1
|
Fu Y, Francés R, Monge C, Desterke C, Marchio A, Pineau P, Chang-Marchand Y, Mata-Garrido J. Metabolic and Epigenetic Mechanisms in Hepatoblastoma: Insights into Tumor Biology and Therapeutic Targets. Genes (Basel) 2024; 15:1358. [PMID: 39596558 PMCID: PMC11593527 DOI: 10.3390/genes15111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Hepatoblastoma, the most common pediatric liver malignancy, is characterized by significant molecular heterogeneity and poor prognosis in advanced stages. Recent studies highlight the importance of metabolic reprogramming and epigenetic dysregulation in hepatoblastoma pathogenesis. This review aims to explore the metabolic alterations and epigenetic mechanisms involved in hepatoblastoma and how these processes contribute to tumor progression and survival. METHODS Relevant literature on metabolic reprogramming, including enhanced glycolysis, mitochondrial dysfunction, and shifts in lipid and amino acid metabolism, as well as epigenetic mechanisms like DNA methylation, histone modifications, and non-coding RNAs, was reviewed. The interplay between these pathways and their potential as therapeutic targets were examined. RESULTS Hepatoblastoma exhibits metabolic shifts that support tumor growth and survival, alongside epigenetic changes that regulate gene expression and promote tumor progression. These pathways are interconnected, with metabolic changes influencing the epigenetic landscape and vice versa. CONCLUSIONS The dynamic interplay between metabolism and epigenetics in hepatoblastoma offers promising avenues for therapeutic intervention. Future research should focus on integrating metabolic and epigenetic therapies to improve patient outcomes, addressing current gaps in knowledge to develop more effective treatments.
Collapse
Affiliation(s)
- Yuanji Fu
- CNRS, INSERM, Institut Necker Enfants Malades, Université Paris Cité, 75015 Paris, France; (Y.F.); (Y.C.-M.)
| | - Raquel Francés
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75006 Paris, France;
| | - Claudia Monge
- INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75006 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Christophe Desterke
- Faculté de Médecine du Kremlin Bicêtre, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France;
| | - Agnès Marchio
- INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75006 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Pascal Pineau
- INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75006 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Yunhua Chang-Marchand
- CNRS, INSERM, Institut Necker Enfants Malades, Université Paris Cité, 75015 Paris, France; (Y.F.); (Y.C.-M.)
| | - Jorge Mata-Garrido
- INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75006 Paris, France; (C.M.); (A.M.); (P.P.)
| |
Collapse
|
2
|
LaRue-Nolan KC, Arul GLR, Sigafoos AN, Shi J, Fernandez-Zapico ME. Insights into the mechanisms driven by H3K4 KMTs in pancreatic cancer. Biochem J 2024; 481:983-997. [PMID: 39078225 PMCID: PMC11332384 DOI: 10.1042/bcj20230374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Pancreatic cancer is a malignancy arising from the endocrine or exocrine compartment of this organ. Tumors from exocrine origin comprise over 90% of all pancreatic cancers diagnosed. Of these, pancreatic ductal adenocarcinoma (PDAC) is the most common histological subtype. The five-year survival rate for PDAC ranged between 5 and 9% for over four decades, and only recently saw a modest increase to ∼12-13%, making this a severe and lethal disease. Like other cancers, PDAC initiation stems from genetic changes. However, therapeutic targeting of PDAC genetic drivers has remained relatively unsuccessful, thus the focus in recent years has expanded to the non-genetic factors underlying the disease pathogenesis. Specifically, it has been proposed that dynamic changes in the epigenetic landscape promote tumor growth and metastasis. Emphasis has been given to the re-organization of enhancers, essential regulatory elements controlling oncogenic gene expression, commonly marked my histone 3 lysine 4 monomethylation (H3K4me1). H3K4me1 is typically deposited by histone lysine methyltransferases (KMTs). While well characterized as oncogenes in other cancer types, recent work has expanded the role of KMTs as tumor suppressor in pancreatic cancer. Here, we review the role and translational significance for PDAC development and therapeutics of KMTs.
Collapse
Affiliation(s)
- Kayla C. LaRue-Nolan
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, U.S.A
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, U.S.A
| | | | - Ashley N. Sigafoos
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, U.S.A
| | - Jiaqi Shi
- Department of Pathology and Clinical Labs, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, U.S.A
| | | |
Collapse
|
3
|
Su X, Li Y, Ren Y, Cao M, Yang G, Luo J, Hu Z, Deng H, Deng M, Liu B, Yao Z. A new strategy for overcoming drug resistance in liver cancer: Epigenetic regulation. Biomed Pharmacother 2024; 176:116902. [PMID: 38870626 DOI: 10.1016/j.biopha.2024.116902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Drug resistance in hepatocellular carcinoma has posed significant obstacles to effective treatment. Recent evidence indicates that, in addition to traditional gene mutations, epigenetic recoding plays a crucial role in HCC drug resistance. Unlike irreversible gene mutations, epigenetic changes are reversible, offering a promising avenue for preventing and overcoming drug resistance in liver cancer. This review focuses on various epigenetic modifications relevant to drug resistance in HCC and their underlying mechanisms. Additionally, we introduce current clinical epigenetic drugs and clinical trials of these drugs as regulators of drug resistance in other solid tumors. Although there is no clinical study to prevent the occurrence of drug resistance in liver cancer, the development of liquid biopsy and other technologies has provided a bridge to achieve this goal.
Collapse
Affiliation(s)
- Xiaorui Su
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yuxuan Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yupeng Ren
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Mingbo Cao
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Gaoyuan Yang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jing Luo
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Ziyi Hu
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Haixia Deng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Meihai Deng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Bo Liu
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Zhicheng Yao
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
4
|
Quan S, Huang H. Epigenetic contribution to cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:1-25. [PMID: 39179345 DOI: 10.1016/bs.ircmb.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Epigenetics has transformed our understanding of cancer by revealing how changes in gene activity, which do not alter the DNA itself, can initiate and progress the disease. These changes include adjustments in DNA methylation, histone configuration, and non-coding RNA activity. For instance, DNA methylation can inactivate genes that typically protect against cancer, leading to broader genomic instability. Histone modifications can alter how tightly DNA is wound, influencing which genes are active or silenced; while non-coding RNAs can interfere with the messages that direct protein production, impacting cancer-related processes. Unlike genetic mutations, which are permanent and irreversible, epigenetic changes provide a malleable target for therapeutic intervention, allowing potentially reversible adjustments to gene expression patterns. This flexibility is essential in the complex landscape of cancer where static genetic solutions may be insufficient. Additionally, epigenetics bridges the gap between genetic predispositions and environmental influences on cancer, offering a comprehensive framework for understanding how lifestyle factors and external exposures impact cancer risk and progression. The integration of epigenetics into cancer research not only enhances our understanding of the disease but also opens innovative avenues for intervention that were previously unexplored in traditional genetic-focused studies. Technologies like advanced sequencing and precise epigenetic modification are paving the way for early cancer detection and more personalized treatment approaches, highlighting the critical role of epigenetics in modern cancer care.
Collapse
Affiliation(s)
- Songhua Quan
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hao Huang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| |
Collapse
|
5
|
Das A, Giri AK, Bhattacharjee P. Targeting 'histone mark': Advanced approaches in epigenetic regulation of telomere dynamics in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195007. [PMID: 38237857 DOI: 10.1016/j.bbagrm.2024.195007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Telomere integrity is required for the maintenance of genome stability and prevention of oncogenic transformation of cells. Recent evidence suggests the presence of epigenetic modifications as an important regulator of mammalian telomeres. Telomeric and subtelomeric regions are rich in epigenetic marks that regulate telomere length majorly through DNA methylation and post-translational histone modifications. Specific histone modifying enzymes play an integral role in establishing telomeric histone codes necessary for the maintenance of structural integrity. Alterations of crucial histone moieties and histone modifiers cause deregulations in the telomeric chromatin leading to carcinogenic manifestations. This review delves into the significance of histone modifications and their influence on telomere dynamics concerning cancer. Additionally, it highlights the existing research gaps that hold the potential to drive the development of therapeutic interventions targeting the telomere epigenome.
Collapse
Affiliation(s)
- Ankita Das
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India; Department of Zoology, University of Calcutta, Kolkata 700019, India
| | - Ashok K Giri
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India.
| |
Collapse
|
6
|
The role of histone methylation in renal cell cancer: an update. Mol Biol Rep 2023; 50:2735-2742. [PMID: 36575323 DOI: 10.1007/s11033-022-08124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/15/2022] [Indexed: 12/29/2022]
Abstract
Renal cell carcinoma accounts for 2-3% of all cancers. It is difficult to diagnose early. Recently, genome-wide studies have identified that histone methylation was one of the functional classes that is most frequently dysregulated in renal cell cancer. Mutation or mis-regulation of histone methylation, methyltransferases, demethylases are associated with gene expression and tumor progression in renal cell cancer. Herein, we summarize histone methylations, demethylases and their alterations and mechanisms in renal cell cancer.
Collapse
|
7
|
Zhang Y, Zhang Y, Song C, Zhao X, Ai B, Wang Y, Zhou L, Zhu J, Feng C, Xu L, Wang Q, Sun H, Fang Q, Xu X, Li E, Li C. CRdb: a comprehensive resource for deciphering chromatin regulators in human. Nucleic Acids Res 2023; 51:D88-D100. [PMID: 36318256 PMCID: PMC9825595 DOI: 10.1093/nar/gkac960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Chromatin regulators (CRs) regulate epigenetic patterns on a partial or global scale, playing a critical role in affecting multi-target gene expression. As chromatin immunoprecipitation sequencing (ChIP-seq) data associated with CRs are rapidly accumulating, a comprehensive resource of CRs needs to be built urgently for collecting, integrating, and processing these data, which can provide abundant annotated information on CR upstream and downstream regulatory analyses as well as CR-related analysis functions. This study established an integrative CR resource, named CRdb (http://cr.liclab.net/crdb/), with the aim of curating a large number of available resources for CRs and providing extensive annotations and analyses of CRs to help biological researchers clarify the regulation mechanism and function of CRs. The CRdb database comprised a total of 647 CRs and 2,591 ChIP-seq samples from more than 300 human tissues and cell types. These samples have been manually curated from NCBI GEO/SRA and ENCODE. Importantly, CRdb provided the abundant and detailed genetic annotations in CR-binding regions based on ChIP-seq. Furthermore, CRdb supported various functional annotations and upstream regulatory information on CRs. In particular, it embedded four types of CR regulatory analyses: CR gene set enrichment, CR-binding genomic region annotation, CR-TF co-occupancy analysis, and CR regulatory axis analysis. CRdb is a useful and powerful resource that can help in exploring the potential functions of CRs and their regulatory mechanism in diseases and biological processes.
