1
|
Qi X, Yang Q, Cai J, Wu J, Gao Y, Ruan Q, Shao L, Liu J, Zhou X, Zhang W, Jiang N, Wang S. Transcriptional profiling of human peripheral blood mononuclear cells in household contacts of pulmonary tuberculosis patients provides insights into mechanisms of Mycobacterium tuberculosis control and elimination. Emerg Microbes Infect 2024; 13:2295387. [PMID: 38088554 PMCID: PMC10763880 DOI: 10.1080/22221751.2023.2295387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/12/2023] [Indexed: 12/31/2023]
Abstract
Household contacts (HHCs) of patients with active tuberculosis (ATB) are at higher risk of Mycobacterium tuberculosis (M. tuberculosis) infection. However, the immune factors responsible for different defense responses in HHCs are unknown. Hence, we aimed to evaluate transcriptome signatures in human peripheral blood mononuclear cells (PBMCs) of HHCs to aid risk stratification. We recruited 112 HHCs of ATB patients and followed them for 6 years. Among the HHCs, only 2 developed ATB, while the remaining HHCs were classified into three groups: (1) HHC-1 group (n = 23): HHCs with consistently positive T-SPOT.TB test, negative chest radiograph, and no clinical symptoms or evidence of ATB during the 6-year follow-up period; (2) HHC-2 group (n = 15): HHCs with an initial positive T-SPOT result that later became negative without evidence of ATB; (3) HHC-3 group (n = 14): HHCs with a consistently negative T-SPOT.TB test and no clinical or radiological evidence of ATB. HHC-2 and HHC-3 were combined as HHC-23 group for analysis. RNA sequencing (RNA-seq) in PBMCs, with and without purified protein derivative (PPD) stimulation, identified significant differences in gene signatures between HHC-1 and HHC-23. Gene ontology analysis revealed functions related to bacterial pathogens, leukocyte chemotaxis, and inflammatory and cytokine responses. Modules associated with clinical features in the HHC-23 group were linked to the IL-17 signaling pathway, ferroptosis, complement and coagulation cascades, and the TNF signaling pathway. Validation using real-time PCR confirmed key genes like ATG-7, CXCL-3, and TNFRSF1B associated with infection outcomes in HHCs. Our research enhances understanding of disease mechanisms in HHCs. HHCs with persistent latent tuberculosis infection (HHC-1) showed significantly different gene expression compared to HHCs with no M. tuberculosis infection (HHC-23). These findings can help identify HHCs at risk of developing ATB and guide targeted public health interventions.
Collapse
Affiliation(s)
- Xiao Qi
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Qingluan Yang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Jianpeng Cai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Department of Infectious Diseases, Jing'an District Central Hospital, Shanghai, People’s Republic of China
| | - Jing Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Yan Gao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Qiaoling Ruan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Lingyun Shao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Jun Liu
- Department of Laboratory medicine, Department of Infectious Diseases, Wuxi Fifth People’s Hospital Affiliated to Nanjing Medical University, Wuxi, People’s Republic of China
| | - Xueshi Zhou
- Department of Laboratory medicine, Department of Infectious Diseases, Wuxi Fifth People’s Hospital Affiliated to Nanjing Medical University, Wuxi, People’s Republic of China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai, People’s Republic of China
| | - Ning Jiang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Sen Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Department of Laboratory medicine, Department of Infectious Diseases, Wuxi Fifth People’s Hospital Affiliated to Nanjing Medical University, Wuxi, People’s Republic of China
- Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Larson EC, Ellis AL, Rodgers MA, Gubernat AK, Gleim JL, Moriarty RV, Balgeman AJ, Menezes YK, Ameel CL, Fillmore DJ, Pergalske SM, Juno JA, Maiello P, White AG, Borish HJ, Godfrey DI, Kent SJ, Ndhlovu LC, O’Connor SL, Scanga CA. Host Immunity to Mycobacterium tuberculosis Infection Is Similar in Simian Immunodeficiency Virus (SIV)-Infected, Antiretroviral Therapy-Treated and SIV-Naïve Juvenile Macaques. Infect Immun 2023; 91:e0055822. [PMID: 37039653 PMCID: PMC10187125 DOI: 10.1128/iai.00558-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/20/2023] [Indexed: 04/12/2023] Open
Abstract
Pre-existing HIV infection increases tuberculosis (TB) risk in children. Antiretroviral therapy (ART) reduces, but does not abolish, this risk in children with HIV. The immunologic mechanisms involved in TB progression in both HIV-naive and HIV-infected children have not been explored. Much of our current understanding is based on human studies in adults and adult animal models. In this study, we sought to model childhood HIV/Mycobacterium tuberculosis (Mtb) coinfection in the setting of ART and characterize T cells during TB progression. Macaques equivalent to 4 to 8 year-old children were intravenously infected with SIVmac239M, treated with ART 3 months later, and coinfected with Mtb 3 months after initiating ART. SIV-naive macaques were similarly infected with Mtb alone. TB pathology and total Mtb burden did not differ between SIV-infected, ART-treated and SIV-naive macaques, although lung Mtb burden was lower in SIV-infected, ART-treated macaques. No major differences in frequencies of CD4+ and CD8+ T cells and unconventional T cell subsets (Vγ9+ γδ T cells, MAIT cells, and NKT cells) in airways were observed between SIV-infected, ART-treated and SIV-naive macaques over the course of Mtb infection, with the exception of CCR5+ CD4+ and CD8+ T cells which were slightly lower. CD4+ and CD8+ T cell frequencies did not differ in the lung granulomas. Immune checkpoint marker levels were similar, although ki-67 levels in CD8+ T cells were elevated. Thus, ART treatment of juvenile macaques, 3 months after SIV infection, resulted in similar progression of Mtb and T cell responses compared to Mtb in SIV-naive macaques.
Collapse
Affiliation(s)
- Erica C. Larson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Amy L. Ellis
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Wisconsin, USA
| | - Mark A. Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Abigail K. Gubernat
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Janelle L. Gleim
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ryan V. Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Wisconsin, USA
| | - Alexis J. Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Wisconsin, USA
| | - Yonne K. Menezes
- Department of Immunobiology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Cassaundra L. Ameel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Daniel J. Fillmore
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Skyler M. Pergalske
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jennifer A. Juno
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alexander G. White
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - H. Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Centre Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Disease, Weill Cornell Medicine, New York, New York, USA
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin - Madison, Wisconsin, USA
| | - Charles A. Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Zou S, Xiang Y, Guo W, Zhu Q, Wu S, Tan Y, Yan Y, Shen L, Feng Y, Liang K. Phenotype and function of peripheral blood γδ T cells in HIV infection with tuberculosis. Front Cell Infect Microbiol 2022; 12:1071880. [PMID: 36619740 PMCID: PMC9816428 DOI: 10.3389/fcimb.2022.1071880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Background Although γδ T cells play an essential role in immunity against Human Immunodeficiency Virus (HIV) or Mycobacterium tuberculosis (MTB), they are poorly described in HIV infection with tuberculosis (TB). Methods The phenotypic and functional properties of peripheral blood γδ T cells in patients with HIV/TB co-infection were analyzed compared to healthy controls and patients with HIV mono-infection or TB by direct intracellular cytokine staining (ICS). Results The percentage of Vδ1 subset in HIV/TB group was significantly higher than that in TB group, while the decreased frequency of the Vδ2 and Vγ2Vδ2 subsets were observed in HIV/TB group than in TB group. The percentage of CD4+CD8- Vδ2 subset in HIV/TB group was markedly lower than in TB group. However, the percentage of CD4+CD8+ Vδ2 subset in HIV/TB group was markedly higher than HIV group or TB group. A lower percentage TNF-α and a higher percentage of IL-17A of Vδ2 subset were observed in HIV/TB group than that in HIV mono-infection. The percentage of perforin-producing Vδ2 subset was significantly lower in HIV/TB group than that in HIV group and TB group. Conclusions Our data suggested that HIV/TB co-infection altered the balance of γδ T cell subsets. The influence of HIV/TB co-infection on the function of γδ T cells to produce cytokines was complicated, which will shed light on further investigations on the mechanisms of the immune response against HIV and/or MTB infection.
