1
|
de Freitas ALP, Han SW, Martin PKM, Ferreira LM. Effect of adipose-derived mesenchymal stem cells on the viability of the transverse rectus abdominis myocutaneous flap in rats. Clinics (Sao Paulo) 2025; 80:100590. [PMID: 39908748 PMCID: PMC11847128 DOI: 10.1016/j.clinsp.2025.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/14/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
INTRODUCTION The Transverse Rectus Abdominis Myocutaneous (TRAM) flap is used for breast reconstruction, but involves the risk of necrosis. Adipose tissue-derived mesenchymal Stem Cells (ADSCs) can be used to stimulate neovascularization and reduce the risk of TRAM flap necrosis. AIM Determine the effect of ADSCs on TRAM flap viability in rats. METHODS Twenty-four Wistar-EPM rats were distributed into three groups (n = 8). A right caudal pedicled TRAM flap was performed in all the animals and was the only procedure performed in Group TRAM. The additional procedures of intradermal injection of α-MEM culture medium and intradermal injection of α-MEM containing ADSCs labeled with a fluorescent marker were performed in Groups α-MEM and α-MEM-SC, respectively. The percentage of flap necrosis was determined, and the level of neovascularization and distribution of stem cells in the TRAM flap was assessed using immunohistochemical analysis and fluorescence microscopy, respectively. RESULTS The percentage of necrosis observed in Group α-MEM-SC was lower than that observed in Groups TRAM and α-MEM, namely 23.36 % vs. 50.42 % and 53.57 %, respectively (p < 0.05). In Zone IV of the flap, the number of vessels was greater in Group α-MEM-SC than in the other groups (p < 0.05). Multiple stem cells were observed in the four zones of the flap in Group α-MEM-SC. No stem cells were observed in Groups TRAM or α-MEM. CONCLUSION ADSCs increased TRAM flap viability and the number of vessels in Zone IV of the flap in rats.
Collapse
Affiliation(s)
| | - Sang Won Han
- MSc Interdisciplinary Center for Gene Therapy (CINTERGEN), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Lydia Masako Ferreira
- Division of Plastic Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
2
|
Komiotis C, Mavridis I. The role of stem cells in the management of neonatal posthemorrhagic hydrocephalus. Childs Nerv Syst 2024; 41:40. [PMID: 39652204 DOI: 10.1007/s00381-024-06703-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
PURPOSE Neonatal intraventricular hemorrhage (IVH) is a common complication of prematurity as it affects 12.4% of preterm infants weighing under 1500 g. Posthemorrhagic hydrocephalus (PHH) is an important complication of neonatal IVH and can have serious long-term consequences such as cognitive impairment and cerebral palsy. The purpose of this review is to determine whether stem cell transplantation can play a role in the treatment of neonatal IVH mainly focusing on the prevention of the catastrophic sequelae of neonatal IVH, as well as to the improve outcome of these patients. METHODS A literature search was performed using the PubMed/MEDLINE and Scopus databases, and after meticulous screening, eight articles were finally selected. The authors included both animal and human studies in this narrative review. RESULTS Our review included eight articles, five animal studies and three human studies, including one phase 1 clinical trial, one pilot study, and one case report. Intraventricular transplantation of mesenchymal stem cells (MSCs) early after IVH diagnosis seems to prevent the development of PHH, improve myelination, and reduce periventricular cell death, inflammation, and reactive gliosis. It also seems to be a safe and well-tolerated procedure in preterm infants. CONCLUSION Animal and human study findings regarding stem cell transplantation in the treatment of IVH show promising results in reducing the risk of PHH. Further research with larger series is needed to better determine its safety and efficacy. Larger studies such as randomized controlled trials could establish the efficacy and tolerability of the treatment.
Collapse
Affiliation(s)
- Christodoulos Komiotis
- School of Medicine, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Mavridis
- Pediatric Neurosurgery Unit, Department of Neurosurgery, School of Medicine, Faculty of Health Sciences, Democritus University of Thrace, University General Hospital of Alexandroupolis, 68100, Alexandroupolis, Greece.
| |
Collapse
|
3
|
Meretsky CR, Polychronis A, Schiuma AT. A Comparative Analysis of the Advances in Stem Cell Therapy in Plastic Surgery: A Systematic Review of Current Applications and Future Directions. Cureus 2024; 16:e67067. [PMID: 39286681 PMCID: PMC11404395 DOI: 10.7759/cureus.67067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2024] [Indexed: 09/19/2024] Open
Abstract
Stem cell (SC) therapy is revolutionizing the field of plastic surgery by harnessing the regenerative abilities of SCs derived from adipose tissue and bone marrow to boost tissue repair and enhance aesthetic outcomes. This groundbreaking method enhances results in procedures such as fat grafting, facial rejuvenation, and wound healing. As studies advance, SC therapy shows potential for more sophisticated uses in both reconstructive and cosmetic surgery. The objective of this review is to comprehensively examine the advances in SC therapy within the field of plastic surgery, highlighting its current applications and exploring future directions. The systematic review was conducted on SC therapy in plastic surgery adhering to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines and specific search criteria. This systematic review highlights these main outcomes, and SC therapy in plastic surgery enhances tissue repair and aesthetic outcomes by utilizing mesenchymal SCs such as adipose-derived SCs (ADSCs) and bone marrow-derived SCs (BMSCs), with platelet-rich plasma (PRP) providing additional support. Techniques such as scaffolds and cellular reprogramming are employed to guide SC growth, enabling tailored tissue engineering for complex regenerative procedures. This innovative approach accelerates healing, reduces scarring in reconstructive surgeries, improves skin texture, and ensures the natural integration of treated areas, ultimately yielding enhanced aesthetic results and transforming facial rejuvenation processes. SC therapy in plastic surgery holds great promise, but challenges such as protocol standardization, cost, and regulations still need to be addressed. SC therapy is leading innovative advancements in plastic surgery, offering superior outcomes and improved quality of life for patients. Interestingly, the future of plastic surgery is focused on integrating SC therapy for personalized and transformative treatments. Furthermore, interdisciplinary collaboration among bioengineers, clinicians, and regulatory bodies is essential for overcoming challenges and advancing SC research into clinical practice.
Collapse
Affiliation(s)
| | - Andreas Polychronis
- General Surgery, St. George's University School of Medicine, Great River, USA
| | | |
Collapse
|
4
|
Grosu-Bularda A, Hodea FV, Cretu A, Lita FF, Bordeanu-Diaconescu EM, Vancea CV, Lascar I, Popescu SA. Reconstructive Paradigms: A Problem-Solving Approach in Complex Tissue Defects. J Clin Med 2024; 13:1728. [PMID: 38541953 PMCID: PMC10971357 DOI: 10.3390/jcm13061728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 01/06/2025] Open
Abstract
The field of plastic surgery is continuously evolving, with faster-emerging technologies and therapeutic approaches, leading to the necessity of establishing novel protocols and solving models. Surgical decision-making in reconstructive surgery is significantly impacted by various factors, including the etiopathology of the defect, the need to restore form and function, the patient's characteristics, compliance and expectations, and the surgeon's expertise. A broad surgical armamentarium is currently available, comprising well-established surgical procedures, as well as emerging techniques and technologies. Reconstructive surgery paradigms guide therapeutic strategies in order to reduce morbidity, mortality and risks while maximizing safety, patient satisfaction and properly restoring form and function. The paradigms provide researchers with formulation and solving models for each unique problem, assembling complex entities composed of theoretical, practical, methodological and instrumental elements.
