1
|
Kim J, Lim CM, Kim N, Kim HG, Hong JT, Yang Y, Yoon DY. Mutated IL-32θ (A94V) inhibits COX2, GM-CSF and CYP1A1 through AhR/ARNT and MAPKs/NF-κB/AP-1 in keratinocytes exposed to PM 10. Sci Rep 2025; 15:1994. [PMID: 39814789 PMCID: PMC11735608 DOI: 10.1038/s41598-024-83159-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/11/2024] [Indexed: 01/18/2025] Open
Abstract
Exposure to particulate matter (PM) in the air harms human health. Most studies on particulate matter's (PM) effects have primarily focused on respiratory and cardiovascular diseases. Recently, IL-32θ, one of the IL-32 isoforms, has been demonstrated to modulate cancer development and inflammatory responses. This study revealed that one-point mutated IL-32θ (A94V) plays an important role in attenuating skin inflammation. IL-32θ (A94V) inhibited PM-induced COX-2, a pro-inflammatory cytokine GM-CSF and CYP1A1 in PM-exposed human keratinocytes HaCaT cells. IL-32θ (A94V) modulating effects were mediated via down-regulating ERK/p38/NF-κB/ AP-1 and AhR/ARNT signaling pathways. Our study indicates that PM triggers skin inflammation by upregulating COX-2, GM-CSF and CYP1A1 expression. IL-32θ (A94V) suppresses the expressions of COX-2, GM-CSF, and CYP1A1 by blocking the nuclear translocation of NF-κB and AP-1, as well as inhibiting the activation of the AhR/ARNT signaling pathway. Our findings offer valuable insights into developing therapeutic strategies and potential drugs to mitigate PM-induced skin inflammation by inhibiting the ERK/p38/NF-κB/AP-1 and AhR/ARNT signaling pathways.
Collapse
Affiliation(s)
- Jinju Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Chae-Min Lim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Nahyun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hong-Gyum Kim
- Boson Bioscience, Cheongju, 28161, Chungbuk, Republic of Korea
| | - Jin-Tae Hong
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Young Yang
- Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
2
|
Kim J, Park HM, Lim CM, Jeon KB, Kim S, Lee J, Hong JT, Oh DK, Yang Y, Yoon DY. Specialized pro-resolving mediator 7S MaR1 inhibits IL-6 expression via modulating ROS/p38/ERK/NF-κB pathways in PM 10-exposed keratinocytes. BMB Rep 2024; 57:490-496. [PMID: 39384176 PMCID: PMC11608853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 10/11/2024] Open
Abstract
Keratinocytes are susceptible to airborne particulate matter (PM) exposure, resulting in human skin barrier dysfunction. Therefore, it is important to find useful reagents to resolve skin damages caused by PM. Here, we explored the protective effect of 7S MaR1, a specialized pro-resolving mediator derived from docosahexaenoic acid, on skin inflammation and the oxidative stress induced by PM with a diameter 10 μm or less (PM10) in human keratinocyte HaCaT cells. Interestingly, PM10-induced ROS generation was modulated by 7S MaR1 via the recovery of ROS scavenger genes. 7S MaR1 reduced PM10-induced IL-6 expression via modulating the p38/ERK/NF-κB signaling pathways. These results demonstrate that PM10 induces inflammatory cytokines, which can lead to skin diseases. In addition, 7S MaR1 can resolve inflammation caused by PM10-induced oxidative stress and inflammatory cytokines. [BMB Reports 2024; 57(11): 490-496].
Collapse
Affiliation(s)
- Jinju Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Sookmyung Women
| | - Hyo-Min Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Sookmyung Women
| | - Chae-Min Lim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Sookmyung Women
| | - Kyeong-Bae Jeon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Sookmyung Women
| | - Seonhwa Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Sookmyung Women
| | - Jin Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Sookmyung Women
| | - Jin-Tae Hong
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju 28160, Sookmyung Women
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Sookmyung Women
| | - Young Yang
- Department of Biological Science, Sookmyung Women
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Sookmyung Women
| |
Collapse
|
3
|
Ferrara F, Yan X, Pecorelli A, Guiotto A, Colella S, Pasqui A, Lynch S, Ivarsson J, Anderias S, Choudhary H, White S, Valacchi G. Combined exposure to UV and PM affect skin oxinflammatory responses and it is prevented by antioxidant mix topical application: Evidences from clinical study. J Cosmet Dermatol 2024; 23:2644-2656. [PMID: 38590207 DOI: 10.1111/jocd.16321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Exposure to environmental stressors like particulate matter (PM) and ultraviolet radiation (UV) induces cutaneous oxidative stress and inflammation and leads to skin barrier dysfunction and premature aging. Metals like iron or copper are abundant in PM and are known to contribute to reactive oxygen species (ROS) production. AIMS Although it has been suggested that topical antioxidants may be able to help in preventing and/or reducing outdoor skin damage, limited clinical evidence under real-life exposure conditions have been reported. The aim of the present study was to evaluate the ability of a topical serum containing 15% ascorbic acid, 0.5% ferulic acid, and 1% tocopherol (CF Mix) to prevent oxinflammatory skin damage and premature aging induced by PM + UV in a human clinical trial. METHODS A 4-day single-blinded, clinical study was conducted on the back of 15 females (18-40 years old). During the 4 consecutive days, the back test zones were treated daily with or without the CF Mix, followed by with/without 2 h of PM and 5 min of UV daily exposure. RESULTS Application of the CF Mix prevented PM + UV-induced skin barrier perturbation (Involucrin and Loricrin), lipid peroxidation (4HNE), inflammatory markers (COX2, NLRP1, and AhR), and MMP9 activation. In addition, CF Mix was able to prevent Type I Collagen loss. CONCLUSION This is the first human study confirming multipollutant cutaneous damage and suggesting the utility of a daily antioxidant topical application to prevent pollution induced skin damage.
