1
|
Delviks-Frankenberry K, Cingoz O, Coffin JM, Pathak VK. Recombinant origin, contamination, and de-discovery of XMRV. Curr Opin Virol 2012; 2:499-507. [PMID: 22818188 PMCID: PMC3426297 DOI: 10.1016/j.coviro.2012.06.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 01/20/2023]
Abstract
The discovery and de-discovery of the xenotropic murine leukemia virus-related virus (XMRV) has been a tumultuous roller-coaster ride for scientists and patients. The initial associations of XMRV with chronic fatigue syndrome and prostate cancer, while providing much hope and optimism, have now been discredited and/or retracted following overwhelming evidence that (1) numerous patient cohorts from around the world are XMRV-negative, (2) the initial reports of XMRV-positive patients were due to contamination with mouse DNA, XMRV plasmid DNA, or virus from the 22Rv1 cell line and (3) XMRV is a laboratory-derived virus generated in the mid 1990s through recombination during passage of a prostate tumor xenograft in immuno-compromised mice. While these developments are disappointing to scientists and patients, they provide a valuable road map of potential pitfalls to the would-be microbe hunters.
Collapse
Affiliation(s)
| | - Oya Cingoz
- Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston MA
| | - John M. Coffin
- Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston MA
| | - Vinay K. Pathak
- Viral Mutation Section, NCI, HIV DRP, Frederick National Laboratory for Cancer Research, Frederick, MD
| |
Collapse
|
2
|
Abstract
In 2006, a new retrovirus was isolated from prostate cancer patient tissue. Named xenotropic murine leukemia virus-related virus (XMRV), this was potentially the third class of retrovirus to be pathogenic in humans. XMRV made a more dramatic impact on the wider scientific community, and indeed the media, in 2009 when it was reported to be present in a remarkably high proportion of patients with chronic fatigue syndrome as well as a significant, albeit smaller, proportion of healthy controls. The apparent strong link to disease and the fear of a previously unknown retrovirus circulating in the general population lead to a surge in XMRV research. Subsequent studies failed to find an association of XMRV with disease and, in most cases, failed to find the virus in human samples. In 2011, the case against XMRV and human disease strengthened, ending with several decisive publications revealing the origin of the virus and demonstrating contamination of samples. In this review, we outline the passage of research on XMRV and its potential association with disease from its isolation to the present day, where we find ourselves at the end of a turbulent story.
Collapse
Affiliation(s)
- Harriet C T Groom
- Division of Virology, MRC National Institute for Medical Research, London NW7 1AA, UK
| | - Kate N Bishop
- Division of Virology, MRC National Institute for Medical Research, London NW7 1AA, UK
| |
Collapse
|
3
|
Zhou Y, Steffen I, Montalvo L, Lee TH, Zemel R, Switzer WM, Tang S, Jia H, Heneine W, Winkelman V, Tailor CS, Ikeda Y, Simmons G. Development and application of a high-throughput microneutralization assay: lack of xenotropic murine leukemia virus-related virus and/or murine leukemia virus detection in blood donors. Transfusion 2012; 52:332-42. [PMID: 22239212 DOI: 10.1111/j.1537-2995.2011.03519.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Xenotropic murine leukemia virus (MLV)-related virus (XMRV) and other related MLVs have been described with chronic fatigue syndrome and certain types of prostate cancer. In addition, prevalence rates as high as 7% have been reported in blood donors, raising the risk of transfusion-related transmission. Several laboratories have utilized microneutralization assays as a surrogate marker for detection of anti-MLV serologic responses--with up to 25% of prostate cancer patients reported to harbor neutralizing antibody responses. STUDY DESIGN AND METHODS We developed a high-throughput microneutralization assay for research studies on blood donors using retroviral vectors pseudotyped with XMRV-specific envelopes. Infection with these pseudotypes was neutralized by sera from both macaques and mice challenged with XMRV, but not preimmune serum. A total of 354 plasma samples from blood donors in the Reno/Tahoe area were screened for neutralization. RESULTS A total of 6.5% of donor samples gave moderate neutralization of XMRV, but not control pseudotypes. However, further testing by Western blot revealed no evidence of antibodies against MLVs in any of these samples. Furthermore, no evidence of infectious virus or viral nucleic acid was observed. CONCLUSION A microneutralization assay was developed for detection of XMRV and can be applied in a high-throughput format for large-scale studies. Although a proportion of blood donors demonstrated the ability to block XMRV envelope-mediated infection, we found no evidence that this inhibition was mediated by specific antibodies elicited by exposure to XMRV or MLV. It is likely that this moderate neutralization is mediated through another, nonspecific mechanism.