Collapse
Affiliation(s)
- Andreea Grosu-Bularda
- “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 București, Romania; (A.G.-B.); (I.L.); (S.A.P.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital Bucharest, 011602 București, Romania
| | - Florin-Vlad Hodea
- “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 București, Romania; (A.G.-B.); (I.L.); (S.A.P.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital Bucharest, 011602 București, Romania
| | - Andrei Cretu
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital Bucharest, 011602 București, Romania
| | - Flavia-Francesca Lita
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital Bucharest, 011602 București, Romania
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Central Military Universitary Emergency Hospital “Carol Davila”, 010825 București, Romania
| | | | - Cristian-Vladimir Vancea
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital Bucharest, 011602 București, Romania
| | - Ioan Lascar
- “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 București, Romania; (A.G.-B.); (I.L.); (S.A.P.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital Bucharest, 011602 București, Romania
| | - Serban Arghir Popescu
- “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 București, Romania; (A.G.-B.); (I.L.); (S.A.P.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital Bucharest, 011602 București, Romania
| |
Collapse
|
5
|
Sarcinella A, Femminò S, Brizzi MF. Extracellular Vesicles: Emergent and Multiple Sources in Wound Healing Treatment. Int J Mol Sci 2023; 24:15709. [PMID: 37958693 PMCID: PMC10650196 DOI: 10.3390/ijms242115709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Non-healing wound- and tissue-injury are commonly experienced worldwide by the aging population. The persistence of disease commonly leads to tissue infection, resulting in severe clinical complications. In the last decade, extracellular vesicles (EVs) have been considered promising and emergent therapeutic tools to improve the healing processes. Therefore, efforts have been directed to develop a cell-free therapeutic platform based on EV administration to orchestrate tissue repair. EVs derived from different cell types, including fibroblast, epithelial, and immune cells are recruited to the injured sites and in turn take part in scar formation. EVs are nano-sized particles containing a heterogeneous cargo consisting of lipids, proteins, and nucleic acids protected from degradation by their lipid bilayer. Noteworthy, since EVs have natural biocompatibility and low immunogenicity, they represent the ideal therapeutic candidates for regenerative purposes. Indeed, EVs are released by several cell types, and even if they possess unique biological properties, their functional capability can be further improved by engineering their content and functionalizing their surface, allowing a specific cell cargo delivery. Herein, we provide an overview of preclinical data supporting the contribution of EVs in the repair and regenerative processes, focusing on different naïve EV sources, as well as on their engineering, to offer a scalable and low-cost therapeutic option for tissue repair.
Collapse
Affiliation(s)
| | | | - Maria Felice Brizzi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.S.); (S.F.)
| |
Collapse
|
6
|
Liu M, Wei X, Zheng Z, Li Y, Li M, Lin J, Yang L. Recent Advances in Nano-Drug Delivery Systems for the Treatment of Diabetic Wound Healing. Int J Nanomedicine 2023; 18:1537-1560. [PMID: 37007988 PMCID: PMC10065433 DOI: 10.2147/ijn.s395438] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/14/2023] [Indexed: 03/28/2023] Open
Abstract
Diabetes mellitus (DM) induced wound healing impairment remains a serious health problem and burden on the clinical obligation for high amputation rates. Based on the features of wound microenvironment, biomaterials loading specific drugs can benefit diabetic wound treatment. Drug delivery systems (DDSs) can carry diverse functional substances to the wound site. Nano-drug delivery systems (NDDSs), benefiting from their features related to nano size, overcome limitations of conventional DDSs application and are considered as a developing process in the wound treatment field. Recently, a number of finely designed nanocarriers efficiently loading various substances (bioactive and non-bioactive factors) have emerged to circumvent constraints faced by traditional DDSs. This review describes various recent advances of nano-drug delivery systems involved in mitigating diabetes mellitus-based non-healing wounds.
Collapse
Affiliation(s)
- Mengqian Liu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xuerong Wei
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yicheng Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Mengyao Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jiabao Lin
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Correspondence: Lei Yang, Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, People’s Republic of China, Tel +86-20-6164-1841, Email
| |
Collapse
|
7
|
Lin Z, Gao L, Hou N, Zhi X, Zhang Y, Che Z, Deng A. Application of low-intensity pulsed ultrasound on tissue resident stem cells: Potential for ophthalmic diseases. Front Endocrinol (Lausanne) 2023; 14:1153793. [PMID: 37008913 PMCID: PMC10063999 DOI: 10.3389/fendo.2023.1153793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
INTRODUCTION Tissue-resident stem cells (TRSCs) have the ability to self-renew and differentiate throughout an individual's lifespan, and they utilize both mechanisms to maintain homeostasis and regenerate damaged tissues. Several studies suggest that these stem cells can serve as a potential source for cell-replacement-based therapy by promoting differentiation or expansion. In recent years, low-intensity pulsed ultrasound (LIPUS) has been demonstrated to effectively stimulate stem cell proliferation and differentiation, promote tissue regeneration, and inhibit inflammatory responses. AIMS To present a comprehensive overview of current application and mechanism of LIPUS on tissue resident stem cells. METHODS We searched PubMed, Web of Science for articles on the effects of LIPUS on tissue resident stem cells and its application. RESULTS The LIPUS could modulate cellular activities such as cell viability, proliferation and differentiation of tissue resident stem cells and related cells through various cellular signaling pathways. Currently, LIPUS, as the main therapeutic ultrasound, is being widely used in the treatment of preclinical and clinical diseases. CONCLUSION The stem cell research is the hot topic in the biological science, while in recent years, increasing evidence has shown that TRSCs are good targets for LIPUS-regulated regenerative medicine. LIPUS may be a novel and valuable therapeutic approach for the treatment of ophthalmic diseases. How to further improve its efficiency and accuracy, as well as the biological mechanism therein, will be the focus of future research.
Collapse
|
8
|
Wang C, Xu M, Fan Q, Li C, Zhou X. Therapeutic potential of exosome-based personalized delivery platform in chronic inflammatory diseases. Asian J Pharm Sci 2023; 18:100772. [PMID: 36896446 PMCID: PMC9989662 DOI: 10.1016/j.ajps.2022.100772] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
In the inflammatory microenvironment, there are numerous exosomes secreted by immune cells (Macrophages, neutrophils, dendritic cells), mesenchymal stem cells (MSCs) and platelets as intercellular communicators, which participate in the regulation of inflammation by modulating gene expression and releasing anti-inflammatory factors. Due to their good biocompatibility, accurate targeting, low toxicity and immunogenicity, these exosomes are able to selectively deliver therapeutic drugs to the site of inflammation through interactions between their surface-antibody or modified ligand with cell surface receptors. Therefore, the role of exosome-based biomimetic delivery strategies in inflammatory diseases has attracted increasing attention. Here we review current knowledge and techniques for exosome identification, isolation, modification and drug loading. More importantly, we highlight progress in using exosomes to treat chronic inflammatory diseases such as rheumatoid arthritis (RA), osteoarthritis (OA), atherosclerosis (AS), and inflammatory bowel disease (IBD). Finally, we also discuss their potential and challenges as anti-inflammatory drug carriers.