Collapse
Affiliation(s)
- Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Xi Yan
- L'Oréal Research and Innovation, Clark, New Jersey, USA
| | - Alessandra Pecorelli
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Anna Guiotto
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Sante Colella
- Department of Biotechnology, Chemistry and Pharmaceutical Sciences, University of Siena, Siena, Italy
| | | | - Stephen Lynch
- L'Oréal Research and Innovation, Clark, New Jersey, USA
| | - John Ivarsson
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA
| | - Sara Anderias
- L'Oréal Research and Innovation, Clark, New Jersey, USA
| | | | | | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
4
|
Gu X, Li Z, Su J. Air pollution and skin diseases: A comprehensive evaluation of the associated mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116429. [PMID: 38718731 DOI: 10.1016/j.ecoenv.2024.116429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Air pollutants deteriorate the survival environment and endanger human health around the world. A large number of studies have confirmed that air pollution jeopardizes multiple organs, such as the cardiovascular, respiratory, and central nervous systems. Skin is the largest organ and the first barrier that protects us from the outside world. Air pollutants such as particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs) will affect the structure and function of the skin and bring about the development of inflammatory skin diseases (atopic dermatitis (AD), psoriasis), skin accessory diseases (acne, alopecia), auto-immune skin diseases (cutaneous lupus erythematosus(CLE) scleroderma), and even skin tumors (melanoma, basal cell carcinoma (BCC), squamous-cell carcinoma (SCC)). Oxidative stress, skin barrier damage, microbiome dysbiosis, and skin inflammation are the pathogenesis of air pollution stimulation. In this review, we summarize the current evidence on the effects of air pollution on skin diseases and possible mechanisms to provide strategies for future research.
Collapse
Affiliation(s)
- Xiaoyu Gu
- Department of Dermatology | Hunan Engineering Research Center of Skin Health and Disease | Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, China; Furong Laboratory, Changsha, Hunan 410008, China
| | - Zhengrui Li
- XiangYa School of Medicine, Central South University, Changsha 410008, China
| | - Juan Su
- Department of Dermatology | Hunan Engineering Research Center of Skin Health and Disease | Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, China; Furong Laboratory, Changsha, Hunan 410008, China.
| |
Collapse
|
5
|
Sarandy MM, Gonçalves RV, Valacchi G. Cutaneous Redox Senescence. Biomedicines 2024; 12:348. [PMID: 38397950 PMCID: PMC10886899 DOI: 10.3390/biomedicines12020348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Our current understanding of skin cell senescence involves the role of environmental stressors (UV, O3, cigarette smoke, particulate matter, etc.), lifestyle (diet, exercise, etc.) as well as genetic factors (metabolic changes, hormonal, etc.). The common mechanism of action of these stressors is the disturbance of cellular redox balance characterized by increased free radicals and reactive oxygen species (ROS), and when these overload the intrinsic antioxidant defense system, it can lead to an oxidative stress cellular condition. The main redox mechanisms that activate cellular senescence in the skin involve (1) the oxidative damage of telomeres causing their shortening; (2) the oxidation of proteomes and DNA damage; (3) an a in lysosomal mass through the increased activity of resident enzymes such as senescence-associated β-galactosidase (SA-β-gal) as well as other proteins that are products of lysosomal activity; (4) and the increased expression of SASP, in particular pro-inflammatory cytokines transcriptionally regulated by NF-κB. However, the main targets of ROS on the skin are the proteome (oxi-proteome), followed by telomeres, nucleic acids (DNAs), lipids, proteins, and cytoplasmic organelles. As a result, cell cycle arrest pathways, lipid peroxidation, increased lysosomal content and dysfunctional mitochondria, and SASP synthesis occur. Furthermore, oxidative stress in skin cells increases the activity of p16INK4A and p53 as inhibitors of Rb and CDks, which are important for maintaining the cell cycle. p53 also promotes the inactivation of mTOR-mediated autophagic and apoptotic pathways, leading to senescence. However, these markers alone cannot establish the state of cellular senescence, and multiple analyses are encouraged for confirmation. An updated and more comprehensive approach to investigating skin senescence should include further assays of ox-inflammatory molecular pathways that can consolidate the understanding of cutaneous redox senescence.
