1
|
Yuan C, Wang JY, Wang BY, Zhao YL, Li Y, Li D, Ling H, Zhuang M. Heptad repeat 1-derived N peptide inhibitors improve broad-spectrum anti-HIV-1 activity. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100364. [PMID: 40093556 PMCID: PMC11910682 DOI: 10.1016/j.crmicr.2025.100364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Background HIV-1 N-peptide inhibitor (NPI) derived from N-terminal heptad-repeat region (HR1) of gp41 can target C-terminal heptad-repeat region (HR2) or the HR1 to interfere with the formation of endogenous six-helix bundle (6HB). However, the NPI is less active than the C-peptide inhibitor. In this study, we reported three HR1-derived NPIs designed by adding fusion peptide proximal region (FPPR) of gp41 or a trimeric motif MTQ into the N36 peptide and then evaluated their anti-HIV-1 activities. Methods Molecular modeling was performed using Swiss Model. The inhibitory activity of NPIs on HIV-1 was assessed by Env-pseudovirus infection assays and cell-cell fusion assays. Interaction between NPIs and HR2 peptides was evaluated by circular dichroism and Native PAGE. Results The three newly designed NPIs, FPPR-N36, MTQ-N36, and MTQ-FPPR-N36, exhibited higher anti-HIV-1 activity than N36. The stability of the coiled-coil core formed by three designed NPIs or the 6HB formed by C34 and these NPIs were significantly higher than those of corresponding monomer N36 or isoleucine zipper-engineered trimeric N36 (IZN36). The 50 % inhibitory concentrations (IC50) of MTQ-N36 against HIV-1 infection were at a nanomolar level, lower than those of other tested NPIs. The FPPR-N36 could also inhibit infection of HIV-1 strains that were resistant to N36 and IZN36. Conclusions The three newly designed NPIs had inhibitory activity against HIV-1 infection. Among them, MTQ-N36 exhibited a higher potential to inhibit HIV-1 entry than other peptides, and FPPR-N36 might be a promising candidate NPI for suppressing HIV-1 strains that are resistant to conventional NPIs.
Collapse
Affiliation(s)
- Chen Yuan
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Jia-Ye Wang
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, 150081, China
| | - Bu-Yi Wang
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Yi-Lin Zhao
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Yan Li
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, 150081, China
- Key Laboratory of Pathogen Biology, Harbin, 150081, China
| | - Di Li
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, 150081, China
- Key Laboratory of Pathogen Biology, Harbin, 150081, China
| | - Hong Ling
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, 150081, China
- Key Laboratory of Pathogen Biology, Harbin, 150081, China
| | - Min Zhuang
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, 150081, China
- Key Laboratory of Pathogen Biology, Harbin, 150081, China
| |
Collapse
|
2
|
Na H, Luo H, Wang J, Sun L, Gao X, Liang G, Ma Y, Meng Z. An N-terminal heptad repeat trimer-based peptide fusion inhibitor exhibits potent anti-H1N1 activity. Bioorg Med Chem 2024; 111:117865. [PMID: 39098126 DOI: 10.1016/j.bmc.2024.117865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Influenza viruses are susceptible to seasonal influenza, which has repeatedly caused global pandemics and jeopardized human health. Vaccines are only used as preventive medicine due to the extreme mutability of influenza viruses, and antiviral medication is the most significant clinical treatment to reduce influenza morbidity and mortality. Nevertheless, the clinical application of anti-influenza virus agents is characterized by the narrow therapeutic time window, the susceptibility to drug resistance, and relatively limited effect on severe influenza. Therefore, it is of great significance to develop novel anti-influenza virus drugs to fulfill the urgent clinical needs. Influenza viruses enter host cells through the hemagglutinin (HA) mediated membrane fusion process, and fusion inhibitors function antivirally by blocking hemagglutinin deformation, promising better therapeutic efficacy and resolving drug resistance, with targets different from marketed medicines. Previous studies have shown that unnatural peptides derived from Human Immunodeficiency Virus Type 1 (HIV-1) membrane fusion proteins exhibit anti-HIV-1 activity. Based on the similarity of the membrane fusion protein deformation process between HIV-1 and H1N1, we selected sequences derived from the gp41 subunit in the HIV-1 fusion protein, and then constructed N-trimer spatial structure through inter-helical isopeptide bond modification, to design the novel anti-H1N1 fusion inhibitors. The results showed that the novel peptides could block 6-HB formation during H1N1 membrane fusion procedure, and thus possessed significant anti-H1N1 activity, comparable to the positive control oseltamivir. Our study demonstrates the design viability of peptide fusion inhibitors based on similar membrane fusion processes among viruses, and furthermore provides an important idea for the novel anti-H1N1 inhibitors development.
