1
|
Elzagallaai AA, Abuzgaia AM, Rieder MJ. A comprehensive update on the human leukocyte antigen and idiosyncratic adverse drug reactions. Expert Opin Drug Metab Toxicol 2025; 21:551-562. [PMID: 39841586 DOI: 10.1080/17425255.2025.2455388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
INTRODUCTION Idiosyncratic adverse drug reactions (IADRs) or drug hypersensitivity reactions (DHRs) represent a major health problem because they are unpredictable and can be severe with potential life-long or even lethal consequences. Their pathophysiology is not clear but thought to be immune mediated, supported by the significant statistical association of these reactions with specific alleles of the human leukocyte antigen (HLA) gene. AREA COVERED This comprehensive update review summarizes the currently available evidence on the role of HLA gene locus in IADRs and discusses the present understanding of the pathophysiology of IADRs. We searched the available literature in PubMed and Google Scholar with no date restriction for publications on HLA and adverse drug reactions. Findings are summarized and discussed in the context of the currently available evidence. EXPERT OPINION The role of the immune system in IADRs and the role of pharmacogenetic testing in this field is evident. HLA genetic testing is very promising in the management of these reactions. Many obstacles seem to prevent pharmacogenetic testing to meet its full potential including cost and health care providers' education. Further work in needed to provide more evidence and allow widespread use of pharmacogenetic testing in the clinical practice.
Collapse
Affiliation(s)
- Abdelbaset A Elzagallaai
- Departments of Paediatrics, and Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Awatif M Abuzgaia
- Departments of Paediatrics, and Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Michael J Rieder
- Departments of Paediatrics, and Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Li K, Lauschke VM, Zhou Y. Molecular docking to investigate HLA-associated idiosyncratic drug reactions. Drug Metab Rev 2025; 57:67-90. [PMID: 39811883 DOI: 10.1080/03602532.2025.2453521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Idiosyncratic drug reactions (IDRs) pose severe threats to patient health. Unlike conventionally dose-dependent side effects, they are unpredictable and more frequently manifest as life-threatening conditions, such as severe cutaneous adverse reactions (SCARs) and drug-induced liver injury (DILI). Some HLA alleles, such as HLA-B*57:01, HLA-B*15:02, and HLA-B*58:01, are known risk factors for adverse reactions induced by multiple drugs. However, the structural basis underlying most HLA-associated adverse events remains poorly understood. This review summarizes the application of molecular docking to reveal the mechanisms of IDR-related HLA associations, covering studies using this technique to examine drug-HLA binding pockets and identify key binding residues. We provide a comprehensive overview of risk HLA alleles associated with IDRs, followed by a discussion of the utility and limitations of commonly used molecular docking tools in simulating complex molecular interactions within the HLA binding pocket. Through examples, including the binding of abacavir and flucloxacillin to HLA-B*57:01, carbamazepine to HLA-B*15:02, and allopurinol to HLA-B*58:01, we demonstrate how docking analyses can provide insights into the drug and HLA allele-specificity of adverse events. Furthermore, the use of molecular docking to screen drugs with unknown IDR liability is examined, targeting either multiple HLA variants or a single specific variant. Despite multiple challenges, molecular docking presents a promising toolkit for investigating drug-HLA interactions and understanding IDR mechanisms, with significant implications for preemptive HLA typing and safer drug development.
Collapse
Affiliation(s)
- Kejun Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Margarete Fischer-Bosch Institute of Clinical Pharmacology (IKP), Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Guo K, van den Beucken T. Advances in drug-induced liver injury research: in vitro models, mechanisms, omics and gene modulation techniques. Cell Biosci 2024; 14:134. [PMID: 39488681 PMCID: PMC11531151 DOI: 10.1186/s13578-024-01317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
Drug-induced liver injury (DILI) refers to drug-mediated damage to the structure and function of the liver, ranging from mild elevation of liver enzymes to severe hepatic insufficiency, and in some cases, progressing to liver failure. The mechanisms and clinical symptoms of DILI are diverse due to the varying combination of drugs, making clinical treatment and prevention complex. DILI has significant public health implications and is the primary reason for post-marketing drug withdrawals. The search for reliable preclinical models and validated biomarkers to predict and investigate DILI can contribute to a more comprehensive understanding of adverse effects and drug safety. In this review, we examine the progress of research on DILI, enumerate in vitro models with potential benefits, and highlight cellular molecular perturbations that may serve as biomarkers. Additionally, we discuss omics approaches frequently used to gather comprehensive datasets on molecular events in response to drug exposure. Finally, three commonly used gene modulation techniques are described, highlighting their application in identifying causal relationships in DILI. Altogether, this review provides a thorough overview of ongoing work and approaches in the field of DILI.
Collapse
Affiliation(s)
- Kaidi Guo
- Department of Toxicogenomics, GROW - Research Institute for Oncology & Reproduction, Maastricht University, Maastricht, 6200, MD, The Netherlands.
| | - Twan van den Beucken
- Department of Toxicogenomics, GROW - Research Institute for Oncology & Reproduction, Maastricht University, Maastricht, 6200, MD, The Netherlands
| |
Collapse
|
4
|
Chou WH, Chen LC, Wong HSC, Chao CH, Chu HW, Chang WC. Phenomic landscape and pharmacogenomic implications for HLA region in a Taiwan Han Chinese population. Biomark Res 2024; 12:46. [PMID: 38702819 PMCID: PMC11067262 DOI: 10.1186/s40364-024-00591-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND The human leukocyte antigen (HLA) genes, exhibiting significant genetic diversity, are associated with susceptibility to various clinical diseases and diverse in drug responses. High costs of HLA sequencing and the population-specific architecture of this genetic region necessitate the establishment of a population-specific HLA imputation reference panel. Moreover, there is a lack of understanding about the genetic and phenotypic landscape of HLA variations within the Taiwanese population. METHODS We created models for a Taiwanese-specific HLA imputation reference panel. These models were trained with the array genotype data and HLA sequencing data from 845 Taiwanese subjects. HLA imputation was applied for 59,448 Taiwanese subjects to characterize the HLA allele and haplotype frequencies. Additionally, a phenome-wide association study (PheWAS) was conducted to identify the phenotypes associated with HLA variations. The association of the biallelic HLA variants with the binary and quantitative traits were evaluated with additive logistic and linear regression models, respectively. Furthermore, an omnibus test with likelihood-ratio test was applied for each HLA amino acid position in the multiallelic HLA amino acid polymorphisms to compare the difference between a fitted model and a null model following a χ2 distribution of n-1 degree of freedom at a position with n residues. Finally, we estimated the prevalence of adverse drug reactions (ADR)-related HLA alleles in the Taiwanese population. RESULTS In this study, the reference panel models displayed remarkable accuracy, with averages of 99.3%, 98.9%, and 99.1% for 2-, 4-, 6-digit alleles of the eight classical HLA genes, respectively. For PheWAS, a total of 18,136 significant associations with HLA variants across 26 phenotypes are identified (p < 5×10-8), highlighting the pleiotropy feature of the HLA region. Among the independent signals, 15 are novel, including the association of HLA-B pos 138 variation with ankylosing spondylitis (AS), and rs9266290 and rs9266292 with allergy. Through an analysis spanning the entire HLA region, we identified clusters of phenotype correlations. Finally, the carriers of pharmacogenomic related HLA alleles, including HLA-C*01:02 (35.86%), HLA-B*58:01 (20.9%), and HLA-B*15:02 (8.38%), were characterized in the Taiwanese general population. CONCLUSIONS We successfully delivered the HLA imputation for 59,448 Taiwanese subjects and characterized the genetic and phenotypic landscapes of the HLA variations. In addition, we quantified the estimated prevalence of the ADR-related HLA alleles in the Taiwanese population. The developed HLA imputation reference panel could be used for estimation of population HLA allele frequencies, which can facilitate further studies in the role of HLA variants in a wider range of phenotypes in the population.
Collapse
Affiliation(s)
- Wan-Hsuan Chou
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Lu-Chun Chen
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Henry Sung-Ching Wong
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ching-Hsuan Chao
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hou-Wei Chu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan.
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan.
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
5
|
Guin D, Kukreti R. Drug hypersensitivity linked to genetic variations of human leukocyte antigen. Ther Drug Monit 2024:387-417. [DOI: 10.1016/b978-0-443-18649-3.00018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Lee EY, Copaescu AM, Trubiano JA, Phillips EJ, Wolfson AR, Ramsey A. Drug Allergy in Women. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:3615-3623. [PMID: 37805007 DOI: 10.1016/j.jaip.2023.09.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/21/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
Across all settings, women self-report more drug allergies than do men. Although there is epidemiologic evidence of increased drug allergy labeling in postpubertal females, the evidence base for female sex as a risk factor for true immune-mediated drug hypersensitivity reactions (DHRs), particularly in fatal drug-induced anaphylaxis, is low. A focus on the known immunologic mechanisms described in immediate and delayed DHR, layered on known hormonal and genetic sex differences that drive other immune-mediated diseases, could be the key to understanding biological sex variations in DHR. Particular conditions that highlight the impact of drug allergy in women include (1) pregnancy, in which a drug allergy label is associated with increased maternal and fetal complications; (2) multiple drug intolerance syndrome, associated with anxiety and depression; and (3) female-predominant autoimmune medical conditions in the context of mislabeling of the drug allergy or increased underlying risk. In this review, we describe the importance of drug allergy in the female population, mainly focusing on the epidemiology and risk, the mechanisms, and the associated conditions and psychosocial factors. By performing a detailed analysis of the current literature, we provide focused conclusions and identify existing knowledge gaps that should be prioritized for future research.