Collapse
Affiliation(s)
- Mariáurea Matias Sarandy
- Department of Animal Science, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | - Reggiani Vilela Gonçalves
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
- Department of Animal Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | - Giuseppe Valacchi
- Department of Animal Science, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA
- Department of Environment and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Chao L, Feng B, Liang H, Zhao X, Song J. Particulate matter and inflammatory skin diseases: From epidemiological and mechanistic studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167111. [PMID: 37716690 DOI: 10.1016/j.scitotenv.2023.167111] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Epidemiological and toxicological studies have confirmed that exposure to atmospheric particulate matter (PM) could affect our cardiovascular and respiratory systems. Recent studies have shown that PM can penetrate the skin and cause skin inflammation, but the evidence is limited and contradictory. As the largest outermost surface of the human body, the skin is constantly exposed to the environment. The aim of this study was to assess the relationship between PM and inflammatory skin diseases. Most epidemiological studies have provided positive evidence for outdoor, indoor, and wildfire PM and inflammatory skin diseases. The effects of PM exposure during pregnancy and inflammatory skin diseases in offspring are heterogeneous. Skin barrier dysfunction, Oxidative stress, and inflammation may play a critical role in the underlying mechanisms. Finally, we summarize some interventions to alleviate PM-induced inflammatory skin diseases, which may contribute to public health welfare. Overall, PM is related to inflammatory skin diseases via skin barrier dysfunction, oxidative stress, and inflammation. Appropriate government interventions are beneficial.
Collapse
Affiliation(s)
- Ling Chao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Bin Feng
- Environmental Health Section, Xinxiang Health Technology Supervision Center, School of Management, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Haiyan Liang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Xiangmei Zhao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
7
|
Ivarsson J, Ferrara F, Vallese A, Guiotto A, Colella S, Pecorelli A, Valacchi G. Comparison of Pollutant Effects on Cutaneous Inflammasomes Activation. Int J Mol Sci 2023; 24:16674. [PMID: 38068996 PMCID: PMC10706824 DOI: 10.3390/ijms242316674] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
The skin is the outermost layer of the body and, therefore, is exposed to a variety of stressors, such as environmental pollutants, known to cause oxinflammatory reactions involved in the exacerbation of several skin conditions. Today, inflammasomes are recognized as important modulators of the cutaneous inflammatory status in response to air pollutants and ultraviolet (UV) light exposure. In this study, human skin explants were exposed to the best-recognized air pollutants, such as microplastics (MP), cigarette smoke (CS), diesel engine exhaust (DEE), ozone (O3), and UV, for 1 or 4 days, to explore how each pollutant can differently modulate markers of cutaneous oxinflammation. Exposure to environmental pollutants caused an altered oxidative stress response, accompanied by increased DNA damage and signs of premature skin aging. The effect of specific pollutants being able to exert different inflammasomes pathways (NLRP1, NLRP3, NLRP6, and NLRC4) was also investigated in terms of scaffold formation and cell pyroptosis. Among all environmental pollutants, O3, MP, and UV represented the main pollutants affecting cutaneous redox homeostasis; of note, the NLRP1 and NLRP6 inflammasomes were the main ones modulated by these outdoor stressors, suggesting their role as possible molecular targets in preventing skin disorders and the inflammaging events associated with environmental pollutant exposure.
Collapse
Affiliation(s)
- John Ivarsson
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA;
| | - Francesca Ferrara
- Department of Chemical, Pharmaceuticals and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Andrea Vallese
- Department of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA; (A.V.); (A.G.); (A.P.)
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Anna Guiotto
- Department of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA; (A.V.); (A.G.); (A.P.)
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Sante Colella
- Department of Biotechnology, Chemistry and Pharmaceutical Sciences, University of Siena, 53100 Siena, Italy;
| | - Alessandra Pecorelli
- Department of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA; (A.V.); (A.G.); (A.P.)
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA; (A.V.); (A.G.); (A.P.)
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 26723, Republic of Korea
| |
Collapse
|
8
|
Ferrara F, Pecorelli A, Valacchi G. Redox Regulation of Nucleotide-Binding and Oligomerization Domain-Like Receptors Inflammasome. Antioxid Redox Signal 2023; 39:744-770. [PMID: 37440315 DOI: 10.1089/ars.2022.0180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Significance: Inflammasomes are multimeric complexes that, as part of the innate immune response, sense a wide range of pathogenic and sterile stimuli. They consist of three components, namely a sensor protein, an adaptor, and procaspase-1, which once activated result in secretion of proinflammatory interleukin (IL)-1β and IL-18 and, eventually, in a gasdermin D-dependent lytic cell death called pyroptosis. Recent Advances: Since their discovery 20 years ago, the molecular mechanisms underlying the regulation of inflammasomes have been extensively studied. Oxidative stress appears as a major contributor to modulate inflammasomes, especially NLRP3 as well as NLRP1, NLRP6, and NLRC4. Growing evidence supports the idea that the positive feedback between redox imbalance and inflammasome-driven inflammation fuels an OxInflammatory state in a variety of human pathologies. Critical Issues: The current knowledge about the redox signaling pathways involved in inflammasomes activation and functions are here highlighted. In addition, we discuss the role of this complex molecular network interaction in the onset and progression of pathological conditions including neurological and metabolic diseases as well as skin disorders, also with an insight on COVID-19-related pathology. Finally, the therapeutic strategies able to mitigate the redox-mediated inflammasome activation with synthetic and natural compounds as well as by acting on inflammasome-related post-translational modifications and microRNAs are also addressed. Future Directions: Further investigations leading to a deeper understanding of the reciprocal interaction between inflammasomes and reactive oxygen species will help identify other molecular targets for modulating their hyperactivated state, and to design novel therapeutics for chronic OxInflammatory conditions. Antioxid. Redox Signal. 39, 744-770.