Collapse
Affiliation(s)
- Heiya Na
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, PR China.
| | - Hui Luo
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, PR China; Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
| | - Jinlin Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, PR China; Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, PR China
| | - Lijun Sun
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, PR China
| | - Xin Gao
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, PR China
| | - Guodong Liang
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, PR China; Beijing Institute of Pharmacology and Toxicology, Beijing, PR China.
| | - Yuheng Ma
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, PR China.
| | - Zhao Meng
- Beijing Institute of Pharmacology and Toxicology, Beijing, PR China.
| |
Collapse
|
3
|
Li J, Li Q, Xia S, Tu J, Zheng L, Wang Q, Jiang S, Wang C. Design of MERS-CoV entry inhibitory short peptides based on helix-stabilizing strategies. Bioorg Med Chem Lett 2024; 97:129569. [PMID: 38008340 DOI: 10.1016/j.bmcl.2023.129569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/01/2023] [Accepted: 11/23/2023] [Indexed: 11/28/2023]
Abstract
Interaction between Middle East respiratory syndrome coronavirus (MERS-CoV) spike (S) protein heptad repeat-1 domain (HR1) and heptad repeat-2 domain (HR2) is critical for the MERS-CoV fusion process. This interaction is mediated by the α-helical region from HR2 and the hydrophobic groove in a central HR1 trimeric coiled coil. We sought to develop a short peptidomimetic to act as a MERS-CoV fusion inhibitor by reproducing the key recognition features of HR2 helix. This was achieved by the use of helix-stabilizing strategies, including substitution with unnatural helix-favoring amino acids, introduction of ion pair interactions, and conjugation of palmitic acid. The resulting 23-mer lipopeptide, termed AEEA-C16, inhibits MERS-CoV S protein-mediated cell-cell fusion at a low micromolar level comparable to that of the 36-mer HR2 peptide HR2P-M2. Collectively, our studies provide new insights into developing short peptide-based antiviral agents to treat MERS-CoV infection.
Collapse
Affiliation(s)
- Jichun Li
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Qing Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Jiahuang Tu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Longbo Zheng
- Key Laboratory of Structure-based Drug Design & Discovery of the Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China.
| | - Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China.
| |
Collapse
|
4
|
Luo H, Zhao Y, Ma Y, Liang G, Ga L, Meng Z. Design of Artificial C-Peptides as Potential Anti-HIV-1 Inhibitors Based on 6-HB Formation Mechanism. Protein Pept Lett 2024; 31:447-457. [PMID: 38910421 DOI: 10.2174/0109298665312274240530060233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND The six-helix bundle (6-HB) is a core structure formed during the membrane fusion process of viruses with the Class I envelope proteins. Peptide inhibitors, including the marketed Enfuvirtide, blocking the membrane fusion to exert inhibitory activity were designed based on the heptads repeat interactions in 6-HB. However, the drawbacks of Enfuvirtide, such as drug resistance and short half-life in vivo, have been confirmed in clinical applications. Therefore, novel design strategies are pivotal in the development of next-generation peptide-based fusion inhibitors. OBJECTIVE The de novo design of α-helical peptides against MERS-CoV and IAVs has successfully expedited the development of fusion inhibitors. The reported sequences were completely nonhomologous with natural peptides, which can provide some inspirations for the antiviral design against other pathogenic viruses with class I fusion proteins. Here, we design a series of artificial C-peptides based on the similar mechanism of 6-HB formation and general rules of heptads repeat interaction. METHODS The inhibitory activity of peptides against HIV-1 was assessed by HIV-1 Env-mediated cell-cell fusion assays. Interaction between artificial C-peptides and target peptides was evaluated by circular dichroism, polyacrylamide gel electrophoresis, size-exclusion chromatography, and sedimentation velocity analysis. Molecular docking studies were performed by using Schrödinger molecular modelling software. RESULTS The best-performing artificial C-peptide, 1SR, was highly active against HIV-1 env-mediated cell-cell fusion. 1SR binds to the gp41 NHR region, assembling polymer to prevent endogenous 6-HB formation. CONCLUSION We have found an artificial C-lipopeptide lead compound with inhibitory activity against HIV-1. Also, this paper enriched both N- and C-teminal heptads repeat interaction rules in 6-HB and provided an effective idea for next-generation peptide-based fusion inhibitors against HIV-1.
