehydrogenase deficiency in pediatric and adult gastrointestinal stromal tumors. Front Oncol 2013; 3:117. [PMID: 23730622 PMCID: PMC3656383 DOI: 10.3389/fonc.2013.00117] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/26/2013] [Indexed: 12/18/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) in adults are generally driven by somatic gain-of-function mutations in KIT or PDGFRA, and biological therapies targeted to these receptor tyrosine kinases comprise part of the treatment regimen for metastatic and inoperable GISTs. A minority (10-15%) of GISTs in adults, along with ∼85% of pediatric GISTs, lacks oncogenic mutations in KIT and PDGFRA. Not surprisingly these wild type (WT) GISTs respond poorly to kinase inhibitor therapy. A subset of WT GISTs shares a set of distinguishing clinical and pathological features, and a flurry of recent reports has convincingly demonstrated shared molecular characteristics. These GISTs have a distinct transcriptional profile including over-expression of the insulin-like growth factor-1 receptor, and exhibit deficiency in the succinate dehydrogenase (SDH) enzyme complex. The latter is often but not always linked to bi-allelic inactivation of SDH subunit genes, particularly SDHA. This review will summarize the molecular, pathological, and clinical connections that link this group of SDH-deficient neoplasms, and offer a view toward understanding the underlying biology of the disease and the therapeutic challenges implicit to this biology.
Collapse
Affiliation(s)
- Martin G. Belinsky
- Department of Medical Oncology, Fox Chase Cancer CenterPhiladelphia, PA, USA
| | - Lori Rink
- Department of Medical Oncology, Fox Chase Cancer CenterPhiladelphia, PA, USA
| | - Margaret von Mehren
- Department of Medical Oncology, Fox Chase Cancer CenterPhiladelphia, PA, USA
| |
Collapse
|
22
|
Nannini M, Pantaleo MA, Biasco G. Role of molecular analysis in the adjuvant treatment of gastrointestinal stromal tumours: It is time to define it. World J Gastroenterol 2013; 19:2583-2586. [PMID: 23674864 PMCID: PMC3646153 DOI: 10.3748/wjg.v19.i16.2583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/25/2013] [Accepted: 04/04/2013] [Indexed: 02/06/2023] Open
Abstract
Sendur et al pointed out the attention on the importance of mutational analysis for adjuvant treatment of gastrointestinal stromal tumor (GIST) in an article published in World Journal of Gastroenterology. In particular, they suggested that the optimal dose and duration of adjuvant therapy could be defined by the mutational status of the primary disease. This comment would underline the importance of centralised laboratories, given the increasingly important role of molecular analysis in the work-flow of all GIST, and the need of retrospective analyses for subgroups population stratified for the mutational status from the available studies in the adjuvant setting, in order to define the role of mutational analysis in choosing the optimal dose and duration of adjuvant therapy.
Collapse
|
23
|
Analysis of all subunits, SDHA, SDHB, SDHC, SDHD, of the succinate dehydrogenase complex in KIT/PDGFRA wild-type GIST. Eur J Hum Genet 2013; 22:32-9. [PMID: 23612575 DOI: 10.1038/ejhg.2013.80] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/31/2013] [Accepted: 03/24/2013] [Indexed: 12/23/2022] Open
Abstract
Mutations of genes encoding the subunits of the succinate dehydrogenase (SDH) complex were described in KIT/PDGFRA wild-type GIST separately in different reports. In this study, we simultaneously sequenced the genome of all subunits, SDHA, SDHB, SDHC, and SDHD in a larger series of KIT/PDGFRA wild-type GIST in order to evaluate the frequency of the mutations and explore their biological role. SDHA, SDHB, SDHC, and SDHD were sequenced on the available samples obtained from 34 KIT/PDGFRA wild-type GISTs. Of these, in 10 cases, both tumor and peripheral blood (PB) were available, in 19 cases only tumor, and in 5 cases only PB. Overall, 9 of the 34 patients with KIT/PDGFRA wild-type GIST carried mutations in one of the four subunits of the SDH complex (six patients in SDHA, two in SDHB, one in SDHC). WB and immunohistochemistry analysis showed that patients with KIT/PDGFRA wild-type GIST who harbored SDHA mutations exhibited a significant downregulation of both SDHA and SDHB protein expression, with respect to the other GIST lacking SDH mutations and to KIT/PDGFRA-mutated GIST. Clinically, four out of six patients with SDHA mutations presented with metastatic disease at diagnosis with a very slow, indolent course. Patients with KIT/PDGFRA wild-type GIST may harbor germline and/or de novo mutations of SDH complex with prevalence for mutations within SDHA, which is associated with a downregulation of SDHA and SDHB protein expression. The presence of germline mutations may suggest that these patients should be followed up for the risk of development of other cancers.