Collapse
Affiliation(s)
- Yimeng Zhang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
| | | | | | - Xilong Zhao
- School of Medical Informatics, Daqing Campus, Harbin Medical University.Daqing 163319, China
| | - Bo Ai
- School of Medical Informatics, Daqing Campus, Harbin Medical University.Daqing 163319, China
| | - Yuezhu Wang
- School of Medical Informatics, Daqing Campus, Harbin Medical University.Daqing 163319, China
| | - Liwei Zhou
- School of Medical Informatics, Daqing Campus, Harbin Medical University.Daqing 163319, China
| | - Jiang Zhu
- School of Medical Informatics, Daqing Campus, Harbin Medical University.Daqing 163319, China
| | - Chenchen Feng
- School of Medical Informatics, Daqing Campus, Harbin Medical University.Daqing 163319, China
| | - Liyan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Qiuyu Wang
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Base for Scientific and Technological Innovation Cooperation, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Hong Sun
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Qiaoli Fang
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
| | - Xiaozheng Xu
- School of Medical Informatics, Daqing Campus, Harbin Medical University.Daqing 163319, China
| | - Enmin Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Chunquan Li
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Base for Scientific and Technological Innovation Cooperation, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South
| |
Collapse
|
8
|
Antitumor Effect of Demethylzeylasteral (T-96) on Triple-Negative Breast Cancer via LSD1-Mediate Epigenetic Mechanisms. Anal Cell Pathol (Amst) 2022; 2022:2522597. [PMID: 36276611 PMCID: PMC9581660 DOI: 10.1155/2022/2522597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/12/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022] Open
Abstract
Background and Purpose. Breast cancer ranks first in the incidence of female tumors. Triple-negative breast cancer (TNBC), one type of breast cancer, is more aggressive and has a worse prognosis. Demethylzeylasteral (T-96) is isolated from Tripterygium wilfordii Hook F. Our previous study found that T96 could inhibit TNBC invasion via suppressing the canonical and noncanonical TGF-β signaling pathways. However, the antitumor effects and mechanisms of T-96 on TNBC have not been studied. This study is aimed at investigating the antitumor effect and mechanism of T-96 on breast cancer. Experimental approach. MTT assay, Live and Dead cell assay, and TUNEL were used to observe the antitumor effect of breast cancer cells treated with T-96. siRNA of LSD1, Co-IP, and molecular docking were used to explore the direct target and mechanism of T-96. Subcutaneous murine xenograft models were used to detect the efficacy of T-96 antitumor activity in vivo. Key Results. T-96 was more susceptible to inducing the apoptosis of highly metastatic TNBC cell lines (SUM-1315). An abnormal level of histone methylation is a crucial characteristic of metastatic cancer cells. LSD1 is a histone demethylase. We found that T-96 could significantly decrease the protein expression of LSD1, increase its target protein PTEN expression and enhance histone methylation. T-96 could also down-regulate the PI3K/AKT signaling pathway, which could be blocked by PTEN. Knockdown of LSD1 by siRNA blocked the pharmacological activity of T-96. And the molecular docking predicted T-96 processed affinity toward LSD1 through hydrogen bonding. Finally, T-96 was evaluated in a murine xenograft model of SUM-1315 cells. And T-96 could significantly inhibit tumor growth without showing marked toxicity. Conclusions & Implications. The results illustrated that T-96 exerted antitumor activity in highly metastatic TNBC by inactivating the LSD1 function.
Collapse
|
9
|
Yang L, Zhang Q, Yang Q. KDM3A promotes oral squamous cell carcinoma cell proliferation and invasion via H3K9me2 demethylation-activated DCLK1. Genes Genomics 2022; 44:1333-1342. [PMID: 36094735 DOI: 10.1007/s13258-022-01287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a frequently-diagnosed malignancy with high potential for proliferation and invasion. Histone methylation is known as a crucial mechanism that regulates pathological processes in various cancers, including OSCC. OBJECTIVE This study sought to delve into the molecular mechanism of lysine demethylase 3 A (KDM3A) in OSCC cell proliferation and invasion. METHODS Expression levels of KDM3A, lysin-9 of di-methylated histone H3 (H3K9me2), and doublecortin-like kinase 1 (DCLK1) in cells were determined by reverse-transcription quantitative polymerase chain reaction or Western blot analysis. Cell proliferation and invasion were evaluated by cell counting kit-8, colony formation, and Transwell assays. The enrichment of KDM3A and H3K9me2 on the DCLK1 promoter was determined by chromatin immunoprecipitation assay. The functional rescue experiment was performed with DCLK1 overexpression vector and si-KDM3A in CAL-27 and SCC-9 cells. RESULTS KDM3A was elevated in OSCC cells. KDM3A knockdown suppressed OSCC proliferation and invasion, along with increased H3K9me2 level in OSCC cells. KDM3A and H3K9me2 were enriched on the DCLK1 promoter and inhibiting H3K9me2 improved DCLK1 expression levels. DCLK1 overexpression neutralized the inhibition of KDM3A knockdown on OSCC proliferation and invasion. CONCLUSIONS KDM3A facilitated OSCC proliferation and invasion by eliminating H3K9me2 to upregulate DCLK1 expression levels.
Collapse
Affiliation(s)
- Lei Yang
- Department of Prosthodontics, Daqing Oilfield General Hospital, No. 9 Zhongkang Street, Saertu District, Daqing City, 163001, Heilongjiang Province, China.
| | - Qiqiong Zhang
- Department of Prosthodontics, Daqing Oilfield General Hospital, No. 9 Zhongkang Street, Saertu District, Daqing City, 163001, Heilongjiang Province, China
| | - Qiuye Yang
- Department of Prosthodontics, Daqing Oilfield General Hospital, No. 9 Zhongkang Street, Saertu District, Daqing City, 163001, Heilongjiang Province, China
| |
Collapse
|
10
|
Liu Y, Chen C, Wang X, Sun Y, Zhang J, Chen J, Shi Y. An Epigenetic Role of Mitochondria in Cancer. Cells 2022; 11:cells11162518. [PMID: 36010594 PMCID: PMC9406960 DOI: 10.3390/cells11162518] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are not only the main energy supplier but are also the cell metabolic center regulating multiple key metaborates that play pivotal roles in epigenetics regulation. These metabolites include acetyl-CoA, α-ketoglutarate (α-KG), S-adenosyl methionine (SAM), NAD+, and O-linked beta-N-acetylglucosamine (O-GlcNAc), which are the main substrates for DNA methylation and histone post-translation modifications, essential for gene transcriptional regulation and cell fate determination. Tumorigenesis is attributed to many factors, including gene mutations and tumor microenvironment. Mitochondria and epigenetics play essential roles in tumor initiation, evolution, metastasis, and recurrence. Targeting mitochondrial metabolism and epigenetics are promising therapeutic strategies for tumor treatment. In this review, we summarize the roles of mitochondria in key metabolites required for epigenetics modification and in cell fate regulation and discuss the current strategy in cancer therapies via targeting epigenetic modifiers and related enzymes in metabolic regulation. This review is an important contribution to the understanding of the current metabolic-epigenetic-tumorigenesis concept.
Collapse
Affiliation(s)
- Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chao Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Xinye Wang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yihong Sun
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
- Correspondence: (J.C.); (Y.S.)
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China
- Correspondence: (J.C.); (Y.S.)
| |
Collapse
|
11
|
Du Y, Zhang P, Liu W, Tian J. Optical Imaging of Epigenetic Modifications in Cancer: A Systematic Review. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:88-101. [PMID: 36939779 PMCID: PMC9590553 DOI: 10.1007/s43657-021-00041-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023]
Abstract
Increasing evidence has demonstrated that abnormal epigenetic modifications are strongly related to cancer initiation. Thus, sensitive and specific detection of epigenetic modifications could markedly improve biological investigations and cancer precision medicine. A rapid development of molecular imaging approaches for the diagnosis and prognosis of cancer has been observed during the past few years. Various biomarkers unique to epigenetic modifications and targeted imaging probes have been characterized and used to discriminate cancer from healthy tissues, as well as evaluate therapeutic responses. In this study, we summarize the latest studies associated with optical molecular imaging of epigenetic modification targets, such as those involving DNA methylation, histone modification, noncoding RNA regulation, and chromosome remodeling, and further review their clinical application on cancer diagnosis and treatment. Lastly, we further propose the future directions for precision imaging of epigenetic modification in cancer. Supported by promising clinical and preclinical studies associated with optical molecular imaging technology and epigenetic drugs, the central role of epigenetics in cancer should be increasingly recognized and accepted.
Collapse
Affiliation(s)
- Yang Du
- grid.9227.e0000000119573309CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
- grid.410726.60000 0004 1797 8419The University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Pei Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
- grid.412474.00000 0001 0027 0586Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Supportive Care Center and Day Oncology Unit, Peking University Cancer Hospital and Institute, Beijing, 100142 China
| | - Wei Liu
- grid.412474.00000 0001 0027 0586Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Supportive Care Center and Day Oncology Unit, Peking University Cancer Hospital and Institute, Beijing, 100142 China
| | - Jie Tian
- grid.9227.e0000000119573309CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
- grid.64939.310000 0000 9999 1211Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191 China
- grid.440736.20000 0001 0707 115XSchool of Life Science and Technology, Xidian University, Xi’an, 710071 Shaanxi China
| |
Collapse
|
12
|
Ruan X, Zhang R, Zhu H, Ye C, Wang Z, Dong E, Li R, Cheng Z, Peng H. Research progress on epigenetics of small B-cell lymphoma. Clin Transl Oncol 2022; 24:1501-1514. [PMID: 35334078 DOI: 10.1007/s12094-022-02820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
Small B-cell lymphoma is the classification of B-cell chronic lymphoproliferative disorders that include chronic lymphocytic leukaemia/small lymphocytic lymphoma, follicular lymphoma, mantle cell lymphoma, marginal zone lymphoma, lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia. The clinical presentation is somewhat heterogeneous, and its occurrence and development mechanisms are not yet precise and may involve epigenetic changes. Epigenetic alterations mainly include DNA methylation, histone modification, and non-coding RNA, which are essential for genetic detection, early diagnosis, and assessment of treatment resistance in small B-cell lymphoma. As chronic lymphocytic leukemia/small lymphocytic lymphoma has already been reported in the literature, this article focuses on small B-cell lymphomas such as follicular lymphoma, mantle cell lymphoma, marginal zone lymphoma, and Waldenstrom macroglobulinemia. It discusses recent developments in epigenetic research to diagnose and treat this group of lymphomas. This review provides new ideas for the treatment and prognosis assessment of small B-cell lymphoma by exploring the connection between small B-cell lymphoma and epigenetics.