Collapse
Affiliation(s)
- Chenglong Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Maochang Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qingze Fan
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiangyu Zhou
- Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
9
|
Behr B, Lotzien S, Flecke M, Wallner C, Wagner JM, Dadras M, Daigeler A, Schildhauer TA, Lehnhardt M, Geßmann J. Comparative analysis of clinical outcome and quality of life between amputations and combined bone and flap reconstructions at the lower leg. Disabil Rehabil 2022; 44:6744-6748. [PMID: 34546826 DOI: 10.1080/09638288.2021.1971309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE At the lower leg, soft tissue defects with exposed bones, tendons, or hardware require flap coverage. In this retrospective study, we analyzed combined bone and soft tissue reconstructions compared to amputations of the lower leg in a civilian setting. MATERIALS AND METHODS Patients who underwent combined bone and flap reconstruction (LR) or amputation (LA) of the lower leg were eligible for the study. Bone conditions included fractures and bony defects due to posttraumatic osteomyelitis and non-union. Besides the analysis of the medical history, the study included clinical examination including extremity functional scale (LEFS) and SF-36-questionnaire. RESULTS LEFS score was significantly higher in the LR group compared to the LA group. Importantly, 42% in the LR group as opposed to 80% in the LA group could not return to their occupation. Mean hospitalization was 119 in the LR and 49 days in the LA group. SF-36 body item scores were significantly higher in the LR group as compared to LA. CONCLUSIONS Patients undergoing complex extremity reconstructions, including flap transfer to the lower leg have better functionality and higher quality of life than amputated patients. These data emphasize the advantages of these procedures and justify reconstructive efforts for limb salvage. Level of Evidence III.Implications for RehabilitationAmputation and combined bone and flap reconstruction in severe injuries of the lower leg can imply functional disabilities even after successful treatment.Albeit longer hospitalizations, patients with complex reconstructions showed better functional outcomes and had a higher quality of life.Limb salvage showed better functional outcomes and a higher rate in reintegration to work as compared to limb amputation.These data emphasize the importance of complex bone and soft tissue reconstruction in this patient cohort.
Collapse
Affiliation(s)
- Björn Behr
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Sebastian Lotzien
- Department of General and Trauma surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Marcel Flecke
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Christoph Wallner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - J Maximillian Wagner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Mehran Dadras
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Adrien Daigeler
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Thomas A Schildhauer
- Department of General and Trauma surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Jan Geßmann
- Department of General and Trauma surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
10
|
Luo Y, Xu X, Ye Z, Xu Q, Li J, Liu N, Du Y. 3D bioprinted mesenchymal stromal cells in skin wound repair. Front Surg 2022; 9:988843. [PMID: 36311952 PMCID: PMC9614372 DOI: 10.3389/fsurg.2022.988843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
Skin tissue regeneration and repair is a complex process involving multiple cell types, and current therapies are limited to promoting skin wound healing. Mesenchymal stromal cells (MSCs) have been proven to enhance skin tissue repair through their multidifferentiation and paracrine effects. However, there are still difficulties, such as the limited proliferative potential and the biological processes that need to be strengthened for MSCs in wound healing. Recently, three-dimensional (3D) bioprinting has been applied as a promising technology for tissue regeneration. 3D-bioprinted MSCs could maintain a better cell ability for proliferation and expression of biological factors to promote skin wound healing. It has been reported that 3D-bioprinted MSCs could enhance skin tissue repair through anti-inflammatory, cell proliferation and migration, angiogenesis, and extracellular matrix remodeling. In this review, we will discuss the progress on the effect of MSCs and 3D bioprinting on the treatment of skin tissue regeneration, as well as the perspective and limitations of current research.
Collapse
|
11
|
Long C, Wang J, Gan W, Qin X, Yang R, Chen X. Therapeutic potential of exosomes from adipose-derived stem cells in chronic wound healing. Front Surg 2022; 9:1030288. [PMID: 36248361 PMCID: PMC9561814 DOI: 10.3389/fsurg.2022.1030288] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic wound healing remains a challenging medical problem affecting society, which urgently requires anatomical and functional solutions. Adipose-derived stem cells (ADSCs), mesenchymal stem cells with self-renewal and multiple differentiation ability, play essential roles in wound healing and tissue regeneration. The exosomes from ADSCs (ADSC-EXOs) are extracellular vesicles that are essential for communication between cells. ADSC-EXOs release various bioactive molecules and subsequently restore tissue homeostasis and accelerate wound healing, by promoting various stages of wound repair, including regulating the inflammatory response, promoting wound angiogenesis, accelerating cell proliferation, and modulating wound remodeling. Compared with ADSCs, ADSC-EXOs have the advantages of avoiding ethical issues, being easily stored, and having high stability. In this review, a literature search of PubMed, Medline, and Google Scholar was performed for articles before August 1, 2022 focusing on exosomes from ADSCs, chronic wound repair, and therapeutic potential. This review aimed to provide new therapeutic strategies to help investigators explore how ADSC-EXOs regulate intercellular communication in chronic wounds.
Collapse
Affiliation(s)
- Chengmin Long
- Guangdong Medical University, Zhanjiang, China
- Department of Burn Surgery and Skin Regeneration, the First People’s Hospital of Foshan, Foshan, China
| | - Jingru Wang
- Department of Burn Surgery and Skin Regeneration, the First People’s Hospital of Foshan, Foshan, China
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Wenjun Gan
- Guangdong Medical University, Zhanjiang, China
- Department of Burn Surgery and Skin Regeneration, the First People’s Hospital of Foshan, Foshan, China
| | - Xinchi Qin
- Department of Burn Surgery and Skin Regeneration, the First People’s Hospital of Foshan, Foshan, China
- Zunyi Medical University, Zhuhai, China
| | - Ronghua Yang
- Guangdong Medical University, Zhanjiang, China
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
- Correspondence: Xiaodong Chen Ronghua Yang a_hwa991316 @163.com
| | - Xiaodong Chen
- Guangdong Medical University, Zhanjiang, China
- Department of Burn Surgery and Skin Regeneration, the First People’s Hospital of Foshan, Foshan, China
- Correspondence: Xiaodong Chen Ronghua Yang a_hwa991316 @163.com
| |
Collapse
|
12
|
Wagner JM, Steubing Y, Dadras M, Wallner C, Lotzien S, Huber J, Sogorski A, Sacher M, Reinkemeier F, Dittfeld S, Becerikli M, Lehnhardt M, Behr B. Wnt3a and ASCs are capable of restoring mineralization in staph aureus-infected primary murine osteoblasts. J Bone Miner Metab 2022; 40:20-28. [PMID: 34562154 DOI: 10.1007/s00774-021-01269-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Bone infections are one of the main reasons for impaired bone regeneration and non-union formation. In previous experimental animal studies we could already demonstrate that bone defects due to prior infections showed a markedly reduced healing capacity, which could effectively be enhanced via application of Wnt3a and Adipose-derived stromal cells (ASCs). For a more in-depth analysis, we investigated proliferation and mineralization of cultured osteoblasts infected with staph aureus and sought to investigate effects of Wnt3a and ASCs on infected osteoblasts. MATERIALS AND METHODS Primary murine osteoblasts were isolated from calvariae and infected with staph aureus. Infected osteoblasts received treatment via application of recombinant Wnt3a, ASC conditioned medium and were furthermore cocultured with ASCs. Osteoblasts were evaluated by Alamar blue assay for metabolic activity, TUNEL-assay for apoptosis, ALP and Alizarin Red staining for mineralization. In addition, immunoflourescent staining (IF) and qRT-PCR analyses were performed. RESULTS Infected osteoblasts showed a markedly reduced ability for mineralization and increased apoptosis, which could be restored to physiological levels by Wnt3a and ASC treatment. Interestingly, metabolic activity of osteoblasts seemed to be unaffected by staph aureus infection. Additional analyses of Wnt-pathway activity revealed effective enhancement of canonical Wnt-pathway activity in Wnt3a-treated osteoblasts. CONCLUSIONS In summary, we gained further osteoblast-related insights into pathomechanisms of reduced bone healing capacity upon infections.