Collapse
|
24
|
Loss of SDHA expression identifies SDHA mutations in succinate dehydrogenase-deficient gastrointestinal stromal tumors. Am J Surg Pathol 2013; 37:226-33. [PMID: 23060355 DOI: 10.1097/pas.0b013e3182671155] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Succinate dehydrogenase-deficient gastrointestinal stromal tumors (SDH-deficient GISTs) are a unique class of GIST defined by negative immunohistochemical staining for succinate dehydrogenase B (SDHB). SDH-deficient GISTs show distinctive clinical and pathologic features including absence of KIT and PDGFRA mutations, exclusive gastric location, common lymph node metastasis, a prognosis not predicted by size and mitotic rate, and indolent behavior of metastases. They may be syndromal with some being associated with the Carney Triad or germline SDHA, SDHB, SDHC, or SDHD mutations (Carney-Stratakis syndrome). It is normally recommended that genetic testing for SDHA, SDHB, SDHC, and SDHD be offered whenever an SDH-deficient GIST is encountered. However, testing for all 4 genes is burdensome and beyond the means of most centers. In this study we performed SDHA mutation and immunohistochemical analyses for SDHA on 10 SDH-deficient GISTs. Three showed negative staining for SDHA, and all of these were associated with germline SDHA mutations. In 2 tumors, 3 novel mutations were identified (p.Gln54X, p.Thr267Met, and c.1663+3G>C), none of which have previously been reported in GISTs or other SDH-associated tumors. Seven showed positive staining for SDHA and were not associated with SDHA mutation. In conclusion, 30% of SDH-deficient GISTs in this study were associated with germline SDHA mutation. Negative staining for SDHA can be used to triage formal genetic testing for SDHA when an SDH-deficient GIST is encountered.
Collapse
|
25
|
Beadling C, Patterson J, Justusson E, Nelson D, Pantaleo MA, Hornick JL, Chacón M, Corless CL, Heinrich MC. Gene expression of the IGF pathway family distinguishes subsets of gastrointestinal stromal tumors wild type for KIT and PDGFRA. Cancer Med 2013; 2:21-31. [PMID: 24133624 PMCID: PMC3797556 DOI: 10.1002/cam4.57] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/19/2012] [Accepted: 12/13/2012] [Indexed: 12/25/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) arise from the interstitial cells of Cajal (ICCs) and are the most common mesenchymal neoplasm of the gastrointestinal tract. While the majority of GISTs harbor activating mutations in either the v-kit Hardy-Zuckerman feline sarcoma viral oncogene homolog (KIT) or platelet-derived growth factor receptor alpha (PDGFRA) tyrosine kinases, approximately 10–15% of adult GISTs and 85% of pediatric GISTs lack such mutations. These “wild-type” GISTs have been reported to express high levels of the insulin-like growth factor 1 receptor (IGF1R), and IGF1R-targeted therapy of wild-type GISTs is being evaluated in clinical trials. However, it is not clear that all wild-type GISTs express IGF1R, because studies to date have predominantly focused on a particular subtype of gastric wild-type GIST that is deficient in the mitochondrial succinate dehydrogenase (SDH) complex. This study of a series of 136 GISTs, including 72 wild-type specimens, was therefore undertaken to further characterize wild-type GIST subtypes based on the relative expression of transcripts encoding IGF1R. Additional transcripts relevant to GIST biology were also evaluated, including members of the IGF-signaling