Collapse
Affiliation(s)
- Xueqin Ruan
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Rong Zhang
- Division of Cancer Immunotherapy, National Cancer Center Exploratory Oncology Research & Clinical Trial Center, Chiba, Japan
| | - Hongkai Zhu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Can Ye
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Zhihua Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - En Dong
- Blood Center, Changsha, Hunan, China
| | - Ruijuan Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan, China. .,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China.
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan, China. .,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China.
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Yang Q, Chen Y, Guo R, Dai Y, Tang L, Zhao Y, Wu X, Li M, Du F, Shen J, Yi T, Xiao Z, Wen Q. Interaction of ncRNA and Epigenetic Modifications in Gastric Cancer: Focus on Histone Modification. Front Oncol 2022; 11:822745. [PMID: 35155211 PMCID: PMC8826423 DOI: 10.3389/fonc.2021.822745] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/28/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer has developed as a very common gastrointestinal tumors, with recent effective advancements in the diagnosis and treatment of early gastric cancer. However, the prognosis for gastric cancer remains poor. As a result, there is in sore need of better understanding the mechanisms of gastric cancer development and progression to improve existing diagnostic and treatment options. In recent years, epigenetics has been recognized as an important contributor on tumor progression. Epigenetic changes in cancer include chromatin remodeling, DNA methylation and histone modifications. An increasing number of studies demonstrated that noncoding RNAs (ncRNAs) are associated with epigenetic changes in gastric cancer. Herein, we describe the molecular interactions of histone modifications and ncRNAs in epigenetics. We focus on ncRNA-mediated histone modifications of gene expression associated with tumorigenesis and progression in gastric cancer. This molecular mechanism will contribute to our deeper understanding of gastric carcinogenesis and progression, thus providing innovations in gastric cancer diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Qingfan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Rui Guo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Yalan Dai
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Liyao Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Yueshui Zhao
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Xu Wu
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Mingxing Li
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Fukuan Du
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Jing Shen
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Zhangang Xiao
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
14
|
Read GH, Bailleul J, Vlashi E, Kesarwala AH. Metabolic response to radiation therapy in cancer. Mol Carcinog 2022; 61:200-224. [PMID: 34961986 PMCID: PMC10187995 DOI: 10.1002/mc.23379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/11/2022]
Abstract
Tumor metabolism has emerged as a hallmark of cancer and is involved in carcinogenesis and tumor growth. Reprogramming of tumor metabolism is necessary for cancer cells to sustain high proliferation rates and enhanced demands for nutrients. Recent studies suggest that metabolic plasticity in cancer cells can decrease the efficacy of anticancer therapies by enhancing antioxidant defenses and DNA repair mechanisms. Studying radiation-induced metabolic changes will lead to a better understanding of radiation response mechanisms as well as the identification of new therapeutic targets, but there are few robust studies characterizing the metabolic changes induced by radiation therapy in cancer. In this review, we will highlight studies that provide information on the metabolic changes induced by radiation and oxidative stress in cancer cells and the associated underlying mechanisms.
Collapse
Affiliation(s)
- Graham H. Read
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Justine Bailleul
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Erina Vlashi
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| | - Aparna H. Kesarwala
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
15
|
Jing X, Xu G, Gong Y, Li J, LingfengWu, Zhu W, He Y, Li Z, Pan S. A five-gene methylation signature predicts overall survival of patients with clear cell renal cell carcinoma. J Clin Lab Anal 2021; 35:e24031. [PMID: 34716619 PMCID: PMC8649352 DOI: 10.1002/jcla.24031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND In this study, we aimed to screen methylation signatures associated with the prognosis of patients with clear cell renal cell carcinoma (ccRCC). METHODS Gene expression and methylation profiles of ccRCC patients were downloaded from publicly available databases, and differentially expressed genes (DEGs)-differentially methylated genes (DMGs) were obtained. Subsequently, gene set enrichment and transcription factor (TF) regulatory network analyses were performed. In addition, a prognostic model was constructed and the relationship between disease progression and immunity was analyzed. RESULTS A total of 23 common DEGs-DMGs were analyzed, among which 14 DEGs-DMGs were obtained with a cutoff value of PCC < 0 and p < 0.05. The enrichment analysis showed that the 14 DEGs-DMGs were enriched in three GO terms and three KEGG pathways. In addition, a total of six TFs were shown to be associated with the 14 DEGs-DMGs, including RP58, SOX9, NF-κB65, ATF6, OCT, and IK2. A prognostic model using five optimized DEGs-DMGs which efficiently predicted survival was constructed and validated using the GSE105288 dataset. Additionally, four types of immune cells (NK cells, macrophages, neutrophils, and cancer-associated fibroblasts), as well as ESTIMATE, immune, and stromal scores were found to be significantly correlated with ccRCC progression (normal, primary, and metastasis) in addition to the five optimized DEGs-DMGs. CONCLUSION A five-gene methylation signature with the predictive ability for ccRCC prognosis was investigated in this study, consisting of CCNB2, CDKN1C, CTSH, E2F2, and ERMP1. In addition, potential targets for methylation-mediated immunotherapy were highlighted.
Collapse
Affiliation(s)
- Xiao Jing
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Gang Xu
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Yu Gong
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Junlong Li
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - LingfengWu
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Wei Zhu
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yi He
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Zhongyi Li
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shouhua Pan
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| |
Collapse
|
16
|
Liu XY, Guo CH, Xi ZY, Xu XQ, Zhao QY, Li LS, Wang Y. Histone methylation in pancreatic cancer and its clinical implications. World J Gastroenterol 2021; 27:6004-6024. [PMID: 34629816 PMCID: PMC8476335 DOI: 10.3748/wjg.v27.i36.6004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/12/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive human cancer. Appropriate methods for the diagnosis and treatment of PC have not been found at the genetic level, thus making epigenetics a promising research path in studies of PC. Histone methylation is one of the most complicated types of epigenetic modifications and has proved crucial in the development of PC. Histone methylation is a reversible process regulated by readers, writers, and erasers. Some writers and erasers can be recognized as potential biomarkers and candidate therapeutic targets in PC because of their unusual expression in PC cells compared with normal pancreatic cells. Based on the impact that writers have on the development of PC, some inhibitors of writers have been developed. However, few inhibitors of erasers have been developed and put to clinical use. Meanwhile, there is not enough research on the reader domains. Therefore, the study of erasers and readers is still a promising area. This review focuses on the regulatory mechanism of histone methylation, and the diagnosis and chemotherapy of PC based on it. The future of epigenetic modification in PC research is also discussed.
Collapse
Affiliation(s)
- Xing-Yu Liu
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Chuan-Hao Guo
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Zhi-Yuan Xi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Xin-Qi Xu
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Qing-Yang Zhao
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Sha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Ying Wang
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
17
|
King EA, Peairs EM, Uthappa DM, Villa JK, Goff CM, Burrow NK, Deitch RT, Martin AK, Young DD. Photoregulation of PRMT-1 Using a Photolabile Non-Canonical Amino Acid. Molecules 2021; 26:molecules26165072. [PMID: 34443661 PMCID: PMC8398576 DOI: 10.3390/molecules26165072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
Protein methyltransferases are vital to the epigenetic modification of gene expression. Thus, obtaining a better understanding of and control over the regulation of these crucial proteins has significant implications for the study and treatment of numerous diseases. One ideal mechanism of protein regulation is the specific installation of a photolabile-protecting group through the use of photocaged non-canonical amino acids. Consequently, PRMT1 was caged at a key tyrosine residue with a nitrobenzyl-protected Schultz amino acid to modulate protein function. Subsequent irradiation with UV light removes the caging group and restores normal methyltransferase activity, facilitating the spatial and temporal control of PRMT1 activity. Ultimately, this caged PRMT1 affords the ability to better understand the protein’s mechanism of action and potentially regulate the epigenetic impacts of this vital protein.
Collapse
|
18
|
Trager MH, Sah B, Chen Z, Liu L. Control of Breast Cancer Pathogenesis by Histone Methylation and the Hairless Histone Demethylase. Endocrinology 2021; 162:6259332. [PMID: 33928351 PMCID: PMC8237996 DOI: 10.1210/endocr/bqab088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/19/2022]
Abstract
Breast cancer is a highly heterogeneous disease, encompassing many subtypes that have distinct origins, behaviors, and prognoses. Although traditionally seen as a genetic disease, breast cancer is now also known to involve epigenetic abnormalities. Epigenetic regulators, such as DNA methyltransferases and histone-modifying enzymes, play essential roles in gene regulation and cancer development. Dysregulation of epigenetic regulator activity has been causally linked with breast cancer pathogenesis. Hairless (HR) encodes a 130-kDa transcription factor that is essential for development and tissue homeostasis. Its role in transcription regulation is partly mediated by its interaction with multiple nuclear receptors, including thyroid hormone receptor, retinoic acid receptor-related orphan receptors, and vitamin D receptor. HR has been studied primarily in epidermal development and homeostasis. Hr-mutant mice are highly susceptible to ultraviolet- or carcinogen-induced skin tumors. Besides its putative tumor suppressor function in skin, loss of HR function has also been implicated in increased leukemia susceptibility and promotes the growth of melanoma and brain cancer cells. HR has also been demonstrated to function as a histone H3 lysine 9 demethylase. Recent genomics studies have identified HR mutations in a variety of human cancers, including breast cancer. The anticancer function and mechanism of action by HR in mammary tissue remains to be investigated. Here, we review the emerging role of HR, its histone demethylase activity and histone methylation in breast cancer development, and potential for epigenetic therapy.