Collapse
Affiliation(s)
- Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
- Plants for Human Health Institute, Animal Science Dept., North Carolina State University, Kannapolis, North Carolina, USA
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
- Plants for Human Health Institute, Animal Science Dept., North Carolina State University, Kannapolis, North Carolina, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Benedusi M, Kerob D, Guiotto A, Cervellati F, Ferrara F, Pambianchi E. Topical Application of M89PF Containing Vichy Mineralising Water and Probiotic Fractions Prevents Cutaneous Damage Induced by Exposure to UV and O 3. Clin Cosmet Investig Dermatol 2023; 16:1769-1776. [PMID: 37448587 PMCID: PMC10337690 DOI: 10.2147/ccid.s414011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Purpose Exposure of the skin to ultraviolet radiation (UV) or ozone (O3) results in stressed skin, leading to the alteration of the skin physical barrier and defence functions. In this work, the preventive benefit of a dermocosmetic, M89PF, containing Vichy mineralising water, probiotic fractions, antioxidant vitamins and hyaluronic acid, in the alteration of skin physical barrier and skin defence functions after exposure to O3 and UV, alone or combined, was assessed. Methods Untreated and treated (M89PF) skin explants were exposed to O3, to UV rays or to O3+UV. Immunofluorescence was performed for skin barrier, oxidative stress, and inflammatory markers after one and four days of exposure to the pollutants. Results M89PF significantly (p≤0.05) prevented the decrease of the expression level of different skin barrier markers, and significantly (p≤0.05) prevented the induction of OxInflammatory markers and inflammasome components by UV, O3, or both combined. Conclusion M89PF prevents skin barrier damage, as well as oxidative stress and inflammatory markers induced by exposome factors, such as UV, O3, or both combined.
Collapse
Affiliation(s)
- Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Anna Guiotto
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Franco Cervellati
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Erika Pambianchi
- North Carolina Research Campus, Plants for Human Health Institute, Animal Science, North Carolina State University, Kannapolis, NC, 28081, USA
| |
Collapse
|
10
|
Pająk J, Nowicka D, Szepietowski JC. Inflammaging and Immunosenescence as Part of Skin Aging-A Narrative Review. Int J Mol Sci 2023; 24:7784. [PMID: 37175491 PMCID: PMC10178737 DOI: 10.3390/ijms24097784] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Inflammaging and immunosenescence are associated with aging of the human body, but there are key differences between them. Immunosenescence aims to adapt the body systems to aging, while inflammaging is considered a consequence of immunosenescence. There has been much research in the area of immunosenescence and inflammaging recently, yet our understanding of aging and the ability to develop interventions to decrease the harmful effect of aging on the human body is insufficient. This review is focused on immunosenescence and inflammaging processes in the skin. We aimed to identify factors that influence inflammaging, skin aging, and their mechanisms. We discussed the role of triggering factors (e.g., UV radiations, changes in bioavailability of nitric oxide, senescence-associated secretory phenotype factors, and reactive oxygen species) and inhibiting factors that can potentially be used as anti-aging treatments, as well as the idea of geroprotectors and senotherapeutics. We concluded that while knowledge on external factors can help people to improve their health conditions, knowledge on biochemical factors can help researchers to understand inflammaging process and develop interventions to minimize the impact of aging on the human body. Further research is needed to better understand the role of factors that can slow down or accelerate inflammaging.
Collapse
Affiliation(s)
| | - Danuta Nowicka
- Department of Dermatology, Venereology and Allergology, Wrocław Medical University, 50-368 Wrocław, Poland
| | | |
Collapse
|
11
|
Kim SY, Sapkota A, Bae YJ, Choi SH, Bae HJ, Kim HJ, Cho YE, Choi YY, An JY, Cho SY, Hong SH, Choi JW, Park SJ. The Anti-Atopic Dermatitis Effects of Mentha arvensis Essential Oil Are Involved in the Inhibition of the NLRP3 Inflammasome in DNCB-Challenged Atopic Dermatitis BALB/c Mice. Int J Mol Sci 2023; 24:ijms24097720. [PMID: 37175425 PMCID: PMC10177797 DOI: 10.3390/ijms24097720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The NLRP3 inflammasome is upregulated by various agents, such as nuclear factor-kappa B (NF-κB), lipopolysaccharide (LPS), and adenosine triphosphate (ATP). The NLRP3 inflammasome facilitations the maturation of interleukin (IL)-1β, a proinflammatory cytokine that is critically involved in the pathogenesis of atopic dermatitis (AD). Although the NLRP3 inflammasome clearly exacerbates AD symptoms such as erythema and pruritus, drugs for AD patients targeting the NLRP3 inflammasome are still lacking. Based on the previous findings that Mentha arvensis essential oil (MAEO) possesses strong anti-inflammatory and anti-AD properties through its inhibition of the ERK/NF-κB signaling pathway, we postulated that MAEO might be capable of modulating the NLRP3 inflammasome in AD. The aim of this research was to investigate whether MAEO affects the inhibition of NLRP3 inflammasome activation in murine bone marrow-derived macrophages (BMDMs) stimulated with LPS + ATP in vitro and in a murine model displaying AD-like symptoms induced by 2,4-dinitrochlorobenzene (DNCB) in vivo. We found that MAEO inhibited the expression of NLRP3 and caspase-1, leading to the suppression of NLRP3 inflammasome activation and IL-1β production in BMDMs stimulated with LPS + ATP. In addition, MAEO exhibited efficacy in ameliorating AD symptoms in a murine model induced by DNCB, as indicated by the reduction in dermatitis score, ear thickness, transepidermal water loss (TEWL), epidermal thickness, and immunoglobulin E (IgE) levels. Furthermore, MAEO attenuated the recruitment of NLRP3-expressing macrophages and NLRP3 inflammasome activation in murine dorsal skin lesions induced by DNCB. Overall, we provide evidence for the anti-AD effects of MAEO via inhibition of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- So-Yeon Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Arjun Sapkota