Collapse
Affiliation(s)
- Hui Luo
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, P.R. China
| | - Yan Zhao
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, P.R. China
| | - Yuheng Ma
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, P.R. China
| | - Guodong Liang
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, P.R. China
| | - Lu Ga
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, P.R. China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, P.R. China
| |
Collapse
|
5
|
Wang H, Wang X, Li J, Li Q, Feng S, Lu L, Wang C, Jiang S. Design of artificial α-helical peptides targeting both gp41 deep pocket and subpocket as potent HIV-1 fusion inhibitors. Eur J Med Chem 2022; 236:114336. [PMID: 35395438 DOI: 10.1016/j.ejmech.2022.114336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 11/04/2022]
Abstract
Both the deep pocket region and its neighboring subpocket site on the N-trimer of HIV-1 gp41 protein can serve as targets for the development of HIV-1 entry inhibitors. Pocket-binding domain (PBD)-containing peptides with the potential to inhibit HIV-1 fusion through targeting the deep pocket have been extensively exploited. However, using an artificial peptide strategy, we herein report the design of α-helical lipopeptides with non-native protein sequences as HIV-1 fusion inhibitors that can occupy both gp41 deep cavity and subpocket sites. The most active compound, PP24C, inhibited HIV-1 replication, including T20-resistant HIV-1 mutants, at low nanomolar level. Biophysical approaches revealed that both the artificial α-helical peptide P35A4 and its cholesterol-tagged peptide PP24C could bind to T21 peptide used as a target surrogate comprising both pockets. Our study offers a new template for the design of artificial anti-HIV-1 therapeutics and highlights the novel concept of peptide secondary structure-based virus fusion inhibitors.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China
| | - Xinling Wang
- Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 131 Dong An Road, Shanghai, 200032, China
| | - Jiahui Li
- Key Laboratory of Structure-based Drug Design and Discovery of the Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qing Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China
| | - Siliang Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 131 Dong An Road, Shanghai, 200032, China.
| | - Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 131 Dong An Road, Shanghai, 200032, China.
