1
|
Kandula UR, Wake AD. Promising Stem Cell therapy in the Management of HIV and AIDS: A Narrative Review. Biologics 2022; 16:89-105. [PMID: 35836496 PMCID: PMC9275675 DOI: 10.2147/btt.s368152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/02/2022] [Indexed: 11/23/2022]
Abstract
Stem cell therapies are becoming a major topic in biomedical research all over the planet. It may be a viable treatment choice for people suffering from a wide range of illnesses and injuries. It has recently emerged as an extremely intriguing and well-established science and research topic. Expectations have risen due to advancements in therapeutic approaches. Multiple laboratory testing of regulated stem cell culture and derivation is carried out before the formation of stem cells for the use of therapeutic process. Whereas HIV infection is contagious and can last a lifetime. Researchers are still working to develop a comprehensive and effective treatment for HIV and its associated condition, as well as AIDS. HIV propagation is primarily restricted to the immune system, notably T lymphocytes, as well as macrophages. Large numbers of research studies have contributed to a plethora of data about the enigmatic AIDS life cycle. This vast amount of data provides potential targets for AIDS therapies. Currently, stem cell transplantation, along with other procedures, provided novel insights into HIV pathogenesis and offered a glimpse of hope for the development of a viable HIV cure technique. One of its existing focus areas in HIV and AIDS research is to develop a novel therapeutic strategic plan capable of providing life-long complete recovery of HIV and AIDS without regular drug treatment and, inevitably, curative therapy for HIV and AIDS. The current paper tries to address the possibilities for improved stem cell treatments with "bone marrow, Hematopoietic, human umbilical cord mesenchymal, Genetical modifications with CRISPR/Cas9 in combination of stem cells, induced pluripotent stem cells applications" are discussed which are specifically applied in the HIV and AIDS therapeutic management advancement procedures.
Collapse
Affiliation(s)
- Usha Rani Kandula
- Department of Clinical Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Addisu Dabi Wake
- Department of Clinical Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| |
Collapse
|
2
|
Zhou H, Wang Y, Liu LP, Li YM, Zheng YW. Gene Editing in Pluripotent Stem Cells and Their Derived Organoids. Stem Cells Int 2021; 2021:8130828. [PMID: 34887928 PMCID: PMC8651378 DOI: 10.1155/2021/8130828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
With the rapid rise in gene-editing technology, pluripotent stem cells (PSCs) and their derived organoids have increasingly broader and practical applications in regenerative medicine. Gene-editing technologies, from large-scale nucleic acid endonucleases to CRISPR, have ignited a global research and development boom with significant implications in regenerative medicine. The development of regenerative medicine technologies, regardless of whether it is PSCs or gene editing, is consistently met with controversy. Are the tools for rewriting the code of life a boon to humanity or a Pandora's box? These technologies raise concerns regarding ethical issues, unexpected mutations, viral infection, etc. These concerns remain even as new treatments emerge. However, the potential negatives cannot obscure the virtues of PSC gene editing, which have, and will continue to, benefit mankind at an unprecedented rate. Here, we briefly introduce current gene-editing technology and its application in PSCs and their derived organoids, while addressing ethical concerns and safety risks and discussing the latest progress in PSC gene editing. Gene editing in PSCs creates visualized in vitro models, providing opportunities for examining mechanisms of known and unknown mutations and offering new possibilities for the treatment of cancer, genetic diseases, and other serious or refractory disorders. From model construction to treatment exploration, the important role of PSCs combined with gene editing in basic and clinical medicine studies is illustrated. The applications, characteristics, and existing challenges are summarized in combination with our lab experiences in this field in an effort to help gene-editing technology better serve humans in a regulated manner. Current preclinical and clinical trials have demonstrated initial safety and efficacy of PSC gene editing; however, for better application in clinical settings, additional investigation is warranted.
Collapse
Affiliation(s)
- Hang Zhou
- Institute of Regenerative Medicine, and Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Yun Wang
- Institute of Regenerative Medicine, and Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Li-Ping Liu
- Institute of Regenerative Medicine, and Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Yu-Mei Li
- Institute of Regenerative Medicine, and Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, and Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
- Department of Gastrointestinal and Hepato-Biliary Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- School of Medicine, Yokohama City University, Yokohama, Kanagawa 234-0006, Japan
| |
Collapse
|
3
|
Morvan MG, Teque F, Ye L, Moreno ME, Wang J, VandenBerg S, Stoddart CA, Kan YW, Levy JA. Genetically edited CD34 + cells derived from human iPS cells in vivo but not in vitro engraft and differentiate into HIV-resistant cells. Proc Natl Acad Sci U S A 2021; 118:e2102404118. [PMID: 33975958 PMCID: PMC8158014 DOI: 10.1073/pnas.2102404118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Genetic editing of induced pluripotent stem (iPS) cells represents a promising avenue for an HIV cure. However, certain challenges remain before bringing this approach to the clinic. Among them, in vivo engraftment of cells genetically edited in vitro needs to be achieved. In this study, CD34+ cells derived in vitro from iPS cells genetically modified to carry the CCR5Δ32 mutant alleles did not engraft in humanized immunodeficient mice. However, the CD34+ cells isolated from teratomas generated in vivo from these genetically edited iPS cells engrafted in all experiments. These CD34+ cells also gave rise to peripheral blood mononuclear cells in the mice that, when inoculated with HIV in cell culture, were resistant to HIV R5-tropic isolates. This study indicates that teratomas can provide an environment that can help evaluate the engraftment potential of CD34+ cells derived from the genetically modified iPS cells in vitro. The results further confirm the possibility of using genetically engineered iPS cells to derive engraftable hematopoietic stem cells resistant to HIV as an approach toward an HIV cure.
Collapse
Affiliation(s)
- Maelig G Morvan
- Department of Medicine, Division of Hematology and Oncology, University of California, San Francisco, CA 94143-1270
| | - Fernando Teque
- Department of Medicine, Division of Hematology and Oncology, University of California, San Francisco, CA 94143-1270
| | - Lin Ye
- Department of Medicine, Institute of Human Genetics, University of California, San Francisco, CA 94143
| | - Mary E Moreno
- Department of Medicine, Division of Experimental Medicine, San Francisco General Hospital, University of California, San Francisco, CA 94110
| | - Jiaming Wang
- Department of Medicine, Institute of Human Genetics, University of California, San Francisco, CA 94143
| | - Scott VandenBerg
- Helen Diller Family Comprehensive Cancer Center, Biorepository and Tissue Biomarker Technology Core, University of California, San Francisco, CA 94143-0875
| | - Cheryl A Stoddart
- Department of Medicine, Division of Experimental Medicine, San Francisco General Hospital, University of California, San Francisco, CA 94110
| | - Yuet Wai Kan
- Department of Medicine, Institute of Human Genetics, University of California, San Francisco, CA 94143;
| | - Jay A Levy
- Department of Medicine, Division of Hematology and Oncology, University of California, San Francisco, CA 94143-1270;
| |
Collapse
|