pathway (IGF1, IGF2, and insulin receptor [INSR]), neural markers (CDH2[CDH: Cadherin], neurofilament, light polypeptide, LHX2 [LHX: LIM homeobox], and KIRREL3 [KIRREL: kin of IRRE like]), KIT, PDGFRA, CD34, and HIF1A. Succinate dehydrogenase complex, subunit B protein expression was also assessed as a measure of SDH complex integrity. In addition to the previously described SDH-deficient, IGF1Rhigh wild-type GISTs, other SDH-intact wild-type subpopulations were defined by high relative expression of IGF1R, neural markers, IGF1 and INSR, or low IGF1R coupled with high IGF2. These results underscore the complexity and heterogeneity of wild-type GISTs that will need to be factored into molecularly-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Carol Beadling
- Knight Cancer Institute, Oregon Health and Science University Portland, Oregon ; Division of Hematology and Oncology, Oregon Health and Science University Portland, Oregon
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Miettinen M, Killian JK, Wang ZF, Lasota J, Lau C, Jones L, Walker R, Pineda M, Zhu YJ, Kim SY, Helman L, Meltzer P. Immunohistochemical loss of succinate dehydrogenase subunit A (SDHA) in gastrointestinal stromal tumors (GISTs) signals SDHA germline mutation. Am J Surg Pathol 2013; 37:234-40. [PMID: 23282968 PMCID: PMC3545041 DOI: 10.1097/pas.0b013e3182671178] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A subset (7% to 10%) of gastric gastrointestinal stromal tumors (GISTs) is notable for the immunohistochemical loss of succinate dehydrogenase (SDH) subunit B (SDHB), which signals the loss of function of the SDH complex consisting of mitochondrial inner membrane proteins. These SDH-deficient GISTs are known to be KIT/PDGFRA wild type, and most patients affected by this subset of GISTs are young. Some of these patients have germline mutations of SDH subunit genes SDHB, SDHC, or SDHD, known as Carney-Stratakis syndrome when combined with paraganglioma. More recently, germline mutations in SDH subunit A gene (SDHA) have also been reported in few patients with KIT/PDGFRA wild-type GISTs. In this study we immunohistochemically examined 127 SDHB-negative and 556 SDHB-positive gastric GISTs and 261 SDHB-positive intestinal GISTs for SDHA expression using a mouse monoclonal antibody 2E3 (Abcam). Cases with available DNA were tested for SDHA, SDHB, SDHC, and SDHD gene mutations using a hybridization-based custom capture next-generation sequencing assay. A total of 36 SDHA-negative GISTs (28%) were found among 127 SDHB-negative gastric GISTs. No SDHB-positive GIST was SDHA negative. Among 7 SDHA-negative tumors analyzed, there were 7 SDHA mutants, most germline. A second hit indicating biallelic inactivation of SDHA was present in 6 of those cases. These patients had no other SDH subunit gene mutations. Among the 25 SDHA-positive, SDHB-negative GISTs analyzed, we identified 3 SDHA mutations (1 germline), and 11 SDHB, SDHC, or SDHD mutations (mostly germline), and 11 patients with no SDH mutations. Compared with patients with SDHA-positive GISTs, those with SDHA-negative GISTs had an older median age (34 vs. 21 y), lower female to male ratio (1.8 vs. 3.1) but similar mitotic counts and median tumor sizes, with a slow course of disease in most cases, despite a slightly higher rate of liver metastases. SDHA-negative GISTs comprise approximately 30% of SDHB-negative/SDH-deficient GISTs, and SDHA loss generally correlates with SDHA mutations.