| |
Collapse
|
6
|
Wang C, Xia S, Wang X, Li Y, Wang H, Xiang R, Jiang Q, Lan Q, Liang R, Li Q, Huo S, Lu L, Wang Q, Yu F, Liu K, Jiang S. Supercoiling Structure-Based Design of a Trimeric Coiled-Coil Peptide with High Potency against HIV-1 and Human β-Coronavirus Infection. J Med Chem 2022; 65:2809-2819. [PMID: 33929200 PMCID: PMC8117781 DOI: 10.1021/acs.jmedchem.1c00258] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 12/15/2022]
Abstract
Hexameric structure formation through packing of three C-terminal helices and an N-terminal trimeric coiled-coil core has been proposed as a general mechanism of class I enveloped virus entry. In this process, the C-terminal helical repeat (HR2) region of viral membrane fusion proteins becomes transiently exposed and accessible to N-terminal helical repeat (HR1) trimer-based fusion inhibitors. Herein, we describe a mimetic of the HIV-1 gp41 HR1 trimer, N3G, as a promising therapeutic against HIV-1 infection. Surprisingly, we found that in addition to protection against HIV-1 infection, N3G was also highly effective in inhibiting infection of human β-coronaviruses, including MERS-CoV, HCoV-OC43, and SARS-CoV-2, possibly by binding the HR2 region in the spike protein of β-coronaviruses to block their hexameric structure formation. These studies demonstrate the potential utility of anti-HIV-1 HR1 peptides in inhibiting human β-coronavirus infection. Moreover, this strategy could be extended to the design of broad-spectrum antivirals based on the supercoiling structure of peptides.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Toxicology and Medical
Countermeasures, Beijing Institute of Pharmacology and
Toxicology, 27 Tai-Ping Road, Beijing 100850,
China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology
(MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical
Center, Fudan University, 130 Dong An Road, Shanghai 200032,
China
| | - Xinling Wang
- Key Laboratory of Medical Molecular Virology
(MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical
Center, Fudan University, 130 Dong An Road, Shanghai 200032,
China
| | - Yue Li
- State Key Laboratory of Toxicology and Medical
Countermeasures, Beijing Institute of Pharmacology and
Toxicology, 27 Tai-Ping Road, Beijing 100850,
China
| | - Huan Wang
- State Key Laboratory of Toxicology and Medical
Countermeasures, Beijing Institute of Pharmacology and
Toxicology, 27 Tai-Ping Road, Beijing 100850,
China
| | - Rong Xiang
- Hebei Center for Wildlife Health, College of Life
Sciences, Hebei Agricultural University, Baoding 071001,
China
| | - Qinwen Jiang
- Key Laboratory of Structure-based Drug Design &
Discovery of the Ministry of Education, Shenyang Pharmaceutical
University, Shenyang 110016, China
| | - Qiaoshuai Lan
- Key Laboratory of Medical Molecular Virology
(MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical
Center, Fudan University, 130 Dong An Road, Shanghai 200032,
China
| | - Ruiying Liang
- Hebei Center for Wildlife Health, College of Life
Sciences, Hebei Agricultural University, Baoding 071001,
China
| | - Qing Li
- State Key Laboratory of Toxicology and Medical
Countermeasures, Beijing Institute of Pharmacology and
Toxicology, 27 Tai-Ping Road, Beijing 100850,
China
| | - Shanshan Huo
- Hebei Center for Wildlife Health, College of Life
Sciences, Hebei Agricultural University, Baoding 071001,
China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology
(MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical
Center, Fudan University, 130 Dong An Road, Shanghai 200032,
China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology
(MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical
Center, Fudan University, 130 Dong An Road, Shanghai 200032,
China
| | - Fei Yu
- Hebei Center for Wildlife Health, College of Life
Sciences, Hebei Agricultural University, Baoding 071001,
China
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical
Countermeasures, Beijing Institute of Pharmacology and
Toxicology, 27 Tai-Ping Road, Beijing 100850,
China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology
(MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical
Center, Fudan University, 130 Dong An Road, Shanghai 200032,
China
- Lindsley F. Kimball Research Institute,
New York Blood Center, New York, New York 10065,
United States
| |
Collapse
|
7
|
Wang Q, Su S, Xue J, Yu F, Pu J, Bi W, Xia S, Meng Y, Wang C, Yang W, Xu W, Zhu Y, Zheng Q, Qin C, Jiang S, Lu L. An amphipathic peptide targeting the gp41 cytoplasmic tail kills HIV-1 virions and infected cells. Sci Transl Med 2021; 12:12/546/eaaz2254. [PMID: 32493792 DOI: 10.1126/scitranslmed.aaz2254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/28/2020] [Indexed: 12/26/2022]
Abstract