Collapse
Affiliation(s)
- Shi Zou
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yanni Xiang
- Department of Intensive Care Medicine, Yichang Central People's Hospital, Yichang, China
| | - Wei Guo
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China,Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China,Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qi Zhu
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, China
| | - Songjie Wu
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China,Department of Nosocomial Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuting Tan
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yajun Yan
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ling Shen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, United States,*Correspondence: Ling Shen, ; Yong Feng, ; Ke Liang,
| | - Yong Feng
- Department of Medical Microbiology, Wuhan University School of Basic Medical Sciences, Wuhan, China,*Correspondence: Ling Shen, ; Yong Feng, ; Ke Liang,
| | - Ke Liang
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China,Department of Nosocomial Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, China,Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China,*Correspondence: Ling Shen, ; Yong Feng, ; Ke Liang,
| |
Collapse
|
4
|
Ntshiqa T, Chihota V, Mansukhani R, Nhlangulela L, Velen K, Charalambous S, Maenetje P, Hawn TR, Wallis R, Grant AD, Fielding K, Churchyard G. Comparing QuantiFERON-TB Gold Plus with QuantiFERON-TB Gold in-tube for diagnosis of latent tuberculosis infection among highly TB exposed gold miners in South Africa. Gates Open Res 2022; 5:66. [PMID: 37560544 PMCID: PMC10407057 DOI: 10.12688/gatesopenres.13191.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 08/11/2023] Open
Abstract
Background: QuantiFERON-TB-Gold-in-tube (QFT-GIT) is an interferon-gamma release assay (IGRA) used to diagnose latent tuberculosis infection. Limited data exists on performance of QuantiFERON-TB Gold-Plus (QFT-Plus), a next generation of IGRA that includes an additional antigen tube 2 (TB2) while excluding TB7.7 from antigen tube 1 (TB1), to measure TB specific CD4+ and CD8+ T lymphocytes responses. We compared agreement between QFT-Plus and QFT-GIT among highly TB exposed goldminers in South Africa. Methods: We enrolled HIV-negative goldminers in South Africa, aged ≥33 years with no prior history of TB disease or evidence of silicosis. Blood samples were collected for QFT-GIT and QFT-Plus. QFT-GIT was considered positive if TB1 tested positive; while QFT-Plus was positive if both or either TB1 or TB2 tested positive, as per manufacturer's recommendations. We compared the agreement between QFT-Plus and QFT-GIT using Cohen's Kappa. To assess the specific contribution of CD8+ T-cells, we used TB2-TB1 differential values as an indirect estimate. A cut-off value was set at 0.6. Logistic regression was used to identify factors associated with having TB2-TB1>0.6 difference on QFT-Plus. Results: Of 349 enrolled participants, 304 had QFT-Plus and QFT-GIT results: 205 (68%) were positive on both assays; 83 (27%) were negative on both assays while 16 (5%) had discordant results. Overall, there was 94.7% (288/304) agreement between QFT-Plus and QFT-GIT (Kappa = 0.87). 214 had positive QFT-Plus result, of whom 202 [94.4%, median interquartile range (IQR): 3.06 (1.31, 7.00)] were positive on TB1 and 205 [95.8%, median (IQR): 3.25 (1.53, 8.02)] were positive on TB2. A TB2-TB1>0.6 difference was observed in 16.4% (35/214), with some evidence of a difference by BMI; 14.9% (7/47), 9.8% (9/92) and 25.3% (19/75) for BMI of 18.5-24.9, 18.5-25 and >30 kg/m 2, respectively (P=0.03). Conclusion: In a population of HIV-negative goldminers, QFT-Plus showed high agreement with QFT-GIT, suggesting similar performance.
Collapse
Affiliation(s)
- Thobani Ntshiqa
- Implementation Research Division, The Aurum Institute, Johannesburg, Gauteng, 2193, South Africa
| | - Violet Chihota
- Implementation Research Division, The Aurum Institute, Johannesburg, Gauteng, 2193, South Africa
- School of Public Health, University of the Witwatersrand, Johannesburg, Gauteng, 2193, South Africa
| | - Raoul Mansukhani
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom, WC1E 7HT, UK
| | - Lindiwe Nhlangulela
- Implementation Research Division, The Aurum Institute, Johannesburg, Gauteng, 2193, South Africa
| | - Kavindhran Velen
- Implementation Research Division, The Aurum Institute, Johannesburg, Gauteng, 2193, South Africa
| | - Salome Charalambous
- Implementation Research Division, The Aurum Institute, Johannesburg, Gauteng, 2193, South Africa
- School of Public Health, University of the Witwatersrand, Johannesburg, Gauteng, 2193, South Africa
| | - Pholo Maenetje
- Implementation Research Division, The Aurum Institute, Johannesburg, Gauteng, 2193, South Africa
| | - Thomas R. Hawn
- Department of Medicine, University of Washington, Seattle, Seattle, New York, 98195, USA
| | - Robert Wallis
- Implementation Research Division, The Aurum Institute, Johannesburg, Gauteng, 2193, South Africa
| | - Alison D. Grant
- School of Public Health, University of the Witwatersrand, Johannesburg, Gauteng, 2193, South Africa
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom, WC1E 7HT, UK
- Africa Health Research Institute, Laboratory Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, 4041, South Africa
| | - Katherine Fielding
- School of Public Health, University of the Witwatersrand, Johannesburg, Gauteng, 2193, South Africa
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom, WC1E 7HT, UK
| | - Gavin Churchyard
- Implementation Research Division, The Aurum Institute, Johannesburg, Gauteng, 2193, South Africa
- School of Public Health, University of the Witwatersrand, Johannesburg, Gauteng, 2193, South Africa
| |
Collapse
|
5
|
Ntshiqa T, Chihota V, Mansukhani R, Nhlangulela L, Velen K, Charalambous S, Maenetje P, Hawn TR, Wallis R, Grant AD, Fielding K, Churchyard G. Comparing the performance of QuantiFERON-TB Gold Plus with QuantiFERON-TB Gold in-tube among highly TB exposed gold miners in South Africa. Gates Open Res 2022. [DOI: 10.12688/gatesopenres.13191.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: QuantiFERON-TB-Gold-in-tube (QFT-GIT) is an interferon-gamma release assay (IGRA) used to diagnose latent tuberculosis infection. Limited data exists on performance of QuantiFERON-TB Gold-Plus (QFT-Plus), a next generation of IGRA that includes an additional antigen tube 2 (TB2) while excluding TB7.7 from antigen tube 1 (TB1), to measure TB specific CD4+ and CD8+ T lymphocytes responses. We compared the performance of QFT-Plus with QFT-GIT among highly TB exposed goldminers in South Africa. Methods: We enrolled HIV-negative goldminers in South Africa, aged ≥33 years with no prior history of TB disease or evidence of silicosis. Blood samples were collected for QFT-GIT and QFT-Plus. QFT-GIT was considered positive if TB1 tested positive; while QFT-Plus was positive if both or either TB1 or TB2 tested positive, as per manufacturer's recommendations. We compared the performance of QFT-Plus with QFT-GIT using Cohen’s Kappa. To assess the specific contribution of CD8+ T-cells, we used TB2−TB1 differential values as an indirect estimate. A cut-off value was set at 0.6. Logistic regression was used to identify factors associated with having TB2-TB1>0.6 difference on QFT-Plus. Results: Of 349 enrolled participants, 304 had QFT-Plus and QFT-GIT results: 205 (68%) were positive on both assays; 83 (27%) were negative on both assays while 16 (5%) had discordant results. Overall, there was 94.7% (288/304) agreement between QFT-Plus and QFT-GIT (Kappa = 0.87). 214 had positive QFT-Plus result, of whom 202 [94.4%, median interquartile range (IQR): 3.06 (1.31, 7.00)] were positive on TB1 and 205 [95.8%, median (IQR): 3.25 (1.53, 8.02)] were positive on TB2. A TB2-TB1>0.6 difference was observed in 16.4% (35/214), with some evidence of a difference by BMI; 14.9% (7/47), 9.8% (9/92) and 25.3% (19/75) for BMI of 18.5-24.9, 18.5-25 and >30 kg/m2, respectively (P=0.03). Conclusion: In a population of HIV-negative goldminers, QFT-Plus showed high agreement with QFT-GIT, suggesting similar performance.