Collapse
Affiliation(s)
- Megan H Trager
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, USA
| | - Bindeshwar Sah
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | - Zhongming Chen
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55912, USA
| | - Liang Liu
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55912, USA
- Correspondence: Liang Liu, PhD, The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA.
| |
Collapse
|
19
|
Yang L, Jin M, Jeong KW. Histone H3K4 Methyltransferases as Targets for Drug-Resistant Cancers. BIOLOGY 2021; 10:581. [PMID: 34201935 PMCID: PMC8301125 DOI: 10.3390/biology10070581] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/30/2022]
Abstract
The KMT2 (MLL) family of proteins, including the major histone H3K4 methyltransferase found in mammals, exists as large complexes with common subunit proteins and exhibits enzymatic activity. SMYD, another H3K4 methyltransferase, and SET7/9 proteins catalyze the methylation of several non-histone targets, in addition to histone H3K4 residues. Despite these structural and functional commonalities, H3K4 methyltransferase proteins have specificity for their target genes and play a role in the development of various cancers as well as in drug resistance. In this review, we examine the overall role of histone H3K4 methyltransferase in the development of various cancers and in the progression of drug resistance. Compounds that inhibit protein-protein interactions between KMT2 family proteins and their common subunits or the activity of SMYD and SET7/9 are continuously being developed for the treatment of acute leukemia, triple-negative breast cancer, and castration-resistant prostate cancer. These H3K4 methyltransferase inhibitors, either alone or in combination with other drugs, are expected to play a role in overcoming drug resistance in leukemia and various solid cancers.
Collapse
Affiliation(s)
- Liu Yang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China;
| | - Mingli Jin
- Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Korea;
| | - Kwang Won Jeong
- Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Korea;
| |
Collapse
|
20
|
Zappacosta F, Wagner CD, Della Pietra A, Gerhart SV, Keenan K, Korenchuck S, Quinn CJ, Barbash O, McCabe MT, Annan RS. A Chemical Acetylation-Based Mass Spectrometry Platform for Histone Methylation Profiling. Mol Cell Proteomics 2021; 20:100067. [PMID: 33775892 PMCID: PMC8138768 DOI: 10.1016/j.mcpro.2021.100067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
Histones are highly posttranslationally modified proteins that regulate gene expression by modulating chromatin structure and function. Acetylation and methylation are the most abundant histone modifications, with methylation occurring on lysine (mono-, di-, and trimethylation) and arginine (mono- and dimethylation) predominately on histones H3 and H4. In addition, arginine dimethylation can occur either symmetrically (SDMA) or asymmetrically (ADMA) conferring different biological functions. Despite the importance of histone methylation on gene regulation, characterization and quantitation of this modification have proven to be quite challenging. Great advances have been made in the analysis of histone modification using both bottom-up and top-down mass spectrometry (MS). However, MS-based analysis of histone posttranslational modifications (PTMs) is still problematic, due both to the basic nature of the histone N-terminal tails and to the combinatorial complexity of the histone PTMs. In this report, we describe a simplified MS-based platform for histone methylation analysis. The strategy uses chemical acetylation with d0-acetic anhydride to collapse all the differently acetylated histone forms into one form, greatly reducing the complexity of the peptide mixture and improving sensitivity for the detection of methylation via summation of all the differently acetylated forms. We have used this strategy for the robust identification and relative quantitation of H4R3 methylation, for which stoichiometry and symmetry status were determined, providing an antibody-independent evidence that H4R3 is a substrate for both Type I and Type II PRMTs. Additionally, this approach permitted the robust detection of H4K5 monomethylation, a very low stoichiometry methylation event (0.02% methylation). In an independent example, we developed an in vitro assay to profile H3K27 methylation and applied it to an EZH2 mutant xenograft model following small-molecule inhibition of the EZH2 methyltransferase. These specific examples highlight the utility of this simplified MS-based approach to quantify histone methylation profiles. Simplification of histone complexity for analysis of lysine and arginine methylation. Improved sensitivity for the analysis of dimethylarginine symmetry. Accurate ratio of symmetric and asymmetric H4R3 dimethylarginine in cancer cells. Catalog of accessible histone methyl marks to facilitate assay development.
Collapse
Affiliation(s)
- Francesca Zappacosta
- Discovery Analytical, Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Craig D Wagner
- Discovery Analytical, Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | | | - Sarah V Gerhart
- Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Kathryn Keenan
- Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | | | - Chad J Quinn
- Discovery Analytical, Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Olena Barbash
- Oncology R&D, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | | | - Roland S Annan
- Discovery Analytical, Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania, USA.
| |
Collapse
|
21
|
Gong H, Li Y, Yuan Y, Li W, Zhang H, Zhang Z, Shi R, Liu M, Liu C, Chen C, Liu H, Chen J. EZH2 inhibitors reverse resistance to gefitinib in primary EGFR wild-type lung cancer cells. BMC Cancer 2020; 20:1189. [PMID: 33276757 PMCID: PMC7716470 DOI: 10.1186/s12885-020-07667-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. In traditional anti-cancer therapy, epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKI) have been proven to be beneficial for patients with EGFR mutations. However, patients with EGFR wild-type NSCLC were usually not respond to EGFR-TKIs. Enhancer of zeste homolog 2 (EZH2) is a key molecular in the PRC2 complex and plays an important role in epigenetic regulation and is overexpressed in variant tumors. EZH2 inhibitors have been reported to sensitize variant tumor cells to anticancer drugs. This study aimed to investigate whether the EZH2 inhibitors, GSK343 and DZNep when combined with gefitinib can reverse EGFR-TKIs resistance in EGFR wild-type NSCLC cells. Methods The RNA-sequencing data of patients with NSCLC [502 patients with lung squamous cell carcinoma, including 49 paracancerous lung tissues and 513 patients with lung adenocarcinoma (LUAD), including 59 paracancerous lung tissues] from the Cancer Genome Atlas (TCGA), were analyzed for EZH2 expression. EZH2 expression was verified in 40 NSCLC tissue cancer samples and their corresponding paracancerous tissues from our institute (TJMUGH) via RT-PCR. A549 and H1299 cells treated with siRNA or EZH2 inhibitors were subjected to cell viability and apoptosis analyses as well to EGFR pathway proteins expression analyses via western blotting. Results EZH2 was upregulated in human NSCLC tissues and correlated with poor prognosis in patients with LUAD based on data from both TCGA and TJMUGH. Both GSK343 and DZNep sensitized EGFR wild-type LUAD cells (A549 and H1299) to gefitinib and suppressed cell viability and proliferation in vitro by downregulating the phosphorylation of EGFR and AKT and by inducing cell apoptosis. Co-administration of EZH2 inhibitors (GSK343 or DZNep) with gefitinib exerted a stronger inhibitory effect on tumor activity, cell proliferation and cell migration than single drug administration in vitro and in vivo. Conclusions These data suggest that the combination of EZH2 inhibitors with EGFR-TKIs may be an effective method for treating NSCLC-patients with EGFR-wild type, who do not want to undergo traditional treatment with chemotherapy.
Collapse
Affiliation(s)
- Hao Gong
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Yongwen Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, P.R. China
| | - Yin Yuan
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Weiting Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Hongbing Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Zihe Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Ruifeng Shi
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Minghui Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Chao Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Chen Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, P.R. China
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, P.R. China.
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. China. .,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, P.R. China.
| |
Collapse
|
22
|
Götting I, Jendrossek V, Matschke J. A New Twist in Protein Kinase B/Akt Signaling: Role of Altered Cancer Cell Metabolism in Akt-Mediated Therapy Resistance. Int J Mol Sci 2020; 21:ijms21228563. [PMID: 33202866 PMCID: PMC7697684 DOI: 10.3390/ijms21228563] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer resistance to chemotherapy, radiotherapy and molecular-targeted agents is a major obstacle to successful cancer therapy. Herein, aberrant activation of the phosphatidyl-inositol-3-kinase (PI3K)/protein kinase B (Akt) pathway is one of the most frequently deregulated pathways in cancer cells and has been associated with multiple aspects of therapy resistance. These include, for example, survival under stress conditions, apoptosis resistance, activation of the cellular response to DNA damage and repair of radiation-induced or chemotherapy-induced DNA damage, particularly DNA double strand breaks (DSB). One further important, yet not much investigated aspect of Akt-dependent signaling is the regulation of cell metabolism. In fact, many Akt target proteins are part of or involved in the regulation of metabolic pathways. Furthermore, recent studies revealed the importance of certain metabolites for protection against therapy-induced cell stress and the repair of therapy-induced DNA damage. Thus far, the likely interaction between deregulated activation of Akt, altered cancer metabolism and therapy resistance is not yet well understood. The present review describes the documented interactions between Akt, its target proteins and cancer cell metabolism, focusing on antioxidant defense and DSB repair. Furthermore, the review highlights potential connections between deregulated Akt, cancer cell metabolism and therapy resistance of cancer cells through altered DSB repair and discusses potential resulting therapeutic implications.
Collapse
|
23
|
Yan W, Guo Y, Xu F, Saxena D, Li X. Identification of Differentially Methylated Regions Associated with a Knockout of SUV39H1 in Prostate Cancer Cells. Genes (Basel) 2020; 11:genes11101188. [PMID: 33066102 PMCID: PMC7601968 DOI: 10.3390/genes11101188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Epigenetic alterations, such as histone methylations, affect the pathogenesis of tumors including prostate cancer (PCa). Previously, we reported that metformin reduced SUV39H1, a histone methyltransferase of H3 Lys9, to inhibit the migration of PCa cells. Since histone methylation is functionally linked to DNA methylation, we speculate that the knockout of the SUV39H1 gene will affect the genomic DNA methylation profile to regulate PCa cell migration and invasion. The genome-wide DNA methylation level is lower in SUV39H1 knockout (KO) cells than wild-type (WT) ones. However, the methylation levels in functional regions of CpG Islands (CGI), 5' untranslated region (UTR5), and exon regions are higher in KO cells than WT cells. Analysis of differentially methylated regions (DMRs) identified 1241 DMR genes that have differential methylation on CG sites when comparing the KO and WT samples. Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes Pathways analysis showed that knockout of SUV39H1 affects gene sets and pathways that are heavily involved in cell shapes, cell recognition, adhesion, motility, and migration. Our study suggests that SUV39H1 plays an important role in PCa migration via the epigenetic regulation of methylation on CG sites, and is a novel and legitimate target to inhibit PCa cell migration.
Collapse
Affiliation(s)
- Wenbo Yan
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (W.Y.); (Y.G.); (F.X.); (D.S.)
| | - Yuqi Guo
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (W.Y.); (Y.G.); (F.X.); (D.S.)
| | - Fangxi Xu
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (W.Y.); (Y.G.); (F.X.); (D.S.)
| | - Deepak Saxena
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (W.Y.); (Y.G.); (F.X.); (D.S.)
| | - Xin Li
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (W.Y.); (Y.G.); (F.X.); (D.S.)