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Young Joo Bae
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Seung-Hyuk Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ho Jung Bae
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun-Jeong Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ye Eun Cho
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yu-Yeong Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ju-Yeon An
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - So-Young Cho
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sun Hee Hong
- School of Applied Science in Natural Resources & Environment, Hankyong National University, Anseong 17579, Republic of Korea
| | - Ji Woong Choi
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Se Jin Park
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
12
|
Tran PT, Beidoun B, Lohan SB, Talbi R, Kleuser B, Seifert M, Jung K, Sandig G, Meinke MC. Establishment of a method to expose and measure pollution in excised porcine skin with electron paramagnetic resonance spectroscopy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114258. [PMID: 36343452 DOI: 10.1016/j.ecoenv.2022.114258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Health problems associated with the amount of air pollutants are increasing worldwide. Pollution damages not only the lungs; it also has an impact on skin health and is co-responsible for the development of skin diseases. Anti-pollution products are on the rise in the cosmetic market but so far, there is no established method to directly assess the impact of pollution on the skin and to test the efficacy of anti-pollution products. To address this problem, two different chambers were developed for the reproducible exposure to realistic air pollutant concentrations. One chamber for the exclusive use of excised skin and hair samples, the second chamber for ex vivo and in vivo measurements. Measurements of nicotine next to the investigated skin area allow conclusions to be drawn on the particle concentration to which the skin is exposed. Electron paramagnetic resonance spectroscopy, which enables the detection of free radicals in different systems, was applied to assess the hazard potential of pollution in the skin. A direct proof of the formation of free radicals in the skin by the model pollutant cigarette smoke could be demonstrated. An additional application of UV irradiation even increased the formation of free radicals in the skin seven-fold (sum parameter). Depending on the question of interest, the use of different spin probes allows various assessments of the radical formation in skin: the amount of radicals but also the antioxidant status of the microenvironment can be estimated. Using two exposure chambers, the direct formation of oxidative stress by cigarette smoke on ex vivo skin, with and without additional UV exposure, could be reproducibly examined. This measurement method is promising for the assessment of anti-pollution products and could allow a direct causal connection between pollutant, effect on the skin and the protective function of skin care products.
Collapse
Affiliation(s)
- Phuong Thao Tran
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Institute of Pharmacy, Department of Pharmacology, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Batoul Beidoun
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Berliner Hochschule für Technik Berlin, Luxemburger Straße 10 in, 13353 Berlin, Germany
| | - Silke B Lohan
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Rajae Talbi
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Berliner Hochschule für Technik Berlin, Luxemburger Straße 10 in, 13353 Berlin, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Department of Pharmacology, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | | | | | - Grit Sandig
- Gematria Test Lab GmbH, 13187 Berlin, Germany
| | - Martina C Meinke
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
13
|
Ferrara F, Cordone V, Pecorelli A, Benedusi M, Pambianchi E, Guiotto A, Vallese A, Cervellati F, Valacchi G. Ubiquitination as a key regulatory mechanism for O 3-induced cutaneous redox inflammasome activation. Redox Biol 2022; 56:102440. [PMID: 36027676 PMCID: PMC9425076 DOI: 10.1016/j.redox.2022.102440] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 10/26/2022] Open
Abstract
NLRP1 is one of the major inflammasomes modulating the cutaneous inflammatory responses and therefore linked to a variety of cutaneous conditions. Although NLRP1 has been the first inflammasome to be discovered, only in the past years a significant progress was achieved in understanding the molecular mechanism and the stimuli behind its activation. In the past decades a crescent number of studies have highlighted the role of air pollutants as Particulate Matter (PM), Cigarette Smoke (CS) and Ozone (O3) as trigger stimuli for inflammasomes activation, especially via Reactive Oxygen Species (ROS) mediators. However, whether NLRP1 can be modulated by air pollutants via oxidative stress and the mechanism behind its activation is still poorly understood. Here we report for the first time that O3, one of the most toxic pollutants, activates the NLRP1 inflammasome in human keratinocytes via oxidative stress mediators as hydrogen peroxide (H2O2) and 4-hydroxy-nonenal (4HNE). Our data suggest that NLRP1 represents a target protein for 4HNE adduction that possibly leads to its proteasomal degradation and activation via the possible involvement of E3 ubiquitin ligase UBR2. Of note, Catalase (Cat) treatment prevented inflammasome assemble and inflammatory cytokines release as well as NLRP1 ubiquitination in human keratinocytes upon O3 exposure. The present work is a mechanistic study that follows our previous work where we have showed the ability of O3 to induce cutaneous inflammasome activation in humans exposed to this pollutant. In conclusion, our results suggest that O3 triggers the cutaneous NLRP1 inflammasome activation by ubiquitination and redox mechanism.