Collapse
|
6
|
Liu Q, Yu C, Cheng J, Jiang Y, Xu Y, Liu Y, Jiang W, Zhang W, Gao Y, Shao L. Characterization of membrane-bound IL-22+ T cell subsets in HIV-1 patients coinfected with Mycobacterium tuberculosis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 54:429-436. [PMID: 32081591 DOI: 10.1016/j.jmii.2020.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/26/2019] [Accepted: 01/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Previously, we have found that IL-22 could be not only secreted outside of cells, but also highly expressed on the T cells membrane in HIV-1 negative patients with tuberculosis (TB). However, the study on membrane-bound IL-22+ cells of HIV-1 infected patients is rare. Therefore, we investigated antigen-specific membrane-bound IL-22+ T cell subsets in Mycobacterium tuberculosis (M.tb) coinfection of HIV-1 infected individuals. METHODS A case-control study that enrolled 74 HIV-1 infected participants was carried out, including HIV-1 monoinfection (HIV+TB-, n = 43), HIV-1 infected patients with latent TB (HIV+LTB, n = 18) and HIV-1 coinfected patients with active TB (HIV+TB+, n = 13). We made use of an IFN-γ release assay (IGRA) to screen LTB individuals. Purified protein derivative (PPD) and phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) were used as specific-stimulators to detect the levels of peripheral blood membrane-bound IL-22+ T cell subsets via cell surface staining and flow cytometry among three groups. RESULTS An approximate rate of 24.3% (n = 18 out of 74) of latent M.tb infection among HIV-1 positive population in Eastern China. Interestingly, HMBPP-specific CD3+Vγ2+ T cells were impaired in HIV+TB+patients compared with HIV+LTB patients (P < 0.05). Furthermore, increases of PPD-specific and HMBPP-specific membrane-bound IL-22+ T cell subsets including CD3+, CD3+CD4+ and CD3+Vγ2+ T cells were observed in HIV+TB+group rather than HIV+LTB groups (all P < 0.05). CONCLUSION Antigen-specific membrane-bound IL-22+ T cells were highly expressed in M.tb coinfection of HIV-1 infected individuals, and may play an important role in anti-TB immune response during coinfection with HIV-1.
Collapse
Affiliation(s)
- Qianqian Liu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Chong Yu
- Department of Infectious Diseases, Nantong Third People's Hospital, Nantong University, Jiangsu, 226006, China
| | - Juan Cheng
- Department of Infectious Diseases, Yancheng Second People's Hospital, Jiangsu, 224003, China
| | - Yingkui Jiang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yuzhen Xu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yuanyuan Liu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Weimin Jiang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China; Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, Shanghai Medical College, and Institutes of Biomedical Science, Fudan University, Shanghai, 200032, China
| | - Yan Gao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Lingyun Shao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
7
|
Ntshiqa T, Chihota V, Mansukhani R, Nhlangulela L, Velen K, Charalambous S, Maenetje P, Hawn TR, Wallis R, Grant AD, Fielding K, Churchyard G. Comparing the performance of QuantiFERON-TB Gold Plus with QuantiFERON-TB Gold in-tube among highly TB exposed gold miners in South Africa. Gates Open Res 2021. [DOI: 10.12688/gatesopenres.13191.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: QuantiFERON-TB Gold in-tube (QFT-GIT) is an interferon-gamma release assay (IGRA) used to diagnose latent tuberculosis infection. Limited data exists on performance of QuantiFERON-TB Gold-Plus (QFT-Plus), a next generation of IGRA that includes an additional antigen tube 2 (TB2) while excluding TB7.7 from antigen tube 1 (TB1), to measure TB specific CD4+ and CD8+ T lymphocytes responses. We compared the performance of QFT-Plus with QFT-GIT among highly TB exposed goldminers in South Africa. Methods: We enrolled HIV-negative goldminers in South Africa, ≥33 years with no prior history of TB disease or evidence of silicosis. Blood samples were collected for QFT-GIT and QFT-Plus. QFT-GIT was considered positive if TB1 tested positive; while QFT-Plus was positive if both or either TB1 or TB2 tested positive, as per manufacturer's recommendations. We compared the performance of QFT-Plus with QFT-GIT using Cohen’s Kappa. To assess the specific contribution of CD8+ T-cells, we used TB2−TB1 differential values as an indirect estimate. A cut-off value was set at 0.6. Logistic regression was used to identify factors associated with having TB2-TB1>0.6 difference on QFT-Plus. Results: Of 349 enrolled participants, 304 had QFT-Plus and QFT-GIT results: 205 (68%) were positive on both assays; 83 (27%) were negative on both assays while 16 (5%) had discordant results. Overall, there was 94.7% (288/304) agreement between QFT-Plus and QFT-GIT (Kappa = 0.87). 214 had positive QFT-Plus result, of whom 202 [94.4%, median interquartile range (IQR): 3.06 (1.31, 7.00)] were positive on TB1 and 205 [95.8%, median (IQR): 3.25 (1.53, 8.02)] were positive on TB2. A TB2-TB1>0.6 difference was observed in 16.4% (35/214), with some evidence of a difference by BMI; 14.9% (7/47), 9.8% (9/92) and 25.3% (19/75) for BMI of 18.5-24.9, 18.5-25 and >30 kg/m2, respectively (P=0.03). Conclusion: In a population of HIV-negative goldminers, QFT-Plus showed a similar performance to QFT-GIT.