- Perlmutter Cancer Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Urology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Correspondence: ; Tel.: +1-2129927009; Fax: +1-2129984087
| |
Collapse
|
24
|
Histone Demethylase KDM4C Is Required for Ovarian Cancer Stem Cell Maintenance. Stem Cells Int 2020; 2020:8860185. [PMID: 32908544 PMCID: PMC7475738 DOI: 10.1155/2020/8860185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer is a highly deadly disease, which is often diagnosed at a late stage with metastases. However, most ovarian cancers relapse after surgery combined with platinum-based chemotherapy. Cancer stem cells (CSCs) are stem-like cells that possess high tumorigenic capability and display higher resistant capability against current therapies. However, our knowledge of ovarian CSCs and their molecular mechanism remains sparse. In the current study, we found that KDM4C, a histone demethylase, was required for ovarian cancer stem cell (CSC) maintenance. Depletion of KDM4C significantly reduced the CSC population and sphere formation in vitro. Moreover, we found that KDM4C can regulate the expression of stem cell factor OCT-4 via binding to its promoter. These data indicate that KDM4C is relevant for ovarian CSC maintenance and underscore its importance as a potential therapeutic target.
Collapse
|
25
|
Zhou M, Mao Y, Yu S, Li Y, Yin R, Zhang Q, Lu T, Sun R, Lin S, Qian Y, Xu Y, Fan H. LINC00673 Represses CDKN2C and Promotes the Proliferation of Esophageal Squamous Cell Carcinoma Cells by EZH2-Mediated H3K27 Trimethylation. Front Oncol 2020; 10:1546. [PMID: 33014799 PMCID: PMC7461945 DOI: 10.3389/fonc.2020.01546] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), some of the most abundant epigenetic regulators, play an important role in esophageal squamous cell carcinoma (ESCC). In the current study, the functions and mechanisms of the lncRNA LINC00673 were investigated. The expression levels of LINC00673 and its potential target genes were assessed by quantitative real-time polymerase chain reaction (qPCR) in ESCC surgical specimens and ESCC cell lines. RNA fluorescence in situ hybridization (RNA FISH) was employed to detect the subcellular location and the levels of LINC00673 in ESCC samples from patients with different survival times. LINC00673 function in ESCC carcinogenesis was also evaluated in vivo and in vitro. Cell cycle synchronization was performed using serum withdrawal; the cell cycle was monitored by fluorescence analysis and cellular DNA was detected by flow cytometry. The molecular mechanisms underlying LINC00673 were explored via Western blotting, chromatin immunoprecipitation (ChIP), and ChIP-PCR. Up-regulated LINC00673 was associated with poor prognosis in ESCC patients and promoted the proliferation of ESCC cells both in vitro and in vivo. Compared to the control group, depletion of LINC00673 in ESCC cells arrested the cell cycle, at least, at the G1/S checkpoint. Knockdown of LINC00673 significantly enhanced posttranscriptional expression of CDKN2C, and histone 3 lysine 27 trimethylation (H3K27me3) was enriched at the promoter region of CDKN2C. After inhibiting EZH2, the CDKN2C expression levels were increased. The present findings are the first to reveal that LINC00673 represses CDKN2C expression and promotes ESCC cell proliferation by elevating EZH2-mediated H3K27me3 levels. These data suggest that LINC00673 regulates the cell cycle in ESCC and that it is a promising target for clinical therapy.
Collapse
Affiliation(s)
- Menghan Zhou
- The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, Nanjing, China.,School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Yuhang Mao
- School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Shenling Yu
- School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Yiping Li
- Department of Pathology and Pathophysiology, Medical School of Southeast University, Nanjing, China
| | - Rong Yin
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Qin Zhang
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Tianyu Lu
- The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, Nanjing, China
| | - Rui Sun
- The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, Nanjing, China
| | - Shaofeng Lin
- Department of Pathology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Yanyan Qian
- The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, Nanjing, China
| | - Ying Xu
- School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Hong Fan
- The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
26
|
Neganova ME, Klochkov SG, Aleksandrova YR, Aliev G. Histone modifications in epigenetic regulation of cancer: Perspectives and achieved progress. Semin Cancer Biol 2020; 83:452-471. [PMID: 32814115 DOI: 10.1016/j.semcancer.2020.07.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Epigenetic changes associated with histone modifications play an important role in the emergence and maintenance of the phenotype of various cancer types. In contrast to direct mutations in the main DNA sequence, these changes are reversible, which makes the development of inhibitors of enzymes of post-translational histone modifications one of the most promising strategies for the creation of anticancer drugs. To date, a wide variety of histone modifications have been found that play an important role in the regulation of chromatin state, gene expression, and other nuclear events. This review examines the main features of the most common and studied epigenetic histone modifications with a proven role in the pathogenesis of a wide range of malignant neoplasms: acetylation / deacetylation and methylation / demethylation of histone proteins, as well as the role of enzymes of the HAT / HDAC and HMT / HDMT families in the development of oncological pathologies. The data on the relationship between histone modifications and certain types of cancer are presented and discussed. Special attention is devoted to the consideration of various strategies for the development of epigenetic inhibitors. The main directions of the development of inhibitors of histone modifications are analyzed and effective strategies for their creation are identified and discussed. The most promising strategy is the use of multitarget drugs, which will affect multiple molecular targets of cancer. A critical analysis of the current status of approved epigenetic anticancer drugs has also been performed.
Collapse
Affiliation(s)
- Margarita E Neganova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation.,I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russian Federation.,Laboratory of Cellular Pathology, Federal State Budgetary Institution «Research Institute of Human Morphology», 3, Tsyurupy Str., Moscow, 117418, Russian Federation.,GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA.
| |
Collapse
|
27
|
Ahmed AA, Adam Essa ME. Epigenetic alterations in female urogenital organs cancer: Premise, properties, and perspectives. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
28
|
Binh MT, Hoan NX, Giang DP, Tong HV, Bock CT, Wedemeyer H, Toan NL, Bang MH, Kremsner PG, Meyer CG, Song LH, Velavan TP. Upregulation of SMYD3 and SMYD3 VNTR 3/3 polymorphism increase the risk of hepatocellular carcinoma. Sci Rep 2020; 10:2797. [PMID: 32071406 PMCID: PMC7029004 DOI: 10.1038/s41598-020-59667-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 02/03/2020] [Indexed: 12/24/2022] Open
Abstract
SMYD3 (SET and MYND domain-containing protein 3) is involved in histone modification, which initiates oncogenesis by activating transcription of multiple downstream genes. To investigate associations of variable numbers of tandem repeats (VNTR) variants in the SMYD3 gene promoter, SMYD3 serum levels and SMYD3 mRNA expression in hepatitis B virus (HBV) infection and clinical progression of related liver disease. SMYD3 VNTRs were genotyped in 756 HBV patients and 297 healthy controls. SMYD3 serum levels were measured in 293 patients and SMYD3 mRNA expression was quantified in 48 pairs of hepatocellular tumor and adjacent non-tumor liver tissues. Genotype SYMD3 VNTR 3/3 was more frequent among HCC patients than in controls (Padjusted = 0.037). SMYD3 serum levels increased according to clinical progression of liver diseases (P = 0.01); HCC patients had higher levels than non-HCC patients (P = 0.04). Among patients with SMYD3 VNTR 3/3, HCC patients had higher SMYD3 levels than others (P < 0.05). SMYD3 mRNA expression was up-regulated in HCC tumor tissues compared to other tissues (P = 0.008). In conclusion, upregulation of SMYD3 correlates with the occurrence of HCC and SMYD3 VNTR 3/3 appears to increase the risk of HCC through increasing SMYD3 levels. SMYD3 may be an indicator for HCC development in HBV patients.
Collapse
Affiliation(s)
- Mai Thanh Binh
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research (VGCARE), Hanoi, Vietnam
- 108 Military Central Hospital, Hanoi, Vietnam
| | - Nghiem Xuan Hoan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research (VGCARE), Hanoi, Vietnam
- 108 Military Central Hospital, Hanoi, Vietnam
| | - Dao Phuong Giang
- Vietnamese-German Center for Medical Research (VGCARE), Hanoi, Vietnam
- 108 Military Central Hospital, Hanoi, Vietnam
| | - Hoang Van Tong
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research (VGCARE), Hanoi, Vietnam
- Vietnam Military Medical University, Hanoi, Vietnam
| | - C-Thomas Bock
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology and Hepatology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Nguyen Linh Toan
- Vietnamese-German Center for Medical Research (VGCARE), Hanoi, Vietnam
- Vietnam Military Medical University, Hanoi, Vietnam
| | | | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Christian G Meyer
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research (VGCARE), Hanoi, Vietnam
- Duy Tan University, Da Nang, Vietnam
| | - Le Huu Song
- Vietnamese-German Center for Medical Research (VGCARE), Hanoi, Vietnam
- 108 Military Central Hospital, Hanoi, Vietnam
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
- Vietnamese-German Center for Medical Research (VGCARE), Hanoi, Vietnam.
- Duy Tan University, Da Nang, Vietnam.
| |
Collapse
|
29
|
Wang XF, Tian Q, Qin WB, Yin Y, Zeng L, Tang YG, Su P, Zhou LQ. Histone H3 methylation orchestrates transcriptional program in mouse spermatogenic cell line. J Reprod Dev 2020; 66:223-230. [PMID: 32051348 PMCID: PMC7297638 DOI: 10.1262/jrd.2019-139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Changes in histone modifications always correlate with altered transcriptional activities of genes. Recent studies have shown that the mutation of certain lysine residues to
methionine in the histone variant H3.3 can act as a valuable tool to reduce specific H3 methylation levels. In our study, we used the mouse spermatogenic cell line GC-2 as a model
to generate cells stably expressing H3.3 K4, H3.3 K9, H3.3 K27, and H3.3 K36M. The expression of these H3.3 K-to-M mutants influenced the expression of different subsets of genes,
and a total of 891 differentially expressed genes were identified through global gene expression profiling. Moreover, the H3.3 K-to-M transgenes, especially H3.3 K36M, impacted the
expression of endogenous retrovirus ERVK. This study gives a global view of how different H3 modifications regulate transcriptomes in spermatogenic cell lines, and identifies
potential targets of H3 modifications in male germ line.