Collapse
Affiliation(s)
- Yanchen Zhou
- Blood Systems Research Institute, Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California 94118, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Del Prete GQ, Kearney MF, Spindler J, Wiegand A, Chertova E, Roser JD, Estes JD, Hao XP, Trubey CM, Lara A, Lee K, Chaipan C, Bess JW, Nagashima K, Keele BF, Macallister R, Smedley J, Pathak VK, KewalRamani VN, Coffin JM, Lifson JD. Restricted replication of xenotropic murine leukemia virus-related virus in pigtailed macaques. J Virol 2012; 86:3152-66. [PMID: 22238316 PMCID: PMC3302341 DOI: 10.1128/jvi.06886-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/21/2011] [Indexed: 11/20/2022] Open
Abstract
Although xenotropic murine leukemia virus-related virus (XMRV) has been previously linked to prostate cancer and myalgic encephalomyelitis/chronic fatigue syndrome, recent data indicate that results interpreted as evidence of human XMRV infection reflect laboratory contamination rather than authentic in vivo infection. Nevertheless, XMRV is a retrovirus of undefined pathogenic potential that is able to replicate in human cells. Here we describe a comprehensive analysis of two male pigtailed macaques (Macaca nemestrina) experimentally infected with XMRV. Following intravenous inoculation with >10(10) RNA copy equivalents of XMRV, viral replication was limited and transient, peaking at ≤2,200 viral RNA (vRNA) copies/ml plasma and becoming undetectable by 4 weeks postinfection, though viral DNA (vDNA) in peripheral blood mononuclear cells remained detectable through 119 days of follow-up. Similarly, vRNA was not detectable in lymph nodes by in situ hybridization despite detectable vDNA. Sequencing of cell-associated vDNA revealed extensive G-to-A hypermutation, suggestive of APOBEC-mediated viral restriction. Consistent with limited viral replication, we found transient upregulation of type I interferon responses that returned to baseline by 2 weeks postinfection, no detectable cellular immune responses, and limited or no spread to prostate tissue. Antibody responses, including neutralizing antibodies, however, were detectable by 2 weeks postinfection and maintained throughout the study. Both animals were healthy for the duration of follow-up. These findings indicate that XMRV replication and spread were limited in pigtailed macaques, predominantly by APOBEC-mediated hypermutation. Given that human APOBEC proteins restrict XMRV infection in vitro, human XMRV infection, if it occurred, would be expected to be characterized by similarly limited viral replication and spread.
Collapse
Affiliation(s)
| | - Mary F. Kearney
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland, USA
| | - Jon Spindler
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland, USA
| | - Ann Wiegand
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland, USA
| | | | | | | | | | | | | | - KyeongEun Lee
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland, USA
| | - Chawaree Chaipan
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland, USA
| | | | | | | | - Rhonda Macallister
- Laboratory Animal Science Program, SAIC—Frederick, Inc., National Cancer Institute, Frederick, Maryland, USA
| | - Jeremy Smedley
- Laboratory Animal Science Program, SAIC—Frederick, Inc., National Cancer Institute, Frederick, Maryland, USA
| | - Vinay K. Pathak
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland, USA
| | | | - John M. Coffin
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland, USA
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | | |
Collapse
|
5
|
Korn K, Reil H, Ensser A, Knöll A. No evidence of XMRV infection in immunocompromised patients and HIV-positive individuals from Germany. Infection 2012; 40:181-4. [PMID: 22350961 DOI: 10.1007/s15010-012-0249-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Xenotropic murine leukaemia virus-related virus (XMRV) has been detected in patients with prostate cancer and chronic fatigue syndrome (CFS). The detection of XMRV in healthy individuals has raised concern about a possible virus transmission by blood products. However, recent studies challenge the association between XMRV and human disease. This study investigated whether or not XMRV is present in patients with altered immune function and individuals at increased risk of blood-borne viral infections in Germany. METHODS We investigated 503 peripheral blood mononuclear cell (PBMC) samples from 240 patients with iatrogenic immune suppression (71 haematopoietic stem cell recipients, 132 solid organ transplant recipients, 37 others) and 311 PBMC samples from 302 patients with HIV-1 infection for the presence of proviral XMRV by real-time polymerase chain reaction (PCR). RESULTS All 814 PBMC samples from 542 patients tested negative for XMRV DNA and positive for an internal herpesvirus saimiri (HVS) control. Human genomic DNA was detected in all samples, and 90% of the samples contained >10,000 cell equivalents per XMRV PCR reaction. CONCLUSIONS Our failure to detect proviral XMRV provides evidence against the presence of XMRV in patients at increased risk of viral infections in Germany.
