1
|
Yang N, Yu G, Lai Y, Zhao J, Chen Z, Chen L, Fu Y, Fang P, Gao W, Cai Y, Li Z, Xiao J, Zhou K, Ding J. A snake cathelicidin enhances transcription factor EB-mediated autophagy and alleviates ROS-induced pyroptosis after ischaemia-reperfusion injury of island skin flaps. Br J Pharmacol 2024; 181:1068-1090. [PMID: 37850255 DOI: 10.1111/bph.16268] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/17/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND AND PURPOSE Ischaemia-reperfusion (I/R) injury is a major contributor to skin flap necrosis, which presents a challenge in achieving satisfactory therapeutic outcomes. Previous studies showed that cathelicidin-BF (BF-30) protects tissues from I/R injury. In this investigation, BF-30 was synthesized and its role and mechanism in promoting survival of I/R-injured skin flaps explored. EXPERIMENTAL APPROACH Survival rate analysis and laser Doppler blood flow analysis were used to evaluate I/R-injured flap viability. Western blotting, immunofluorescence, TdT-mediated dUTP nick end labelling (TUNEL) and dihydroethidium were utilized to examine the levels of apoptosis, pyroptosis, oxidative stress, transcription factor EB (TFEB)-mediated autophagy and molecules related to the adenosine 5'-monophosphate-activated protein kinase (AMPK)-transient receptor potential mucolipin 1 (TRPML1)-calcineurin signalling pathway. KEY RESULTS The outcomes revealed that BF-30 enhanced I/R-injured island skin flap viability. Autophagy, oxidative stress, pyroptosis and apoptosis were related to the BF-30 capability to enhance I/R-injured flap survival. Improved autophagy flux and tolerance to oxidative stress promoted the inhibition of apoptosis and pyroptosis in vascular endothelial cells. Activation of TFEB increased autophagy and inhibited endothelial cell oxidative stress in I/R-injured flaps. A reduction in TFEB level led to a loss of the protective effect of BF-30, by reducing autophagy flux and increasing the accumulation of reactive oxygen species (ROS) in endothelial cells. Additionally, BF-30 modulated TFEB activity via the AMPK-TRPML1-calcineurin signalling pathway. CONCLUSION AND IMPLICATIONS BF-30 promotes I/R-injured skin flap survival by TFEB-mediated up-regulation of autophagy and inhibition of oxidative stress, which may have possible clinical applications.
Collapse
Affiliation(s)
- Ningning Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Gaoxiang Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yingying Lai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jiayi Zhao
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Zhuliu Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Liang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yuedong Fu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Pin Fang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yuepiao Cai
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Zhijie Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Berry CE, Le T, An N, Griffin M, Januszyk M, Kendig CB, Fazilat AZ, Churukian AA, Pan PM, Wan DC. Pharmacological and cell-based treatments to increase local skin flap viability in animal models. J Transl Med 2024; 22:68. [PMID: 38233920 PMCID: PMC10792878 DOI: 10.1186/s12967-024-04882-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024] Open
Abstract
Local skin flaps are frequently employed for wound closure to address surgical, traumatic, congenital, or oncologic defects. (1) Despite their clinical utility, skin flaps may fail due to inadequate perfusion, ischemia/reperfusion injury (IRI), excessive cell death, and associated inflammatory response. (2) All of these factors contribute to skin flap necrosis in 10-15% of cases and represent a significant surgical challenge. (3, 4) Once flap necrosis occurs, it may require additional surgeries to remove the entire flap or repair the damage and secondary treatments for infection and disfiguration, which can be costly and painful. (5) In addition to employing appropriate surgical techniques and identifying healthy, well-vascularized tissue to mitigate the occurrence of these complications, there is growing interest in exploring cell-based and pharmacologic augmentation options. (6) These agents typically focus on preventing thrombosis and increasing vasodilation and angiogenesis while reducing inflammation and oxidative stress. Agents that modulate cell death pathways such as apoptosis and autophagy have also been investigated. (7) Implementation of drugs and cell lines with potentially beneficial properties have been proposed through various delivery techniques including systemic treatment, direct wound bed or flap injection, and topical application. This review summarizes pharmacologic- and cell-based interventions to augment skin flap viability in animal models, and discusses both translatability challenges facing these therapies and future directions in the field of skin flap augmentation.