Collapse
Affiliation(s)
- Xiao-Fei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| | - Qing Tian
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| | - Wei-Bing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou 510600, China
| | - Ying Yin
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| | - Ling Zeng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| | - Yun-Ge Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou 510600, China
| | - Ping Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| |
Collapse
|
30
|
Lee HH, Lin CH, Lin HY, Kuei CH, Zheng JQ, Wang YH, Lu LS, Lee FP, Hu CJ, Wu D, Lin YF. Histone 2A Family Member J Drives Mesenchymal Transition and Temozolomide Resistance in Glioblastoma Multiforme. Cancers (Basel) 2019; 12:98. [PMID: 31906036 PMCID: PMC7016639 DOI: 10.3390/cancers12010098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor and has a poor prognosis and is poorly sensitive to radiotherapy or temozolomide (TMZ) chemotherapy. Therefore, identifying new biomarkers to predict therapeutic responses of GBM is urgently needed. By using The Cancer Genome Atlas (TCGA) database, we found that the upregulation of histone 2A family member J (H2AFJ), but not other H2AFs, is extensively detected in the therapeutic-insensitive mesenchymal, IDH wildtype, MGMT unmethylated, or non-G-CIMP GBM and is associated with poor TMZ responsiveness independent of radiation. Similar views were also found in GBM cell lines. Whereas H2AFJ knockdown diminished TMZ resistance, H2AFJ overexpression promoted TMZ resistance in a panel of GBM cell lines. Gene set enrichment analysis (GSEA) revealed that H2AFJ upregulation accompanied by the activation of TNF-α/NF-κB and IL-6/STAT3-related pathways is highly predicted. Luciferase-based promoter activity assay further validated that the activities of NF-κB and STAT3 are causally affected by H2AFJ expression in GBM cells. Moreover, we found that therapeutic targeting HADC3 by tacedinaline or NF-κB by ML029 is likely able to overcome the TMZ resistance in GBM cells with H2AFJ upregulation. Significantly, the GBM cohorts harboring a high-level H2AFJ transcript combined with high-level expression of TNF-α/NF-κB geneset, IL-6/STAT3 geneset or HADC3 were associated with a shorter time to tumor repopulation after initial treatment with TMZ. These findings not only provide H2AFJ as a biomarker to predict TMZ therapeutic effectiveness but also suggest a new strategy to combat TMZ-insensitive GBM by targeting the interaction network constructed by TNF-α/NF-κB, IL-6/STAT3, HDAC3, and H2AFJ.
Collapse
Affiliation(s)
- Hsun-Hua Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-H.L.); (H.-Y.L.); (C.-H.K.); (J.-Q.Z.); (Y.-H.W.); (C.-J.H.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Dizziness and Balance Disorder Center, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Che-Hsuan Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Otolaryngology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Hui-Yu Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-H.L.); (H.-Y.L.); (C.-H.K.); (J.-Q.Z.); (Y.-H.W.); (C.-J.H.)
- Breast Center, Department of General Surgery, Cardinal Tien Hospital, Xindian District, New Taipei City 231, Taiwan
| | - Chia-Hao Kuei
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-H.L.); (H.-Y.L.); (C.-H.K.); (J.-Q.Z.); (Y.-H.W.); (C.-J.H.)
- Urology, Division of Surgery, Cardinal Tien Hospital, Xindian District, New Taipei City 231, Taiwan
| | - Jing-Quan Zheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-H.L.); (H.-Y.L.); (C.-H.K.); (J.-Q.Z.); (Y.-H.W.); (C.-J.H.)
- Department of Critical Care Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Yuan-Hung Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-H.L.); (H.-Y.L.); (C.-H.K.); (J.-Q.Z.); (Y.-H.W.); (C.-J.H.)
- Department of Medical Research, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Long-Sheng Lu
- Department of Radiation Oncology, TMU Hospital, Taipei Medical University, Taipei 11031, Taiwan;
| | - Fei-Peng Lee
- Department of Otolaryngology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chaur-Jong Hu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-H.L.); (H.-Y.L.); (C.-H.K.); (J.-Q.Z.); (Y.-H.W.); (C.-J.H.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Dean Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-H.L.); (H.-Y.L.); (C.-H.K.); (J.-Q.Z.); (Y.-H.W.); (C.-J.H.)
- Dizziness and Balance Disorder Center, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, New Taipei City 23561, Taiwan
- Sleep Center, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-H.L.); (H.-Y.L.); (C.-H.K.); (J.-Q.Z.); (Y.-H.W.); (C.-J.H.)
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| |
Collapse
|
31
|
Allali-Hassani A, Szewczyk MM, Ivanochko D, Organ SL, Bok J, Ho JSY, Gay FPH, Li F, Blazer L, Eram MS, Halabelian L, Dilworth D, Luciani GM, Lima-Fernandes E, Wu Q, Loppnau P, Palmer N, Talib SZA, Brown PJ, Schapira M, Kaldis P, O'Hagan RC, Guccione E, Barsyte-Lovejoy D, Arrowsmith CH, Sanders JM, Kattar SD, Bennett DJ, Nicholson B, Vedadi M. Discovery of a chemical probe for PRDM9. Nat Commun 2019; 10:5759. [PMID: 31848333 PMCID: PMC6917776 DOI: 10.1038/s41467-019-13652-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022] Open
Abstract
PRDM9 is a PR domain containing protein which trimethylates histone 3 on lysine 4 and 36. Its normal expression is restricted to germ cells and attenuation of its activity results in altered meiotic gene transcription, impairment of double-stranded breaks and pairing between homologous chromosomes. There is growing evidence for a role of aberrant expression of PRDM9 in oncogenesis and genome instability. Here we report the discovery of MRK-740, a potent (IC50: 80 ± 16 nM), selective and cell-active PRDM9 inhibitor (Chemical Probe). MRK-740 binds in the substrate-binding pocket, with unusually extensive interactions with the cofactor S-adenosylmethionine (SAM), conferring SAM-dependent substrate-competitive inhibition. In cells, MRK-740 specifically and directly inhibits H3K4 methylation at endogenous PRDM9 target loci, whereas the closely related inactive control compound, MRK-740-NC, does not. The discovery of MRK-740 as a chemical probe for the PRDM subfamily of methyltransferases highlights the potential for exploiting SAM in targeting SAM-dependent methyltransferases.
Collapse
Affiliation(s)
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Danton Ivanochko
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada.,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Shawna L Organ
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Jabez Bok
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jessica Sook Yuin Ho
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Florence P H Gay
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Levi Blazer
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Mohammad S Eram
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - David Dilworth
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Genna M Luciani
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | | | - Qin Wu
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Nathan Palmer
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - S Zakiah A Talib
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,National University of Singapore (NUS), Department of Biochemistry, 117597, Singapore, Singapore
| | - Ronan C O'Hagan
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Pharmacological Sciences and Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada.,Nature Research Center, Vilnius, Akademijos, 2, Lithuania
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada.,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - John M Sanders
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Solomon D Kattar
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | | | - Benjamin Nicholson
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA.
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada. .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
32
|
Gao G, Zhang L, Villarreal OD, He W, Su D, Bedford E, Moh P, Shen J, Shi X, Bedford MT, Xu H. PRMT1 loss sensitizes cells to PRMT5 inhibition. Nucleic Acids Res 2019; 47:5038-5048. [PMID: 30916320 PMCID: PMC6547413 DOI: 10.1093/nar/gkz200] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/22/2019] [Accepted: 03/15/2019] [Indexed: 02/06/2023] Open
Abstract
PRMT5 is an arginine methyltransferase that accounts for the vast majority of the symmetric methylation in cells. PRMT5 exerts its function when complexed with MEP50/WDR77. This activity is often elevated in cancer cells and correlates with poor prognosis, making PRMT5 a therapeutic target. To investigate the PRMT5 signaling pathway and to identify genes whose loss-of-function sensitizes cancer cells to PRMT5 inhibition, we performed a CRISPR/Cas9 genetic screen in the presence of a PRMT5 inhibitor. We identified known components of the PRMT5 writer/reader pathway including PRMT5 itself, MEP50/WDR77, PPP4C, SMNDC1 and SRSF3. Interestingly, loss of PRMT1, the major asymmetric arginine methyltransferase, also sensitizes cells to PRMT5 inhibition. We investigated the interplay between PRMT5 and PRMT1, and found that combinatorial inhibitor treatment of small cell lung cancer and pancreatic cancer cell models have a synergistic effect. Furthermore, MTAP-deleted cells, which harbor an attenuated PRMT5–MEP50 signaling pathway, are generally more sensitive to PRMT1 inhibition. Together, these findings demonstrate that there is a degree of redundancy between the PRMT5 and PRMT1 pathways, even though these two enzymes deposit different types of arginine methylation marks. Targeting this redundancy provides a vulnerability for tumors carrying a co-deletion of MTAP and the adjacent CDKN2A tumor suppressor gene.
Collapse
Affiliation(s)
- Guozhen Gao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Liang Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Oscar D Villarreal
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Wei He
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Dan Su
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ella Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Phoebe Moh
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Xiaobing Shi
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Han Xu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| |
Collapse
|
33
|
Niveditha D, Sharma H, Sahu A, Majumder S, Chowdhury R, Chowdhury S. Drug Tolerant Cells: An Emerging Target With Unique Transcriptomic Features. Cancer Inform 2019; 18:1176935119881633. [PMID: 31636480 PMCID: PMC6787876 DOI: 10.1177/1176935119881633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 12/02/2022] Open
Abstract
Long-term outcome of cancer therapy is often severely perturbed by the
acquisition of drug resistance. Recent evidence point toward the survival of a
subpopulation of tumor cells under acute drug stress that over time can
re-populate the tumor. These transiently existing, weakly proliferative,
drug-tolerant cells facilitate tumor cell survival until more stable resistance
mechanisms are acquired. From a therapeutic perspective, understanding the
molecular features of the tolerant cells is critical to attenuation of
resistance. In this article, we discuss the transcriptomic features of
drug-tolerant osteosarcoma cells that survive a high dose of cisplatin shock. We
present the unique transcriptome of the minimally dividing tolerant cells in
comparison with the proliferative persisters or resistant cells derived from the
tolerant cells. Targeting the tolerant cells can represent an efficient
therapeutic strategy impeding tumor recurrence.