HIV-associated morbidity and mortality have markedly declined because of combinational antiretroviral therapy, but HIV readily mutates to develop drug resistance. Developing antivirals against previously undefined targets is essential to treat existing drug-resistant HIV strains. Some peptides derived from HIV-1 envelope glycoprotein (Env, gp120-gp41) have been shown to be effective in inhibiting HIV-1 infection. Therefore, we screened a peptide library from HIV-1 Env and identified a peptide from the cytoplasmic region, designated F9170, able to effectively inactivate HIV-1 virions and induce necrosis of HIV-1-infected cells, and reactivated latently infected cells. F9170 specifically targeted the conserved cytoplasmic tail of HIV-1 Env and effectively disrupted the integrity of the viral membrane. Short-term monoadministration of F9170 controlled viral loads to below the limit of detection in chronically SHIV-infected macaques. F9170 can enter the brain and lymph nodes, anatomic reservoirs for HIV latency. Therefore, F9170 shows promise as a drug candidate for HIV treatment.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Shan Su
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Jing Xue
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Re-emerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Fei Yu
- College of Life and Science, Hebei Agricultural University, Baoding 071001, China
| | - Jing Pu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Wenwen Bi
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Yu Meng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Cong Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Wenqian Yang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Yun Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinwen Zheng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Re-emerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China. .,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| |
Collapse
|
8
|
Synergistic Effect by Combining a gp120-Binding Protein and a gp41-Binding Antibody to Inactivate HIV-1 Virions and Inhibit HIV-1 Infection. Molecules 2021; 26:molecules26071964. [PMID: 33807292 PMCID: PMC8036483 DOI: 10.3390/molecules26071964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/29/2022] Open
Abstract
Acquired immune deficiency syndrome (AIDS) has prevailed over the last 30 years. Although highly active antiretroviral therapy (HAART) has decreased mortality and efficiently controlled the progression of disease, no vaccine or curative drugs have been approved until now. A viral inactivator is expected to inactivate cell-free virions in the absence of target cells. Previously, we identified a gp120-binding protein, mD1.22, which can inactivate laboratory-adapted HIV-1. In this study, we have found that the gp41 N-terminal heptad repeat (NHR)-binding antibody D5 single-chain variable fragment (scFv) alone cannot inactivate HIV-1 at the high concentration tested. However, D5 scFv in the combination could enhance inactivation activity of mD1.22 against divergent HIV-1 strains, including HIV-1 laboratory-adapted strains, primary HIV-1 isolates, T20- and AZT-resistant strains, and LRA-reactivated virions. Combining mD1.22 and D5 scFv exhibited synergistic effect on inhibition of infection by divergent HIV-1 strains. These results suggest good potential to develop the strategy of combining a gp120-binding protein and a gp41-binding antibody for the treatment of HIV-1 infection.
Collapse
|
9
|
Lai W, Wang C, Yan J, Liu H, Zhang W, Lin B, Xi Z. Suitable fusion of N-terminal heptad repeats to achieve covalently stabilized potent N-peptide inhibitors of HIV-1 infection. Bioorg Med Chem 2019; 28:115214. [PMID: 31932193 DOI: 10.1016/j.bmc.2019.115214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022]
Abstract
N-terminal heptad repeat (NHR)-derived peptide (N-peptide) fusion inhibitors, which are derived from human immunodeficiency virus (HIV) envelope glycoprotein 41 (gp41), are limited by aggregation and unstable trimer conformation. However, they could function as potent inhibitors of viral infection by forming a coiled-coil structure covalently stabilized by interchain disulfide bonds. We previously synthesized N-peptides with potent anti-HIV-1 activity and high stability by coiled-coil fusion and covalent stabilization. Here, we attempted to study the effects of NHRs of chimeric N-peptides by fusing de novo coiled-coil isopeptide bridge-tethered T21 peptides of different NHR lengths. Peptides (T21N23)3 and (T21N36)3 was a more potent HIV-1 fusion inhibitor than (T21N17)3. The site of isopeptide bond formation was precisely controlled and had little influence on N-peptide properties. The N-peptide (T21N36)3, which had a similar conformation as the NHR trimer and interacted well with the C34 peptide, may be useful for screening other C-peptides and small-molecule fusion inhibitors, and for studying the interactions between the NHR trimer and C-terminal heptad repeats.