Collapse
Affiliation(s)
- K Korn
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | |
Collapse
|
6
|
Gingaras C, Danielson BP, Vigil KJ, Vey E, Arduino RC, Kimata JT. Absence of XMRV in peripheral blood mononuclear cells of ARV-treatment naïve HIV-1 infected and HIV-1/HCV coinfected individuals and blood donors. PLoS One 2012; 7:e31398. [PMID: 22348082 PMCID: PMC3278456 DOI: 10.1371/journal.pone.0031398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 01/06/2012] [Indexed: 11/19/2022] Open
Abstract
Background Xenotropic murine leukemia virus-related virus (XMRV) has been found in the prostatic tissue of prostate cancer patients and in the blood of chronic fatigue syndrome patients. However, numerous studies have found little to no trace of XMRV in different human cohorts. Based on evidence suggesting common transmission routes between XMRV and HIV-1, HIV-1 infected individuals may represent a high-risk group for XMRV infection and spread. Methodology/Principal Findings DNA was isolated from the peripheral blood mononuclear cells (PBMCs) of 179 HIV-1 infected treatment naïve patients, 86 of which were coinfected with HCV, and 54 healthy blood donors. DNA was screened for XMRV provirus with two sensitive, published PCR assays targeting XMRV gag and env and one sensitive, published nested PCR assay targeting env. Detection of XMRV was confirmed by DNA sequencing. One of the 179 HIV-1 infected patients tested positive for gag by non-nested PCR whereas the two other assays did not detect XMRV in any specimen. All healthy blood donors were negative for XMRV proviral sequences. Sera from 23 HIV-1 infected patients (15 HCV+) and 12 healthy donors were screened for the presence of XMRV-reactive antibodies by Western blot. Thirteen sera (57%) from HIV-1+ patients and 6 sera (50%) from healthy donors showed reactivity to XMRV-infected cell lysate. Conclusions/Significance The virtual absence of XMRV in PBMCs suggests that XMRV is not associated with HIV-1 infected or HIV-1/HCV coinfected patients, or blood donors. Although we noted isolated incidents of serum reactivity to XMRV, we are unable to verify the antibodies as XMRV specific.