Collapse
Affiliation(s)
- Divya Niveditha
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Pilani, India
| | - Harshita Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Pilani, India
| | - Anirudha Sahu
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Pilani, India
| | - Syamantak Majumder
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Pilani, India
| | - Rajdeep Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Pilani, India
| | - Shibasish Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Pilani, India
| |
Collapse
|
34
|
Michalak EM, Burr ML, Bannister AJ, Dawson MA. The roles of DNA, RNA and histone methylation in ageing and cancer. Nat Rev Mol Cell Biol 2019; 20:573-589. [PMID: 31270442 DOI: 10.1038/s41580-019-0143-1] [Citation(s) in RCA: 354] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2019] [Indexed: 12/17/2022]
Abstract
Chromatin is a macromolecular complex predominantly comprising DNA, histone proteins and RNA. The methylation of chromatin components is highly conserved as it helps coordinate the regulation of gene expression, DNA repair and DNA replication. Dynamic changes in chromatin methylation are essential for cell-fate determination and development. Consequently, inherited or acquired mutations in the major factors that regulate the methylation of DNA, RNA and/or histones are commonly observed in developmental disorders, ageing and cancer. This has provided the impetus for the clinical development of epigenetic therapies aimed at resetting the methylation imbalance observed in these disorders. In this Review, we discuss the cellular functions of chromatin methylation and focus on how this fundamental biological process is corrupted in cancer. We discuss methylation-based cancer therapies and provide a perspective on the emerging data from early-phase clinical trial therapies that target regulators of DNA and histone methylation. We also highlight promising therapeutic strategies, including monitoring chromatin methylation for diagnostic purposes and combination epigenetic therapy strategies that may improve immune surveillance in cancer and increase the efficacy of conventional and targeted anticancer drugs.
Collapse
Affiliation(s)
- Ewa M Michalak
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Marian L Burr
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Andrew J Bannister
- Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Mark A Dawson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia.
- Centre for Cancer Research, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
35
|
Sha J, Han Q, Chi C, Zhu Y, Pan J, Dong B, Huang Y, Xia W, Xue W. Upregulated KDM4B promotes prostate cancer cell proliferation by activating autophagy. J Cell Physiol 2019; 235:2129-2138. [PMID: 31468537 DOI: 10.1002/jcp.29117] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/20/2019] [Indexed: 12/16/2022]
Abstract
Castration-resistant prostate cancer (CRPC) causes most of the deaths in patients with prostate cancer (PCa). The androgen receptor (AR) axis plays an important role in castration resistance. Emerging studies showed that the lysine demethylase KDM4B is a key molecule in AR signaling and turnover, and autophagy plays an important role in CRPC. However, little is known about whether KDM4B promotes CRPC progression by regulating autophagy. Here we used an androgen-independent LNCaP (LNCaP-AI) cell line to assay aberrant KDM4B expression using qPCR and western blot analysis and investigated the function of KDM4B in regulating cell proliferation. We found that KDM4B was markedly increased in LNCaP-AI cells compared with LNCaP cells. KDM4B level was significantly correlated with the Gleason score in PCa tissues. In vitro, KDM4B overexpression in CRPC cells promoted cell proliferation, whereas knockdown of KDM4B significantly inhibited cell proliferation. Upregulated KDM4B contributed to activate Wnt/β-catenin signaling and autophagy. Moreover, KDM4B activated autophagy by regulating the Wnt/β-catenin signaling. Finally, we demonstrated that autophagy inhibition attenuated KDM4B-induced CRPC cell proliferation. Our results provided novel insights into the function of KDM4B-driven CRPC development and indicated that KDM4B may be served as a potential target for CRPC therapy.
Collapse
Affiliation(s)
- Jianjun Sha
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qing Han
- School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Chenfei Chi
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Yinjie Zhu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiahua Pan
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yiran Huang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Weiliang Xia
- School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
36
|
Pu J, Wang J, Wei H, Lu T, Wu X, Wu Y, Shao Z, Luo C, Lu Y. lncRNA MAGI2-AS3 Prevents the Development of HCC via Recruiting KDM1A and Promoting H3K4me2 Demethylation of the RACGAP1 Promoter. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 18:351-362. [PMID: 31629962 PMCID: PMC6807294 DOI: 10.1016/j.omtn.2019.08.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/31/2019] [Accepted: 08/17/2019] [Indexed: 12/24/2022]
Abstract
Accumulating studies have implicated the role of long non-coding RNAs (lncRNAs) in the pathogenesis of hepatocellular carcinoma (HCC) through the regulating transcription and mRNA stability. A recent report has linked Rac GTPase-activating protein 1 (RACGAP1) to the early recurrence of HCC. The current study aimed to ascertain whether MAGI2 antisense RNA 3 (MAGI2-AS3) influences the development of HCC by regulating RACGAP1. MAGI2-AS3 expression was initially quantified in both the HCC tissues and cell lines. In order to elucidate the role of MAGI2-AS3 in the development of HCC, MAGI2-AS3 was overexpressed or silenced in HCC cells after which cell proliferation, apoptosis, invasion, and migration were evaluated. Chromatin immunoprecipitation (ChIP), RNA immunoprecipitation (RIP), and biotin-labeled RNA pull-down assays were conducted to determine the interactions among MAGI2-AS3, KDM1A, and RACGAP1. Finally, the effects of MAGI2-AS3 and RACGAP1 on the tumorigenesis of transplanted HCC cells in nude mice were evaluated. MAGI2-AS3 was found to be under-expressed in HCC tissues and cell lines. The restoration of MAGI2-AS3 was identified to markedly inhibit HCC cell growth, migrating ability, and invasiveness, and promote cell apoptosis. Interaction between MAGI2-AS3 and KDM1A was identified. KDM1A recruited by MAGI2-AS3 was found to promote H3K4me2 demethylation at the RACGAP1 promoter, which ultimately decreased the expression of RACGAP1. We also identified that RACGAP1 knockdown eliminated the stimulatory effects of MAGI2-AS3 silencing on the malignant phenotypes of HCC cells. Additionally, the expression of MAGI2-AS3 reduced tumor weight and size in HCC transplanted nude mice. Taken together, the key observations of the current study demonstrate the potential of MAGI2-AS3 as a tumor suppressor and a promising target for HCC treatment.
Collapse
Affiliation(s)
- Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China.
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Huamei Wei
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Tao Lu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Xianjian Wu
- Graduate College, Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Yi Wu
- Graduate College, Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Zesheng Shao
- Graduate College, Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Chunying Luo
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Yan Lu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| |
Collapse
|
37
|
Palczewski MB, Petraitis H, Thomas DD. Nitric oxide is an epigenetic regulator of histone post-translational modifications in cancer. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Lan L, Xu B, Chen Q, Jiang J, Shen Y. Weighted correlation network analysis of triple-negative breast cancer progression: Identifying specific modules and hub genes based on the GEO and TCGA database. Oncol Lett 2019; 18:1207-1217. [PMID: 31423181 PMCID: PMC6607224 DOI: 10.3892/ol.2019.10407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 01/16/2019] [Indexed: 01/24/2023] Open
Abstract
Triple-negative breast cancer (TNBC) represents an aggressive malignancy of frequent high histologic grade with no effective specific targeted therapies. The present study aimed to identify specific modules and hub genes that may influence the progression of TNBC. The key words ‘breast cancer’ were used to search microarray datasets in the Gene Expression Omnibus and The Cancer Genome Atlas databases that included 5 datasets. A total of 11 co-expression modules were constructed based on the expression levels of 5,782 genes obtained from 456 patients with TNBC using the weighted correlation network analysis (WGCNA). The results demonstrated that the red module was significantly associated with relapse-free survival (RFS) in patients with TNBC [hazard ratio (HR)=0.381, 95% confidence interval (CI), 0.183–0.793; P=0.010]. The functional enrichment analysis revealed that the biological processes corresponding to the red module were ‘mRNA processing’, ‘histone lysine methylation’ and ‘regulation of TOR signaling’. In addition, Hedgehog signaling pathways were considered to serve a critical role in the development of this disease (P<0.001). A total of 12 hub genes were identified, of which α-thalassemia/mental retardation syndrome X-linked (ATRX) was significantly associated with RFS in patients with TNBC (HR=0.601; 95%CI, 0.376–0.960; P=0.033). The receiver operating characteristic curve indicated that ATRX could distinguish relapse from non-relapse in patients with TNBC (area under the curve=0.570; P=0.023). In conclusion, the present study demonstrated that ATRX was associated with TNBC progression, which suggested that ATRX may be involved in a recombination-mediated telomere maintenance mechanism.
Collapse
Affiliation(s)
- Lei Lan
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology and Biostatistics, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Bin Xu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Qu Chen
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology and Biostatistics, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Yueping Shen
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology and Biostatistics, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
39
|
Zhao Y, Lu Q, Li C, Wang X, Jiang L, Huang L, Wang C, Chen H. PRMT1 regulates the tumour-initiating properties of esophageal squamous cell carcinoma through histone H4 arginine methylation coupled with transcriptional activation. Cell Death Dis 2019; 10:359. [PMID: 31043582 PMCID: PMC6494844 DOI: 10.1038/s41419-019-1595-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 12/15/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most difficult subtype of esophageal cancer to treat due to a paucity of effective targeted therapy. ESCC is believed to arise from tumour initiating cells (TICs), which contribute to metastasis and chemoresistance. In this study, we found that Protein arginine methyltransferase 1(PRMT1) was highly expressed in ESCCs and associated with aberrant clinicopathological characteristics of ESCC patients. In ESCC specimens, the elevated expression of PRMT1 and OV6 was significantly associated with histologic grade, TNM stage and poor patient prognosis. Moreover, overexpression of PRMT1 was observed in esophageal TICs purified by magnetic sorting of adherent and spheroid ECA109/TE1 cells. The increased level of PRMT1 in TICs facilitated the expression of TIC markers, stem cell-like properties, resistance to chemotherapy, tumorigenicity and increased their percentages in ECSS samples. Conversely, knockdown of PRMT1 significantly diminished the self-renewal properties of ESCC. Moreover, we show that PRMT1 can catalyse histone H4R3 asymmetric dimethylation and promote transcription activation of down-stream genes. Further RNA-Seq transcriptome analysis reveals that overexpression of PRMT1 in ESCC cell lines activates Wnt/β-catenin and Notch signaling pathway. Together, our studies highlight that PRMT1 activates and maintains esophageal TICs by mediating transcription alteration through histone H4 arginine methylation.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, 200433, Shanghai, China
| | - Qijue Lu
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, 200433, Shanghai, China
| | - Chunguang Li
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, 200433, Shanghai, China
| | - Xinyu Wang
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, 200433, Shanghai, China
| | - Long Jiang
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, 200433, Shanghai, China
| | - Lei Huang
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, 200433, Shanghai, China
| | - Chao Wang
- Department of Urology, Changhai Hospital, Second Military Medical University, 200433, Shanghai, China.