Collapse
Affiliation(s)
- Wenqing Lai
- Institute of Environmental and Operational Medicine, 1 Da-Li Road, Tianjin 300050, China; Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100089, China
| | - Chao Wang
- Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100089, China
| | - Jun Yan
- Institute of Environmental and Operational Medicine, 1 Da-Li Road, Tianjin 300050, China
| | - Huanliang Liu
- Institute of Environmental and Operational Medicine, 1 Da-Li Road, Tianjin 300050, China
| | - Wei Zhang
- Institute of Environmental and Operational Medicine, 1 Da-Li Road, Tianjin 300050, China
| | - Bencheng Lin
- Institute of Environmental and Operational Medicine, 1 Da-Li Road, Tianjin 300050, China.
| | - Zhuge Xi
- Institute of Environmental and Operational Medicine, 1 Da-Li Road, Tianjin 300050, China.
| |
Collapse
|
10
|
Yrazu FM, Pinamonti G, Clementi C. The Effect of Electrostatic Interactions on the Folding Kinetics of a 3-α-Helical Bundle Protein Family. J Phys Chem B 2018; 122:11800-11806. [PMID: 30277393 DOI: 10.1021/acs.jpcb.8b08676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The trio of protein segment repeats called spectrins diverges by more than 2 orders of magnitude in their folding and unfolding rates, despite having very similar stabilities and almost coincidental topologies. Experimental studies revealed that the mutation of five particular residues dramatically alters the kinetic rates in the slow folders, making them similar to the rates of the fast folder. This is considered to be an exceptional behavior which seems in principle to challenge the current understanding of the protein folding process. In this work, we analyze this scenario, using a simplified computational model, combined with state-of-the-art kinetic analysis techniques. Our model faithfully separates the kinetics of the fast and slow folders and captures the effect of the five mutations. We show that the inclusion of electrostatics in the model is necessary to explain the experimental findings.
Collapse
Affiliation(s)
- Fernando Miguel Yrazu
- Department of Chemical and Biomolecular Engineering , Rice University , Houston , Texas 77005 , United States
| | - Giovanni Pinamonti
- Department of Informatics and Mathematics , Freie Universität Berlin , 14195 Berlin , Germany
| | - Cecilia Clementi
- Department of Chemical and Biomolecular Engineering , Rice University , Houston , Texas 77005 , United States.,Department of Informatics and Mathematics , Freie Universität Berlin , 14195 Berlin , Germany.,Center for Theoretical Biological Physics and Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| |
Collapse
|
11
|
Wang C, Zhao L, Xia S, Zhang T, Cao R, Liang G, Li Y, Meng G, Wang W, Shi W, Zhong W, Jiang S, Liu K. De Novo Design of α-Helical Lipopeptides Targeting Viral Fusion Proteins: A Promising Strategy for Relatively Broad-Spectrum Antiviral Drug Discovery. J Med Chem 2018; 61:8734-8745. [PMID: 30192544 PMCID: PMC7075651 DOI: 10.1021/acs.jmedchem.8b00890] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 12/19/2022]
Abstract
Class I enveloped viruses share similarities in their apparent use of a hexameric coiled-coil assembly to drive the merging of virus and host cell membranes. Inhibition of coiled coil-mediated interactions using bioactive peptides that replicate an α-helical chain from the viral fusion machinery has significant antiviral potential. Here, we present the construction of a series of lipopeptides composed of a de novo heptad repeat sequence-based α-helical peptide plus a hydrocarbon tail. Promisingly, the constructs adopted stable α-helical conformations and exhibited relatively broad-spectrum antiviral activities against Middle East respiratory syndrome coronavirus (MERS-CoV) and influenza A viruses (IAVs). Together, these findings reveal a new strategy for relatively broad-spectrum antiviral drug discovery by relying on the tunability of the α-helical coiled-coil domains present in all class I fusion proteins and the amphiphilic nature of the individual helices from this multihelix motif.