Collapse
Affiliation(s)
- Erika Yue Lee
- Division of Clinical Immunology and Allergy, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada; Eliot Phillipson Clinician-Scientist Training Program, University of Toronto, Toronto, Ontario, Canada
| | - Ana Maria Copaescu
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia; Division of Allergy and Clinical Immunology, Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada; Research Institute of McGill University Health Centre, McGill University, McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Jason A Trubiano
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Elizabeth J Phillips
- Center for Drug Safety and Immunology, Vanderbilt University Medical Centre, Nashville, Tenn; Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Anna R Wolfson
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, Mass
| | - Allison Ramsey
- Rochester Regional Health, Rochester, NY; Clinical Assistant Professor of Medicine, Department of Allergy/Immunology/Rheumatology, University of Rochester, Rochester, NY.
| |
Collapse
|
7
|
Vitale G, Mattiaccio A, Conti A, Berardi S, Vero V, Turco L, Seri M, Morelli MC. Molecular and Clinical Links between Drug-Induced Cholestasis and Familial Intrahepatic Cholestasis. Int J Mol Sci 2023; 24:ijms24065823. [PMID: 36982896 PMCID: PMC10057459 DOI: 10.3390/ijms24065823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Idiosyncratic Drug-Induced Liver Injury (iDILI) represents an actual health challenge, accounting for more than 40% of hepatitis cases in adults over 50 years and more than 50% of acute fulminant hepatic failure cases. In addition, approximately 30% of iDILI are cholestatic (drug-induced cholestasis (DIC)). The liver's metabolism and clearance of lipophilic drugs depend on their emission into the bile. Therefore, many medications cause cholestasis through their interaction with hepatic transporters. The main canalicular efflux transport proteins include: 1. the bile salt export pump (BSEP) protein (ABCB11); 2. the multidrug resistance protein-2 (MRP2, ABCC2) regulating the bile salts' independent flow by excretion of glutathione; 3. the multidrug resistance-1 protein (MDR1, ABCB1) that transports organic cations; 4. the multidrug resistance-3 protein (MDR3, ABCB4). Two of the most known proteins involved in bile acids' (BAs) metabolism and transport are BSEP and MDR3. BSEP inhibition by drugs leads to reduced BAs' secretion and their retention within hepatocytes, exiting in cholestasis, while mutations in the ABCB4 gene expose the biliary epithelium to the injurious detergent actions of BAs, thus increasing susceptibility to DIC. Herein, we review the leading molecular pathways behind the DIC, the links with the other clinical forms of familial intrahepatic cholestasis, and, finally, the main cholestasis-inducing drugs.
Collapse
Affiliation(s)
- Giovanni Vitale
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Alessandro Mattiaccio
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
| | - Amalia Conti
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Sonia Berardi
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Vittoria Vero
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Laura Turco
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Marco Seri
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
| | - Maria Cristina Morelli
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| |
Collapse
|
8
|
Chu MT, Chang WC, Pao SC, Hung SI. Delayed Drug Hypersensitivity Reactions: Molecular Recognition, Genetic Susceptibility, and Immune Mediators. Biomedicines 2023; 11:biomedicines11010177. [PMID: 36672685 PMCID: PMC9855900 DOI: 10.3390/biomedicines11010177] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Drug hypersensitivity reactions are classified into immediate and delayed types, according to the onset time. In contrast to the immediate type, delayed drug hypersensitivity mainly involves T lymphocyte recognition of the drug antigens and cell activation. The clinical presentations of such hypersensitivity are various and range from mild reactions (e.g., maculopapular exanthema (MPE) and fixed drug eruption (FDE)), to drug-induced liver injury (DILI) and severe cutaneous adverse reactions (SCARs) (e.g., Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), drug reaction with eosinophilia and systemic symptoms (DRESS), and acute generalized exanthematous pustulosis (AGEP)). The common culprits of delayed drug hypersensitivity include anti-epileptics, antibiotics, anti-gout agents, anti-viral drugs, etc. Delayed drug hypersensitivity is proposed to be initiated by different models of molecular recognition, composed of drug/metabolite antigen and endogenous peptide, HLA presentation, and T cell receptor (TCR) interaction. Increasing the genetic variants of HLA loci and drug metabolic enzymes has been identified to be responsible for delayed drug hypersensitivity. Furthermore, preferential TCR clonotypes, and the activation of cytotoxic proteins/cytokines/chemokines, are also involved in the pathogenesis of delayed drug hypersensitivity. This review provides a summary of the current understanding of the molecular recognition, genetic susceptibility, and immune mediators of delayed drug hypersensitivity.
Collapse
Affiliation(s)
- Mu-Tzu Chu
- Cancer Vaccine & Immune Cell Therapy Core Lab, Department of Medical Research, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Wan-Chun Chang
- Division of Translational Therapeutics, Department of Paediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Shih-Cheng Pao
- Cancer Vaccine & Immune Cell Therapy Core Lab, Department of Medical Research, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Shuen-Iu Hung
- Cancer Vaccine & Immune Cell Therapy Core Lab, Department of Medical Research, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Correspondence: or ; Tel.: +886-3-3281200 (ext. 7806)
| |
Collapse
|
9
|
Khan DA, Banerji A, Blumenthal KG, Phillips EJ, Solensky R, White AA, Bernstein JA, Chu DK, Ellis AK, Golden DBK, Greenhawt MJ, Horner CC, Ledford D, Lieberman JA, Oppenheimer J, Rank MA, Shaker MS, Stukus DR, Wallace D, Wang J, Khan DA, Golden DBK, Shaker M, Stukus DR, Khan DA, Banerji A, Blumenthal KG, Phillips EJ, Solensky R, White AA, Bernstein JA, Chu DK, Ellis AK, Golden DBK, Greenhawt MJ, Horner CC, Ledford D, Lieberman JA, Oppenheimer J, Rank MA, Shaker MS, Stukus DR, Wallace D, Wang J. Drug allergy: A 2022 practice parameter update. J Allergy Clin Immunol 2022; 150:1333-1393. [PMID: 36122788 DOI: 10.1016/j.jaci.2022.08.028] [Citation(s) in RCA: 247] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022]
Affiliation(s)
- David A Khan
- Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Aleena Banerji
- Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Mass
| | - Kimberly G Blumenthal
- Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Mass
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Roland Solensky
- Corvallis Clinic, Oregon State University/Oregon Health Science University College of Pharmacy, Corvallis, Ore
| | - Andrew A White
- Department of Allergy, Asthma and Immunology, Scripps Clinic, San Diego, Calif
| | - Jonathan A Bernstein
- Department of Internal Medicine, Division of Immunology, Allergy Section, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Derek K Chu
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada; The Research Institute of St Joe's Hamilton, Hamilton, Ontario, Canada
| | - Anne K Ellis
- Division of Allergy and Immunology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - David B K Golden
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Matthew J Greenhawt
- Food Challenge and Research Unit Section of Allergy and Immunology, Children's Hospital Colorado University of Colorado School of Medicine, Aurora, Colo
| | - Caroline C Horner
- Department of Pediatrics, Division of Allergy Pulmonary Medicine, Washington University School of Medicine, St Louis, Mo
| | - Dennis Ledford
- Division of Allergy and Immunology, Department of Medicine, University of South Florida Morsani College of Medicine, Tampa, Fla; James A. Haley Veterans Affairs Hospital, Tampa, Fla
| | - Jay A Lieberman
- Division of Allergy and Immunology, The University of Tennessee Health Science Center, Memphis, Tenn
| | - John Oppenheimer
- Division of Allergy, Rutgers New Jersey Medical School, Rutgers, NJ
| | - Matthew A Rank
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic in Arizona, Scottsdale, Ariz
| | - Marcus S Shaker
- Department of Pediatrics, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - David R Stukus
- Division of Allergy and Immunology, Nationwide Children's Hospital, Columbus, Ohio; The Ohio State University College of Medicine, Columbus, Ohio
| | - Dana Wallace
- Nova Southeastern Allopathic Medical School, Fort Lauderdale, Fla
| | - Julie Wang
- Division of Allergy and Immunology, Department of Pediatrics, The Elliot and Roslyn Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kurogi K, Cao Y, Segawa K, Sakakibara Y, Suiko M, Uetrecht J, Liu MC. Sulfation of 12-hydroxy-nevirapine by human SULTs and the effects of genetic polymorphisms of SULT1A1 and SULT2A1. Biochem Pharmacol 2022; 204:115243. [PMID: 36084709 DOI: 10.1016/j.bcp.2022.115243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/02/2022]
Abstract
Nevirapine (NVP) is an effective drug for the treatment of HIV infections, but its use is limited by a high incidence of severe skin rash and liver injury. 12-Hydroxynevirapine (12-OH-NVP) is the major metabolite of nevirapine. There is strong evidence that the sulfate of 12-OH-NVP is responsible for the skin rash. While several cytosolic sulfotransferases (SULTs) have been shown to be capable of sulfating 12-OH-NVP, the exact mechanism of sulfation in vivo is unclear. The current study aimed to clarify human SULT(s) and human organs that are capable of sulfating 12-OH-NVP and investigate the metabolic sulfation of 12-OH-NVP using cultured HepG2 human hepatoma cells. Enzymatic assays revealed that of the thirteen human SULTs, SULT1A1 and SULT2A1 displayed strong 12-OH-NVP-sulfating activity. 1-Phenyl-1-hexanol (PHHX), which applied topically prevents the skin rash in rats, inhibited 12-OH-NVP sulfation by SULT1A1 and SULT2A1, implying the involvement of these two enzymes in the sulfation of 12-OH-NVP in vivo. Among five human organ cytosols analyzed, liver cytosol displayed the strongest 12-OH-NVP-sulfating activity, while a low but significant activity was detected with skin cytosol. Cultured HepG2 cells were shown to be capable of sulfating 12-OH-NVP. The effects of genetic polymorphisms of SULT1A1 and SULT2A1 genes on the sulfation of 12-OH-NVP by SULT1A1 and SULT2A1 allozymes were investigated. Two SULT1A1 allozymes, Arg37Asp and Met223Val, showed no detectable 12-OH-NVP-sulfating activity, while a SULT2A1 allozyme, Met57Thr, displayed significantly higher 12-OH-NVP-sulfating activity compared with the wild-type enzyme. Collectively, these results contribute to a better understanding of the involvement of sulfation in NVP-induced skin rash and provide clues to the possible role of SULT genetic polymorphisms in the risk of this adverse reaction.
Collapse
Affiliation(s)
- Katsuhisa Kurogi
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA; Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yanshan Cao
- Leslie Dan Faculty of Pharmacy and Faculty of Medicine, University of Toronto, Toronto M5S3M2, Canada
| | - Koshi Segawa
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yoichi Sakakibara
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Masahito Suiko
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Jack Uetrecht
- Leslie Dan Faculty of Pharmacy and Faculty of Medicine, University of Toronto, Toronto M5S3M2, Canada
| | - Ming-Cheh Liu
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA.
| |
Collapse
|
11
|
Daly AK. Pharmacogenetics of the cytochromes P450: Selected pharmacological and toxicological aspects. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:49-72. [PMID: 35953163 DOI: 10.1016/bs.apha.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the availability of detailed genomic data on all 57 human cytochrome P450 genes, it is clear that there is substantial variability in gene product activity with functionally significant polymorphisms reported across almost all isoforms. This article is concerned mainly with 13 P450 isoforms of particular relevance to xenobiotic metabolism. After brief review of the extent of polymorphism in each, the relevance of selected P450 isoforms to both adverse drug reaction and disease susceptibility is considered in detail. Bleeding due to warfarin and other coumarin anticoagulants is considered as an example of a type A reaction with idiosyncratic adverse drug reactions affecting the liver and skin as type B. It is clear that CYP2C9 variants contribute significantly to warfarin dose requirement and also risk of bleeding, with a minor contribution from CYP4F2. In the case of idiosyncratic adverse drug reactions, CYP2B6 variants appear relevant to both liver and skin reactions to several drugs with CYP2C9 variants also relevant to phenytoin-related skin rash. The relevance of P450 genotype to disease susceptibility is also considered but detailed genetic studies now suggest that CYP2A6 is the only P450 relevant to risk of lung cancer with alleles associated with low or absent activity clearly protective against disease. Other cytochrome P450 genotypes are generally not predictors for risk of cancer or other complex disease development.