Collapse
Affiliation(s)
- Cosmina Gingaras
- Section of Retrovirology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Baylor International Pediatric AIDS Initiative, Baylor College of Medicine, Houston, Texas
| | - Bryan P. Danielson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Karen J. Vigil
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas
| | - Elana Vey
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas
| | - Roberto C. Arduino
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas
| | - Jason T. Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
- * E-mail:
| |
Collapse
|
7
|
Prevalence of XMRV nucleic acid and antibody in HIV-1-Infected men and in men at risk for HIV-1 Infection. Adv Virol 2011; 2011:268214. [PMID: 22282703 PMCID: PMC3265298 DOI: 10.1155/2011/268214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/08/2011] [Accepted: 08/22/2011] [Indexed: 01/14/2023] Open
Abstract
Xenotropic MLV-Related Virus (XMRV) was recently reported to be associated with prostate cancer and chronic fatigue syndrome (CFS). Infection was also reported in 3.7% of healthy individuals. These highly reported frequencies of infection prompted concerns about the possibility of a new, widespread retroviral epidemic. The Multicenter AIDS Cohort Study (MACS) provides an opportunity to assess the prevalence of XMRV infection and its association with HIV-1 infection among men who have sex with men. Reliable detection of XMRV infection requires the application of multiple diagnostic methods, including detection of human antibodies to XMRV and detection of XMRV nucleic acid. We, therefore, tested 332 patient plasma and PBMC samples obtained from recent visits in a subset of patients in the MACS cohort for XMRV antibodies using Abbott prototype ARCHITECT chemiluminescent immunoassays (CMIAs) and for XMRV RNA and proviral DNA using a XMRV single-copy qPCR assay (X-SCA). Although 9 of 332 (2.7%) samples showed low positive reactivity against a single antigen in the CMIA, none of these samples or matched controls were positive for plasma XMRV RNA or PBMC XMRV DNA by X-SCA. Thus, we found no evidence of XMRV infection among men in the MACS regardless of HIV-1 serostatus.
Collapse
|
8
|
Absence of detectable XMRV and other MLV-related viruses in healthy blood donors in the United States. PLoS One 2011; 6:e27391. [PMID: 22110639 PMCID: PMC3215715 DOI: 10.1371/journal.pone.0027391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/16/2011] [Indexed: 02/06/2023] Open
Abstract
Background Preliminary studies in chronic fatigue syndrome (CFS) patients and XMRV infected animals demonstrated plasma viremia and infection of blood cells with XMRV, indicating the potential risk for transfusion transmission. XMRV and MLV-related virus gene sequences have also been detected in 4–6% of healthy individuals including blood donors in the U.S. These results imply that millions of persons in the U.S. may be carrying the nucleic acid sequences of XMRV and/or MLV-related viruses, which is a serious public health and blood safety concern. Methodology/Principal Findings To gain evidence of XMRV or MLV-related virus infection in the U.S. blood donors, 110 plasma samples and 71 PBMC samples from blood donors at the NIH blood bank were screened for XMRV and MLV-related virus infection. We employed highly sensitive assays, including nested PCR and real-time PCR, as well as co-culture of plasma with highly sensitive indicator DERSE cells. Using these assays, none of the samples were positive for XMRV or MLV-related virus. Conclusions/Significance Our results are consistent with those from several other studies, and demonstrate the absence of XMRV or MLV-related viruses in the U.S. blood donors that we studied.
Collapse
|
9
|
Bacich DJ, Sobek KM, Cummings JL, Atwood AA, O'Keefe DS. False negative results from using common PCR reagents. BMC Res Notes 2011; 4:457. [PMID: 22032271 PMCID: PMC3219698 DOI: 10.1186/1756-0500-4-457] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 10/27/2011] [Indexed: 11/23/2022] Open
Abstract
Background The sensitivity of the PCR reaction makes it ideal for use when identifying potentially novel viral infections in human disease. Unfortunately, this same sensitivity also leaves this popular technique open to potential contamination with previously amplified PCR products, or "carry-over" contamination. PCR product carry-over contamination can be prevented with uracil-DNA-glycosylase (UNG), and it is for this reason that it is commonly included in many commercial PCR master-mixes. While testing the sensitivity of PCR assays to detect murine DNA contamination in human tissue samples, we inadvertently discovered that the use of this common PCR reagent may lead to the production of false-negative PCR results. Findings We show here that contamination with minute quantities of UNG-digested PCR product or any negative control PCR reactions containing primer-dimers regardless of UNG presence can completely block amplification from as much as 60 ng of legitimate target DNA. Conclusions These findings could potentially explain discrepant results from laboratories attempting to amplify MLV-related viruses including XMRV from human samples, as none of the published reports used internal-tube controls for amplification. The potential for false negative results needs to be considered and carefully controlled in PCR experiments, especially when the target copy number may be low - just as the potential for false positive results already is.