Collapse
Affiliation(s)
- Chao Wang
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Lei Zhao
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Shuai Xia
- Key
Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic
Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Tianhong Zhang
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Ruiyuan Cao
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Guodong Liang
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Yue Li
- Key Laboratory
of Structure-Based Drug Design & Discovery of the Ministry of
Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guangpeng Meng
- Key Laboratory
of Structure-Based Drug Design & Discovery of the Ministry of
Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Weicong Wang
- Department
of Clinical Trial Center, China National Clinical Research Center
for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Weiguo Shi
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Wu Zhong
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Shibo Jiang
- Key
Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic
Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Road, Shanghai 200032, China
- Lindsley
F. Kimball Research Institute, New York
Blood Center, New York, New York 10065, United
States
| | - Keliang Liu
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| |
Collapse
|
12
|
Pei Y, Wang Q, Zhang J, Guo Y, Feng J. Characterization and Evaluation of Key Sites in the Peptide Inhibitor of TAB1/p38α Interaction. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-017-9607-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Wang C, Xia S, Zhang P, Zhang T, Wang W, Tian Y, Meng G, Jiang S, Liu K. Discovery of Hydrocarbon-Stapled Short α-Helical Peptides as Promising Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Fusion Inhibitors. J Med Chem 2018; 61:2018-2026. [PMID: 29442512 PMCID: PMC7075646 DOI: 10.1021/acs.jmedchem.7b01732] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The hexameric α-helical coiled-coil formed between the C-terminal and N-terminal heptad repeat (CHR and NHR) regions of class I viral fusion proteins plays an important role in mediating the fusion of the viral and cellular membranes and provides a clear starting point for molecular mimicry that drives viral fusion inhibitor design. Unfortunately, such peptide mimicry of the short α-helical region in the CHR of Middle East respiratory syndrome coronavirus (MERS-CoV) spike protein has been thwarted by the loss of the peptide's native α-helical conformation when taken out of the parent protein structure. Here, we describe that appropriate all-hydrocarbon stapling of the short helical portion-based peptide to reinforce its bioactive secondary structure remarkably improves antiviral potency. The resultant stapled peptide P21S10 could effectively inhibit infection by MERS-CoV pseudovirus and its spike protein-mediated cell-cell fusion; additionally, P21S10 exhibits improved pharmacokinetic properties than HR2P-M2, suggesting strong potential for development as an anti-MERS-CoV therapeutic.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center , Fudan University , 130 Dong An Road , Shanghai 200032 , China
| | - Peiyu Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of the Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Tianhong Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Weicong Wang
- Pharmaceutical Preparation Section, Plastic Surgery Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100144 , China
| | - Yangli Tian
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Guangpeng Meng
- Key Laboratory of Structure-Based Drug Design and Discovery of the Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center , Fudan University , 130 Dong An Road , Shanghai 200032 , China.,Lindsley F. Kimball Research Institute , New York Blood Center , New York , New York 10065 , United States
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China.,Key Laboratory of Structure-Based Drug Design and Discovery of the Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China
| |
Collapse
|
14
|
Su S, Ma Z, Hua C, Li W, Lu L, Jiang S. Adding an Artificial Tail-Anchor to a Peptide-Based HIV-1 Fusion Inhibitor for Improvement of Its Potency and Resistance Profile. Molecules 2017; 22:molecules22111996. [PMID: 29156603 PMCID: PMC6150406 DOI: 10.3390/molecules22111996] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 11/16/2022] Open
Abstract
Peptides derived from the C-terminal heptad repeat (CHR) of human immunodeficiency virus type 1 (HIV-1) envelope protein transmembrane subunit gp41, such as T20 (enfuvirtide), can bind to the N-terminal heptad repeat (NHR) of gp41 and block six-helix bundle (6-HB) formation, thus inhibiting HIV-1 fusion with the target cell. However, clinical application of T20 is limited because of its low potency and genetic barrier to resistance. HP23, the shortest CHR peptide, exhibits better anti-HIV-1 activity than T20, but the HIV-1 strains with E49K mutations in gp41 will become resistant to it. Here, we modified HP23 by extending its C-terminal sequence using six amino acid residues (E6) and adding IDL (Ile-Asp-Leu) to the C-terminus of E6, which is expected to bind to the shallow pocket in the gp41 NHR N-terminal region. The newly designed peptide, designated HP23-E6-IDL, was about 2- to 16-fold more potent than HP23 against a broad spectrum of HIV-1 strains and more than 12-fold more effective against HIV-1 mutants resistant to HP23. These findings suggest that addition of an anchor-tail to the C-terminus of a CHR peptide will allow binding with the pocket in the gp41 NHR that may increase the peptide's antiviral efficacy and its genetic barrier to resistance.