Collapse
Affiliation(s)
- Charlotte E Berry
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Stanford, CA, 94305, USA
| | - Thalia Le
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Stanford, CA, 94305, USA
| | - Nicholas An
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Stanford, CA, 94305, USA
| | - Michelle Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Stanford, CA, 94305, USA
| | - Micheal Januszyk
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Stanford, CA, 94305, USA
| | - Carter B Kendig
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Stanford, CA, 94305, USA
| | - Alexander Z Fazilat
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Stanford, CA, 94305, USA
| | - Andrew A Churukian
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Stanford, CA, 94305, USA
| | - Phoebe M Pan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Stanford, CA, 94305, USA
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Stanford, CA, 94305, USA.
| |
Collapse
|
3
|
Photobiomodulation effect in tumoral necrosis factor-alpha(TNF-α) on the viability of random skin flap in rats. Lasers Med Sci 2022; 37:1495-1501. [PMID: 35015175 DOI: 10.1007/s10103-021-03303-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/22/2021] [Indexed: 10/19/2022]
Abstract
The aim of this study was to investigate the effect of red laser (660 nm) photobiomodulation (PBM) with different energies on tumor necrosis factor-alpha(TNF-α) expression for random skin flap viability in rats. Twenty-four Wistar rats were divided into three groups: sham group (SG), PBM laser group with an energy dose of 0.29 J (0.29G), and PBM laser group with an energy dose of 7.30 J (7.30G). A cranially based dorsal skin flap measuring 10 × 4 cm was raised and a plastic barrier was placed between the flap and its bed. PBM was applied in 3 timepoints: in the immediate postoperative period, in the 1st and in the 2nd postoperative days; the animals were euthanized on the 7th postoperative day. The assessments included: TNF-α expression of 3 different flap areas (proximal, medial and distal), by immunohistochemistry; percentage of skin flap necrosis area, by the paper template method. The statistical analysis was performed through the Kruskal-Wallis and Mann-Whitney tests, the level of significance adopted was 5% (p < 0.05). TNF-α expression was significantly lower for 7.30G in the proximal area, reduced for SG in the medial point, and larger for 7.30G in the distal area. The percentage of flap necrosis area was significantly reduced for 7.30G. Higher energy doses are more efficacious than lower energy doses for modulating TNF-α expression. PBM with an energy dose of 7.30 J was effective in reducing the expression of TNF-α and increase skin flap viability.
Collapse
|
4
|
Activated Protein C in Cutaneous Wound Healing: From Bench to Bedside. Int J Mol Sci 2019; 20:ijms20040903. [PMID: 30791425 PMCID: PMC6412604 DOI: 10.3390/ijms20040903] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/14/2019] [Accepted: 02/16/2019] [Indexed: 12/12/2022] Open
Abstract
Independent of its well-known anticoagulation effects, activated protein C (APC) exhibits pleiotropic cytoprotective properties. These include anti-inflammatory actions, anti-apoptosis, and endothelial and epithelial barrier stabilisation. Such beneficial effects have made APC an attractive target of research in a plethora of physiological and pathophysiological processes. Of note, the past decade or so has seen the emergence of its roles in cutaneous wound healing-a complex process involving inflammation, proliferation and remodelling. This review will highlight APC's functions and mechanisms, and detail its pre-clinical and clinical studies on cutaneous wound healing.
Collapse
|
5
|
Reply. Plast Reconstr Surg 2017; 140:354e-355e. [DOI: 10.1097/prs.0000000000003534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
The Effect of Activated Protein C on Attenuation of Ischemia-Reperfusion Injury in a Rat Muscle Flap Model. Ann Plast Surg 2016; 75:448-54. [PMID: 26360654 DOI: 10.1097/sap.0000000000000118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ischemia-reperfusion injury is often the final and irreversible factor causing flap failure in microsurgery. The salvage of a microsurgical flap with an ischemia-reperfusion injury contributes to the success of microsurgical flap transfers. Activated protein C (APC), a serine protease with anticoagulant and anti-inflammatory activities, has been shown to improve ischemic flap survival. To date, APC has yet to be applied to models of free flap with ischemia-reperfusion injury. In this study, we aimed to investigate the effect of APC on gracilis flap ischemia-reperfusion injury induced by gracilis vessels clamping and reopening. Sixty male Sprague-Dawley rats were randomly divided into 2 groups. After 4 hours of clamping for ischemia, flaps were reperfused and recombinant human APC (25 μg/kg) or saline was injected in the flaps through pedicles. At 0, 1, 4, 18, and 24 hours after injection (n = 6 for each time point), the tissue samples were harvested. The muscle viability at 24 hours in saline group was 54.8% (15.1%), whereas the APC-treated group was 90.0% (4.3%) (P < 0.05). The induced nitric oxide synthase (iNOS) mRNA expression increased with the time after reperfusion, which were 0.93 (0.25) to 2.09 (0.22) in saline group, and 0.197 (0.15) to 0.711 (0.15) in the APC-treated group. iNOS mRNA expression in the APC-treated group was significantly higher than the saline group at 1, 18, and 24 hours (P < 0.05). Numerous inflammatory cells were observed infiltrating and invading the muscle fibers in the saline group more than the APC-treated group. Increased number of polymorphonuclear cells was also noted in the saline group compared with the APC-treated group (P < 0.05). In conclusion, APC treatment can significantly attenuate ischemia-reperfusion injury and increase the survival of the free flap through down-regulating iNOS mRNA expression and reducing the inflammatory cells. Further research is still needed to be done on various mechanisms in which APC is protective to prevent tissue damage.