Collapse
|
8
|
Liu Q, Gao Y, Ou Q, Xu Y, Zhou Z, Li T, Lu Y, Sun F, Zhou X, Li Y, Shao L, Zhang W. Differential expression of CD64 in patients with Mycobacterium tuberculosis infection: A potential biomarker for clinical diagnosis and prognosis. J Cell Mol Med 2020; 24:13961-13972. [PMID: 33164320 PMCID: PMC7753880 DOI: 10.1111/jcmm.16004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/20/2020] [Accepted: 10/02/2020] [Indexed: 11/29/2022] Open
Abstract
To evaluate the clinical utility of neutrophil (n)CD64 index to diagnose pulmonary tuberculosis (PTB) and extrapulmonary TB (ePTB) and to predict the outcome of Mycobacterium tuberculosis infection. We recruited 189 patients with active TB and 140 controls and measured the differential expression of nCD64 index using flow cytometry. The receiver operating characteristics (ROC) curve analysis was performed to estimate the diagnostic performance of the nCD64 index and T‐SPOT.TB assay for the diagnosis of TB. Furthermore, we analysed whether the nCD64 index in patients with TB was correlated with inflammatory indicators. Finally, we assessed the prognosis of patients by following the dynamic changes of the nCD64 index once a week. The nCD64 index was significantly higher in active TB group (PTB and ePTB), than in the anti‐TB and healthy controls (HC) groups. The sensitivity and specificity of nCD64 index for the differential diagnosis of PTB and pneumonia (PN) patients were 68.33% and 77.55%, respectively. The sensitivity and specificity of nCD64 index for the diagnosis of tuberculous meningitis (TBM) were 53.85% and 100%, respectively. Furthermore, there was a weak correlation between the nCD64 index and inflammatory indicators. More importantly, with the improvement in patient condition, the nCD64 index started to decline in the first week of anti‐TB therapy and significantly decreased at 4 weeks after treatment. Our study demonstrated that the CD64 assay is a rapid, non‐invasive and stable method for clinical application, and the nCD64 index can serve as a potential biomarker for the diagnosis and prognosis of TB.
Collapse
Affiliation(s)
- Qianqian Liu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Gao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Qinfang Ou
- Department of Pulmonary Diseases, Wuxi Infectious Diseases Hospital, Wuxi, China
| | - Yuzhen Xu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhe Zhou
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ting Li
- BD Medical Devices (Shanghai) Co., Ltd, Shanghai, China
| | - Yi Lu
- Shanghai Qianghan Medical Devices Co., Ltd, Shanghai, China
| | - Feng Sun
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xian Zhou
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Lingyun Shao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Wang S, He L, Wu J, Zhou Z, Gao Y, Chen J, Shao L, Zhang Y, Zhang W. Transcriptional Profiling of Human Peripheral Blood Mononuclear Cells Identifies Diagnostic Biomarkers That Distinguish Active and Latent Tuberculosis. Front Immunol 2019; 10:2948. [PMID: 31921195 PMCID: PMC6930242 DOI: 10.3389/fimmu.2019.02948] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis (M. tuberculosis) infection in humans can cause active disease or latent infection. However, the factors contributing to the maintenance of latent infection vs. disease progression are poorly understood. In this study, we used a genome-wide RNA sequencing (RNA-seq) approach to identify host factors associated with M. tuberculosis infection status and a novel gene signature that can distinguish active disease from latent infection. By RNA-seq, we characterized transcriptional differences in purified protein derivative (PPD)-stimulated peripheral blood mononuclear cells (PBMCs) among three groups: patients with active tuberculosis (ATB), individuals with latent TB infection (LTBI), and TB-uninfected controls (CON). A total of 401 differentially expressed genes enabled grouping of individuals into three clusters. A validation study by quantitative real-time PCR (qRT-PCR) confirmed the differential expression of TNFRSF10C, IFNG, PGM5, EBF3, and A2ML1 between the ATB and LTBI groups. Additional clinical validation was performed to evaluate the diagnostic performance of these five biomarkers using 130 subjects. The 3-gene signature set of TNFRSF10C, EBF3, and A2ML1 enabled correct classification of 91.5% of individuals, with a high sensitivity of 86.2% and specificity of 94.9%. Diagnostic performance of the 3-gene signature set was validated using a clinical cohort of 147 subjects with suspected ATB. The sensitivity and specificity of the 3-gene set for ATB were 82.4 and 92.4%, respectively. In conclusion, we detected distinct gene expression patterns in PBMCs stimulated by PPD depending on the status of M. tuberculosis infection. Furthermore, we identified a 3-gene signature set that could distinguish ATB from LTBI, which may facilitate rapid diagnosis and treatment for more effective disease control.
Collapse
Affiliation(s)
- Sen Wang
- Department of Infectious Diseases, Institute of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Lei He
- Department of Infectious Diseases, Institute of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Wu
- Department of Infectious Diseases, Institute of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zumo Zhou
- Department of Infectious Diseases, People's Hospital of Zhuji, Zhuji, China
| | - Yan Gao
- Department of Infectious Diseases, Institute of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiazhen Chen
- Department of Infectious Diseases, Institute of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Lingyun Shao
- Department of Infectious Diseases, Institute of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Wenhong Zhang
- Department of Infectious Diseases, Institute of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Liu Q, Ou Q, Chen H, Gao Y, Liu Y, Xu Y, Ruan Q, Zhang W, Shao L. Differential expression and predictive value of monocyte scavenger receptor CD163 in populations with different tuberculosis infection statuses. BMC Infect Dis 2019; 19:1006. [PMID: 31779590 PMCID: PMC6883570 DOI: 10.1186/s12879-019-4525-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
Background Monocytes are the predominant innate immune cells at the early stage of Mycobacterium tuberculosis (M. tb) infection as the host defense against intracellular pathogens. Understanding the profile of different monocyte subpopulations and the dynamics of monocyte-related biomarkers may be useful for the diagnosis and prognosis of tuberculosis. Methods We enrolled 129 individuals comprising patients with pulmonary tuberculosis (PTB) (n = 39), tuberculous pleurisy (TBP) (n = 28), malignant pleural effusion (MPE) (n = 21), latent tuberculosis infection (LTBI) (n = 20), and healthy controls (HC) (n = 21). Surface expression of CD14, CD16, and CD163 on monocytes was detected using flow cytometry. In addition, soluble CD163 (sCD163) was determined by enzyme linked immunosorbent assay. Results Higher frequency of CD14+CD16+ (15.7% vs 7.8%, P < 0.0001) and CD14−CD16+ (5.3% vs 2.5%, P = 0.0011) monocytes and a decreased percentage of CD14+CD16− (51.0% vs 70.4%, P = 0.0110) cells was observed in PTB patients than in HCs. Moreover, PTB patients displayed a higher frequency of CD163+ cells in CD16+ monocytes than those in the HC group (40.4% vs 11.3%, P < 0.0001). The level of sCD163 was elevated in TBP patients and was higher in pleural effusion than in plasma (2116.0 ng/ml vs 1236.0 ng/ml, P < 0.0001). sCD163 levels in pleural effusion and plasma could be used to distinguish TBP from MPE patients (cut-off values: 1950.0 and 934.7 ng/ml, respectively; AUCs: 0.8418 and 0.8136, respectively). Importantly, plasma sCD163 levels in TBP patients decreased significantly after anti-TB treatment. Conclusions Higher expression of membrane and soluble CD163 in active tuberculosis patients might provide insights regarding the pathogenesis of tuberculosis, and sCD163 may be a novel biomarker to distinguish TBP from MPE and to predict disease severity.