Collapse
Affiliation(s)
- Ann K Daly
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom.
| |
Collapse
|
12
|
The Association of HLA-B*35 and GSTT1 Genotypes and Hepatotoxicity in Thai People Living with HIV. J Pers Med 2022; 12:jpm12060940. [PMID: 35743726 PMCID: PMC9225434 DOI: 10.3390/jpm12060940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Glutathione s-transferase (GST) is a family of drug-metabolizing enzymes responsible for metabolizing and detoxifying drugs and xenobiotic substances. Therefore, deletion polymorphisms of GSTs can be implicated in developing several pathological conditions, including antiretroviral drug-induced liver injury (ARVDILI). Notably, GST polymorphisms have been shown to be associated with ARVDILI risk. However, data on GST polymorphisms in the Thai population are limited. Therefore, this study investigated possible associations between GST genetic polymorphisms and ARVDILI development. A total of 362 people living with HIV (PLHIV) and 85 healthy controls from multiple centers were enrolled. GSTM1 and GSTT1 genetic polymorphisms were determined using polymerase chain reactions. In addition, HLA genotypes were determined using a sequence-based HLA typing method. After comparing GST genotypic frequencies, there was no significant difference between PLHIV and healthy volunteers. However, while observing the PLHIV group, GSTT1 wild type was significantly associated with a 2.04-fold increased risk of ARVDILI (95%CI: 1.01, 4.14; p = 0.045). Interestingly, a combination of GSTT1 wild type and HLA-B*35:05 was associated with a 2.28-fold higher risk of ARVDILI (95%CI: 1.15, 4.50; p = 0.02). Collectively, GSTT1 wild type and a combination of GSTT1 wild type plus HLA-B*35:05 were associated with susceptibility to ARVDILI in the Thai population.
Collapse
|
13
|
Maseng MJ, Tawe L, Thami PK, Moyo S, Kasvosve I, Novitsky V, Essex M, Russo G, Gaseitsiwe S, Paganotti GM. The role of CYP2B6 516G>T polymorphism on efavirenz/nevirapine toxicity. Implications on treatment outcomes: Lessons from Botswana. Medicine (Baltimore) 2022; 101:e29066. [PMID: 35512066 PMCID: PMC9276322 DOI: 10.1097/md.0000000000029066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/25/2022] [Indexed: 01/04/2023] Open
Abstract
The two non-nucleoside reverse transcriptase inhibitors (NNRTIs), efavirenz (EFV) and nevirapine (NVP), are currently the core antiretroviral drugs for treatment of HIV in sub-Saharan Africa including Botswana. The drugs are metabolized by Cytochrome P450 2B6 (CYP2B6) liver enzyme. The CYP2B6 gene that encodes for metabolism of these drugs is known to be highly polymorphic. One of the polymorphism in the CYP2B6 gene, 516G>T, particularly the 516T allele, is known to confer poor metabolism of EFV and NVP. This may lead to high levels of plasma drug concentrations and development of treatment toxicities, like central nervous system toxicities, and cutaneous and hepatic toxicities, for EFV and NVP, respectively. The CYP2B6 516G allele on the other hand is associated with an extensive metabolism of the two NNRTIs drugs. We sought to establish association between possible developments of NNRTIs toxicities with CYP2B6 516G>T variation in Botswana.A total of 316 peripheral blood mononuclear cells samples were used in a retrospective view. All the samples were from participants on EFV/NVP-containing regimen with known toxicity output. TaqMan Real-Time PCR approach was applied for assessing CYP2B6 516 allele variation in cases with treatment toxicity and those without. Analysis was performed by chi-square statistics and logistic regression analysis.The rate of poor metabolizers among participants with toxicity and those without toxicity was 18.4% and 15.1%, respectively. The CYP2B6 516 genotype distribution comparisons between the participants with toxicity and those without were not statistically different (chi-square = .326; P = .568).CYP2B6 516 variation was not associated with NNRTI toxicity. No other factors were associated with toxicity when considering age, baseline body mass index, baseline CD4, baseline HIV viral load and adherence. The results were discussed in the context of all the studies done in Botswana to date.
Collapse
Affiliation(s)
- Monkgomotsi J. Maseng
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, UB Campus, Block 246, Gaborone, Botswana
- Botswana-Harvard AIDS Institute Partnership, Plot 1836 North Ring Road, Gaborone, Botswana
| | - Leabaneng Tawe
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, UB Campus, Block 246, Gaborone, Botswana
- Botswana-Harvard AIDS Institute Partnership, Plot 1836 North Ring Road, Gaborone, Botswana
- Botswana-University of Pennsylvania Partnership, UB Campus, Block 244G, Gaborone, Botswana
| | - Prisca K. Thami
- Botswana-Harvard AIDS Institute Partnership, Plot 1836 North Ring Road, Gaborone, Botswana
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road Observatory, Cape Town, South Africa
| | - Sikhulile Moyo
- Botswana-Harvard AIDS Institute Partnership, Plot 1836 North Ring Road, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 677 Hungtinton Avenue, Boston, MA
| | - Ishmael Kasvosve
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, UB Campus, Block 246, Gaborone, Botswana
| | - Vladimir Novitsky
- Botswana-Harvard AIDS Institute Partnership, Plot 1836 North Ring Road, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 677 Hungtinton Avenue, Boston, MA
| | - Max Essex
- Botswana-Harvard AIDS Institute Partnership, Plot 1836 North Ring Road, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 677 Hungtinton Avenue, Boston, MA
| | - Gianluca Russo
- Department of Public Health and Infectious Disease, Faculty of Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, Italy
| | - Simani Gaseitsiwe
- Botswana-Harvard AIDS Institute Partnership, Plot 1836 North Ring Road, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 677 Hungtinton Avenue, Boston, MA
| | - Giacomo M. Paganotti
- Botswana-University of Pennsylvania Partnership, UB Campus, Block 244G, Gaborone, Botswana
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, 3120-2740 Hamilton Walk, Philadelphia, PA
- Department of Biomedical Sciences, Faculty of Medicine, University of Botswana, UB Campus, Block 246, Gaborone, Botswana
| |
Collapse
|
14
|
Stirton H, Shear NH, Dodiuk-Gad RP. Drug Reaction with Eosinophilia and Systemic Symptoms (DReSS)/Drug-Induced Hypersensitivity Syndrome (DiHS)-Readdressing the DReSS. Biomedicines 2022; 10:999. [PMID: 35625735 PMCID: PMC9138571 DOI: 10.3390/biomedicines10050999] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 12/17/2022] Open
Abstract
Drug reaction with eosinophilia and systemic symptoms (DReSS), also known as drug-induced hypersensitivity syndrome (DiHS), is a severe, systemic, T cell mediated drug reaction with combinations of cutaneous, hematologic, and internal organ involvement. Pathogenesis of DReSS is multi-factorial, involving drug-exposure, genetic predisposition through specific human leukocyte antigen (HLA) alleles and metabolism defects, viral reactivation, and immune dysregulation. Clinical features of this condition are delayed, stepwise, and heterogenous, making this syndrome challenging to recognize and diagnose. Two sets of validated diagnostic criteria exist that can be employed to diagnose DReSS/DiHS. Methods to improve early recognition of DReSS and predict disease severity has been a recent area of research focus. In vitro and in vivo tests can be employed to confirm the diagnosis and help identify culprit drugs. The mainstay treatment of DReSS is prompt withdrawal of the culprit drug, supportive treatment, and immunosuppression depending on the severity of disease. We present a comprehensive review on the most recent research and literature on DReSS, with emphasis on pathogenesis, clinical features, diagnosis, confirmatory testing modalities, and treatment. Additionally, this summary aims to highlight the differing viewpoints on this severe disease and broaden our perspective on the condition known as DReSS.
Collapse
Affiliation(s)
- Hannah Stirton
- Section of Dermatology, Department of Medicine, University of Manitoba, Winnipeg, MB R2M 3Y8, Canada;
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Neil H. Shear
- Temerty Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - Roni P. Dodiuk-Gad
- Temerty Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Emek Medical Centre, Afula 1855701, Israel
- Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa 3525433, Israel
| |
Collapse
|
15
|
Moyer AM, Gandhi MJ. Human Leukocyte Antigen (HLA) Testing in Pharmacogenomics. Methods Mol Biol 2022; 2547:21-45. [PMID: 36068459 DOI: 10.1007/978-1-0716-2573-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The genetic region on the short arm of chromosome 6 where the human leukocyte antigen (HLA) genes are located is the major histocompatibility complex. The genes in this region are highly polymorphic, and some loci have a high degree of homology with other genes and pseudogenes. Histocompatibility testing has traditionally been performed in the setting of transplantation and involves determining which specific alleles are present. Several HLA alleles have been associated with disease risk or increased risk of adverse drug reaction (ADR) when treated with certain medications. Testing for these applications differs from traditional histocompatibility in that the desired result is simply presence or absence of the allele of interest, rather than determining which allele is present. At present, the majority of HLA typing is done by molecular methods using commercially available kits. A subset of pharmacogenomics laboratories has developed their own methods, and in some cases, query single nucleotide variants associated with certain HLA alleles rather than directly testing for the allele. In this chapter, a brief introduction to the HLA system is provided, followed by an overview of a variety of testing technologies including those specifically used in pharmacogenomics, and the chapter concludes with details regarding specific HLA alleles associated with ADR.