Collapse
Affiliation(s)
- Francesca Ferrara
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Valeria Cordone
- Dept. of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus, NC State University, Kannapolis, NC, USA
| | - Mascia Benedusi
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Erika Pambianchi
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus, NC State University, Kannapolis, NC, USA.
| | - Anna Guiotto
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus, NC State University, Kannapolis, NC, USA
| | - Andrea Vallese
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Franco Cervellati
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus, NC State University, Kannapolis, NC, USA; Dept. of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy; Dept. of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Farris PK, Valacchi G. Ultraviolet Light Protection: Is It Really Enough? Antioxidants (Basel) 2022; 11:1484. [PMID: 36009203 PMCID: PMC9405175 DOI: 10.3390/antiox11081484] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Our current understanding of the pathogenesis of skin aging includes the role of ultraviolet light, visible light, infrared, pollution, cigarette smoke and other environmental exposures. The mechanism of action common to these exposures is the disruption of the cellular redox balance by the directly or indirectly increased formation of reactive oxygen species that overwhelm the intrinsic antioxidant defense system, resulting in an oxidative stress condition. Altered redox homeostasis triggers downstream pathways that contribute to tissue oxinflammation (cross-talk between inflammation and altered redox status) and accelerate skin aging. In addition, both ultraviolet light and pollution increase intracellular free iron that catalyzes reactive oxygen species generation via the Fenton reaction. This disruption of iron homeostasis within the cell further promotes oxidative stress and contributes to extrinsic skin aging. More recent studies have demonstrated that iron chelators can be used topically and can enhance the benefits of topically applied antioxidants. Thus, an updated, more comprehensive approach to environmental or atmospheric aging protection should include sun protective measures, broad spectrum sunscreens, antioxidants, chelating agents, and DNA repair enzymes.
Collapse
Affiliation(s)
- Patricia K. Farris
- Department of Dermatology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, I-44121 Ferrara, Italy
- Animal Science Department, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Food and Nutrition, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Korea
| |
Collapse
|
15
|
Snell JA, Jandova J, Wondrak GT. Hypochlorous Acid: From Innate Immune Factor and Environmental Toxicant to Chemopreventive Agent Targeting Solar UV-Induced Skin Cancer. Front Oncol 2022; 12:887220. [PMID: 35574306 PMCID: PMC9106365 DOI: 10.3389/fonc.2022.887220] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
A multitude of extrinsic environmental factors (referred to in their entirety as the 'skin exposome') impact structure and function of skin and its corresponding cellular components. The complex (i.e. additive, antagonistic, or synergistic) interactions between multiple extrinsic (exposome) and intrinsic (biological) factors are important determinants of skin health outcomes. Here, we review the role of hypochlorous acid (HOCl) as an emerging component of the skin exposome serving molecular functions as an innate immune factor, environmental toxicant, and topical chemopreventive agent targeting solar UV-induced skin cancer. HOCl [and its corresponding anion (OCl-; hypochlorite)], a weak halogen-based acid and powerful oxidant, serves two seemingly unrelated molecular roles: (i) as an innate immune factor [acting as a myeloperoxidase (MPO)-derived microbicidal factor] and (ii) as a chemical disinfectant used in freshwater processing on a global scale, both in the context of drinking water safety and recreational freshwater use. Physicochemical properties (including redox potential and photon absorptivity) determine chemical reactivity of HOCl towards select biochemical targets [i.e. proteins (e.g. IKK, GRP78, HSA, Keap1/NRF2), lipids, and nucleic acids], essential to its role in innate immunity, antimicrobial disinfection, and therapeutic anti-inflammatory use. Recent studies have explored the interaction between solar UV and HOCl-related environmental co-exposures identifying a heretofore unrecognized photo-chemopreventive activity of topical HOCl and chlorination stress that blocks tumorigenic inflammatory progression in UV-induced high-risk SKH-1 mouse skin, a finding with potential implications for the prevention of human nonmelanoma skin photocarcinogenesis.