Collapse
Affiliation(s)
- Qianqian Liu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Qinfang Ou
- Department of Pulmonary Diseases, Wuxi Infectious Diseases Hospital, Wuxi, 214005, China.
| | - Huaxin Chen
- Department of Pulmonary Diseases, Wuxi Infectious Diseases Hospital, Wuxi, 214005, China
| | - Yan Gao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Yuanyuan Liu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Yuzhen Xu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Qiaoling Ruan
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China.,Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, Shanghai Medical College, and Institutes of Biomedical Science, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lingyun Shao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China.
| |
Collapse
|
11
|
Li G, Yang F, He X, Liu Z, Pi J, Zhu Y, Ke X, Liu S, Ou M, Guo H, Zhang Z, Zeng G, Zhang G. Anti-tuberculosis (TB) chemotherapy dynamically rescues Th1 and CD8+ T effector levels in Han Chinese pulmonary TB patients. Microbes Infect 2019; 22:119-126. [PMID: 31678658 DOI: 10.1016/j.micinf.2019.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/30/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022]
Abstract
CD4+/CD8+ T cells play a major role in conferring immune protection against tuberculosis (TB), but it remains unknown how the immune responses of CD4+/CD8+ T cells exactly correlate with the clinical variables and disease statuses during anti-TB chemotherapy. To address this, several major immune parameters of CD4+/CD8+ T cells in peripheral blood derived from pulmonary TB patients and healthy volunteers were evaluated. We observed that active TB infection induced lower CD3+ T cell and CD4+ T cell levels but higher CD8+T cell levels, while anti-TB chemotherapy reversed these effects. Also, anti-TB treatment induced enhanced production of IL-2 and IFN-γ but reduced expression of IL-10 and IL-6. Moreover, the dynamic changes of CD3, CD4, and CD8 levels did not show a significant association with sputum smear positivity. However, the frequencies of IL-2+CD4+ or IL-10 + CD4+ T effector subpopulation or IL-1β production in peripheral blood showed significant difference between patients positive for sputum smear and patients negative for sputum smear after anti-TB treatment. These findings implicated that recovery of Th1/CD8+T cell effector levels might be critical immunological events in pulmonary TB patients after treatment and further suggested the importance of these immunological parameters as potential biomarkers for prediction of TB progress and prognosis.
Collapse
Affiliation(s)
- Guobao Li
- Department of Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Fang Yang
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xing He
- National Clinical Research Center for Tuberculosis, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Zhi Liu
- Department of Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Jiang Pi
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yuzhen Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, China
| | - Xue Ke
- Department of Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Shuyan Liu
- Department of Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Min Ou
- Department of Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Huixin Guo
- National Clinical Research Center for Tuberculosis and Guangdong Center for Tuberculosis Control, Guangzhou, 510430, China
| | - Zhuoran Zhang
- Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA, 92618, USA
| | - Gucheng Zeng
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Guoliang Zhang
- National Clinical Research Center for Tuberculosis, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China.
| |
Collapse
|
12
|
Juno JA, Eriksson EM. γδ T-cell responses during HIV infection and antiretroviral therapy. Clin Transl Immunology 2019; 8:e01069. [PMID: 31321033 PMCID: PMC6636517 DOI: 10.1002/cti2.1069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/16/2022] Open
Abstract
HIV infection is associated with a rapid and sustained inversion of the Vδ1:Vδ2 T‐cell ratio in peripheral blood. Studies of antiretroviral therapy (ART)‐treated cohorts suggest that ART is insufficient to reconstitute either the frequency or function of the γδ T‐cell subset. Recent advances are now beginning to shed light on the relationship between microbial translocation, chronic inflammation, immune ageing and γδ T‐cell immunology. Here, we review the impact of acute, chronic untreated and treated HIV infection on circulating and mucosal γδ T‐cell subsets and highlight novel approaches to harness γδ T cells as components of anti‐HIV immunotherapy.
Collapse
Affiliation(s)
- Jennifer A Juno
- Department of Microbiology and Immunology The University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Emily M Eriksson
- Division of Population Health and Immunity Walter and Eliza Hall Institute of Medical Science Melbourne VIC Australia.,Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| |
Collapse
|
13
|
McCormick-Baw C, Hollaway R, Cavuoti D. Diagnosis of Latent Mycobacterium tuberculosis Infection in the Era of Interferon Gamma Release Assays. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.clinmicnews.2018.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
A Subset of Protective γ9δ2 T Cells Is Activated by Novel Mycobacterial Glycolipid Components. Infect Immun 2016; 84:2449-62. [PMID: 27297390 PMCID: PMC4995917 DOI: 10.1128/iai.01322-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 06/07/2016] [Indexed: 01/28/2023] Open
Abstract
γ9δ2 T cells provide a natural bridge between innate and adaptive immunity, rapidly and potently respond to pathogen infection in mucosal tissues, and are prominently induced by both tuberculosis (TB) infection and bacillus Calmette Guérin (BCG) vaccination. Mycobacterium-expanded γ9δ2 T cells represent only a subset of the phosphoantigen {isopentenyl pyrophosphate [IPP] and (E)-4-hydroxy-3-methyl-but-2-enylpyrophosphate [HMBPP]}-responsive γ9δ2 T cells, expressing an oligoclonal set of T cell receptor (TCR) sequences which more efficiently recognize and inhibit intracellular Mycobacterium tuberculosis infection. Based on this premise, we have been searching for M. tuberculosis antigens specifically capable of inducing a unique subset of mycobacterium-protective γ9δ2 T cells. Our screening strategy includes the identification of M. tuberculosis fractions that expand γ9δ2 T cells with biological functions capable of inhibiting intracellular mycobacterial replication. Chemical treatments of M. tuberculosis whole-cell lysates (MtbWL) ruled out protein, nucleic acid, and nonpolar lipids as the M. tuberculosis antigens inducing protective γ9δ2 T cells. Mild acid hydrolysis, which transforms complex carbohydrate to monomeric residues, abrogated the specific activity of M. tuberculosis whole-cell lysates, suggesting that a polysaccharide was required for biological activity. Extraction of MtbWL with chloroform-methanol-water (10:10:3) resulted in a polar lipid fraction with highly enriched specific activity; this activity was further enriched by silica gel chromatography. A combination of mass spectrometry and nuclear magnetic resonance analysis of bioactive fractions indicated that 6-O-methylglucose-containing lipopolysaccharides (mGLP) are predominant components present in this active fraction. These results have important implications for the development of new immunotherapeutic approaches for prevention and treatment of TB.