Collapse
Affiliation(s)
| | - Yonca Steubing
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Mehran Dadras
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Christoph Wallner
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Sebastian Lotzien
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Julika Huber
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Alexander Sogorski
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Maxi Sacher
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Felix Reinkemeier
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Stephanie Dittfeld
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Mustafa Becerikli
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Marcus Lehnhardt
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Björn Behr
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| |
Collapse
|
13
|
Bosanquet DC, Harding KG. Wound healing: potential therapeutic options. Br J Dermatol 2021; 187:149-158. [PMID: 34726774 DOI: 10.1111/bjd.20772] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2021] [Indexed: 12/22/2022]
Abstract
This review highlights the range of therapeutic options available to clinicians treating difficult-to-heal wounds. While certain treatments are established in daily clinical practice, most therapeutic interventions lack robust and rigorous data regarding their efficacy, which would help to determine when, and for whom, they should be used. The purpose of this review is to give a broad overview of the available interventions, with a brief summary of the evidence base for each intervention.
Collapse
Affiliation(s)
- D C Bosanquet
- South East Wales Vascular Network, Aneurin Bevan University Health Board, Royal Gwent Hospital, Cardiff Road, Newport, NP16 2UB, UK
| | - K G Harding
- Clinical Innovation Hub, Cardiff University, Cardiff, CF14 4XN, UK.,Skin Research Institute Singapore (SRIS), Singapore
| |
Collapse
|
14
|
Angiogenesis in Regenerative Dentistry: Are We Far Enough for Therapy? Int J Mol Sci 2021; 22:ijms22020929. [PMID: 33477745 PMCID: PMC7832295 DOI: 10.3390/ijms22020929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis is a broad spread term of high interest in regenerative medicine and tissue engineering including the dental field. In the last two decades, researchers worldwide struggled to find the best ways to accelerate healing, stimulate soft, and hard tissue remodeling. Stem cells, growth factors, pathways, signals, receptors, genetics are just a few words that describe this area in medicine. Dental implants, bone and soft tissue regeneration using autologous grafts, or xenografts, allografts, their integration and acceptance rely on their material properties. However, the host response, through its vascularization, plays a significant role. The present paper aims to analyze and organize the latest information about the available dental stem cells, the types of growth factors with pro-angiogenic effect and the possible therapeutic effect of enhanced angiogenesis in regenerative dentistry.
Collapse
|
15
|
An Y, Lin S, Tan X, Zhu S, Nie F, Zhen Y, Gu L, Zhang C, Wang B, Wei W, Li D, Wu J. Exosomes from adipose-derived stem cells and application to skin wound healing. Cell Prolif 2021; 54:e12993. [PMID: 33458899 PMCID: PMC7941238 DOI: 10.1111/cpr.12993] [Citation(s) in RCA: 276] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/14/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023] Open
Abstract
Skin wound healing is an intractable problem that represents an urgent clinical need. To solve this problem, a large number of studies have focused on the use of exosomes (EXOs) derived from adipose‐derived stem cells (ADSCs). This review describes the mechanisms whereby ADSCs‐EXOs regulate wound healing and their clinical application. In the wound, ADSCs‐EXOs modulate immune responses and inflammation. They also promote angiogenesis, accelerate proliferation and re‐epithelization of skin cells, and regulate collagen remodelling which inhibits scar hyperplasia. Compared with ADSCs therapeutics, ADSCs‐EXOs have highly stability and are easily stored. Additionally, they are not rejected by the immune system and have a homing effect and their dosage can be easily controlled. ADSCs‐EXOs can improve fat grafting and promote wound healing in patients with diabetes mellitus. They can also act as a carrier and combined scaffold for treatment, leading to scarless cutaneous repair. Overall, ADSCs‐EXOs have the potential to be used in the clinic to promote wound healing.
Collapse
Affiliation(s)
- Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Shuyan Lin
- Hearing Ctr, Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojie Tan
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Shiou Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fangfei Nie
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Luosha Gu
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Chunlei Zhang
- Institute of Systems Biomedicine, Peking University, Beijing, China
| | - Baicheng Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Wei Wei
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Dong Li
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Junhao Wu
- Hearing Ctr, Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Wagner JM, Reinkemeier F, Wallner C, Dadras M, Huber J, Schmidt SV, Drysch M, Dittfeld S, Jaurich H, Becerikli M, Becker K, Rauch N, Duhan V, Lehnhardt M, Behr B. Adipose-Derived Stromal Cells Are Capable of Restoring Bone Regeneration After Post-Traumatic Osteomyelitis and Modulate B-Cell Response. Stem Cells Transl Med 2019; 8:1084-1091. [PMID: 31179644 PMCID: PMC6766598 DOI: 10.1002/sctm.18-0266] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/10/2019] [Indexed: 12/17/2022] Open
Abstract
Bone infections are a frequent cause for large bony defects with a reduced healing capacity. In previous findings, we could already show diminished healing capacity after bone infections, despite the absence of the causing agent, Staphylococcus aureus. Moreover, these bony defects showed reduced osteoblastogenesis and increased osteoclastogenesis, meaning elevated bone resorption ongoing with an elevated B‐cell activity. To overcome the negative effects of this postinfectious inflammatory state, we tried to use the regenerative capacity of mesenchymal stem cells derived from adipose tissue (adipose‐derived stem cells [ASCs]) to improve bone regeneration and moreover were curious about immunomodulation of applicated stem cells in this setting. Therefore, we used our established murine animal model and applicated ASCs locally after sufficient debridement of infected bones. Bone regeneration and resorption as well as immunological markers were investigated via histology, immunohistochemistry, Western blot, and fluorescence‐activated cell scanning (FACS) analysis and μ‐computed tomography (CT) analysis. Interestingly, ASCs were able to restore bone healing via elevation of osteoblastogenesis and downregulation of osteoclasts. Surprisingly, stem cells showed an impact on the innate immune system, downregulating B‐cell population. In summary, these data provide a fascinating new and innovative approach, supporting bone healing after bacterial infections and moreover gain insights into the complex ceremony of stem cell interaction in terms of bone infection and regeneration. stem cells translational medicine2019;8:1084–1091
Collapse
Affiliation(s)
| | - Felix Reinkemeier
- Department of Plastic Surgery, University Hospital BG Bergmannsheil Bochum, Bochum, Germany
| | - Christoph Wallner
- Department of Plastic Surgery, University Hospital BG Bergmannsheil Bochum, Bochum, Germany
| | - Mehran Dadras
- Department of Plastic Surgery, University Hospital BG Bergmannsheil Bochum, Bochum, Germany