Collapse
Affiliation(s)
- Ann M Moyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Manish J Gandhi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
16
|
Jaruthamsophon K, Thomson PJ, Sukasem C, Naisbitt DJ, Pirmohamed M. HLA Allele-Restricted Immune-Mediated Adverse Drug Reactions: Framework for Genetic Prediction. Annu Rev Pharmacol Toxicol 2021; 62:509-529. [PMID: 34516290 DOI: 10.1146/annurev-pharmtox-052120-014115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human leukocyte antigen (HLA) is a hallmark genetic marker for the prediction of certain immune-mediated adverse drug reactions (ADRs). Numerous basic and clinical research studies have provided the evidence base to push forward the clinical implementation of HLA testing for the prevention of such ADRs in susceptible patients. This review explores current translational progress in using HLA as a key susceptibility factor for immune ADRs and highlights gaps in our knowledge. Furthermore, relevant findings of HLA-mediated drug-specific T cell activation are covered, focusing on cellular approaches to link genetic associations to drug-HLA binding as a complementary approach to understand disease pathogenesis. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kanoot Jaruthamsophon
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, United Kingdom; .,Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Paul J Thomson
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, United Kingdom;
| | - Chonlaphat Sukasem
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, United Kingdom; .,Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, and Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Dean J Naisbitt
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, United Kingdom;
| | - Munir Pirmohamed
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, United Kingdom;
| |
Collapse
|
17
|
Kwara A. Could pharmacogenetics aid the prediction of nevirapine pharmacokinetics and allow individualized treatment? Pharmacogenomics 2021; 22:881-884. [PMID: 34505542 DOI: 10.2217/pgs-2021-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tweetable abstract The large interindividual variability in nevirapine pharmacokinetics and clinical effects that remains unexplained by pharmacogenetic prediction is a major limitation for individualized nevirapine treatment.
Collapse
Affiliation(s)
- Awewura Kwara
- Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
18
|
Jeiziner C, Wernli U, Suter K, Hersberger KE, Meyer zu Schwabedissen HE. HLA-associated adverse drug reactions - scoping review. Clin Transl Sci 2021; 14:1648-1658. [PMID: 34105877 PMCID: PMC8504845 DOI: 10.1111/cts.13062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/18/2023] Open
Abstract
Alleles of the human leukocyte antigen (HLA) system have been associated with the occurrence of idiosyncratic adverse drug reactions (ADRs). Accordingly, it is assumed that pre-emptive testing for the presence of certain HLA alleles (HLA-typing) could prevent these ADRs in carriers. In order to perceive the current evidence for HLA-associated ADRs, we conducted a scoping review according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The literature search on PubMed and on Embase was carried out on the July 8 and 9, 2020, respectively. To be included in the scoping review, the studies had to investigate an association of any HLA-associated ADR with any small molecule approved and available on the Swiss market. We considered English and German primary literature published since 2002. A total of 149 studies were included, whereof most were retrospective, whereas one was a prospective randomized controlled trial. The majority of the studies (n = 33) described the association of HLA-B*15:02 with carbamazepine. It was not possible to directly compare the studies, as they were too heterogeneous in terms of the ADR definition, the HLA alleles, the number of participants, and the study types. Therefore, we summarized the results in a descriptive manner. Even if an interpretation of the outcomes remains open, the descriptive overview revealed the prevailing complexity and uncertainty in the field. For the future, consistent definitions on the different phenotypes need to be established and applied and the reporting of association studies should follow a harmonized structure.
Collapse
Affiliation(s)
- Chiara Jeiziner
- Pharmaceutical Care Research GroupDepartment of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| | - Ursina Wernli
- Pharmaceutical Care Research GroupDepartment of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| | - Katja Suter
- European Center of Pharmaceutical MedicineFaculty of MedicineUniversity of BaselBaselSwitzerland
| | - Kurt E. Hersberger
- Pharmaceutical Care Research GroupDepartment of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| | | |
Collapse
|
19
|
Devarbhavi H, Patil M, Menon M. Association of human leukocyte antigen-B*13:01 with dapsone-induced liver injury. Br J Clin Pharmacol 2021; 88:1369-1372. [PMID: 34427944 DOI: 10.1111/bcp.15054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
Human leukocyte antigens (HLA) have been linked to adverse drug reactions. Generally, HLA association is phenotype specific and is related to either liver or skin injury. HLA-A*13:01 has been linked to dapsone-induced severe cutaneous drug reactions and its role in drug-induced liver injury (DILI) is unclear. In our series, all of the four patients with immunoallergic dapsone DILI were carrying HLA-B*13:01 compared to its prevalence of 1-12% among Indians. HLA-B*13:01 plays a role not only in dapsone-induced severe cutaneous adverse reaction (SCAR) but also in dapsone-induced liver injury with immunoallergic features and highlights the role of adaptive immune response in the pathogenesis of both liver and skin injury and associated other organ involvement.
Collapse
Affiliation(s)
- Harshad Devarbhavi
- Department of Gastroenterology and Hepatology, St. John's Medical College Hospital, Bangalore, India
| | - Mallikarjun Patil
- Department of Gastroenterology and Hepatology, St. John's Medical College Hospital, Bangalore, India
| | - Mahesh Menon
- Department of Gastroenterology and Hepatology, St. John's Medical College Hospital, Bangalore, India
| |
Collapse
|
20
|
Yang SC, Chen CB, Lin MY, Zhang ZY, Jia XY, Huang M, Zou YF, Chung WH. Genetics of Severe Cutaneous Adverse Reactions. Front Med (Lausanne) 2021; 8:652091. [PMID: 34336873 PMCID: PMC8319741 DOI: 10.3389/fmed.2021.652091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022] Open
Abstract
Severe cutaneous adverse reactions (SCARs) including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and drug rash with eosinophilia and systemic symptoms (DRESS) are T cells-mediated life-threatening immune reactions, most commonly induced by drug. The last decade has seen significant progress in SCARs research. Recent studies have unveiled the pathogenesis of SCARs involved in susceptible genes, including human leukocyte antigens (HLA) and drugs-T cell receptor (TCR) interaction that may trigger T cell activation with downstream immune signaling of cytokines/chemokines and specific cytotoxic proteins releases. Advances in identification of multiple genetic alleles associated with specific drugs related SCARS in different populations is an important breakthrough in recent years for prevention of SCARs. This article summarized the findings on genetic factors related to SJS/TEN, especially for HLA.
Collapse
Affiliation(s)
- Shang-Chen Yang
- Department of Dermatology, Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China
| | - Chun-Bing Chen
- Department of Dermatology, Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China.,Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.,Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Mao-Ying Lin
- Department of Dermatology, Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China
| | - Zhi-Yang Zhang
- Department of Dermatology, Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China
| | - Xiao-Yan Jia
- Department of Neurology, Xiamen Chang Gung Hospital, Xiamen, China
| | - Ming Huang
- Department of Neurology, Xiamen Chang Gung Hospital, Xiamen, China
| | - Ya-Fen Zou
- Department of Neurology, Xiamen Chang Gung Hospital, Xiamen, China
| | - Wen-Hung Chung
- Department of Dermatology, Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China.,Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan.,Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Dermatology, Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.,Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
21
|
Delabeling Delayed Drug Hypersensitivity: How Far Can You Safely Go? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 8:2878-2895.e6. [PMID: 33039012 DOI: 10.1016/j.jaip.2020.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022]
Abstract
Delayed immune-mediated adverse drug reactions (IM-ADRs) are defined as reactions occurring more than 6 hours after dosing. They include heterogeneous clinical phenotypes that are typically T-cell-mediated reactions with distinct mechanisms across a wide spectrum of severity from benign exanthems through to life-threatening cutaneous or organ-specific diseases. For mild reactions such as benign exanthem, considerations for delabeling are similar to immediate reactions and may include a graded or single-dose drug challenge with or without preceding skin or patch testing. Evaluation of challenging cases such as the patient who is on multiple drugs at the time a severe delayed IM-ADR occurs should prioritize clinical ascertainment of the most likely phenotype and implicated drug(s). Although not widely available and validated, procedures such as patch testing, delayed intradermal skin testing, and laboratory-based functional drug assays or genetic (human leukocyte antigen) testing may provide valuable information to further help risk stratify patients and identify the likely implicated and/or cross-reactive drug(s). The decision to use a drug challenge as a diagnostic or delabeling tool in a patient with a severe delayed IM-ADR should weigh the risk-benefit ratio, balancing the severity and priority for the treatment of the underlying, and the availability of alternative efficacious and safe treatments.
Collapse
|
22
|
Liu Y, Zeng X, Ouyang D. Progress in study on the association between HLA genetic variation and adverse drug reactions. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:404-413. [PMID: 33967088 PMCID: PMC10930308 DOI: 10.11817/j.issn.1672-7347.2021.200256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Indexed: 11/03/2022]
Abstract
The human leukocyte antigen (HLA) molecules encoded within the human major histocompatibility complex are a group of highly conserved cell surface proteins, which are related to antigen recognition. HLA genes display a high degree of genetic polymorphism, which is the basis of individual differences in immunity. Specific HLA genotypes have been highly associated with typical adverse drug reactions. HLA-A*31:01 and HLA-B*15:02 are associated with carbamazepine-induced severe cutaneous adverse reactions, HLA-B*57:01 is related to abacavir-induced drug-induced hypersensitivity syndrome and flucloxacillin/pazopanib-induced drug-induced liver injury, while HLA-B*35:01 is a potential biomarker for predicting polygonum multiflorum-induced liver injury. It is not clear how small drug molecules to interact with HLA molecules and T cell receptors (TCR). There are four mechanistic hypotheses, including the hapten/prohapten theory, the pharmacological interaction concept, the altered peptide repertoire model, and the altered TCR repertoire model.
Collapse
Affiliation(s)
- Yating Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008.
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078.
| | - Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008.
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078.
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, China.
| |
Collapse
|
23
|
Maseng MJ, Tawe L, Thami PK, Seatla KK, Moyo S, Martinelli A, Kasvosve I, Novitsky V, Essex M, Russo G, Gaseitsiwe S, Paganotti GM. Association of CYP2B6 Genetic Variation with Efavirenz and Nevirapine Drug Resistance in HIV-1 Patients from Botswana. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:335-347. [PMID: 33758532 PMCID: PMC7981136 DOI: 10.2147/pgpm.s289471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
Purpose CYP2B6 liver enzyme metabolizes the two non-nucleoside reverse transcriptase inhibitors Efavirenz (EFV) and Nevirapine (NVP) used in the antiretroviral therapy (ART) regimens for HIV-infected individuals. Polymorphisms of the CYP2B6 gene influence drug levels in plasma and possibly virological outcomes. The aim of this study was to explore the potential impact of CYP2B6 genotype and haplotype variation on the risk of developing EFV/NVP drug resistance mutations (DRMs) in HIV-1 patients receiving EFV-/NVP-containing regimens in Botswana. Patients and Methods Participants were a sub-sample of a larger study (Tshepo study) conducted in Gaborone, Botswana, among HIV-infected individuals taking EFV/NVP containing ART. Study samples were retrieved and assigned to cases (with DRMs) and controls (without DRMs). Four single-nucleotide polymorphisms (SNPs) in the CYP2B6 gene (−82T>C; 516G>T; 785A>G; 983T>C) were genotyped, the haplotypes reconstructed, and the metabolic score assigned. The possible association between drug resistance and several independent factors (baseline characteristics and CYP2B6 genotypes) was assessed by Binary Logistic Regression (BLR) analysis. EFV/NVP resistance status and CYP2B6 haplotypes were also analyzed using Z-test, chi-square and Fisher’s exact test statistics. Results Two hundred and twenty-seven samples were analysed (40 with DRMs, 187 without DRMs). BLR analysis showed an association between EFV/NVP resistance and CYP2B6 516G allele (OR: 2.26; 95% CI: 1.27–4.01; P=0.005). Moreover, haplotype analysis revealed that the proportion of EFV/NVP-resistant infections was higher among CYP2B6 fast than extensive/slow metabolizers (30.8% vs 16.8%; P=0.035), with the 516G allele more represented in the haplotypes of fast than extensive/slow metabolizers (100.0% vs 53.8%; P<0.001). Conclusion We demonstrated that the CYP2B6 516G allele, and even more when combined in fast metabolic haplotypes, is associated with the presence of EFV/NVP resistance, strengthening the need to assess the CYP2B6 genetic profiles in HIV-infected patients in order to improve the virologic outcomes of NNRTI containing ART.