Collapse
|
15
|
Hoffmann H, Avsar K, Göres R, Mavi SC, Hofmann-Thiel S. Equal sensitivity of the new generation QuantiFERON-TB Gold plus in direct comparison with the previous test version QuantiFERON-TB Gold IT. Clin Microbiol Infect 2016; 22:701-3. [DOI: 10.1016/j.cmi.2016.05.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/01/2022]
|
16
|
Shao L, Zhang X, Gao Y, Xu Y, Zhang S, Yu S, Weng X, Shen H, Chen ZW, Jiang W, Zhang W. Hierarchy Low CD4+/CD8+ T-Cell Counts and IFN-γ Responses in HIV-1+ Individuals Correlate with Active TB and/or M.tb Co-Infection. PLoS One 2016; 11:e0150941. [PMID: 26959228 PMCID: PMC4784913 DOI: 10.1371/journal.pone.0150941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 02/22/2016] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Detailed studies of correlation between HIV-M.tb co-infection and hierarchy declines of CD8+/CD4+ T-cell counts and IFN-γ responses have not been done. We conducted case-control studies to address this issue. METHODS 164 HIV-1-infected individuals comprised of HIV-1+ATB, HIV-1+LTB and HIV-1+TB- groups were evaluated. Immune phenotyping and complete blood count (CBC) were employed to measure CD4+ and CD8+ T-cell counts; T.SPOT.TB and intracellular cytokine staining (ICS) were utilized to detect ESAT6, CFP10 or PPD-specific IFN-γ responses. RESULTS There were significant differences in median CD4+ T-cell counts between HIV-1+ATB (164/μL), HIV-1+LTB (447/μL) and HIV-1+TB- (329/μL) groups. Hierarchy low CD4+ T-cell counts (<200/μL, 200-500/μL, >500/μL) were correlated significantly with active TB but not M.tb co-infection. Interestingly, hierarchy low CD8+ T-cell counts were not only associated significantly with active TB but also with M.tb co-infection (P<0.001). Immunologically, HIV-1+ATB group showed significantly lower numbers of ESAT-6-/CFP-10-specific IFN-γ+ T cells than HIV-1+LTB group. Consistently, PPD-specific IFN-γ+CD4+/CD8+ T effector cells in HIV-1+ATB group were significantly lower than those in HIV-1+LTB group (P<0.001). CONCLUSIONS Hierarchy low CD8+ T-cell counts and effector function in HIV-1-infected individuals are correlated with both M.tb co-infection and active TB. Hierarchy low CD4+ T-cell counts and Th1 effector function in HIV-1+ individuals are associated with increased frequencies of active TB, but not M.tb co-infection.
Collapse
Affiliation(s)
- Lingyun Shao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xinyun Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yan Gao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yunya Xu
- Department of Infectious Diseases, Honghe No.1 People’s Hospital, Mengzi, Mengzi County, 661100, China
| | - Shu Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shenglei Yu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xinhua Weng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Hongbo Shen
- Chinese Academy of Science and Institute Pasteur of Shanghai, Shanghai, 200040, China
| | - Zheng W. Chen
- Department of Microbiology & Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, 60612, United States of America
| | - Weimin Jiang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
17
|
Gao Y, Zhang S, Ou Q, Shen L, Wang S, Wu J, Weng X, Chen ZW, Zhang W, Shao L. Characterization of CD4/CD8+ αβ and Vγ2Vδ2+ T cells in HIV-negative individuals with different Mycobacterium tuberculosis infection statuses. Hum Immunol 2015; 76:801-7. [PMID: 26429305 DOI: 10.1016/j.humimm.2015.09.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/24/2015] [Accepted: 09/26/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND The immune responses of T cell subsets among patients with different Mycobacterium tuberculosis (M.tb) infection statuses [i.e., active tuberculosis (ATB), latent tuberculosis infection (LTBI) and non-infection (healthy control, HC)] have not been fully elucidated in HIV-negative individuals. Specifically, data are limiting in high tuberculosis epidemic regions in China. To investigate the distributions and functions of T cell subsets (i.e., CD3+, CD4+, CD8+ αβ and Vγ2Vδ2+ T cells) in HIV-negative subjects with different M.tb infection statuses, we conducted a case-control study that enrolled 125 participants, including ATB patients (n = 46), LTBI subjects (n = 34), and HC (n = 45). RESULTS An IFN-γ release assay (IGRA) was employed to screen LTBI subjects. Whole blood cell surface staining and flow cytometry were used to detect phenotypic distributions of T cells in the peripheral blood mononuclear cells (PBMCs) and tuberculous pleural fluid mononuclear cells (PFMCs). PPD and the phosphorylated antigen HMBPP were employed as stimulators for the detection of M.tb antigen-specific T cell functions via intracellular cytokine staining (ICS). The absolute numbers of T cell subsets, including CD3+ CD4+, CD3+ CD8+ αβ and Vγ2Vδ2+ T cells, were significantly reduced in active tuberculosis compared with latent tuberculosis or the healthy controls. Importantly, PPD-specific CD3+ CD4+ and CD3+ CD8+ αβ T cells and HMBPP-specific Vγ2Vδ2+ T cells in ATB patients were also significantly reduced compared to the LTBI/HC subjects (P<0.05). In contrast, the proportion of CD4+ T cells in PFMCs was higher compared to PBMCs, while CD8+ and Vγ2Vδ2+ T cells in PFMCs were lower compared to PBMCs (all P < 0.05). PPD-specific CD4+ T cells predominated among CD3+ T cells in PFMCs. CONCLUSIONS Cellular immune responses are impaired in ATB patients. Antigen-specific CD4+ T cell may migrate from the periphery to the lesion site, where they exert anti-tuberculosis functions.
Collapse
Affiliation(s)
- Yan Gao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Shu Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Qinfang Ou
- Department of Pulmonary Diseases, Wuxi No. 5 People's Hospital, Wuxi 214005, China.
| | - Lei Shen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Sen Wang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Jing Wu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Xinhua Weng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, 835 S. Wolcott Avenue, MC790 Chicago, IL 60612, United States.
| | - Wenhong Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Lingyun Shao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
18
|
Suarez GV, Angerami MT, Vecchione MB, Laufer N, Turk G, Ruiz MJ, Mesch V, Fabre B, Maidana P, Ameri D, Cahn P, Sued O, Salomón H, Bottasso OA, Quiroga MF. HIV-TB coinfection impairs CD8(+) T-cell differentiation and function while dehydroepiandrosterone improves cytotoxic antitubercular immune responses. Eur J Immunol 2015; 45:2529-41. [PMID: 26047476 DOI: 10.1002/eji.201545545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/08/2015] [Accepted: 06/01/2015] [Indexed: 12/14/2022]
Abstract
Tuberculosis (TB) is the leading cause of death among HIV-positive patients. The decreasing frequencies of terminal effector (TTE ) CD8(+) T cells may increase reactivation risk in persons latently infected with Mycobacterium tuberculosis (Mtb). We have previously shown that dehydroepiandrosterone (DHEA) increases the protective antitubercular immune responses in HIV-TB patients. Here, we aimed to study Mtb-specific cytotoxicity, IFN-γ secretion, memory status of CD8(+) T cells, and their modulation by DHEA during HIV-TB coinfection. CD8(+) T cells from HIV-TB patients showed a more differentiated phenotype with diminished naïve and higher effector memory and TTE T-cell frequencies compared to healthy donors both in total and Mtb-specific CD8(+) T cells. Notably, CD8(+) T cells from HIV-TB patients displayed higher Terminal Effector (TTE ) CD45RA(dim) proportions with lower CD45RA expression levels, suggesting a not fully differentiated phenotype. Also, PD-1 expression levels on CD8(+) T cells from HIV-TB patients increased although restricted to the CD27(+) population. Interestingly, DHEA plasma levels positively correlated with TTE in CD8(+) T cells and in vitro DHEA treatment enhanced Mtb-specific cytotoxic responses and terminal differentiation in CD8(+) T cells from HIV-TB patients. Our data suggest that HIV-TB coinfection promotes a deficient CD8(+) T-cell differentiation, whereas DHEA may contribute to improving antitubercular immunity by enhancing CD8(+) T-cell functions during HIV-TB coinfection.