Collapse
Affiliation(s)
- Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wagner AJ, Remillard SP, Zhang YX, Doyle LA, George S, Hornick JL. Loss of expression of SDHA predicts SDHA mutations in gastrointestinal stromal tumors. Mod Pathol 2013; 26:289-94. [PMID: 22955521 DOI: 10.1038/modpathol.2012.153] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal stromal tumors (GISTs) are usually driven by mutations in KIT or PDGFRA, although 15% of GISTs in adults and >90% in children lack such mutations. The majority of gastric KIT/PDGFRA wild-type GISTs show distinctive morphological and clinical features and loss of expression of succinate dehydrogenase (SDH) B. Only a small subset of SDHB-deficient GISTs carries loss-of-function mutations in SDHB, SDHC, or SDHD. Because of the complexity of its locus (15 exons) and the presence of three pseudogenes, SDHA is rarely analyzed. Recently, mutations in SDHA were shown to lead to loss of expression of SDHA in a small group of paragangliomas. We sought to determine whether immunohistochemistry for SDHA could identify GISTs with SDHA mutations. Tumors (n=33) with pathological features of SDH-deficient GIST were analyzed for expression of SDHA and SDHB by immunohistochemistry, and SDHA exons were sequenced from tumors lacking SDHA expression. Exons harboring somatic mutations were examined in DNA from corresponding normal tissue. All 33 tumors showed loss of SDHB expression. A total of 9 out of 33 (27%) tumors also lacked expression of SDHA. SDHA-deficient GISTs affected five men and four women (median age 38 years). SDHA expression was intact in the 24 remaining tumors, including those with known SDHB (n=3) or SDHC (n=2) mutations. Nonsense (n=8) or missense (n=1) mutations in SDHA were identified in all SDHA-deficient tumors. Heterozygous mutations were also found in DNA from normal tissues from six patients with available material. Somatic loss of the second allele has been found in seven tumors, five by loss of heterozygosity, one by a 13-bp deletion, and one by a missense mutation. Loss of SDHA expression in GIST reliably predicts the presence of SDHA mutations, which represent a relatively common cause of SDH-deficient GIST in adults. Immunohistochemistry for SDHA can be used to select patients for SDHA-specific genetic testing.
Collapse
Affiliation(s)
- Andrew J Wagner
- Dana-Farber Cancer Institute, Center for Sarcoma and Bone Oncology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
28
|
Hoekstra AS, Bayley JP. The role of complex II in disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:543-51. [PMID: 23174333 DOI: 10.1016/j.bbabio.2012.11.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/06/2012] [Accepted: 11/09/2012] [Indexed: 01/11/2023]
Abstract
Genetically defined mitochondrial deficiencies that result in the loss of complex II function lead to a range of clinical conditions. An array of tumor syndromes caused by complex II-associated gene mutations, in both succinate dehydrogenase and associated accessory factor genes (SDHA, SDHB, SDHC, SDHD, SDHAF1, SDHAF2), have been identified over the last 12 years and include hereditary paraganglioma-pheochromocytomas, a diverse group of renal cell carcinomas, and a specific subtype of gastrointestinal stromal tumors (GIST). In addition, congenital complex II deficiencies due to inherited homozygous mutations of the catalytic components of complex II (SDHA and SDHB) and the SDHAF1 assembly factor lead to childhood disease including Leigh syndrome, cardiomyopathy and infantile leukodystrophies. The role of complex II subunit gene mutations in tumorigenesis has been the subject of intensive research and these data have led to a variety of compelling hypotheses. Among the most widely researched are the stabilization of hypoxia inducible factor 1 under normoxia, and the generation of reactive oxygen species due to defective succinate:ubiquinone oxidoreductase function. Further progress in understanding the role of complex II in disease, and in the development of new therapeutic approaches, is now being hampered by the lack of relevant cell and animal models. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
Affiliation(s)
- Attje S Hoekstra
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
29
|
Doyle LA, Nelson D, Heinrich MC, Corless CL, Hornick JL. Loss of succinate dehydrogenase subunit B (SDHB) expression is limited to a distinctive subset of gastric wild-type gastrointestinal stromal tumours: a comprehensive genotype-phenotype correlation study. Histopathology 2012; 61:801-9. [PMID: 22804613 DOI: 10.1111/j.1365-2559.2012.04300.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS Gastrointestinal stromal tumours (GISTs) typically harbour KIT or PDGFRA mutations; 15% of adult GISTs and >90% in children lack such mutations ('wild-type' GISTs). Paediatric and occasional adult GISTs show similar, distinctive features: multinodular architecture and epithelioid morphology, indolent behaviour with metastases, and imatinib resistance. Recent studies have suggested that these tumours can be identified by loss of succinate dehydrogenase subunit B (SDHB) expression. The aim of this study was to validate the predictive value of SDHB immunohistochemistry in a large genotyped cohort. METHODS AND RESULTS SDHB expression was examined in GISTs with known genotypes: 179 with KIT mutations, 32 with PDGFRA mutations, and 53 wild type. Histological features were recorded without knowledge of genotype or SDHB status. SDHB was deficient in 22 (42%) wild-type GISTs. All other tumours showed intact SDHB expression. All SDHB-deficient GISTs with known primary sites arose in the stomach, and had multinodular architecture and epithelioid or mixed morphology. None of the wild-type GISTs with intact SDHB showed multinodular architecture, and only four (13%) had epithelioid morphology. CONCLUSIONS SDHB-deficient GISTs are wild-type gastric tumours with distinctive histology. Immunohistochemistry for SDHB can be used to confirm the diagnosis of this tumour class. SDHB expression is retained in all GISTs with KIT and PDGFRA mutations.