Collapse
Affiliation(s)
| | | | - Georg T. Wondrak
- Department of Pharmacology and Toxicology, R.K. Coit College of Pharmacy & UA Cancer Center, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
16
|
Bellinato F, Adami G, Vaienti S, Benini C, Gatti D, Idolazzi L, Fassio A, Rossini M, Girolomoni G, Gisondi P. Association Between Short-term Exposure to Environmental Air Pollution and Psoriasis Flare. JAMA Dermatol 2022; 158:375-381. [PMID: 35171203 PMCID: PMC8851365 DOI: 10.1001/jamadermatol.2021.6019] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
IMPORTANCE Psoriasis is a chronic inflammatory disease with a relapsing-remitting course. Selected environmental factors such as infections, stressful life events, or drugs may trigger disease flares. Whether air pollution could trigger psoriasis flares is still unknown. OBJECTIVE To investigate whether short-term exposure to environmental air pollution is associated with psoriasis flares. DESIGN, SETTING, AND PARTICIPANTS This observational study with both case-crossover and cross-sectional design retrospectively analyzed longitudinal data from September 2013 to January 2020 from patients with chronic plaque psoriasis consecutively attending the outpatient dermatologic clinic of the University Hospital of Verona. For the case-crossover analysis, patients were included who had at least 1 disease flare, defined as Psoriasis Area and Severity Index (PASI) increase of 5 or greater between 2 consecutive assessments in a time frame of 3 to 4 months. For the cross-sectional analysis, patients were included who received any systemic treatment for 6 or more months, with grade 2 or higher consecutive PASI assessment. MAIN OUTCOMES AND MEASURES We compared the mean and cumulative (area under the curve) concentrations of several air pollutants (carbon monoxide, nitrogen dioxide, other nitrogen oxides, benzene, coarse particulate matter [PM; 2.5-10.0 μm in diameter, PM10] and fine PM [<2.5 μm in diameter, PM2.5]) in the 60 days preceding the psoriasis flare and the control visits. RESULTS A total of 957 patients with plaque psoriasis with 4398 follow-up visits were included in the study. Patients had a mean (SD) age of 61 (15) years and 602 (62.9%) were men. More than 15 000 measurements of air pollutant concentration from the official, open-source bulletin of the Italian Institute for Environmental Protection and Research (ISPRA) were retrieved. Among the overall cohort, 369 (38.6%) patients with psoriasis flare were included in the case-crossover study. We found that concentrations of all pollutants were significantly higher in the 60 days before psoriasis flare (median PASI at the flare 12; IQR, 9-18) compared with the control visit (median PASI 1; IQR, 1-3, P < .001). In the cross-sectional analysis, exposure to mean PM10 over 20 μg/m3 and mean PM2.5 over 15 μg/m3 in the 60 days before assessment were associated with a higher risk of PASI 5 or greater point worsening (adjusted odds ratio [aOR], 1.55; 95% CI, 1.21-1.99; and aOR, 1.25; 95% CI, 1.0-1.57, respectively). Sensitivity analyses that stratified for trimester of evaluation, with various lag of exposure and adjusting for type of treatment, yielded similar results. CONCLUSIONS AND RELEVANCE The findings of this case-crossover and cross-sectional study suggest that air pollution may be a trigger factor for psoriasis flare.
Collapse
Affiliation(s)
- Francesco Bellinato
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| | - Giovanni Adami
- Section of Rheumatology, Department of Medicine, University of Verona, Verona, Italy
| | - Silvia Vaienti
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| | - Camilla Benini
- Section of Rheumatology, Department of Medicine, University of Verona, Verona, Italy
| | - Davide Gatti
- Section of Rheumatology, Department of Medicine, University of Verona, Verona, Italy
| | - Luca Idolazzi
- Section of Rheumatology, Department of Medicine, University of Verona, Verona, Italy
| | - Angelo Fassio
- Section of Rheumatology, Department of Medicine, University of Verona, Verona, Italy
| | - Maurizio Rossini
- Section of Rheumatology, Department of Medicine, University of Verona, Verona, Italy
| | - Giampiero Girolomoni
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| | - Paolo Gisondi
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
17
|
Prieux R, Ferrara F, Cervellati F, Guiotto A, Benedusi M, Valacchi G. Inflammasome involvement in CS-induced damage in HaCaT keratinocytes. In Vitro Cell Dev Biol Anim 2022; 58:335-348. [PMID: 35428946 PMCID: PMC9076721 DOI: 10.1007/s11626-022-00658-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022]
Abstract
Cigarette smoke (CS) alters cutaneous biological processes such as redox homeostasis and inflammation response that might be involved in promoting skin inflammatory conditions. Exposure to CS has also been linked to a destabilization of the NLRP3 inflammasome in pollution target tissues such as the lung epithelium, resulting in a more vulnerable immunological response to several exogenous and endogenous stimuli related to oxidative stress. Thus, CS has an adverse effect on host defense, increasing the susceptibility to develop lung infections and pathologies. In the skin, another direct target of pollution, inflammasome disorders have been linked to an increasing number of diseases such as melanoma, psoriasis, vitiligo, atopic dermatitis, and acne, all conditions that have been connected directly or indirectly to pollution exposure. The inflammasome machinery is an important innate immune sensor in human keratinocytes. However, the role of CS in the NLRP1 and NLRP3 inflammasome in the cutaneous barrier has still not been investigated. In the present study, we were able to determine in keratinocytes exposed to CS an increased oxidative damage evaluated by 4-HNE protein adduct and carbonyl formation. Of note is that, while CS inhibited NLRP3 activation, it was able to activate NLRP1, leading to an increased secretion of the proinflammatory cytokines IL-1β and IL-18. This study highlights the importance of the inflammasome machinery in CS that more in general, in pollution, affects cutaneous tissues and the important cross-talk between different members of the NLRP inflammasome family.
Collapse
Affiliation(s)
- Roxane Prieux
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Francesca Ferrara
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Franco Cervellati
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Anna Guiotto
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Mascia Benedusi
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, Italy.
| | - Giuseppe Valacchi
- Department of Environment and Prevention, University of Ferrara, Ferrara, Italy.
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA.