Collapse
Affiliation(s)
- Guadalupe V Suarez
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires - CONICET, Argentina
| | - Matías T Angerami
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires - CONICET, Argentina
| | - María B Vecchione
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires - CONICET, Argentina
| | - Natalia Laufer
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires - CONICET, Argentina.,Hospital Juan A. Fernández, Buenos Aires, Argentina
| | - Gabriela Turk
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires - CONICET, Argentina
| | - Maria J Ruiz
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires - CONICET, Argentina
| | - Viviana Mesch
- Departamento de Bioquímica Clínica, INFIBIOC, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Bibiana Fabre
- Departamento de Bioquímica Clínica, INFIBIOC, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Patricia Maidana
- Departamento de Bioquímica Clínica, INFIBIOC, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Diego Ameri
- Hospital Juan A. Fernández, Buenos Aires, Argentina
| | - Pedro Cahn
- Hospital Juan A. Fernández, Buenos Aires, Argentina.,Área de Investigaciones Médicas, Fundación Huésped, Buenos Aires, Argentina
| | - Omar Sued
- Área de Investigaciones Médicas, Fundación Huésped, Buenos Aires, Argentina
| | - Horacio Salomón
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires - CONICET, Argentina
| | - Oscar A Bottasso
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), CONICET-UNR, Rosario, Santa Fe, Argentina
| | - María F Quiroga
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires - CONICET, Argentina
| |
Collapse
|
19
|
Zhang X, Liu F, Li Q, Jia H, Pan L, Xing A, Xu S, Zhang Z. A proteomics approach to the identification of plasma biomarkers for latent tuberculosis infection. Diagn Microbiol Infect Dis 2014; 79:432-7. [PMID: 24865408 PMCID: PMC7127109 DOI: 10.1016/j.diagmicrobio.2014.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 04/18/2014] [Accepted: 04/21/2014] [Indexed: 11/17/2022]
Abstract
A proteomic analysis was performed to screen the potential latent tuberculosis infection (LTBI) biomarkers. A training set of spectra was used to generate diagnostic models, and a blind testing set was used to determine the accuracy of the models. Candidate peptides were identified using nano-liquid chromatography-electrospray ionization–tandem mass spectrometry. Based on the training set results, 3 diagnostic models recognized LTBI subjects with good cross-validation accuracy. In the blind testing set, LTBI subjects could be identified with sensitivities and specificities of 85.20% to 88.90% and 85.7% to 100%, respectively. Additionally, 14 potential LTBI biomarkers were identified, and all proteins were identified for the first time through proteomics in the plasma of healthy, latently infected individuals. In all, proteomic pattern analyses can increase the accuracy of LTBI diagnosis, and the data presented here provide novel insights into potential mechanisms involved in LTBI.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Fei Liu
- Department of Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Qi Li
- Department of Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Hongyan Jia
- Department of Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Liping Pan
- Department of Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Aiying Xing
- Department of Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Shaofa Xu
- Department of Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| | - Zongde Zhang
- Department of Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| |
Collapse
|
20
|
CHEE CYNTHIABINENG, SESTER MARTINA, ZHANG WENHONG, LANGE CHRISTOPH. Diagnosis and treatment of latent infection withMycobacterium tuberculosis. Respirology 2013; 18:205-16. [DOI: 10.1111/resp.12002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 10/12/2012] [Indexed: 12/17/2022]
Affiliation(s)
- CYNTHIA BIN-ENG CHEE
- TB Control Unit; Department of Respiratory and Critical Care Medicine; Tan Tock Seng Hospital; Singapore
| | - MARTINA SESTER
- Department of Transplant and Infection Immunology; Saarland University; Homburg
| | - WENHONG ZHANG
- Department of Infectious Diseases; Fudan University; China
| | - CHRISTOPH LANGE
- Clinical Infectious Diseases; Tuberculosis Center; Research Center Borstel; Germany
| |
Collapse
|
21
|
Chen ZW. Multifunctional immune responses of HMBPP-specific Vγ2Vδ2 T cells in M. tuberculosis and other infections. Cell Mol Immunol 2012; 10:58-64. [PMID: 23147720 DOI: 10.1038/cmi.2012.46] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Vγ2Vδ2 T (also known as Vγ9Vδ2 T) cells exist only in primates, and in humans represent a major γδ T-cell sub-population in the total population of circulating γδ T cells. Results from recent studies suggest that while (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) phosphoantigen from Mycobacterium tuberculosis (Mtb) and other microbes activates and expands primate Vγ2Vδ2 T cells, the Vγ2Vδ2 T-cell receptor (TCR) recognizes and binds to HMBPP on antigen-presenting cells (APC). In response to HMBPP stimulus, Vγ2Vδ2 TCRs array to form signaling-related nanoclusters or nanodomains during the activation of Vγ2Vδ2 T cells. Primary infections with HMBPP-producing pathogens drive the evolution of multieffector functional responses in Vγ2Vδ2 T cells, although Vγ2Vδ2 T cells display different patterns of responses during the acute and chronic phases of Mtb infection and in other infections. Expanded Vγ2Vδ2 T cells in primary Mtb infection can exhibit a broader TCR repertoire and a greater clonal response than previously assumed, with different distribution patterns of Vγ2Vδ2 T-cell clones in lymphoid and non-lymphoid compartments. Emerging in vivo data suggest that HMBPP activation of Vγ2Vδ2 T cells appears to impact other immune cells during infection.
Collapse
Affiliation(s)
- Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
22
|
Lu C, Wu J, Wang H, Wang S, Diao N, Wang F, Gao Y, Chen J, Shao L, Weng X, Zhang Y, Zhang W. Novel biomarkers distinguishing active tuberculosis from latent infection identified by gene expression profile of peripheral blood mononuclear cells. PLoS One 2011; 6:e24290. [PMID: 21904626 PMCID: PMC3164189 DOI: 10.1371/journal.pone.0024290] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 08/04/2011] [Indexed: 11/20/2022] Open
Abstract
Background Humans infected with Mycobacterium tuberculosis (MTB) can delete the pathogen or otherwise become latent infection or active disease. However, the factors influencing the pathogen clearance and disease progression from latent infection are poorly understood. This study attempted to use a genome-wide transcriptome approach to identify immune factors associated with MTB infection and novel biomarkers that can distinguish active disease from latent infection. Methodology/Principal Findings Using microarray analysis, we comprehensively determined the transcriptional difference in purified protein derivative (PPD) stimulated peripheral blood mononuclear cells (PBMCs) in 12 individuals divided into three groups: TB patients (TB), latent TB infection individuals (LTBI) and healthy controls (HC) (n = 4 per group). A transcriptional profiling of 506 differentially expressed genes could correctly group study individuals into three clusters. Moreover, 55- and 229-transcript signatures for tuberculosis infection (TB<BI) and active disease (TB) were identified, respectively. The validation study by quantitative real-time PCR (qPCR) performed in 83 individuals confirmed the expression patterns of 81% of the microarray identified genes. Decision tree analysis indicated that three genes of CXCL10, ATP10A and TLR6 could differentiate TB from LTBI subjects. Additional validation was performed to assess the diagnostic ability of the three biomarkers within 36 subjects, which yielded a sensitivity of 71% and specificity of 89%. Conclusions/Significance The transcription profiles of PBMCs induced by PPD identified distinctive gene expression patterns associated with different infectious status and provided new insights into human immune responses to MTB. Furthermore, this study indicated that a combination of CXCL10, ATP10A and TLR6 could be used as novel biomarkers for the discrimination of TB from LTBI.