Collapse
Affiliation(s)
- Dean J Bacich
- Department of Urology, University of Pittsburgh, 5200 Centre Avenue, Pittsburgh, PA 15232, USA.
| | | | | | | | | |
Collapse
|
10
|
Qiu X, Swanson P, Tang N, Leckie GW, Devare SG, Schochetman G, Hackett J. Seroprevalence of xenotropic murine leukemia virus-related virus in normal and retrovirus-infected blood donors. Transfusion 2011; 52:307-16. [PMID: 22023235 DOI: 10.1111/j.1537-2995.2011.03395.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Xenotropic murine leukemia virus-related virus (XMRV) has been reported in patients with prostate cancer and chronic fatigue syndrome. Although results have been conflicting, the potential of XMRV as an infectious human retrovirus has raised concerns about transfusion safety. To address this issue, normal and retrovirus-infected blood donors were screened for evidence of XMRV infection. STUDY DESIGN AND METHODS Plasma from 1000 US, 100 human immunodeficiency virus Type 1-infected Cameroonian, and 642 human T-lymphotropic virus Type I (HTLV-I)-infected or uninfected Japanese blood donors as well as 311 sexually transmitted disease diagnostic specimens were screened for antibodies to XMRV gp70 and p15E using chemiluminescent immunoassays (CMIAs). CMIA-reactive samples were evaluated by p30 CMIA, Western blot, and real-time reverse transcriptase polymerase chain reaction. RESULTS XMRV seroreactivity was low (0%-0.6%) with the exception of the HTLV-I-infected donors (4.9%). Antibody was detected against only a single XMRV protein (p15E or gp70); none of the seroreactive samples had detectable XMRV pol or env sequences. The elevated seroreactivity in HTLV-I-infected donors was due to an increased p15E seroreactive rate (4.1%). Inspection of XMRV and HTLV sequences revealed a high level of conservation within the immunodominant region (IDR) of the transmembrane protein. In some cases, HTLV IDR peptide competitively reduced the XMRV p15E signal. CONCLUSIONS Based on the low prevalence of seroreactivity, detection of antibody to only a single XMRV protein and the absence of XMRV sequences, this study finds no compelling evidence of XMRV in normal or retrovirus-infected blood donors. The increased p15E seroreactivity observed in HTLV infection is likely due to cross-reactive antibodies.
Collapse
Affiliation(s)
- Xiaoxing Qiu
- Infectious Diseases R&D, Abbott Diagnostics, Abbott Park, Illinois 60064, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Lack of Detection of Xenotropic Murine Leukemia Virus-Related Virus in HIV-1 Lymphoma Patients. Adv Virol 2011; 2011:797820. [PMID: 22312354 PMCID: PMC3265315 DOI: 10.1155/2011/797820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 07/11/2011] [Indexed: 12/03/2022] Open
Abstract
Xenotropic murine leukemia virus-related virus (XMRV) is a gammaretrovirus reported to be associated with human prostate cancer and chronic fatigue syndrome. Since retroviruses cause various cancers, and XMRV replication might be facilitated by HIV-1 co-infection, we asked whether certain patients with HIV-associated lymphomas are infected with XMRV. Analysis of PMBCs and plasma from 26 patients failed to detect XMRV by PCR, ELISA, or Western blot, suggesting a lack of association between XMRV and AIDS-associated lymphomas.
Collapse
|
12
|
Mi Z, Lu Y, Zhang S, An X, Wang X, Chen B, Wang Q, Tong Y. Absence of xenotropic murine leukemia virus-related virus in blood donors in China. Transfusion 2011; 52:326-31. [PMID: 21854397 DOI: 10.1111/j.1537-2995.2011.03267.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Xenotropic murine leukemia virus-related virus (XMRV) is a novel human gammaretrovirus that was first identified in patients with prostate cancer in 2006. Subsequent studies have shown that XMRV is also detected in patients with chronic fatigue syndrome (CFS) and even in some healthy controls and blood donors. However, some conflicting findings have been reported by different laboratories or in different regions. The association of XMRV with human diseases and the prevalence of XMRV in different populations needs to be further determined. STUDY DESIGN AND METHODS XMRV was screened in 391 blood samples from healthy blood donors in China. Nested reverse transcription-polymerase chain reaction (PCR) was used to amplify gag and env genes of XMRV from total RNA of peripheral blood mononuclear cells (PBMNCs) and plasma, respectively. Quantitative PCR was performed to detect XMRV env gene in genomic DNA of PBMNCs. To enhance the detection sensitivity, plasma was added into LNCaP cells to amplify XMRV in the plasma samples. RESULTS No XMRV was found in the 391 blood donors in China or in the LNCaP cells inoculated with plasma from the blood donors. CONCLUSION Both PCR and virus isolation in highly permissive LNCaP cells failed to detect XMRV in 391 Chinese blood donors, indicating that XMRV infection might not be present in blood donors in China.