Collapse
Affiliation(s)
- Monkgomotsi J Maseng
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana.,Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Leabaneng Tawe
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana.,Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana.,Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
| | - Prisca K Thami
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana.,Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kaelo K Seatla
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana.,Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Sikhulile Moyo
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | | | - Ishmael Kasvosve
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Vladimir Novitsky
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Max Essex
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Gianluca Russo
- Department of Public Health and Infectious Disease, Faculty of Medicine, Sapienza University of Rome, Rome, Italy
| | - Simani Gaseitsiwe
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Giacomo M Paganotti
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana.,Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Biomedical Sciences, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| |
Collapse
|
24
|
Villanueva-Paz M, Morán L, López-Alcántara N, Freixo C, Andrade RJ, Lucena MI, Cubero FJ. Oxidative Stress in Drug-Induced Liver Injury (DILI): From Mechanisms to Biomarkers for Use in Clinical Practice. Antioxidants (Basel) 2021; 10:390. [PMID: 33807700 PMCID: PMC8000729 DOI: 10.3390/antiox10030390] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a type of hepatic injury caused by an uncommon drug adverse reaction that can develop to conditions spanning from asymptomatic liver laboratory abnormalities to acute liver failure (ALF) and death. The cellular and molecular mechanisms involved in DILI are poorly understood. Hepatocyte damage can be caused by the metabolic activation of chemically active intermediate metabolites that covalently bind to macromolecules (e.g., proteins, DNA), forming protein adducts-neoantigens-that lead to the generation of oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress, which can eventually lead to cell death. In parallel, damage-associated molecular patterns (DAMPs) stimulate the immune response, whereby inflammasomes play a pivotal role, and neoantigen presentation on specific human leukocyte antigen (HLA) molecules trigger the adaptive immune response. A wide array of antioxidant mechanisms exists to counterbalance the effect of oxidants, including glutathione (GSH), superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX), which are pivotal in detoxification. These get compromised during DILI, triggering an imbalance between oxidants and antioxidants defense systems, generating oxidative stress. As a result of exacerbated oxidative stress, several danger signals, including mitochondrial damage, cell death, and inflammatory markers, and microRNAs (miRNAs) related to extracellular vesicles (EVs) have already been reported as mechanistic biomarkers. Here, the status quo and the future directions in DILI are thoroughly discussed, with a special focus on the role of oxidative stress and the development of new biomarkers.
Collapse
Affiliation(s)
- Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - Laura Morán
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
- Health Research Institute Gregorio Marañón (IiSGM), 28009 Madrid, Spain
| | - Nuria López-Alcántara
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
| | - Cristiana Freixo
- CINTESIS, Center for Health Technology and Services Research, do Porto University School of Medicine, 4200-319 Porto, Portugal;
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - M Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| |
Collapse
|
25
|
du Toit JD, Kotze K, van der Westhuizen HM, Gaunt TL. Nevirapine-induced Stevens-Johnson syndrome in children living with HIV in South Africa. South Afr J HIV Med 2021; 22:1182. [PMID: 33824730 PMCID: PMC8008046 DOI: 10.4102/sajhivmed.v22i1.1182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/09/2020] [Indexed: 11/01/2022] Open
Abstract
Background Although adverse drug reactions resulting from the use of nevirapine (NVP) are well described in adults (estimated frequency of 6% - 10%), it has previously been considered less common in children (0.3% - 1.4%). Stock-outs of antiretroviral agents occur frequently in South Africa and result in interruptions in therapy and drug substitutions. Objectives To report on a case series of paediatric patients who suffered cutaneous drug reactions to NVP at rates not previously described in children. Method We describe a retrospective observational case series of six children living with HIV who developed Stevens-Johnson Syndrome (SJS) following exposure to NVP because of a prolonged stock-out of efavirenz 200 mg tablets in South Africa. Results Of the 392 paediatric patients receiving antiretroviral therapy at the institution, 172 were affected by the efavirenz stock-out. Of these, 85 children were changed to NVP of which six developed NVP-induced SJS (7.1% incidence rate). The median time between initiating NVP and developing symptoms was 27 days (range 12-35 days). All patients responded well to NVP cessation and symptomatic treatment. One patient was referred for specialist care. Two patients were successfully rechallenged with efavirenz after developing SJS and three continued lopinavir/ritonavir. Conclusions This is the second largest case series of NVP-induced SJS in children to date and raises the possibility that the incidence of SJS in children may be higher than previously described. Further research is required to explore the risk factors associated with NVP-induced SJS in children. This case series highlights the negative impact of drug stock-outs on patient health outcomes.
Collapse
Affiliation(s)
- Jacques D du Toit
- HIV Outpatient Department, Zithulele Hospital, Mqanduli, South Africa.,MRC/Wits Rural Public Health and Health Transitions Research Unit, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Koot Kotze
- HIV Outpatient Department, Zithulele Hospital, Mqanduli, South Africa.,Nuffield Department of Primary Healthcare Sciences, University of Oxford, Oxford, United Kingdom
| | - Helene-Mari van der Westhuizen
- HIV Outpatient Department, Zithulele Hospital, Mqanduli, South Africa.,Nuffield Department of Primary Healthcare Sciences, University of Oxford, Oxford, United Kingdom
| | - Taryn L Gaunt
- HIV Outpatient Department, Zithulele Hospital, Mqanduli, South Africa
| |
Collapse
|
26
|
Haas DW, Podany AT, Bao Y, Swindells S, Chaisson RE, Mwelase N, Supparatpinyo K, Mohapi L, Gupta A, Benson CA, Baker P, Fletcher CV. Pharmacogenetic interactions of rifapentine plus isoniazid with efavirenz or nevirapine. Pharmacogenet Genomics 2021; 31:17-27. [PMID: 32815870 PMCID: PMC7655626 DOI: 10.1097/fpc.0000000000000417] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES The effect of rifapentine plus isoniazid on efavirenz pharmacokinetics was characterized in AIDS Clinical Trials Group protocol A5279 (NCT01404312). The present analyses characterize pharmacogenetic interactions between these drugs, and with nevirapine. METHODS A subset of HIV-positive individuals receiving efavirenz- or nevirapine-containing antiretroviral therapy in A5279 underwent pharmacokinetic evaluations at baseline, and again weeks 2 and 4 after initiating daily rifapentine plus isoniazid. Associations with polymorphisms relevant to efavirenz, nevirapine, isoniazid, and rifapentine pharmacokinetics were assessed. RESULTS Of 128 participants, 101 were evaluable for associations with rifapentine and its active 25-desacetyl metabolite, 87 with efavirenz, and 38 with nevirapine. In multivariable analyses, NAT2 slow acetylators had greater week 4 plasma concentrations of rifapentine (P = 2.6 × 10) and 25-desacetyl rifapentine (P = 7.0 × 10) among all participants, and in efavirenz and nevirapine subgroups. NAT2 slow acetylators also had greater plasma efavirenz and nevirapine concentration increases from baseline to week 4, and greater decreases from baseline in clearance. CYP2B6 poor metabolizers had greater efavirenz concentrations at all weeks and greater nevirapine concentrations at baseline. None of 47 additional polymorphisms in 11 genes were significantly associated with pharmacokinetics. CONCLUSIONS Among HIV-positive individuals receiving efavirenz or nevirapine, and who then initiated rifapentine plus isoniazid in A5279, NAT2 slow acetylators had greater rifapentine and 25-desacetyl rifapentine concentrations, and greater increases from baseline in plasma efavirenz and nevirapine concentrations. These associations are likely mediated by greater isoniazid exposure in NAT2 slow acetylators.
Collapse
Affiliation(s)
- David W Haas
- Department of Medicine, Vanderbilt University School of Medicine
| | - Anthony T Podany
- Department of Pharmacy Practice and Science, Antiviral Pharmacology Laboratory, UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha
| | - Yajing Bao
- Statistical and Data Analysis Center, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Susan Swindells
- Infectious Diseases, Internal Medicine, University of Nebraska Medical Center, Omaha
| | - Richard E Chaisson
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Noluthando Mwelase
- Helen Joseph Hospital, University of Witwatersrand University, Johannesburg, South Africa
| | - Khuanchai Supparatpinyo
- Department of Medicine, Research Institute for Health Sciences and Faculty of Medicine, Chiang Mai University, Thailand
| | - Lerato Mohapi
- Perinatal HIV Research Unit, University of the Witwatersrand and Chris Hani Baragwanath Hospital, Soweto, South Africa
| | - Amita Gupta
- Department of Medicine, Center for Clinical Global Health Education, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Constance A Benson
- Departments of Medicine and Global Public Health, Antiviral Research Center, University of California, San Diego
| | - Paxton Baker
- Vanderbilt Technologies for Advanced Genomics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Courtney V Fletcher
- Department of Pharmacy Practice and Science, Antiviral Pharmacology Laboratory, UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha; for the AIDS Clinical Trials Group A5279 Study Team
| |
Collapse
|
27
|
Yoon HY, Cho YA, Yee J, Gwak HS. Effects of CYP2B6 polymorphisms on plasma nevirapine concentrations: a systematic review and meta-analysis. Sci Rep 2020; 10:17390. [PMID: 33060725 PMCID: PMC7562737 DOI: 10.1038/s41598-020-74506-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/21/2020] [Indexed: 12/25/2022] Open
Abstract
Cytochrome P450 (CYP) is involved in the metabolism of nevirapine (NVP); especially, CYP2B6 has been known to be one of the main enzymes involved in NVP metabolism. The objective of this study was to investigate the effects of CYP2B6 variants on plasma concentrations of NVP by a systematic review and meta-analysis. A search for qualifying studies published until April 2020 was conducted using the EMBASE, PubMed, and Web of Science databases. The mean difference (MD) and 95% confidence intervals (CIs) were calculated. Data analysis was performed using R Studio (version 3.6) and Review Manager (version 5.3). In total, data from six studies involving 634 patients were analyzed in the systematic review and five studies in the meta-analysis. We found that carriers of the CYP2B6 516TT genotype had a 2.18 µg/mL higher NVP concentration than did the GG or GT (95% CI 1.28-3.08). In the respective comparisons of the three genotypes, it was found that the MD was 1.87 µg/mL between the TT and GT groups, 2.53 µg/mL between TT and GG, and 0.60 µg/mL between GT and GG. This meta-analysis confirmed that CYP2B6 polymorphisms was associated with plasma NVP concentrations. Therefore, CYP2B6 genotyping may be useful to predict the responses to NVP.