Collapse
|
7
|
Sopel MJ, Rosin NL, Falkenham AG, Bezuhly M, Esmon CT, Lee TDG, Liwski RS, Légaré JF. Treatment with activated protein C (aPC) is protective during the development of myocardial fibrosis: an angiotensin II infusion model in mice. PLoS One 2012; 7:e45663. [PMID: 23029168 PMCID: PMC3446915 DOI: 10.1371/journal.pone.0045663] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/20/2012] [Indexed: 12/31/2022] Open
Abstract
Aims Myocardial fibrosis contributes to the development of heart failure. Activated Protein C (aPC) is a circulating anticoagulant with anti-inflammatory and cytoprotective properties. Using a model of myocardial fibrosis second to Angiotensin II (AngII) infusion, we investigated the novel therapeutic function aPC in the development of fibrosis. Methods and Results C57Bl/6 and Tie2-EPCR mice were infused with AngII (2.0 µg/kg/min), AngII and aPC (0.4 µg/kg/min) or saline for 3d. Hearts were harvested and processed for analysis or used for cellular isolation. Basic histology and collagen deposition were assessed using histologic stains. Transcript levels of molecular mediators were analyzed by quantitative RT-PCR. Mice infused with AngII exhibited multifocal areas of myocardial cellular infiltration associated with significant collagen deposition compared to saline control animals (p<0.01). AngII-aPC infusion inhibited this cellular infiltration and the corresponding collagen deposition. AngII-aPC infusion also inhibited significant expression of the pro-fibrotic cytokines TGF-β1, CTGF and PDGF found in AngII only infused animals (p<0.05). aPC signals through its receptor, EPCR. Using Tie2-EPCR animals, where endothelial cells over-express EPCR and exhibit enhanced aPC-EPCR signaling, no significant reduction in cellular infiltration or fibrosis was evident with AngII infusion suggesting aPC-mediate protection is endothelial cell independent. Isolated infiltrating cells expressed significant EPCR transcripts suggesting a direct effect on infiltrating cells. Conclusions This data indicates that aPC treatment abrogates the fibrogenic response to AngII. aPC does not appear to confer protection by stimulating the endothelium but by acting directly on the infiltrating cells, potentially inhibiting migration or activation.
Collapse
Affiliation(s)
- Mryanda J. Sopel
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Nicole L. Rosin
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alec G. Falkenham
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michael Bezuhly
- Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Charles T. Esmon
- Howard Hughes Medical Institute and Cardiovascular Biology Research Program, Oklahoma City, Oklahoma, United States of America
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Timothy D. G. Lee
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert S. Liwski
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail: (RSL); (J-FL)
| | - Jean-Francois Légaré
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail: (RSL); (J-FL)
| |
Collapse
|
8
|
Sorg H, Harder Y, Krueger C, Reimers K, Vogt PM. The nonhematopoietic effects of erythropoietin in skin regeneration and repair: from basic research to clinical use. Med Res Rev 2012; 33:637-64. [PMID: 22430919 DOI: 10.1002/med.21259] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Erythropoietin (EPO) is the main regulator of red blood cell production but there exists also a variety of nonhematopoietic properties. More recent data show that EPO is also associated with the protection of tissues suffering from ischemia and reperfusion injury as well as with improved regeneration in various organ systems, in particular the skin. This review highlights the mechanisms of EPO in the different stages of wound healing and the reparative processes in the skin emphasizing pathophysiological mechanisms and potential clinical applications. There is clear evidence that EPO effectively influences all wound-healing phases in a dose-dependent manner. This includes inflammation, tissue, and blood vessel formation as well as the remodeling of the wound. The molecular mechanism is predominantly based on an increased expression of the endothelial and inducible nitric oxide (NO) synthase with a consecutive rapid supply of NO as well as an increased content of vascular endothelial growth factor (VEGF) in the wound. The improved understanding of the functions and regulatory mechanisms of EPO in the context of wound-healing problems and ischemia/reperfusion injury, especially during flap surgery, may lead to new considerations of this growth hormone for its regular clinical application in patients.