Collapse
Affiliation(s)
- Leona A Doyle
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
30
|
Belinsky MG, Rink L, Flieder DB, Jahromi MS, Schiffman JD, Godwin AK, von Mehren M. Overexpression of insulin-like growth factor 1 receptor and frequent mutational inactivation of SDHA in wild-type SDHB-negative gastrointestinal stromal tumors. Genes Chromosomes Cancer 2012; 52:214-24. [PMID: 23109135 DOI: 10.1002/gcc.22023] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/20/2012] [Indexed: 01/06/2023] Open
Abstract
Approximately 15% of gastrointestinal stromal tumors (GISTs) in adults and 85% in children lack mutations in KIT and PDGFRA and are known as wild-type GISTs. Wild-type GISTs from adults and children express high levels of insulin-like growth factor 1 receptor (IGF1R) and exhibit stable genomes compared to mutant GISTs. Pediatric wild-type GISTs, GISTs from the multitumor Carney-Stratakis syndrome, and the Carney triad share other clinicopathological properties (e.g., early-onset, multifocal GISTs with epitheliod cell morphology), suggesting a common etiology. Carney-Stratakis is an inherited association of GIST and paragangliomas caused by germline mutations in succinate dehydrogenase (SDH) genes. The connection between defective cellular respiration and GIST pathology has been strengthened by the utilization of SDHB immunohistochemistry to identify SDH deficiency in pediatric GISTs, syndromic GISTs, and some adult wild-type GISTs. SDHB and IGF1R expression was examined in 12 wild-type and 12 mutant GIST cases. Wild-type GISTs were screened for coding-region alterations in SDH genes and for chromosomal aberrations using genome-wide single-nucleotide polymorphism and MIP arrays. SDHB-deficiency, identified in 11/12 wild-type GIST cases, was tightly associated with overexpression of IGF1R protein and transcript. Biallelic inactivation of the SDHA gene was a surprisingly frequent event, identified in 5 of 11 SDHB-negative cases, generally due to germline point mutations accompanied by somatic SDHA allelic losses. As a novel finding, inactivation of the SDHC gene from a combination of a heterozygous coding-region mutation and hypermethylation of the wild-type allele was found in one SDHB-negative case.
Collapse
Affiliation(s)
- Martin G Belinsky
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111-2497, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The genes for the succinate dehydrogenase (SDH) subunits SDHA, SDHB, SDHC and SDHD are encoded in the autosome. The proteins are assembled in the mitochondria to form the mitochondrial complex 2, a key respiratory enzyme which links the Krebs cycle and the electron transport chain. Thirty percent of phaeochromocytoma and paraganglioma (PHEO/PGL) are hereditary and perhaps as many as half of these familial cases are caused by germline mutations of the SDH subunits. Negative immunohistochemical staining for the SDHB subunit identifies PHEO/PGL associated with germline mutation of any of the mitochondrial complex 2 components and can be used to triage formal genetic testing of all PHEO/PGL for SDH mutations. PHEO/PGL associated with SDHA mutation also show negative staining for SDHA as well as SDHB.A unique subgroup of gastrointestinal stromal tumours (GISTs) are driven by mitochondrial complex 2 dysfunction. These SDH deficient GISTs can also be definitively identified by negative staining for SDHB and show distinct clinical and morphological features including frequent onset in childhood and young adulthood, gastric location, a tendency to multifocality, absence of KIT and PDGFRA mutations, a prognosis not predicted by size and mitotic rate and a tendency to indolent behaviour of metastases. Some of these SDH deficient GISTs are driven by classical SDH mutations, but the precise mechanisms of tumourigenesis in many (including those associated with the Carney triad) remain unknown. Germline SDHB mutation is associated with a newly recognised type of renal carcinoma which commonly but not always demonstrates distinctive morphology and can also be recognised by negative staining for SDHB.Immunohistochemistry for SDHB therefore has emerged as a useful tool to recognise these distinct neoplasias driven by mitochondrial complex 2 dysfunction and to triage formal genetic testing for the associated syndromes.