Collapse
Affiliation(s)
- Ha Young Yoon
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Young Ah Cho
- College of Pharmacy, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea.,Mokhwa Convalescent Hospital, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Jeong Yee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| | - Hye Sun Gwak
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| |
Collapse
|
28
|
Pillaye JN, Marakalala MJ, Khumalo N, Spearman W, Ndlovu H. Mechanistic insights into antiretroviral drug-induced liver injury. Pharmacol Res Perspect 2020; 8:e00598. [PMID: 32643320 PMCID: PMC7344109 DOI: 10.1002/prp2.598] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022] Open
Abstract
All classes of antiretroviral therapy (ART) have been implicated to induce adverse drug reactions such drug-induced liver injury (DILI) and immune-mediated adverse reactions in Human Immunodeficiency Virus (HIV) infected individuals. Patients that develop adverse drug reactions tend to have prolonged stays in hospital and may require to change to alternative regimens if reactions persist upon rechallenge or if rechallenge is contraindicated due to severity of the adverse reaction. Diagnosis of DILI remains a huge obstacle that delays timely interventions, since it is still based largely on exclusion of other causes. There is an urgent need to develop robust diagnostic and predictive biomarkers that could be used alongside the available tools (biopsy, imaging, and serological tests for liver enzymes) to give a specific diagnosis of DILI. Crucial to this is also achieving consensus in the definition of DILI so that robust studies can be undertaken. Importantly, it is crucial that we gain deeper insights into the mechanism of DILI so that patients can receive appropriate management. In general, it has been demonstrated that the mechanism of ART-induced liver injury is driven by four main mechanisms: mitochondrial toxicity, metabolic host-mediated injury, immune reconstitution, and hypersensitivity reactions. The focus of this review is to discuss the type and phenotypes of DILI that are caused by the first line ART regimens. Furthermore, we will summarize recent studies that have elucidated the cellular and molecular mechanisms of DILI both in vivo and in vitro.
Collapse
Affiliation(s)
- Jamie N. Pillaye
- Division of Chemical and System BiologyDepartment of Integrative Biomedical SciencesFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Mohlopheni J. Marakalala
- Africa Health Research InstituteDurbanKwaZulu NatalSouth Africa
- Division of Infection and ImmunityUniversity College LondonLondonUK
| | - Nonhlanhla Khumalo
- Hair and Skin Research LabDivision of DermatologyDepartment of MedicineGroote Schuur Hospital and University of Cape TownCape TownSouth Africa
| | - Wendy Spearman
- Division of HepatologyDepartment of MedicineGroote Schuur Hospital and University of Cape TownCape TownSouth Africa
| | - Hlumani Ndlovu
- Division of Chemical and System BiologyDepartment of Integrative Biomedical SciencesFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
29
|
Sanabria-Cabrera J, Medina-Cáliz I, Stankevičiūtė S, Rodríguez-Nicolás A, Almarza-Torres M, Lucena MI, Andrade RJ. Drug-Induced liver Injury Associated with Severe Cutaneous Hypersensitivity Reactions: A Complex Entity in Need of a Multidisciplinary Approach. Curr Pharm Des 2020; 25:3855-3871. [PMID: 31696806 DOI: 10.2174/1381612825666191107161912] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022]
Abstract
Idiosyncratic drug-induced liver injury (DILI) occasionally occurs in the setting of severe cutaneous adverse reactions (SCARs), including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) and drug reaction with eosinophilia and systemic symptoms (DRESS). This strengthens the proposed immunologic mechanism associated with this adverse reaction. DRESS exhibits the most common association with DILI. SCARs have a wide spectrum of heterogeneous clinical presentations and severity, and genetic predisposition has been identified. In the context of SCARs, DILI present a different clinical picture, ranging from mild injury to acute liver failure. Elucidating the role of DILI in the clinical presentation and outcome of SCARs represents a challenge due to limited information from published studies and the lack of consensus on definitions. The cholestatic and mixed pattern of liver damage typically predominates in the case of DILI associated with SCARs, which is different from DILI without SCARs where hepatocellular is the most common injury pattern. Only a few drugs have been associated with both DILI and SCARs. Is this article, the criteria used for DILI recognition among SCARS have been revised and discussed, along with the drugs most commonly involved in these syndromes as well as the outcome, prognostic factors and the need for a multidisciplinary approach to improve the management of DILI in the context of SCARs.
Collapse
Affiliation(s)
- Judith Sanabria-Cabrera
- Servicio de Farmacologia Clinica, Instituto de Investigacion Biomedica de Malaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Malaga, Malaga, Spain.,UCICEC IBIMA, Plataforma SCReN (Spanish Clinical Research Network), Madrid, Spain
| | - Inmaculada Medina-Cáliz
- Servicio de Farmacologia Clinica, Instituto de Investigacion Biomedica de Malaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Malaga, Malaga, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | | | | | - Marina Almarza-Torres
- Servicio de Farmacologia Clinica, Instituto de Investigacion Biomedica de Malaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Malaga, Malaga, Spain
| | - M Isabel Lucena
- Servicio de Farmacologia Clinica, Instituto de Investigacion Biomedica de Malaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Malaga, Malaga, Spain.,UCICEC IBIMA, Plataforma SCReN (Spanish Clinical Research Network), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Raúl J Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,Servicio de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
30
|
Oussalah A, Yip V, Mayorga C, Blanca M, Barbaud A, Nakonechna A, Cernadas J, Gotua M, Brockow K, Caubet J, Bircher A, Atanaskovic‐Markovic M, Demoly P, Kase‐Tanno L, Terreehorst I, Laguna JJ, Romano A, Guéant J, Pirmohamed M. Genetic variants associated with T cell-mediated cutaneous adverse drug reactions: A PRISMA-compliant systematic review-An EAACI position paper. Allergy 2020; 75:1069-1098. [PMID: 31899808 DOI: 10.1111/all.14174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/27/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022]
Abstract
Drug hypersensitivity reactions (DHRs) are associated with high global morbidity and mortality. Cutaneous T cell-mediated reactions classically occur more than 6 hours after drug administration and include life-threatening conditions such as toxic epidermal necrolysis, Stevens-Johnson syndrome, and hypersensitivity syndrome. Over the last 20 years, significant advances have been made in our understanding of the pathogenesis of DHRs with the identification of human leukocyte antigens as predisposing factors. This has led to the development of pharmacogenetic screening tests, such as HLA-B*57:01 in abacavir therapy, which has successfully reduced the incidence of abacavir hypersensitivity reactions. We have completed a PRISMA-compliant systematic review to identify genetic associations that have been reported in DHRs. In total, 105 studies (5554 cases and 123 548 controls) have been included in the review reporting genetic associations with carbamazepine (n = 31), other aromatic antiepileptic drugs (n = 24), abacavir (n = 11), nevirapine (n = 14), trimethoprim-sulfamethoxazole (n = 11), dapsone (n = 4), allopurinol (n = 10), and other drugs (n = 5). The most commonly reported genetic variants associated with DHRs are located in human leukocyte antigen genes and genes involved in drug metabolism pathways. Increasing our understanding of genetic variants that contribute to DHRs will allow us to improve diagnosis, develop new treatments, and predict and prevent DHRs in the future.
Collapse
Affiliation(s)
- Abderrahim Oussalah
- INSERM UMR_S 1256 NGERE – Nutrition, Genetics, and Environmental Risk Exposure Faculty of Medicine of Nancy University of Lorraine Nancy France
- Department of Molecular Medicine Division of Biochemistry, Molecular Biology, and Nutrition University Hospital of Nancy Nancy France
| | - Vincent Yip
- Department of Molecular and Clinical Pharmacology MRC Centre for Drug Safety Science University of Liverpool Liverpool UK
- Royal Liverpool and Broadgreen University Hospital NHS Trust Liverpool UK
- The Wolfson Centre for Personalized Medicine Institute of Translational Medicine University of Liverpool Liverpool UK
| | - Cristobalina Mayorga
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga‐ARADyAL Málaga Spain
| | - Miguel Blanca
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga‐ARADyAL Málaga Spain
| | - Annick Barbaud
- Dermatology and Allergology Department Tenon Hospital (AP‐HP) Sorbonne Universities UPMC University Paris 06 Paris France
| | - Alla Nakonechna
- Allergy and Immunology Clinic Royal Liverpool and Broadgreen University Hospital Liverpool UK
| | - Josefina Cernadas
- Department of Allergy and Clinical Immunology Centro Hospitalar Universitário de Sâo João Porto Portugal
- Allergy Clinic Hospital Lusíadas Porto Portugal
| | - Maia Gotua
- Center for Allergy and Immunology Research Tbilisi Georgia
| | - Knut Brockow
- Klinik für Dermatologie und Allergologie am Biederstein Technische Universität München München Germany
| | | | - Andreas Bircher
- Dermatologie/Allergologie Universitätsspital Basel Basel Switzerland
| | - Marina Atanaskovic‐Markovic
- Medical Faculty Department of Allergology and Pulmonology University Children's Hospital University of Belgrade Belgrade Serbia
| | - Pascal Demoly
- Division of Allergy Department of Pulmonology Hôpital Arnaud de Villeneuve University Hospital of Montpellier Montpellier France
| | | | - Ingrid Terreehorst
- Academisch Medisch Centrum University of Amsterdam Amsterdam Netherlands
| | | | | | - Jean‐Louis Guéant
- INSERM UMR_S 1256 NGERE – Nutrition, Genetics, and Environmental Risk Exposure Faculty of Medicine of Nancy University of Lorraine Nancy France
- Department of Molecular Medicine Division of Biochemistry, Molecular Biology, and Nutrition University Hospital of Nancy Nancy France
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology MRC Centre for Drug Safety Science University of Liverpool Liverpool UK
- Royal Liverpool and Broadgreen University Hospital NHS Trust Liverpool UK
- The Wolfson Centre for Personalized Medicine Institute of Translational Medicine University of Liverpool Liverpool UK
| | | |
Collapse
|
31
|
Nguefeu Nkenfou C, Atogho Tiedeu B, Nguefeu Nkenfou C, Nji AM, Chedjou JP, Tah Fomboh C, Kouanfack C, Mbacham WF. Adverse Drug Reactions Associated with CYP 2B6 Polymorphisms in HIV/AIDS-Treated Patients in Yaoundé, Cameroon. Appl Clin Genet 2019; 12:261-268. [PMID: 31920362 PMCID: PMC6941599 DOI: 10.2147/tacg.s226318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/23/2019] [Indexed: 01/04/2023] Open
Abstract
PURPOSE The metabolism of antiretroviral drugs is subject to individual variations of the CYP 2B6 gene. The objective of this study was to evaluate the prevalence of CYP 2B6 516 G>T and 983 T>C polymorphisms and investigate their association with the development of adverse drug reactions (ADRs) in people living with HIV/AIDS in Cameroon. PATIENTS AND METHODS A total number of 122 patients, attending the Yaoundé Central Hospital HIV Day Clinic, consented to take part in this study. Blood specimens were collected and DNA was extracted using the Chelex method. Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) was performed for the detection of CYP 2B6 Single-Nucleotide Polymorphisms (SNPs). Genotype frequencies were compared between groups with or without ADRs. Logistic regression analysis was performed to assess association between genotype and adverse effects of antiretroviral therapy (ART). RESULTS Three types of metabolizers were identified: extensive, intermediate and slow. For the 516G>T polymorphism, prevalences of 8.2% GG, 65.6% GT and 26.2% TT were obtained. For the 983T>C polymorphism, 89.3% TT, 4.1% CT and 6.6% CC prevalences were obtained. Those homozygous for the wild-type allele (516GG) were less likely to develop ADR with a statistically significant difference (OR=0.885, P=0.029). For the CYP2B6 T983C SNP, homozygous mutants (CC) may present a higher risk (threefold) of developing adverse reactions (OR=2.677, P=0.164). CONCLUSION These findings demonstrate that ADRs among HIV/AIDS patients under ART may be associated with the genetic variability of the metabolizing enzyme CYP 2B6. Genotyping for this gene may guide the better administration of Efavirenz and Nevirapine to Cameroonian patients.