Collapse
Affiliation(s)
- Zhiqiang Mi
- Beijing Institute of Microbiology and Epidemiology and Affiliated Hospital, Academy of Military Medical Sciences, Beijing, China.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Phylogenetic analysis of murine leukemia virus sequences from longitudinally sampled chronic fatigue syndrome patients suggests PCR contamination rather than viral evolution. J Virol 2011; 85:10909-13. [PMID: 21849443 DOI: 10.1128/jvi.00827-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenotropic murine leukemia virus (MLV)-related virus (XMRV) has been amplified from human prostate cancer and chronic fatigue syndrome (CFS) patient samples. Other studies failed to replicate these findings and suggested PCR contamination with a prostate cancer cell line, 22Rv1, as a likely source. MLV-like sequences have also been detected in CFS patients in longitudinal samples 15 years apart. Here, we tested whether sequence data from these samples are consistent with viral evolution. Our phylogenetic analyses strongly reject a model of within-patient evolution and demonstrate that the sequences from the first and second time points represent distinct endogenous murine retroviruses, suggesting contamination.
Collapse
|
14
|
Gray ER, Garson JA, Breuer J, Edwards S, Kellam P, Pillay D, Towers GJ. No evidence of XMRV or related retroviruses in a London HIV-1-positive patient cohort. PLoS One 2011; 6:e18096. [PMID: 21448291 PMCID: PMC3063244 DOI: 10.1371/journal.pone.0018096] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 02/21/2011] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Several studies have implicated a recently discovered gammaretrovirus, XMRV (Xenotropic murine leukaemia virus-related virus), in chronic fatigue syndrome and prostate cancer, though whether as causative agent or opportunistic infection is unclear. It has also been suggested that the virus can be found circulating amongst the general population. The discovery has been controversial, with conflicting results from attempts to reproduce the original studies. METHODOLOGY/PRINCIPAL FINDINGS We extracted peripheral blood DNA from a cohort of 540 HIV-1-positive patients (approximately 20% of whom have never been on anti-retroviral treatment) and determined the presence of XMRV and related viruses using TaqMan PCR. While we were able to amplify as few as 5 copies of positive control DNA, we did not find any positive samples in the patient cohort. CONCLUSIONS/SIGNIFICANCE In view of these negative findings in this highly susceptible group, we conclude that it is unlikely that XMRV or related viruses are circulating at a significant level, if at all, in HIV-1-positive patients in London or in the general population.