Collapse
Affiliation(s)
- Heiko Sorg
- Department of Plastic, Hand- and Reconstructive Surgery, Hannover Medical School, 30625, Hannover, Germany.
| | | | | | | | | |
Collapse
|
9
|
Polito F, Bitto A, Galeano M, Irrera N, Marini H, Calò M, Squadrito F, Altavilla D. Polydeoxyribonucleotide restores blood flow in an experimental model of ischemic skin flaps. J Vasc Surg 2011; 55:479-88. [PMID: 22051873 DOI: 10.1016/j.jvs.2011.07.083] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/15/2011] [Accepted: 07/15/2011] [Indexed: 10/15/2022]
Abstract
BACKGROUND Ischemia is a major factor contributing to failure of skin flap surgery, which is routinely used for coverage of wounds to prevent infection and to restore form and function. An emerging concept is that adenosine A(2A) receptors can improve tissue oxygenation by stimulating angiogenesis, likely through vascular endothelial growth factor (VEGF). This study assessed the ability of polydeoxyribonucleotide (PDRN) to restore blood flow and improve wound healing, acting through the A(2A) receptor, in a rat model of ischemic skin flaps. METHODS The H-shaped double-flap model was used in male Sprague-Dawley rats. After surgical procedures, the animals were randomized to receive intraperitoneal PDRN (8 mg/kg) or vehicle (NaCl 0.9%). Rats were euthanized 3, 5, and 10 days after skin injury, after the evaluation of skin perfusion by laser Doppler. The wounds underwent histologic analysis and were measured for VEGF messenger RNA and protein expression, hypoxia inducible factor-1-α (HIF-1α), and inducible nitric oxide synthase (iNOS) protein expression, and nitrite content. RESULTS Blood flow markedly increased in blood flow in ischemic flaps treated with PDRN, with a complete recovery starting from day 5 (ischemic flap + vehicle, 1.80 ± 0.25; ischemic flap + PDRN, 2.46 ± 0.25; P < .001). Administration of PDRN enhanced the expression of VEGF (ischemic flap + vehicle, 5.3 ± 0.6; ischemic flap + PDRN, 6.2 ± 0.5; P < .01) at day 5, and iNOS (ischemic flap + vehicle, 3.9 ± 0.6; ischemic flap + PDRN, 5.3 ± 1; P < .01), but reduced HIF-1α expression (ischemic flap + vehicle, 7 ± 1.1; ischemic flap + PDRN, 4.8 ± 0.5; P < .05) at day 3. Histologically, the PDRN-treated group showed complete re-epithelialization and well-formed granulation tissue rich in fibroblasts. CONCLUSIONS These results suggest that PDRN restores blood flow and tissue architecture, probably by modulating HIF-1α and VEGF expression, and may be an effective therapeutic approach in improving healing of ischemic skin flaps.
Collapse
Affiliation(s)
- Francesca Polito
- Department of Biochemical, Physiological and Nutritional Sciences, Section of Physiology and Human Nutrition, University of Messina, Messina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Tacani PM, Liebano RE, Pinfildi CE, Gomes HC, Arias VE, Ferreira LM. Mechanical stimulation improves survival in random-pattern skin flaps in rats. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:2048-2056. [PMID: 20950928 DOI: 10.1016/j.ultrasmedbio.2010.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 06/29/2010] [Accepted: 07/26/2010] [Indexed: 05/30/2023]
Abstract
This was a study on the effects of 3-MHz ultrasound at 16- and 100-Hz pulse repetition frequencies on angiogenesis and viability of random-pattern skin flaps in rats. A cranially-based dorsal skin flap was raised in 60 EPM-Wistar rats, which were randomly divided into four groups: control, sham, 16-Hz and 100-Hz groups. The mean percentage of necrosis was as follows: control, 42% ± 13%; sham, 18% ± 13%; 16-Hz group, 13% ± 10%; and 100-Hz group, 15% ± 7%, with significant differences between the control and the other groups (p < 0.001). The mean vascular density was as follows: control, 5% ± 2%; sham, 7% ± 2%; 16-Hz group, 21% ± 4%; and 100-Hz group, 24% ± 10%, with significant differences between control and ultrasound groups, and between the sham and ultrasound groups (p < 0.001). Both ultrasound treatments (16- and 100-Hz PRFs) induced angiogenesis, and sham and ultrasound treatments improved viability of random-pattern skin flaps in rats.
Collapse
Affiliation(s)
- Pascale Mutti Tacani
- Graduate Program, Federal University of Sao Paulo School of Medicine (UNIFESP-EPM), Sao Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|