| | - Julika Huber
- Department of Plastic Surgery, University Hospital BG Bergmannsheil Bochum, Bochum, Germany
| | - Sonja Verena Schmidt
- Department of Plastic Surgery, University Hospital BG Bergmannsheil Bochum, Bochum, Germany
| | - Marius Drysch
- Department of Plastic Surgery, University Hospital BG Bergmannsheil Bochum, Bochum, Germany
| | - Stephanie Dittfeld
- Department of Plastic Surgery, University Hospital BG Bergmannsheil Bochum, Bochum, Germany
| | - Henriette Jaurich
- Department of Plastic Surgery, University Hospital BG Bergmannsheil Bochum, Bochum, Germany
| | - Mustafa Becerikli
- Department of Plastic Surgery, University Hospital BG Bergmannsheil Bochum, Bochum, Germany
| | - Kathrin Becker
- Poliklinik für Kieferorthopädie, University Hospital Düsseldorf, Poliklinik für Kieferorthopädie, Düsseldorf, Germany
| | - Nicole Rauch
- Poliklinik für Kieferorthopädie, University Hospital Düsseldorf, Poliklinik für Kieferorthopädie, Düsseldorf, Germany
| | - Vikas Duhan
- Institute of Immunology, University Hospital Essen, Essen, Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery, University Hospital BG Bergmannsheil Bochum, Bochum, Germany
| | - Björn Behr
- Department of Plastic Surgery, University Hospital BG Bergmannsheil Bochum, Bochum, Germany
| |
Collapse
|
17
|
Relaño-Ginés A, Lehmann S, Deville de Périère D, Hirtz C. Dental stem cells as a promising source for cell therapies in neurological diseases. Crit Rev Clin Lab Sci 2019; 56:170-181. [DOI: 10.1080/10408363.2019.1571478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Aroa Relaño-Ginés
- DERBS, Faculty of Odontology, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Sylvain Lehmann
- LBPC-PPC - IRMB, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Dominique Deville de Périère
- DERBS, Faculty of Odontology, CHU de Montpellier, University of Montpellier, Montpellier, France
- LBPC-PPC - IRMB, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Christophe Hirtz
- DERBS, Faculty of Odontology, CHU de Montpellier, University of Montpellier, Montpellier, France
- LBPC-PPC - IRMB, CHU de Montpellier, University of Montpellier, Montpellier, France
| |
Collapse
|
18
|
Zimta AA, Baru O, Badea M, Buduru SD, Berindan-Neagoe I. The Role of Angiogenesis and Pro-Angiogenic Exosomes in Regenerative Dentistry. Int J Mol Sci 2019; 20:ijms20020406. [PMID: 30669338 PMCID: PMC6359271 DOI: 10.3390/ijms20020406] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/04/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023] Open
Abstract
Dental surgeries can result in traumatic wounds that provoke major discomfort and have a high risk of infection. In recent years, density research has taken a keen interest in finding answers to this problem by looking at the latest results made in regenerative medicine and adapting them to the specificities of oral tissue. One of the undertaken directions is the study of angiogenesis as an integrative part of oral tissue regeneration. The stimulation of this process is intended to enhance the local availability of stem cells, oxygen levels, nutrient supply, and evacuation of toxic waste. For a successful stimulation of local angiogenesis, two major cellular components must be considered: the stem cells and the vascular endothelial cells. The exosomes are extracellular vesicles, which mediate the communication between two cell types. In regenerative dentistry, the analysis of exosome miRNA content taps into the extended communication between these cell types with the purpose of improving the regenerative potential of oral tissue. This review analyzes the stem cells available for the dentistry, the molecular cargo of their exosomes, and the possible implications these may have for a future therapeutic induction of angiogenesis in the oral wounds.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
| | - Oana Baru
- Department of Preventive Dentistry, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400083 Cluj-Napoca, Romania.
| | - Mandra Badea
- Department of Preventive Dentistry, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400083 Cluj-Napoca, Romania.
| | - Smaranda Dana Buduru
- Prosthetics and Dental materials, Faculty of Dental Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, 32 Clinicilor Street, 400006 Cluj-Napoca, Romania.
- Stomestet Stomatology Clinic, Calea Manastur 68A Street, 400658 Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii 34th street, 400015 Cluj-Napoca, Romania.
| |
Collapse
|
19
|
Novel trends in application of stem cells in skin wound healing. Eur J Pharmacol 2018; 843:307-315. [PMID: 30537490 DOI: 10.1016/j.ejphar.2018.12.012] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/28/2018] [Accepted: 12/06/2018] [Indexed: 12/15/2022]
Abstract
The latest findings indicate the huge therapeutic potential of stem cells in regenerative medicine, including the healing of chronic wounds. Main stem cell types involved in wound healing process are: epidermal and dermal stem cells, mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs) and hematopoietic stem cells (HSCs). In the therapy of chronic wounds, they can be administrated either topically or using different matrix like hydrogels, scaffolds, dermal substitutes and extracellular matrix (ECM) derivatives. Stem cells are proven to positively influence wound healing by different direct and indirect mechanisms including residing cells stimulation, biomolecules release, inflammation control and ECM remodelling. MSCs are especially worth mentioning as they can be easily derived from bone-marrow or adipose tissue. Apart from traditional approach of administering living stem cells to wounds, new trends have emerged in recent years. Good healing results are obtained using stem cell secretome alone, for example exosomes or conditioned media. There are also attempts to improve healing potential of stem cells by their co-culture with other cell types as well as by their genetic modifications or pretreatment using different chemicals or cell media. Moreover, stem cells have been tested for novel therapeutic purposes like for example acute burns and have been used in experiments on large animal models including pigs and sheep. In this review we discuss the role of stem cells in skin wound healing acceleration. In addition, we analyse possible new strategies of stem cells application in treatment of chronic wounds.
Collapse
|
20
|
Abstract
Abstract
Wound healing is a complex restorative process of the altered cutaneous tissue, which is impaired by numerous local and systemic factors, leading to chronic non-healing lesions with few efficient therapeutic options. Stem cells possess the capacity to differentiate into various types of cell lines. Furthermore, stem cells are able to secrete cytokines and growth factors, modulating inflammation and ultimately leading to angiogenesis, fibrogenesis, and epithelization. Because of their paracrine activity, these cells are able to attract other cell types to the base of the wound, improving the formation of new skin layers. Mesenchymal stem cells derived from the adipose tissue, bone marrow, and placenta, offer numerous ways of implementation. The process of harvesting, growing, and administrating stem cells depends on the site and type of the cells, but recent trial results showed improvement of wound healing independent of the administration site. Bioengineered skin substitutes are validated for treatment of chronic wounds with direct application on the skin surface. These offer physical scaffolding for the migrating cells and promote secretion of growth factors, thus facilitating rapid wound healing. Obtaining further clinical data is essential, but stem cell therapy may become a first-line therapeutic choice for the treatment of non-healing chronic wounds.