Collapse
Affiliation(s)
- Carine Nguefeu Nkenfou
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Barbara Atogho Tiedeu
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Celine Nguefeu Nkenfou
- Systems Biology, Chantal Biya’ International Reference Centre for Research on HIV and AIDS Prevention and Management (CBIRC), Yaoundé, Cameroon
- Department of Biology, Higher Teachers’ Training College, University of Yaoundé I, Yaoundé, Cameroon
- Molecular Biology Center Yaoundé, Yaoundé, Cameroon
| | - Akindeh M Nji
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Jean Paul Chedjou
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Calvino Tah Fomboh
- The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
- Catholic University of Yaoundé (UCAC), Yaoundé, Cameroon
| | - Charles Kouanfack
- Day Care Unit, Central Hospital Yaoundé, Yaoundé, Cameroon
- Department of Public Health, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Dschang, Cameroon
| | - Wilfred F Mbacham
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
- Department of Public Health, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
32
|
Gelincik A, Cavkaytar O, Kuyucu S. An Update on the Management of Severe Cutaneous Drug Hypersensitivity Reactions. Curr Pharm Des 2019; 25:3881-3901. [DOI: 10.2174/1381612825666191106115556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022]
Abstract
Severe cutaneous drug hypersensitivity reactions involve of different mechanisms , some of which are
life-threatening, such as Stevens-Johnson syndrome/toxic epidermal necrolysis, drug reaction with eosinophilia
and systemic symptoms, acute generalized exanthematous pustulosis, generalized bullous fixed drug eruptions,
serum sickness and serum sickness-like reaction and drug-induced vasculitis. These reactions may have substantial
morbidity and mortality. In the past years, successive studies have provided new evidence regarding the
pathogenesis of some of these severe reactions and revealed that underlying mechanisms are highly variable.
Since these reactions have unique presentations and distinct pathomechanisms, the treatment methods and response
rates might be different among various entities. Although supportive and local therapies are sufficient in
some of these reactions, targeted immunosuppressive treatments and even mechanistic therapies such as plasmapheresis
may be required in severe ones. However, there is still insufficient evidence to support the best treatment
options for these patients since number of patients and large-scale studies are limited. In this review, conventional
and new treatment options for severe cutaneous drug hypersensitivity reactions are presented in detail in
order to provide the contemporary approaches to lessen the morbidity and mortality relevant to these severe iatrogenic
diseases.
Collapse
Affiliation(s)
- Aslı Gelincik
- Division of Immunology and Allergy, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ozlem Cavkaytar
- Department of Pediatric Allergy and Immunology, Istanbul Medeniyet University, Faculty of Medicine, Goztepe Training and Research Hospital, Istanbul, Turkey
| | - Semanur Kuyucu
- Department of Pediatric Allergy and Immunology, Mersin University, Faculty of Medicine, Mersin, Turkey
| |
Collapse
|
33
|
Hu K, Xiang Q, Wang Z, Mu GY, Zhang Z, Ma LY, Xie QF, Chen SQ, Zhou S, Zhang XD, Cui YM. Associations between human leukocyte antigen polymorphisms and hypersensitivity to antiretroviral therapy in patients with human immunodeficiency virus: a meta-analysis. BMC Infect Dis 2019; 19:583. [PMID: 31277607 PMCID: PMC6612203 DOI: 10.1186/s12879-019-4227-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/26/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human leukocyte antigen (HLA) alleles are implicated in drug-induced hypersensitivity, including by nevirapine and abacavir. The purpose of this meta-analysis was to evaluate the relationship between HLA polymorphisms and hypersensitivity to antiretroviral therapy in human immunodeficiency virus (HIV)-infected patients. METHODS We conducted a systematic search of PubMed, Embase, Web of Science, and the Cochrane Library for studies that evaluated the associations of HLA polymorphisms with antiretroviral therapy-induced hypersensitivity published in April 2019. The summary odds ratios (ORs) with 95% confidence intervals (CIs) were considered as estimates of the effect. RESULTS The meta-analysis included 17 studies that assessed a total of 4273 patients. First, carriers of HLA-A *24 were associated with an increased risk of hypersensitivity among patients with HIV who received antiretroviral therapy (OR: 12.12; P = 0.018). Second, five SNPs of HLA-B genotypes, including *18 (OR: 1.63; P = 0.028), *35 (OR: 2.31; P = 0.002), *39 (OR: 11.85; P = 0.040), *51 (OR: 1.66; P = 0.028), and *81 (OR: 8.11; P = 0.021), were associated with an increased risk of hypersensitivity. Conversely, carriers of HLA-B *15 were associated with a reduced risk of hypersensitivity (OR: 0.43; P < 0.001). Third, HLA-C *04 was associated with an increased risk of hypersensitivity (OR: 3.09; P < 0.001), whereas a lower risk for hypersensitivity was observed in patients who were carriers of HLA-C *02 (OR: 0.22; P = 0.030), *03 (OR: 0.53; P = 0.049), and *07 (OR: 0.61; P = 0.044). Finally, carriers of HLA-DRB1 *05 (OR: 0.18; P = 0.006) and *15 (OR: 0.23; P = 0.013) were associated with a reduced risk of hypersensitivity among patients receiving antiretroviral therapy. CONCLUSIONS The findings of this meta-analysis indicated patients carrying HLA-A *24, HLA-B *18, *35, *39, *51, *81, HLA-C *04 were associated with a higher risk of hypersensitivity. Conversely, subjects carrying HLA-B *15, HLA-C *02, *03, *07, HLA-DRB1 *05, *15 were associated with a reduced risk of hypersensitivity.
Collapse
Affiliation(s)
- Kun Hu
- Department of Pharmacy, Peking University First Hospital, 6# Dahongluochang Street, Xicheng District, Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, 6# Dahongluochang Street, Xicheng District, Beijing, China
| | - Zhe Wang
- Department of Pharmacy, Peking University First Hospital, 6# Dahongluochang Street, Xicheng District, Beijing, China.,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Peking University Health Science Center, 38# Xueyuan Road, Haidian District, Beijing, China
| | - Guang-Yan Mu
- Department of Pharmacy, Peking University First Hospital, 6# Dahongluochang Street, Xicheng District, Beijing, China
| | - Zhuo Zhang
- Department of Pharmacy, Peking University First Hospital, 6# Dahongluochang Street, Xicheng District, Beijing, China
| | - Ling-Yue Ma
- Department of Pharmacy, Peking University First Hospital, 6# Dahongluochang Street, Xicheng District, Beijing, China
| | - Qiu-Fen Xie
- Department of Pharmacy, Peking University First Hospital, 6# Dahongluochang Street, Xicheng District, Beijing, China
| | - Shu-Qing Chen
- Department of Pharmacy, Peking University First Hospital, 6# Dahongluochang Street, Xicheng District, Beijing, China
| | - Shuang Zhou
- Department of Pharmacy, Peking University First Hospital, 6# Dahongluochang Street, Xicheng District, Beijing, China
| | - Xiao-Dan Zhang
- Department of Pharmacy, Peking University First Hospital, 6# Dahongluochang Street, Xicheng District, Beijing, China
| | - Yi-Min Cui
- Department of Pharmacy, Peking University First Hospital, 6# Dahongluochang Street, Xicheng District, Beijing, China.
| |
Collapse
|
34
|
Devarbhavi H, Raj S. Drug-induced liver injury with skin reactions: Drugs and host risk factors, clinical phenotypes and prognosis. Liver Int 2019; 39:802-811. [PMID: 30515930 DOI: 10.1111/liv.14004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 02/13/2023]
Abstract
While dermatologic manifestations of adverse drug reactions are frequent, drug-induced liver injury is rare. Numerous drugs are implicated in either Drug-Induced Liver Injury or Drug-Induced Skin Injury. However, concomitant Drug-Induced Liver Injury and Drug-Induced Skin Injury are uncommon, not well characterized and appear to be caused by a limited number of drugs. These are often associated with immuno-allergic or hypersensitivity features such as fever, skin rash, blisters or peeling of skin, eosinophilia, lymphadenopathy and mucositis. Liver injury can range from asymptomatic elevation of liver biochemical tests to severe hepatitis and acute liver failure needing liver transplantation. Severe cutaneous adverse reaction, particularly drug reaction with eosinophilia and systemic symptoms is commonly associated with internal organ involvement, the liver being the most frequently involved in approximately 90% of the cases. In Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis, abnormalities in liver biochemistry tests are common but severe liver disease is rare. There is a strong association of Human Leukocyte Antigen genotype with both drug reaction with eosinophilia and systemic symptoms and Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis. It is likely that the delayed immune-mediated reaction triggering skin reaction is also responsible for hepatitis. Drug-specific lymphocytes are found in the organs involved and also in circulating blood, which along with the cytokines and chemokines play a role in pathogenesis. Anti-epileptic drugs, allopurinol, sulfonamides, antibiotics and nevirapine are the top five causes of concomitant liver and skin injury. This review will focus on drug and host factors causing concomitant Drug-Induced Skin Injury and Drug-Induced Liver Injury and discuss the characteristics of liver involvement in patients with severe cutaneous adverse reaction.