Collapse
Affiliation(s)
- Chanyi Lu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering(SKLGE), Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jing Wu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering(SKLGE), Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Honghai Wang
- State Key Laboratory of Genetic Engineering(SKLGE), Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Sen Wang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ni Diao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Feifei Wang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Gao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiazhen Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Lingyun Shao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinhua Weng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail: (WZ); (YZ)
| | - Wenhong Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- * E-mail: (WZ); (YZ)
| |
Collapse
|
23
|
Khammissa RAG, Wood NH, Meyerov R, Lemmer J, Raubenheimer EJ, Feller L. Primary Oral Tuberculosis as an Indicator of HIV Infection. PATHOLOGY RESEARCH INTERNATIONAL 2010; 2011:893295. [PMID: 21209722 PMCID: PMC3010701 DOI: 10.4061/2011/893295] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 10/20/2010] [Indexed: 11/25/2022]
Abstract
We present a case of primary oral tuberculosis that led to the diagnosis of HIV infection. Our patient had clinically nonspecific ulcers on the labial mucosa and on the ventral surface of the tongue which were diagnosed as being tuberculous only on histological examination. This raised the suspicion of HIV infection that was subsequently confirmed by blood tests. The oral lesions resolved after 4 weeks of antituberculosis treatment. Some aspects of the pathogenesis of HIV-tuberculosis coinfection are discussed.
Collapse
Affiliation(s)
- R A G Khammissa
- Department of Periodontology and Oral Medicine, School of Oral Health Sciences, Faculty of Health Sciences, University of Limpopo (Medunsa Campus), Medunsa 0204, South Africa
| | | | | | | | | | | |
Collapse
|
24
|
Rv1985c, a promising novel antigen for diagnosis of tuberculosis infection from BCG-vaccinated controls. BMC Infect Dis 2010; 10:273. [PMID: 20849593 PMCID: PMC2949761 DOI: 10.1186/1471-2334-10-273] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Accepted: 09/17/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Antigens encoded in the region of difference (RD) of Mycobacterium tuberculosis constitute a potential source of specific antigens for immunodiagnosis. In the present study, recombinant protein Rv1985c from RD2 was cloned, expressed, purified, immunologically characterized and investigated for its potentially diagnostic value for tuberculosis (TB) infection among BCG-vaccinated individuals. METHODS T-cell response to Rv1985c was evaluated by IFN-γ ELISPOT in 56 TB patients, 20 latent TB infection (LTBI) and 30 BCG-vaccinated controls in comparison with the commercial T-SPOT. TB kit. Humoral response was evaluated by ELISA in 117 TB patients, 45 LTBI and 67 BCG-vaccinated controls, including all those who had T-cell assay, in comparison with a commercial IgG kit. RESULTS Rv1985c was specifically recognized by cellular and humoral responses from both TB and LTBI groups compared with healthy controls. Rv1985c IgG-ELISA achieved 52% and 62% sensitivity respectively, which outperformed the sensitivity of PATHOZYME-MYCO kit (34%) in detecting active TB (P = 0.011), whereas IFN-γ Rv1985c-ELISPOT achieved 71% and 55% sensitivity in detecting active and LTBI, respectively. Addition of Rv1985c increased sensitivities of ESAT-6, CFP-10 and ESAT-6/CFP-10 combination in detecting TB from 82.1% to 89.2% (P = 0.125), 67.9% to 87.5% (P < 0.001) and 85.7% to 92.9% (P = 0.125), respectively. CONCLUSIONS In conclusion, Rv1985c is a novel antigen which can be used to immunologically diagnose TB infection along with other immunodominant antigens among BCG-vaccinated population.
Collapse
|
25
|
Shao L, Huang D, Wei H, Wang RC, Chen CY, Shen L, Zhang W, Jin J, Chen ZW. Expansion, reexpansion, and recall-like expansion of Vgamma2Vdelta2 T cells in smallpox vaccination and monkeypox virus infection. J Virol 2009; 83:11959-65. [PMID: 19740988 PMCID: PMC2772675 DOI: 10.1128/jvi.00689-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 08/26/2009] [Indexed: 11/20/2022] Open
Abstract
Little is known about the in vivo kinetics of T-cell responses in smallpox/monkeypox. We showed that macaque Vgamma2Vdelta2 T cells underwent 3-week-long expansion after smallpox vaccine immunization and displayed simple reexpansion in association with sterile anti-monkeypox virus (anti-MPV) immunity after MPV challenge. Virus-activated Vgamma2Vdelta2 T cells exhibited gamma interferon-producing effector function after phosphoantigen stimulation. Surprisingly, like alphabeta T cells, suboptimally primed Vgamma2Vdelta2 T cells in vaccinia virus/cidofovir-covaccinated macaques mounted major recall-like expansion after MPV challenge. Finally, Vgamma2Vdelta2 T cells localized in inflamed lung tissues for potential regulation. Our studies provide the first in vivo evidence that viruses, despite their inability to produce exogenous phosphoantigen, can induce expansion, reexpansion, and recall-like expansion of Vgamma2Vdelta2 T cells and stimulate their antimicrobial cytokine response.
Collapse
Affiliation(s)
- Lingyun Shao
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine at Chicago, Chicago, Illinois, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Dan Huang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine at Chicago, Chicago, Illinois, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Huiyong Wei
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine at Chicago, Chicago, Illinois, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Richard C. Wang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine at Chicago, Chicago, Illinois, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Crystal Y. Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine at Chicago, Chicago, Illinois, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ling Shen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine at Chicago, Chicago, Illinois, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine at Chicago, Chicago, Illinois, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jialin Jin
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine at Chicago, Chicago, Illinois, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zheng W. Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine at Chicago, Chicago, Illinois, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Salina E, Mollenkopf H, Kaufmann S, Kaprelyants A. M. tuberculosis Gene Expression during Transition to the "Non-Culturable" State. Acta Naturae 2009; 1:73-7. [PMID: 22649605 PMCID: PMC3347514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We analyzed the gene expression profile under specific conditions during reversible transition of M. tuberculosis cells to the "non-culturable" (NC) state in a prolonged stationary phase. More than 500 genes were differentially regulated, while 238 genes were upregulated over all time points during NC cell formation. Approximately a quarter of these upregulated genes belong to insertion and phage sequences indicating a possible high intensity of genome modification processes taking place under transition to the NC state. Besides the high proportion of hypothetical/conserved hypothetical genes in the cohort of upregulated genes, there was a significant number of genes belonging to intermediary metabolism, respiration, information pathways, cell wall and cell processes, and genes encoding regulatory proteins. We conclude that NC cell formation is an active process involved in the regulation of many genes of different pathways. A more detailed analysis of the experimental data will help to understand the precise molecular mechanisms of dormancy/latency/persistence of M. tuberculosis in the future. The list of upregulated genes obtained in this study includes many genes found to be upregulated in other models of M. tuberculosis persistence. Thirteen upregulated genes, which are common for different models, can be considered as potential targets for the development of new anti-tuberculosis drugs directed mainly against latent tuberculosis.
Collapse
|