Collapse
|
21
|
Effects of Human Adipose-Derived Stem Cells on the Survival of Rabbit Ear Composite Grafts. Arch Plast Surg 2017; 44:370-377. [PMID: 28946717 PMCID: PMC5621823 DOI: 10.5999/aps.2017.44.5.370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/14/2017] [Accepted: 08/29/2017] [Indexed: 01/09/2023] Open
Abstract
Background Composite grafts are frequently used for facial reconstruction. However, the unpredictability of the results and difficulties with large defects are disadvantages. Adipose-derived stem cells (ADSCs) express several cytokines, and increase the survival of random flaps and fat grafts owing to their angiogenic potential. Methods This study investigated composite graft survival after ADSC injection. Circular chondrocutaneous composite tissues, 2 cm in diameter, from 15 New Zealand white rabbits were used. Thirty ears were randomly divided into 3 groups. In the experimental groups (1 and 2), ADSCs were subcutaneously injected 7 days and immediately before the operation, respectively. Similarly, phosphate-buffered saline was injected in the control group just before surgery in the same manner as in group 2. In all groups, chondrocutaneous composite tissue was elevated, rotated 90 degrees, and repaired in its original position. Skin flow was assessed using laser Doppler 1, 3, 6, 9, and 12 days after surgery. At 1 and 12 days after surgery, the viable area was assessed using digital photography; the rabbits were euthanized, and immunohistochemical staining for CD31 was performed to assess neovascularization. Results The survival of composite grafts increased significantly with the injection of ADSCs (P<0.05). ADSC injection significantly improved neovascularization based on anti-CD31 immunohistochemical analysis and vascular endothelial growth factor expression (P<0.05) in both group 1 and group 2 compared to the control group. No statistically significant differences in graft survival, anti-CD31 neovascularization, or microcirculation were found between groups 1 and 2. Conclusions Treatment with ADSCs improved the composite graft survival, as confirmed by the survival area and histological evaluation. The differences according to the injection timing were not significant.
Collapse
|
22
|
|
23
|
Wallner C, Abraham S, Wagner JM, Harati K, Ismer B, Kessler L, Zöllner H, Lehnhardt M, Behr B. Local Application of Isogenic Adipose-Derived Stem Cells Restores Bone Healing Capacity in a Type 2 Diabetes Model. Stem Cells Transl Med 2016; 5:836-44. [PMID: 27102648 DOI: 10.5966/sctm.2015-0158] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/13/2016] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Bone regeneration is typically a reliable process without scar formation. The endocrine disease type 2 diabetes prolongs and impairs this healing process. In a previous work, we showed that angiogenesis and osteogenesis-essential steps of bone regeneration-are deteriorated, accompanied by reduced proliferation in type 2 diabetic bone regeneration. The aim of the study was to improve these mechanisms by local application of adipose-derived stem cells (ASCs) and facilitate bone regeneration in impaired diabetic bone regeneration. The availability of ASCs in great numbers and the relative ease of harvest offers unique advantages over other mesenchymal stem cell entities. A previously described unicortical tibial defect model was utilized in diabetic mice (Lepr(db-/-)). Isogenic mouse adipose-derived stem cells (mASCs)(db-/db-) were harvested, transfected with a green fluorescent protein vector, and isografted into tibial defects (150,000 living cells per defect). Alternatively, control groups were treated with Dulbecco's modified Eagle's medium or mASCs(WT). In addition, wild-type mice were identically treated. By means of immunohistochemistry, proteins specific for angiogenesis, cell proliferation, cell differentiation, and bone formation were analyzed at early (3 days) and late (7 days) stages of bone regeneration. Additionally, histomorphometry was performed to examine bone formation rate and remodeling. Histomorphometry revealed significantly increased bone formation in mASC(db-/db-)-treated diabetic mice as compared with the respective control groups. Furthermore, locally applied mASCs(db-/db-) significantly enhanced neovascularization and osteogenic differentiation. Moreover, bone remodeling was upregulated in stem cell treatment groups. Local application of mACSs can restore impaired diabetic bone regeneration and may represent a therapeutic option for the future. SIGNIFICANCE This study showed that stem cells obtained from fat pads of type 2 diabetic mice are capable of reconstituting impaired bone regeneration in type 2 diabetes. These multipotent stem cells promote both angiogenesis and osteogenesis in type 2 diabetic bony defects. These data might prove to have great clinical implications for bony defects in the ever-increasing type 2 diabetic patient population.
Collapse
Affiliation(s)
- Christoph Wallner
- Department of Plastic Surgery, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Stephanie Abraham
- Department of Plastic Surgery, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Johannes Maximilian Wagner
- Department of Plastic Surgery, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Kamran Harati
- Department of Plastic Surgery, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Britta Ismer
- Department of Plastic Surgery, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Lukas Kessler
- Department of Plastic Surgery, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Hannah Zöllner
- Department of Plastic Surgery, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Björn Behr
- Department of Plastic Surgery, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
24
|
Foroglou P, Karathanasis V, Demiri E, Koliakos G, Papadakis M. Role of adipose-derived stromal cells in pedicle skin flap survival in experimental animal models. World J Stem Cells 2016; 8:101-105. [PMID: 27022440 PMCID: PMC4807308 DOI: 10.4252/wjsc.v8.i3.101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/23/2015] [Accepted: 01/21/2016] [Indexed: 02/06/2023] Open
Abstract
The use of skin flaps in reconstructive surgery is the first-line surgical treatment for the reconstruction of skin defects and is essentially considered the starting point of plastic surgery. Despite their excellent usability, their application includes general surgical risks or possible complications, the primary and most common is necrosis of the flap. To improve flap survival, researchers have used different methods, including the use of adipose-derived stem cells, with significant positive results. In our research we will report the use of adipose-derived stem cells in pedicle skin flap survival based on current literature on various experimental models in animals.
Collapse
Affiliation(s)
- Pericles Foroglou
- Pericles Foroglou, Vasileios Karathanasis, Efterpi Demiri, Department of Plastic Surgery, Papageorgiou General Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vasileios Karathanasis
- Pericles Foroglou, Vasileios Karathanasis, Efterpi Demiri, Department of Plastic Surgery, Papageorgiou General Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Efterpi Demiri
- Pericles Foroglou, Vasileios Karathanasis, Efterpi Demiri, Department of Plastic Surgery, Papageorgiou General Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - George Koliakos
- Pericles Foroglou, Vasileios Karathanasis, Efterpi Demiri, Department of Plastic Surgery, Papageorgiou General Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Marios Papadakis
- Pericles Foroglou, Vasileios Karathanasis, Efterpi Demiri, Department of Plastic Surgery, Papageorgiou General Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
25
|
Duscher D, Barrera J, Wong VW, Maan ZN, Whittam AJ, Januszyk M, Gurtner GC. Stem Cells in Wound Healing: The Future of Regenerative Medicine? A Mini-Review. Gerontology 2015; 62:216-25. [PMID: 26045256 DOI: 10.1159/000381877] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/25/2015] [Indexed: 01/13/2023] Open
Abstract
The increased risk of disease and decreased capacity to respond to tissue insult in the setting of aging results from complex changes in homeostatic mechanisms, including the regulation of oxidative stress and cellular heterogeneity. In aged skin, the healing capacity is markedly diminished resulting in a high risk for chronic wounds. Stem cell-based therapies have the potential to enhance cutaneous regeneration, largely through trophic and paracrine activity. Candidate cell populations for therapeutic application include adult mesenchymal stem cells, embryonic stem cells and induced pluripotent stem cells. Autologous cell-based approaches are ideal to minimize immune rejection but may be limited by the declining cellular function associated with aging. One strategy to overcome age-related impairments in various stem cell populations is to identify and enrich with functionally superior stem cell subsets via single cell transcriptomics. Another approach is to optimize cell delivery to the harsh environment of aged wounds via scaffold-based cell applications to enhance engraftment and paracrine activity of therapeutic stem cells. In this review, we shed light on challenges and recent advances surrounding stem cell therapies for wound healing and discuss limitations for their clinical adoption.