- Department of Food and Nutrition, Kyung Hee University, Seoul, 02447, South Korea.
| |
Collapse
|
18
|
Antiflammatory activity and potential dermatological applications of characterized humic acids from a lignite and a green compost. Sci Rep 2022; 12:2152. [PMID: 35140310 PMCID: PMC8828863 DOI: 10.1038/s41598-022-06251-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/24/2022] [Indexed: 11/09/2022] Open
Abstract
Long-term exposure to air pollution has been associated with the development of some inflammatory processes related to skin. The goal of modern medicine is the development of new products with antiflammatory action deriving from natural sources to improve environmental and economic sustainability. In this study, two different humic acids (HA) were isolated from from lignite (HA-LIG) and composted artichoke wastes (HA-CYN) and characterized by infrared spectrometry, NMR spectroscopy, thermochemolysis-GC/MS, and high-performance size-exclusion chromatography (HPSEC), while their antiflammatory activity was evaluated on HaCaT cells. Spectroscopic results showing the predominance of apolar aliphatic and aromatic components in HA-LIG, whereas HA-CYN revealed a presence of polysaccharides and polyphenolic lignin residues. The HA application on human keratinocyte pre-treated with Urban Dust revealed a general increase of viability suggesting a protective effect of humic matter due to the content of aromatic, phenolic and lignin components. Conversely, the gene expression of IL-6 and IL-1β cytokines indicated a significant decrease after application of HA-LIG, thus exhibiting a greater antiflammatory power than HA-CYN. The specific combination of HA protective hydrophobic components, viable conformational arrangements, and content of bioactive molecules, suggests an innovative applicability of humic matter in dermatology as skin protectors from environmental irritants and as antiflammatory agents.
Collapse
|
19
|
Hoskin R, Pambianchi E, Pecorelli A, Grace M, Therrien JP, Valacchi G, Lila MA. Novel Spray Dried Algae-Rosemary Particles Attenuate Pollution-Induced Skin Damage. Molecules 2021; 26:3781. [PMID: 34206295 PMCID: PMC8270324 DOI: 10.3390/molecules26133781] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 01/17/2023] Open
Abstract
The present study investigated the effect of spray-dried algae-rosemary particles against pollution-induced damage using ex-vivo human biopsies exposed to diesel engine exhaust (DEE). For this, the complexation of hydroalcoholic rosemary extract with Chlorella (RCH) and Spirulina (RSP) protein powders was conducted. The process efficiency and concentration of rosmarinic acid (RA), carnosic acid (CA), and carnosol (CR) phenolic compounds of both products were compared. The RSP spray-dried production was more efficient, and RSP particles presented higher CR and CA and similar RA concentrations. Therefore, spray-dried RSP particles were prioritized for the preparation of a gel formulation that was investigated for its ability to mitigate pollution-induced skin oxinflammatory responses. Taken altogether, our ex-vivo data clearly demonstrated the ability of RSP gel to prevent an oxinflammatory phenomenon in cutaneous tissue by decreasing the levels of 4-hydroxynonenal protein adducts (4HNE-PA) and active matrix metalloproteinase-9 (MMP-9) as well as by limiting the loss of filaggrin induced by DEE exposure. Our results suggest that the topical application of spirulina-rosemary gel is a good approach to prevent pollution-induced skin aging/damage.
Collapse
Affiliation(s)
- Roberta Hoskin
- North Carolina Research Campus, Plants for Human Health Institute, Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA; (R.H.); (M.G.)
| | - Erika Pambianchi
- North Carolina Research Campus, Plants for Human Health Institute, Animal Science, North Carolina State University, Kannapolis, NC 28081, USA; (E.P.); (A.P.)
| | - Alessandra Pecorelli
- North Carolina Research Campus, Plants for Human Health Institute, Animal Science, North Carolina State University, Kannapolis, NC 28081, USA; (E.P.); (A.P.)
| | - Mary Grace
- North Carolina Research Campus, Plants for Human Health Institute, Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA; (R.H.); (M.G.)
| | | | - Giuseppe Valacchi
- North Carolina Research Campus, Plants for Human Health Institute, Animal Science, North Carolina State University, Kannapolis, NC 28081, USA; (E.P.); (A.P.)
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
| | - Mary Ann Lila
- North Carolina Research Campus, Plants for Human Health Institute, Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA; (R.H.); (M.G.)
| |
Collapse
|
20
|
Circadian Deregulation as Possible New Player in Pollution-Induced Tissue Damage. ATMOSPHERE 2021. [DOI: 10.3390/atmos12010116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circadian rhythms are 24-h oscillations driven by a hypothalamic master oscillator that entrains peripheral clocks in almost all cells, tissues and organs. Circadian misalignment, triggered by industrialization and modern lifestyles, has been linked to several pathological conditions, with possible impairment of the quality or even the very existence of life. Living organisms are continuously exposed to air pollutants, and among them, ozone or particulate matters (PMs) are considered to be among the most toxic to human health. In particular, exposure to environmental stressors may result not only in pulmonary and cardiovascular diseases, but, as it has been demonstrated in the last two decades, the skin can also be affected by pollution. In this context, we hypothesize that chronodistruption can exacerbate cell vulnerability to exogenous damaging agents, and we suggest a possible common mechanism of action in deregulation of the homeostasis of the pulmonary, cardiovascular and cutaneous tissues and in its involvement in the development of pathological conditions.
Collapse
|