Collapse
|
32
|
Italiano A, Chen CL, Sung YS, Singer S, DeMatteo RP, LaQuaglia MP, Besmer P, Socci N, Antonescu CR. SDHA loss of function mutations in a subset of young adult wild-type gastrointestinal stromal tumors. BMC Cancer 2012; 12:408. [PMID: 22974104 PMCID: PMC3503624 DOI: 10.1186/1471-2407-12-408] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 09/06/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND A subset of KIT/PDGFRA wild-type gastrointestinal stromal tumors (WT GIST) have been associated with alteration of the succinate dehydrogenase (SDH) complex II function. A recent report identified four non-syndromic, KIT/PDGFRA WT GIST harboring compound heterozygous or homozygous mutations in SDHA encoding the main subunit of the SDH complex II. METHODS Next generation sequencing was applied on five pediatric and one young adult WT GIST, by whole exome capture and SOLiD 3-plus system sequencing. The putative mutations were first confirmed by Sanger sequencing and then screened on a larger panel of 11 pediatric and young adult WT GIST, including 5 in the context of Carney triad. RESULTS A germline p.Arg31X nonsense SDHA mutation was identified in one of the six cases tested by SOLiD platform. An additional p.D38V missense mutation in SDHA exon 2 was identified by Sanger sequencing in the extended KIT/PDGFRA WT GIST patients cohort. Western blotting showed loss of SDHA expression in the two cases harboring SDHA mutations, while expression being retained in the other WT GIST tumors. Results were further confirmed by immunohistochemistry for both SDHA and SDHB, which showed a concurrent loss of expression of both proteins in SDHA-mutant lesions, while the remaining WT tumors showed only loss of SDHB expression. CONCLUSIONS Germline and/or somatic aberrations of SDHA occur in a small subset of KIT/PDGFRA WT GISTs, outside the Carney's triad and are associated with loss of both SDHA and SDHB protein expression. Mutations of the SDH complex II are more particularly associated with KIT/PDGFRA WT GIST occurring in young adults. Although pediatric GIST consistently display alterations of SDHB protein expression, further molecular studies are needed to identify the crucial genes involved in their tumorigenesis.
Collapse
Affiliation(s)
- Antoine Italiano
- Departments of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Molecular alterations and expression of succinate dehydrogenase complex in wild-type KIT/PDGFRA/BRAF gastrointestinal stromal tumors. Eur J Hum Genet 2012; 21:503-10. [PMID: 22948025 DOI: 10.1038/ejhg.2012.205] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasms of the gastrointestinal tract, disclosing somatic KIT, PDGFRA and BRAF mutations. Loss of function of succinate dehydrogenase (SDH) complex is an alternative molecular mechanism in GISTs, namely in carriers of germline mutations of the SDH complex that develop Carney-Stratakis dyad characterized by multifocal GISTs and multicentric paragangliomas (PGLs). We studied a series of 25 apparently sporadic primary wild-type (WT) KIT/PDGFRA/BRAF GISTs occurring in patients without personal or familial history of PGLs, re-evaluated clinicopathological features and analyzed molecular alterations and immunohistochemistry expression of SDH complex. As control, we used a series of well characterized 49 KIT/PDGFRA/BRAF-mutated GISTs. SDHB expression was absent in 20% and SDHB germline mutations were detected in 12% of WT GISTs. Germline SDHB mutations were significantly associated to younger age at diagnosis. A significant reduction in SDHB expression in WT GISTs was found when compared with KIT/PDGFRA/BRAF-mutated GISTs. No significant differences were found when comparing DOG-1 and c-KIT expression in WT, SDHB-mutated and KIT/PDGFRA/BRAF-mutated GISTs. Our results confirm the occurrence of germline SDH genes mutations in isolated, apparently sporadic WT GISTs. WT KIT/PDGFRA/BRAF GISTs without SDHB or SDHA/SDHB expression may correspond to Carney-Stratakis dyad or Carney triad. Most importantly, the possibility of PGLs (Carney-Stratakis dyad) and/or pulmonary chondroma (Carney triad) should be addressed in these patients and their kindred.