| | - Hezhong Chen
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, 200433, Shanghai, China.
| |
Collapse
|
40
|
Murillo-Rodríguez E, Arankowsky-Sandoval G, Barros JA, Rocha NB, Yamamoto T, Machado S, Budde H, Telles-Correia D, Monteiro D, Cid L, Veras AB. Sleep and Neurochemical Modulation by DZNep and GSK-J1: Potential Link With Histone Methylation Status. Front Neurosci 2019; 13:237. [PMID: 30930741 PMCID: PMC6428769 DOI: 10.3389/fnins.2019.00237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/27/2019] [Indexed: 12/24/2022] Open
Abstract
Histone methylation/demethylation plays an important modulatory role in chromatin restructuring, RNA transcription and is essential for controlling a plethora of biological processes. Due to many human diseases have been related to histone methylation/demethylation, several compounds such as 3-deazaneplanocin A (DZNep) or 3-((6-(4,5-Dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoic acid; N-[2-(2-pyridinyl)-6-(1,2,4,5-tetrahydro-3H-3-benzazepin-3-yl)-4-pyrimidinyl]-β-Alanine (GSK-J1), have been designed to inhibit histone methylase or suppress histone demethylase, respectively. In the present study, we investigated the effects on the sleep-wake cycle and sleep-related neurochemical levels after systemic injections of DZNep or GSK-J1 given during the light or dark phase in rats. DZNep dose-dependently (0.1, 1.0, or 10 mg/kg, i.p.) prolonged wakefulness (W) duration while decreased slow wave sleep (SWS) and rapid eye movement sleep (REMS) time spent during the lights-on period with no changes observed in dark phase. In opposite direction, GSK-J1 (0.1, 1.0, or 10 mg/kg, i.p.) injected at the beginning of the lights-on period induced no statistical changes in W, SWS, or REMS whereas if administered at darkness, we found a diminution in W and an enhancement in SWS and REMS. Finally, brain microdialysis experiments in freely moving animals were used to evaluate the effects of DZNep or GSK-J1 treatments on contents of sleep-related neurochemicals. The results showed that DZNep boosted extracellular levels of dopamine, norepinephrine, epinephrine, serotonin, adenosine, and acetylcholine if injected at the beginning of the lights-on period whereas GSK-J1 exerted similar outcomes but when administered at darkness. In summary, DZNep and GSK-J1 may control the sleep-wake cycle and sleep-related neurochemicals through histone methylation/demethylation activity.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Mexico.,Intercontinental Neuroscience Research Group, Mérida, Mexico
| | - Gloria Arankowsky-Sandoval
- Centro de Investigaciones Regionales "Dr. Hideyo Noguchi" Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Jorge Aparecido Barros
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Post-graduation Program of Psychology of Health, NACNeuro, Dom Bosco Catholic University, Campo Grande, Mato Grosso del Sur, Brazil
| | - Nuno Barbosa Rocha
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,School of Health, Polytechnic Institute of Porto, Porto, Portugal
| | - Tetsuya Yamamoto
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Sérgio Machado
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Laboratory of Physical Activity Neuroscience, Physical Activity Sciences Postgraduate Program, Salgado de Oliveira University, Niterói, Brazil
| | - Henning Budde
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany.,Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Diogo Telles-Correia
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,University of Lisbon, Faculty of Medicine, Lisbon, Portugal
| | - Diogo Monteiro
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Sport Science School of Rio Maior- Polytechnic Institute of Santarém, Rio Maior, Portugal.,Research Center in Sport, Health and Human Development-CIDESD, Vila Real, Portugal
| | - Luis Cid
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Sport Science School of Rio Maior- Polytechnic Institute of Santarém, Rio Maior, Portugal.,Research Center in Sport, Health and Human Development-CIDESD, Vila Real, Portugal
| | - André Barciela Veras
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Post-graduation Program of Psychology of Health, NACNeuro, Dom Bosco Catholic University, Campo Grande, Mato Grosso del Sur, Brazil
| |
Collapse
|
41
|
Rivas L, Rojas V. Cyanobacterial peptides as a tour de force in the chemical space of antiparasitic agents. Arch Biochem Biophys 2019; 664:24-39. [PMID: 30707942 DOI: 10.1016/j.abb.2019.01.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/22/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
Abstract
Parasites are scarcely addressed target for antimicrobial peptides despite their big impact in health and global economy. The notion of antimicrobial peptides is frequently associated to the innate immune defense of vertebrates and invertebrate vectors, as the ultimate recipients of the parasite infection. These antiparasite peptides are produced by ribosomal synthesis, with few post-translational modifications, and their diversity come mostly from their amino acid sequence. For many of them permeabilization of the cell membrane of the targeted pathogen is crucial for their microbicidal mechanism. In contrast, cyanobacterial peptides are produced either by ribosomal or non-ribosomal biosynthesis. Quite often, they undergo heavy modifications, such as the inclusion of non-proteinogenic amino acids, lipid acylation, cyclation, Nα-methylation, or heterocyclic rings. Furthermore, the few targets identified for cyanobacterial peptides in parasites are intracellular. Some cyanobacterial antiparasite peptides are active at picomolar concentrations, whereas those from higher eukaryotes usually work in the micromolar range. In all, cyanobacterial peptides are an appealing target to develop new antiparasite therapies and a challenge in the invention of new synthetic methods for peptides. This review aims to provide an updated appraisal of antiparasite cyanobacterial peptides and to establish a side-by -side comparison with those antiparasite peptides from higher eukaryotes.
Collapse
Affiliation(s)
- Luis Rivas
- Centro de Investigaciones Biológicas (C.S.I.C), c/ Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Verónica Rojas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Campus Curauma, Curauma, Valparaíso, Chile.
| |
Collapse
|
42
|
Gurova KV. Chromatin Stability as a Target for Cancer Treatment. Bioessays 2019; 41:e1800141. [PMID: 30566250 PMCID: PMC6522245 DOI: 10.1002/bies.201800141] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/29/2018] [Indexed: 12/14/2022]
Abstract
In this essay, I propose that DNA-binding anti-cancer drugs work more via chromatin disruption than DNA damage. Success of long-awaited drugs targeting cancer-specific drivers is limited by the heterogeneity of tumors. Therefore, chemotherapy acting via universal targets (e.g., DNA) is still the mainstream treatment for cancer. Nevertheless, the problem with targeting DNA is insufficient efficacy due to high toxicity. I propose that this problem stems from the presumption that DNA damage is critical for the anti-cancer activity of these drugs. DNA in cells exists as chromatin, and many DNA-targeting drugs alter chromatin structure by destabilizing nucleosomes and inducing histone eviction from chromatin. This effect has been largely ignored because DNA damage is seen as the major reason for anti-cancer activity. I discuss how DNA-binding molecules destabilize chromatin, why this effect is more toxic to tumoral than normal cells, and why cells die as a result of chromatin destabilization.
Collapse
Affiliation(s)
- Katerina V Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263. Tel 1-716-845-4760,
| |
Collapse
|
43
|
Loo Yau H, Ettayebi I, De Carvalho DD. The Cancer Epigenome: Exploiting Its Vulnerabilities for Immunotherapy. Trends Cell Biol 2019; 29:31-43. [DOI: 10.1016/j.tcb.2018.07.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 01/06/2023]
|
44
|
Ghayad SE, Rammal G, Sarkis O, Basma H, Ghamloush F, Fahs A, Karam M, Harajli M, Rabeh W, Mouawad JE, Zalzali H, Saab R. The histone deacetylase inhibitor Suberoylanilide Hydroxamic Acid (SAHA) as a therapeutic agent in rhabdomyosarcoma. Cancer Biol Ther 2018; 20:272-283. [PMID: 30307360 DOI: 10.1080/15384047.2018.1529093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is an aggressive childhood sarcoma with two distinct subtypes, embryonal (ERMS) and alveolar (ARMS) histologies. More effective treatment is needed to improve outcomes, beyond conventional cytotoxic chemotherapy. The pan-histone deacetylase inhibitor, Suberoylanilide Hydroxamic Acid (SAHA), has shown promising efficacy in limited preclinical studies. We used a panel of human ERMS and ARMS cell lines and xenografts to evaluate the effects of SAHA as a therapeutic agent in both RMS subtypes. SAHA decreased cell viability by inhibiting S-phase progression in all cell lines tested, and induced apoptosis in all but one cell line. Molecularly, SAHA-treated cells showed activation of a DNA damage response, induction of the cell cycle inhibitors p21Cip1 and p27Kip1 and downregulation of Cyclin D1. In a subset of RMS cell lines, SAHA promoted features of cellular senescence and myogenic differentiation. Interestingly, SAHA treatment profoundly decreased protein levels of the driver fusion oncoprotein PAX3-FOXO1 in ARMS cells at a post-translational level. In vivo, SAHA-treated xenografts showed increased histone acetylation and induction of a DNA damage response, along with variable upregulation of p21Cip1 and p27Kip1. However, while the ARMS Rh41 xenograft tumor growth was significantly inhibited, there was no significant inhibition of the ERMS tumor xenograft RD. Thus, our work shows that, while SAHA is effective against ERMS and ARMS tumor cells in vitro, it has divergent in vivo effects . Together with the observed effects on the PAX3-FOXO1 fusion protein, these data suggest SAHA as a possible therapeutic agent for clinical testing in patients with fusion protein-positive RMS.
Collapse
Affiliation(s)
- Sandra E Ghayad
- a Department of Biology, Faculty of Science II , Lebanese University , Fanar , Lebanon
| | - Ghina Rammal
- a Department of Biology, Faculty of Science II , Lebanese University , Fanar , Lebanon.,b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Omar Sarkis
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Hussein Basma
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Farah Ghamloush
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Assil Fahs
- a Department of Biology, Faculty of Science II , Lebanese University , Fanar , Lebanon
| | - Mia Karam
- a Department of Biology, Faculty of Science II , Lebanese University , Fanar , Lebanon
| | - Mohamad Harajli
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Wissam Rabeh
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Joe E Mouawad
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Hassan Zalzali
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Raya Saab
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon.,c Department of Anatomy, Cell Biology and Physiology , American University of Beirut , Beirut , Lebanon
| |
Collapse
|