Collapse
Affiliation(s)
- Dominik Duscher
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, Calif., USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Domenis R, Lazzaro L, Calabrese S, Mangoni D, Gallelli A, Bourkoula E, Manini I, Bergamin N, Toffoletto B, Beltrami CA, Beltrami AP, Cesselli D, Parodi PC. Adipose tissue derived stem cells: in vitro and in vivo analysis of a standard and three commercially available cell-assisted lipotransfer techniques. Stem Cell Res Ther 2015; 6:2. [PMID: 25559708 PMCID: PMC4417272 DOI: 10.1186/scrt536] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 12/29/2022] Open
Abstract
Introduction Autologous fat grafting is commonly used to correct soft-tissue contour deformities. However, results are impaired by a variable and unpredictable resorption rate. Autologous adipose-derived stromal cells in combination with lipoinjection (cell-assisted lipotransfer) seem to favor a long-term persistence of fat grafts, thus fostering the development of devices to be used in the operating room at the point of care, to isolate the stromal vascular fraction (SVF) and produce SVF-enhanced fat grafts with safe and standardized protocols. Focusing on patients undergoing breast reconstruction by lipostructure, we analyzed a standard technique, a modification of the Coleman’s procedure, and three different commercially available devices (Lipokit, Cytori, Fastem), in terms of 1) ability to enrich fat grafts in stem cells and 2) clinical outcome at 6 and 12 months. Methods To evaluate the ability to enrich stem cells, we compared, for each patient (n = 20), the standard lipoaspirate with the respective stem cell-enriched one, analyzing yield, immunophenotype and colony-forming capacity of the SVF cells as well as immunophenotype, clonogenicity and multipotency of the obtained adipose stem cells (ASCs). Regarding the clinical outcome, we compared, by ultrasonography imaging, changes at 6 and 12 months in the subcutaneous thickness of patients treated with stem-cell enriched (n = 14) and standard lipoaspirates (n = 16). Results Both methods relying on the enzymatic isolation of primitive cells led to significant increase in the frequency, in the fat grafts, of SVF cells as well as of clonogenic and multipotent ASCs, while the enrichment was less prominent for the device based on the mechanical isolation of the SVF. From a clinical point of view, patients treated with SVF-enhanced fat grafts demonstrated, at six months, a significant superior gain of thickness of both the central and superior-medial quadrants with respect to patients treated with standard lipotransfer. In the median-median quadrant the effect was still persistent at 12 months, confirming an advantage of lipotransfer technique in enriching improving long-term fat grafts. Conclusions This comparative study, based on reproducible biological and clinical parameters and endpoints, showed an advantage of lipotransfer technique in enriching fat grafts in stem cells and in favoring, clinically, long-term fat grafts. Electronic supplementary material The online version of this article (doi:10.1186/scrt536) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rossana Domenis
- Department of Medical and Biological Sciences, University of Udine, P.le Kolbe 4, 33100, Udine, Italy.
| | - Lara Lazzaro
- Clinic of Plastic and Reconstructive Surgery of Udine, University of Udine, P.le Kolbe 4, 33100, Udine, Italy.
| | - Sarah Calabrese
- Clinic of Plastic and Reconstructive Surgery of Udine, University of Udine, P.le Kolbe 4, 33100, Udine, Italy.
| | - Damiano Mangoni
- Department of Medical and Biological Sciences, University of Udine, P.le Kolbe 4, 33100, Udine, Italy.
| | - Annarita Gallelli
- Department of Medical and Biological Sciences, University of Udine, P.le Kolbe 4, 33100, Udine, Italy.
| | - Evgenia Bourkoula
- Department of Medical and Biological Sciences, University of Udine, P.le Kolbe 4, 33100, Udine, Italy.
| | - Ivana Manini
- Department of Medical and Biological Sciences, University of Udine, P.le Kolbe 4, 33100, Udine, Italy.
| | - Natascha Bergamin
- Azienda Ospedaliero-Universitaria of Udine, P.le S. Maria della Misericordia 15, 33100, Udine, Italy.
| | - Barbara Toffoletto
- Department of Medical and Biological Sciences, University of Udine, P.le Kolbe 4, 33100, Udine, Italy.
| | - Carlo A Beltrami
- Azienda Ospedaliero-Universitaria of Udine, P.le S. Maria della Misericordia 15, 33100, Udine, Italy.
| | - Antonio P Beltrami
- Department of Medical and Biological Sciences, University of Udine, P.le Kolbe 4, 33100, Udine, Italy.
| | - Daniela Cesselli
- Department of Medical and Biological Sciences, University of Udine, P.le Kolbe 4, 33100, Udine, Italy.
| | - Pier Camillo Parodi
- Clinic of Plastic and Reconstructive Surgery of Udine, University of Udine, P.le Kolbe 4, 33100, Udine, Italy. .,Azienda Ospedaliero-Universitaria of Udine, P.le S. Maria della Misericordia 15, 33100, Udine, Italy.
| |
Collapse
|
27
|
Soejima K, Kashimura T, Asami T, Kazama T, Matsumoto T, Nakazawa H. Effects of mature adipocyte-derived dedifferentiated fat (DFAT) cells on generation and vascularisation of dermis-like tissue after artificial dermis grafting. J Plast Surg Hand Surg 2014; 49:25-31. [PMID: 24909822 DOI: 10.3109/2000656x.2014.920712] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although artificial dermis (AD) is effective for skin reconstruction, it requires two separate procedures, because the AD must be vascularised before skin grafts. To shorten the period of the dermis-like tissue generation before the secondary skin grafting must be beneficial. Dedifferentiated fat (DFAT) cells are isolated from mature adipose cell suspensions and have potential to differentiate into multiple cell types including endothelial cells. This study aimed to investigate effects of DFAT cells on dermal regeneration after AD grafts in rats. The effects of combination use of DFAT cells and basic fibroblast growth factor (bFGF) were also tested to mimic clinical situations. DFAT cells were isolated from SD rats. Full-thickness wounds were created on the back of rats followed by AD grafting. Five groups were established; Group I: control, Group II: treated with DFAT cells, Group III: treated with bFGF, Group IV: treated with both of DFAT cells and bFGF, and Group V: treated with Green fluorescent protein (GFP)-labelled DFAT cells and bFGF. Histological evaluation was serially performed. Group IV showed markedly promoted vascularisation of dermis-like tissue. In particular, capillary infiltration into the dermis was obtained within 2 days. Immunohistochemical examination revealed that the transplanted DFAT cells had differentiated into endothelial cells and participated in angiogenesis. Group IV also showed a marked increase in the thickness of the dermis like tissue. The present results suggest that the use of DFAT cells under bFGF treatment could be beneficial to shorten the period required for dermal regeneration and vascularisation and contribute to use AD more effectively and safely.