Collapse
Affiliation(s)
- Shan Su
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Zhenxuan Ma
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Chen Hua
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Weihua Li
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, The Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China.
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, The Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China.
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| |
Collapse
|
15
|
Liang G, Wang H, Chong H, Cheng S, Jiang X, He Y, Wang C, Liu K. An effective conjugation strategy for designing short peptide-based HIV-1 fusion inhibitors. Org Biomol Chem 2016; 14:7875-7882. [PMID: 27454320 DOI: 10.1039/c6ob01334a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lengthy peptides corresponding to the C-terminal heptad repeat (C-peptides) of human immunodeficiency virus type 1 (HIV-1) gp41 are potent inhibitors against virus-cell fusion. Designing short C-peptide-based HIV-1 fusion inhibitors could potentially redress the physicochemical and technical liabilities of a long-peptide therapeutic. However, designing such inhibitors with high potency has been challenging. We generated a conjugated architecture by incorporating small-molecule inhibitors of gp41 into the N-terminus of a panel of truncated C-peptides. Among these small molecule-capped short peptides, the 26-residue peptide Indole-T26 inhibited HIV-1 Env-mediated cell-cell fusion and viral replication at low nanomolar levels, reaching the potency of the only clinically used 36-residue peptide T20 (enfuvirtide). Collectively, our work opens up a new avenue for developing short peptide-based HIV-1 fusion inhibitors, and may have broad applicability to the development of modulators of other class I fusion proteins.
Collapse
Affiliation(s)
- Guodong Liang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing, 100850, China.
| | - Huixin Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Huihui Chong
- MOH Key Laboratory of Systems Biology of Pathogens and AIDS Research Center, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 9, Dong Dan San Tiao, Beijing 100730, China
| | - Siqi Cheng
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xifeng Jiang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing, 100850, China.
| | - Yuxian He
- MOH Key Laboratory of Systems Biology of Pathogens and AIDS Research Center, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 9, Dong Dan San Tiao, Beijing 100730, China
| | - Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing, 100850, China.
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing, 100850, China.
| |
Collapse
|
16
|
Tan J, Yuan H, Li C, Zhang X, Wang C. Insights into the Functions of M-T Hook Structure in HIV Fusion Inhibitor Using Molecular Modeling. Comput Biol Chem 2016; 61:202-9. [DOI: 10.1016/j.compbiolchem.2016.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 01/13/2023]
|
17
|
Gallerano D, Cabauatan CR, Sibanda EN, Valenta R. HIV-Specific Antibody Responses in HIV-Infected Patients: From a Monoclonal to a Polyclonal View. Int Arch Allergy Immunol 2015; 167:223-41. [PMID: 26414324 DOI: 10.1159/000438484] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
HIV infections represent a major global health threat, affecting more than 35 million individuals worldwide. High infection rates and problems associated with lifelong antiretroviral treatment emphasize the need for the development of prophylactic and therapeutic immune intervention strategies. It is conceivable that insights for the design of new immunogens capable of eliciting protective immune responses may come from the analysis of HIV-specific antibody responses in infected patients. Using sophisticated technologies, several monoclonal neutralizing antibodies were isolated from HIV-infected individuals. However, the majority of polyclonal antibody responses found in infected patients are nonneutralizing. Comprehensive analyses of the molecular targets of HIV-specific antibody responses identified that during natural infection antibodies are mainly misdirected towards gp120 epitopes outside of the CD4-binding site and against regions and proteins that are not exposed on the surface of the virus. We therefore argue that vaccines aiming to induce protective responses should include engineered immunogens, which are capable of focusing the immune response towards protective epitopes.
Collapse
Affiliation(s)
- Daniela Gallerano
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|