Collapse
Affiliation(s)
- Eleanor R Gray
- Department of Infection and Immunity, University College London, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
15
|
Simmons G, Glynn SA, Holmberg JA, Coffin JM, Hewlett IK, Lo SC, Mikovits JA, Switzer WM, Linnen JM, Busch MP, Blood XMRV Scientific Research Working Group. The Blood Xenotropic Murine Leukemia Virus-Related Virus Scientific Research Working Group: mission, progress, and plans. Transfusion 2011; 51:643-53. [PMID: 21366602 PMCID: PMC3071162 DOI: 10.1111/j.1537-2995.2011.03063.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Collaborators] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Graham Simmons
- Blood Systems Research Institute and University of California, San Francisco, California 94118, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
Collaborators
Simone Glynn, Jerry A Holmberg, Celso Bianco, Michael P Busch, Roger Y Dodd, Louis M Katz, Steven H Kleinman, Anthony L Komaroff, Judy A Mikovits, Graham Simmons, Susan L Stramer, Leslie H Tobler, Suzanne D Vernon, Harvey Alter, John Coffin, Dennis F Mangan, Francis Ruscetti, William Bower, R Michael Hendry, Walid Heneine, Stephan S Monroe, William Switzer, Jay Epstein, Indira Hewlett, Shyh-Ching Lo,
Collapse
|
16
|
van der Kuyl AC, Cornelissen M, Berkhout B. Of Mice and Men: On the Origin of XMRV. Front Microbiol 2011; 1:147. [PMID: 21687768 PMCID: PMC3109487 DOI: 10.3389/fmicb.2010.00147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 12/26/2010] [Indexed: 12/20/2022] Open
Abstract
The novel human retrovirus xenotropic murine leukemia virus-related virus (XMRV) is arguably the most controversial virus of this moment. After its original discovery in prostate cancer tissue from North American patients, it was subsequently detected in individuals with chronic fatigue syndrome from the same continent. However, most other research groups, mainly from Europe, reported negative results. The positive results could possibly be attributed to contamination with mouse products in a number of cases, as XMRV is nearly identical in nucleotide sequence to endogenous retroviruses in the mouse genome. But the detection of integrated XMRV proviruses in prostate cancer tissue proves it to be a genuine virus that replicates in human cells, leaving the question: how did XMRV enter the human population? We will discuss two possible routes: either via direct virus transmission from mouse to human, as repeatedly seen for, e.g., Hantaviruses, or via the use of mouse-related products by humans, including vaccines. We hypothesize that mouse cells or human cell lines used for vaccine production could have been contaminated with a replicating variant of the XMRV precursors encoded by the mouse genome.
Collapse
Affiliation(s)
- Antoinette Cornelia van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | | | | |
Collapse
|
17
|
Klein HG, Dodd RY, Hollinger FB, Katz LM, Kleinman S, McCleary KK, Silverman RH, Stramer SL. Xenotropic murine leukemia virus-related virus (XMRV) and blood transfusion: report of the AABB interorganizational XMRV task force. Transfusion 2011; 51:654-61. [PMID: 21235597 DOI: 10.1111/j.1537-2995.2010.03012.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Harvey G Klein
- Department of Transfusion Medicine, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cornelissen M, Zorgdrager F, Blom P, Jurriaans S, Repping S, van Leeuwen E, Bakker M, Berkhout B, van der Kuyl AC. Lack of detection of XMRV in seminal plasma from HIV-1 infected men in The Netherlands. PLoS One 2010; 5:e12040. [PMID: 20706581 PMCID: PMC2919391 DOI: 10.1371/journal.pone.0012040] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 07/16/2010] [Indexed: 11/29/2022] Open
Abstract
Background Xenotropic murine leukaemia virus-related virus (XMRV) is a recently discovered human gammaretrovirus with yet unknown prevalence and transmission route(s). Its presence in prostate stromal fibroblasts and prostatic secretions suggests that XMRV might be sexually transmitted. We chose to study a compartment closely connected to the prostate, a location where XMRV was detected in independent studies. Seminal plasma samples from HIV-1 infected men were examined as they have an increased probability of acquiring sexually transmitted pathogens. Methodology/Principal Findings We studied the prevalence of XMRV in 93 seminal plasma samples of 54 HIV-1 infected men living in The Netherlands with a nested PCR amplification specifically targeting the XMRV gag gene. As a control for the presence and integrity of retrovirus particles, HIV-1 was amplified from the same samples with a PCR amplification targeting the env gene of the virus, or HIV-1 was quantified with a real-time PCR amplifying part of the pol gene. Conclusions/Significance Although HIV-1 was amplified from 25% of the seminal plasma samples, no XMRV was detected, suggesting that either the prevalence of XMRV is very low in The Netherlands, or that XMRV is not naturally present in the seminal plasma.
Collapse
Affiliation(s)
- Marion Cornelissen
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Fokla Zorgdrager
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Petra Blom
- Laboratory of Clinical Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Suzanne Jurriaans
- Laboratory of Clinical Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sjoerd Repping
- Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Elisabeth van Leeuwen
- Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Margreet Bakker
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Antoinette C. van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|