Collapse
Affiliation(s)
- Kazutaka Soejima
- Department of Plastic and Reconstructive Surgery, School of Medicine
| | | | | | | | | | | |
Collapse
|
28
|
Mestak O, Matouskova E, Spurkova Z, Benkova K, Vesely P, Mestak J, Molitor M, Pombinho A, Sukop A. Mesenchymal Stem Cells Seeded on Cross-Linked and Noncross-Linked Acellular Porcine Dermal Scaffolds for Long-Term Full-Thickness Hernia Repair in a Small Animal Model. Artif Organs 2013; 38:572-9. [DOI: 10.1111/aor.12224] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ondrej Mestak
- Department of Plastic Surgery; 1st Faculty of Medicine; Charles University in Prague; Bulovka Hospital; Prague Czech Republic
| | - Eva Matouskova
- Laboratory of Cell Biology; Prague Burn Centre; 3rd Faculty of Medicine; Charles University in Prague; Prague Czech Republic
| | - Zuzana Spurkova
- Department of Pathology; Bulovka Hospital; Prague Czech Republic
| | - Kamila Benkova
- Department of Pathology; Bulovka Hospital; Prague Czech Republic
| | - Pavel Vesely
- Department of Plastic Surgery; 1st Faculty of Medicine; Charles University in Prague; Bulovka Hospital; Prague Czech Republic
| | - Jan Mestak
- Department of Plastic Surgery; 1st Faculty of Medicine; Charles University in Prague; Bulovka Hospital; Prague Czech Republic
| | - Martin Molitor
- Department of Plastic Surgery; 1st Faculty of Medicine; Charles University in Prague; Bulovka Hospital; Prague Czech Republic
| | - Antonio Pombinho
- Laboratory of Cell Differentiation; Institute of Molecular Genetics; Czech Academy of Sciences; Prague Czech Republic
| | - Andrej Sukop
- Department of Plastic Surgery; 3rd Faculty of Medicine; Charles University in Prague; University Hospital Kralovske Vinohrady; Prague Czech Republic
| |
Collapse
|
29
|
Jo DI, Yang HJ, Kim SH, Kim CK, Park HJ, Choi HG, Shin DH, Uhm KI. Coverage of skin defects without skin grafts using adipose-derived stem cells. Aesthetic Plast Surg 2013; 37:1041-51. [PMID: 23877753 DOI: 10.1007/s00266-013-0191-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 06/22/2013] [Indexed: 11/27/2022]
Abstract
A satisfying result is difficult to achieve in the repair of a full-thickness skin defect in the facial area, including the subunits of the nose. A full-thickness skin graft, nasolabial flap, or forehead flap as a major treatment still is used despite its relative potential for secondary contracture, unmatched skin color, hypertrophic scars, and donor-site morbidity. Another option, with good wound-healing power and soft tissue regeneration without skin grafts would be helpful for initiating treatment. Adult stem cells are a useful material in tissue engineering. Adipose-derived stem cells (ADSCs), an abundant population of pluripotent cells found in the stroma of adipose tissues, have been shown to differentiate in vitro into various cell lineages. As a robust source of bioactive growth factors, ADSCs contribute to recovery from ischemic damage, and they can promote the wound-healing process as well as soft tissue regeneration. The authors have experienced several cases of facial skin defect repair using ADSCs without skin grafts. In these cases, they observed rapid coverage of the wound with the patient's own regenerated tissue. During the treatment period, ADSC treatment showed an excellent wound-healing process in terms of quantity and quality.
Collapse
Affiliation(s)
- Dong In Jo
- Department of Plastic and Reconstructive Surgery, Konkuk University School of Medicine, Gyohyeon 2-dong, Chungju, Chungcheongbuk-do, 380-704, Republic of Korea,
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Muscari C, Giordano E, Bonafè F, Govoni M, Pasini A, Guarnieri C. Priming adult stem cells by hypoxic pretreatments for applications in regenerative medicine. J Biomed Sci 2013; 20:63. [PMID: 23985033 PMCID: PMC3765890 DOI: 10.1186/1423-0127-20-63] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/24/2013] [Indexed: 12/16/2022] Open
Abstract
The efficiency of regenerative medicine can be ameliorated by improving the biological performances of stem cells before their transplantation. Several ex-vivo protocols of non-damaging cell hypoxia have been demonstrated to significantly increase survival, proliferation and post-engraftment differentiation potential of stem cells. The best results for priming cultured stem cells against a following, otherwise lethal, ischemic stress have been obtained with brief intermittent episodes of hypoxia, or anoxia, and reoxygenation in accordance with the extraordinary protection afforded by the conventional maneuver of ischemic preconditioning in severely ischemic organs. These protocols of hypoxic preconditioning can be rather easily reproduced in a laboratory; however, more suitable pharmacological interventions inducing stem cell responses similar to those activated in hypoxia are considered among the most promising solutions for future applications in cell therapy. Here we want to offer an up-to-date review of the molecular mechanisms translating hypoxia into beneficial events for regenerative medicine. To this aim the involvement of epigenetic modifications, microRNAs, and oxidative stress, mainly activated by hypoxia inducible factors, will be discussed. Stem cell adaptation to their natural hypoxic microenvironments (niche) in healthy and neoplastic tissues will be also considered.
Collapse
Affiliation(s)
- Claudio Muscari
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
BACKGROUND Advances in the treatment of ischemia- reperfusion injury have created an opportunity for plastic surgeons to apply these treatments to flaps and implanted tissues. We examined the capability of adipose derived stem cells (ADSCs) to protect tissue against IRI using an extended inferior epigastric artery skin flap as a flap ischemia- reperfusion injury (IRI) model. METHODS ADSCs were isolated from Lewis rats and cultured in vitro. Twenty- four rats were randomly divided into three groups. Group I was the sham group and did not undergo ischemic insult; rather, the flap was raised and immediately sutured back (non-ischemic control group). Group II (ischemia control) and group III (ADSCs treatment) underwent 3 h of ischemic insult. During reperfusion group III was treated by intravenous application of ADSCs and group II was left untreated. Five days postoperatively, flap survival and perfusion were assessed. Microvessel density was visualized by immunohistochemistry and semi- quantitative real-time polymerase chain reaction addressed differential gene expression. RESULTS Treatment with ADSCs significantly increased flap survival (p<0.001) and flap perfusion (p<0.001) when compared to the control group II. Microvessel- density in ADSCs treated group was not significantly increased in any group. No significant differences showed the comparison of the experimental group III and the sham operated control group I. ADSCs treatment (Group III) was accompanied by a significantly enhanced expression of pro-angiogenic and pro-inflammatory genes. CONCLUSION Overall, our study demonstrates that ADSCs treatment significantly enhances skin flap survival in the aftermath of ischemia to an extent that almost equals surgical results without ischemia. This effect is accompanied with a pronounced and significant angiogenic response and an improved blood perfusion.
Collapse
|
32
|
Reichenberger MA, Mueller W, Schäfer A, Heimer S, Leimer U, Lass U, Germann G, Köllensperger E. Fibrin-embedded adipose derived stem cells enhance skin flap survival. Stem Cell Rev Rep 2012; 8:844-53. [PMID: 22215322 DOI: 10.1007/s12015-011-9341-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Matthias A Reichenberger
- Clinic for Plastic and Reconstructive Surgery, Aesthetic and Preventive Medicine at Heidelberg University Hospital - ETHIANUM, Vossstr. 6, 69115 Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Haider HK, Mustafa A, Feng Y, Ashraf M. Genetic Modification of Stem Cells for Improved Therapy of the Infarcted Myocardium. Mol Pharm 2011; 8:1446-57. [DOI: 10.1021/mp2001318] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Husnain Kh. Haider
- Department of Pathology and Lab Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Anique Mustafa
- Department of Pathology and Lab Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Yuliang Feng
- Department of Pathology and Lab Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Muhammad Ashraf
- Department of Pathology and Lab Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| |
Collapse
|