Collapse
|
34
|
Succinate dehydrogenase-deficient tumors: diagnostic advances and clinical implications. Adv Anat Pathol 2012; 19:193-203. [PMID: 22692282 DOI: 10.1097/pap.0b013e31825c6bc6] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Just over 10 years ago, germline mutations in SDHD, a gene that encodes 1 of the 4 proteins of the succinate dehydrogenase (SDH) complex, were reported in a subset of patients with hereditary paraganglioma-pheochromocytoma syndrome. Since that time, rapid discoveries have been made in this area. It is now recognized that all of the SDH genes are involved in the tumorigenesis of not only paragangliomas/pheochromocytomas, but also other tumor types, most notably gastrointestinal stromal tumors. This review will outline the genetics of SDH-deficient tumors, discuss possible mechanisms of tumorigenesis, and describe how these tumors can be identified by immunohistochemistry.
Collapse
|
35
|
Pantaleo MA, Nannini M, Saponara M, Gnocchi C, Di Scioscio V, Lolli C, Catena F, Astolfi A, Di Battista M, Biasco G. Impressive long-term disease stabilization by nilotinib in two pretreated patients with KIT/PDGFRA wild-type metastatic gastrointestinal stromal tumours. Anticancer Drugs 2012; 23:567-572. [PMID: 22430048 DOI: 10.1097/cad.0b013e328352cc50] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
KIT/PDGFRA wild-type (WT) gastrointestinal stromal tumours (GISTs) showed a response rate to imatinib ranging from 0 to 25%. Nilotinib is a new-generation tyrosine kinase inhibitor that has demonstrated clinical activity in pretreated GIST patients. At present, no correlation between nilotinib activity and clinical/pathological/molecular features is available. We report on two WT GIST patients resistant to imatinib and sunitinib, and enrolled in the CAMN107A2201 study who achieved an impressive disease control by nilotinib. Both patients have germ-line mutations in the SDHA gene. In April 2004, a 39-year-old woman presented gastric GIST with multiple liver metastases and was treated with imatinib 400 mg/day, followed by imatinib 800 mg/day and then sunitinib. In August 2007, because of disease progression, she was enrolled in the CAMN107A2201 study and assigned to the nilotinib 800 mg/day arm. In March 2005, a 27-year-old woman started imatinib 600 mg/day and then sunitinib for gastric GIST with multiple liver and lung metastases. In October 2007, because of disease progression, she was enrolled in the CAMN107A2201 study and assigned to the nilotinib 800 mg/day arm. One patient still showed stable disease after 46 months of treatment according to the Response Evaluation Criteria In Solid Tumors, and a partial response after 9 months according to Choi's criteria. The other patient still showed stable disease after 42 months according to Response Evaluation Criteria In Solid Tumors. At present, they continue to receive nilotinib. We report very long-term disease stabilization under nilotinib treatment in two pretreated WT GIST patients. In-vitro studies and clinical analyses are warranted to evaluate a potential correlation between nilotinib activity and WT genotype or other clinical/pathological features.
Collapse
Affiliation(s)
- Maria Abbondanza Pantaleo
- Department of Hematology and Oncology Sciences 'L&A Seràgnoli', S. Orsola-Malpighi Hospital, University of Bologna, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|