Collapse
Affiliation(s)
- Harshad Devarbhavi
- Department of Gastroenterology and Hepatology, St. John's Medical College Hospital, Bangalore, India
| | - Sujata Raj
- Department of Dermatology, St. John's Medical College Hospital, Bangalore, India
| |
Collapse
|
35
|
Lauschke VM, Zhou Y, Ingelman-Sundberg M. Novel genetic and epigenetic factors of importance for inter-individual differences in drug disposition, response and toxicity. Pharmacol Ther 2019; 197:122-152. [PMID: 30677473 PMCID: PMC6527860 DOI: 10.1016/j.pharmthera.2019.01.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Individuals differ substantially in their response to pharmacological treatment. Personalized medicine aspires to embrace these inter-individual differences and customize therapy by taking a wealth of patient-specific data into account. Pharmacogenomic constitutes a cornerstone of personalized medicine that provides therapeutic guidance based on the genomic profile of a given patient. Pharmacogenomics already has applications in the clinics, particularly in oncology, whereas future development in this area is needed in order to establish pharmacogenomic biomarkers as useful clinical tools. In this review we present an updated overview of current and emerging pharmacogenomic biomarkers in different therapeutic areas and critically discuss their potential to transform clinical care. Furthermore, we discuss opportunities of technological, methodological and institutional advances to improve biomarker discovery. We also summarize recent progress in our understanding of epigenetic effects on drug disposition and response, including a discussion of the only few pharmacogenomic biomarkers implemented into routine care. We anticipate, in part due to exciting rapid developments in Next Generation Sequencing technologies, machine learning methods and national biobanks, that the field will make great advances in the upcoming years towards unlocking the full potential of genomic data.
Collapse
Affiliation(s)
- Volker M Lauschke
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
36
|
Marinho AT, Miranda JP, Caixas U, Charneira C, Gonçalves-Dias C, Marques MM, Monteiro EC, Antunes AMM, Pereira SA. Singularities of nevirapine metabolism: from sex-dependent differences to idiosyncratic toxicity. Drug Metab Rev 2019; 51:76-90. [PMID: 30712401 DOI: 10.1080/03602532.2019.1577891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nevirapine (NVP) is a first-generation non-nucleoside reverse transcriptase inhibitor widely used for the treatment and prophylaxis of human immunodeficiency virus infection. The drug is taken throughout the patient's life and, due to the availability of an extended-release formulation, it is administered once daily. This antiretroviral is one of the scarce examples of drugs with prescription criteria based on sex, in order to prevent adverse reactions. The therapy with NVP has been associated with potentially life-threatening liver and idiosyncratic skin toxicity. Multiple evidence has emerged regarding the formation of electrophilic NVP metabolites as crucial for adverse idiosyncratic reactions. The formation of reactive metabolites that yield covalent adducts with proteins has been demonstrated in patients under NVP-based treatment. Interestingly, several pharmacogenetic- and sex-related factors associated with NVP toxicity can be mechanistically explained by an imbalance toward increased formation of NVP-derived reactive metabolites and/or impaired detoxification capability. Moreover, the haptenation of self-proteins by these reactive species provides a plausible link between NVP bioactivation and immunotoxicity, further supporting the relevance of this toxicokinetics hypothesis. In the current paper, we review the existing knowledge and recent developments on NVP metabolism and their relation to NVP toxicity.
Collapse
Affiliation(s)
- Aline T Marinho
- a CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas , Universidade NOVA de Lisboa , Lisboa , Portugal
| | - Joana P Miranda
- b Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy , Universidade de Lisboa , Lisboa , Portugal
| | - Umbelina Caixas
- a CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas , Universidade NOVA de Lisboa , Lisboa , Portugal.,c Centro Hospitalar de Lisboa Central (CHLC) , Lisboa , Portugal
| | - Catarina Charneira
- d Centro de Química Estrutural (CQE) , Instituto Superior Técnico, ULisboa , Lisboa , Portugal
| | - Clara Gonçalves-Dias
- a CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas , Universidade NOVA de Lisboa , Lisboa , Portugal
| | - M Matilde Marques
- d Centro de Química Estrutural (CQE) , Instituto Superior Técnico, ULisboa , Lisboa , Portugal
| | - Emília C Monteiro
- a CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas , Universidade NOVA de Lisboa , Lisboa , Portugal
| | - Alexandra M M Antunes
- d Centro de Química Estrutural (CQE) , Instituto Superior Técnico, ULisboa , Lisboa , Portugal
| | - Sofia A Pereira
- a CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas , Universidade NOVA de Lisboa , Lisboa , Portugal
| |
Collapse
|
37
|
Influence of tissue context on gene prioritization for predicted transcriptome-wide association studies. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2019; 24:296-307. [PMID: 30864331 PMCID: PMC6417797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transcriptome-wide association studies (TWAS) have recently gained great attention due to their ability to prioritize complex trait-associated genes and promote potential therapeutics development for complex human diseases. TWAS integrates genotypic data with expression quantitative trait loci (eQTLs) to predict genetically regulated gene expression components and associates predictions with a trait of interest. As such, TWAS can prioritize genes whose differential expressions contribute to the trait of interest and provide mechanistic explanation of complex trait(s). Tissue-specific eQTL information grants TWAS the ability to perform association analysis on tissues whose gene expression profiles are otherwise hard to obtain, such as liver and heart. However, as eQTLs are tissue context-dependent, whether and how the tissue-specificity of eQTLs influences TWAS gene prioritization has not been fully investigated. In this study, we addressed this question by adopting two distinct TWAS methods, PrediXcan and UTMOST, which assume single tissue and integrative tissue effects of eQTLs, respectively. Thirty-eight baseline laboratory traits in 4,360 antiretroviral treatment-naïve individuals from the AIDS Clinical Trials Group (ACTG) studies comprised the input dataset for TWAS. We performed TWAS in a tissue-specific manner and obtained a total of 430 significant gene-trait associations (q-value < 0.05) across multiple tissues. Single tissue-based analysis by PrediXcan contributed 116 of the 430 associations including 64 unique gene-trait pairs in 28 tissues. Integrative tissue-based analysis by UTMOST found the other 314 significant associations that include 50 unique gene-trait pairs across all 44 tissues. Both analyses were able to replicate some associations identified in past variant-based genome-wide association studies (GWAS), such as high-density lipoprotein (HDL) and CETP (PrediXcan, q-value = 3.2e-16). Both analyses also identified novel associations. Moreover, single tissue-based and integrative tissuebased analysis shared 11 of 103 unique gene-trait pairs, for example, PSRC1-low-density lipoprotein (PrediXcan's lowest q-value = 8.5e-06; UTMOST's lowest q-value = 1.8e-05). This study suggests that single tissue-based analysis may have performed better at discovering gene-trait associations when combining results from all tissues. Integrative tissue-based analysis was better at prioritizing genes in multiple tissues and in trait-related tissue. Additional exploration is needed to confirm this conclusion. Finally, although single tissue-based and integrative tissue-based analysis shared significant novel discoveries, tissue context-dependency of eQTLs impacted TWAS gene prioritization. This study provides preliminary data to support continued work on tissue contextdependency of eQTL studies and TWAS.
Collapse
|
38
|
Giacomelli A, Riva A, Falvella FS, Oreni ML, Cattaneo D, Cheli S, Renisi G, Di Cristo V, Lupo A, Clementi E, Rusconi S, Galli M, Ridolfo AL. Clinical and genetic factors associated with increased risk of severe liver toxicity in a monocentric cohort of HIV positive patients receiving nevirapine-based antiretroviral therapy. BMC Infect Dis 2018; 18:556. [PMID: 30419834 PMCID: PMC6233541 DOI: 10.1186/s12879-018-3462-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 10/31/2018] [Indexed: 01/05/2023] Open
Abstract
Background Nevirapine has been used as antiretroviral agent since early ‘90. Although nevirapine is not currently recommended in initial anti-HIV regimens, its use remains consistent in a certain number of HIV-1-positive subjects. Thus, our aim was to determine clinical and genetic factors involved in the development of severe nevirapine induced liver toxicity. Methods We retrospectively analyzed all HIV positive patients who were followed at the Infectious Diseases Unit, DIBIC Luigi Sacco, University of Milan from May 2011 to December 2015. All patients treated with nevirapine who underwent a genotyping for the functional variants mapping into ABCB1, CYP2B6, CYP3A4 and CYP3A5 genes were included in the analysis. Severe hepatotoxicity was defined as ACTG grade 3–4 AST/ALT increase during the first three months of nevirapine treatment. The causality assessment between NVP exposure and drug-induced liver injury was performed by using the updated Roussel Uclaf Causality Assessment Methods. Hardy Weinberg equilibrium was tested by χ2 test. A multivariable logistic regression model was constructed using a backward elimination method. Results Three hundred and sixty-two patients were included in the analysis, of which 8 (2.2%) experienced a severe liver toxicity. We observed no differences between patients with and without liver toxicity as regards gender, ethnicity, age and immune-virological status. A higher prevalence of HCV coinfection (75.0% vs 30.2%; p = .0013) and higher baseline AST (58 IU/L vs 26 IU/L; p = 0.041) and ALT (82 IU/L vs 27 IU/L; p = 0.047) median levels were observed in patients with liver toxicity vs those without toxicity. The genotypes CT/TT at ABCB1 rs1045642 single nucleotide polymorphism (SNP), showed a protective effect for liver toxicity when compared with genotype CC (OR = 0.18, 95%CI 0.04–0.76; p = 0.020) in univariate analysis. In the multivariate model, HCV coinfection was independently associated with higher risk of developing liver toxicity (aOR = 8.00, 95%CI 1.27–50.29; p = 0.027), whereas ABCB1 rs1045642 CT/TT genotypes (aOR = 0.10, 95%CI 0.02–0.47; p = 0.004) was associated with a lower risk. Conclusions According to our findings HCV coinfection and ABCB1 rs1045642 SNP represent independent determinants of severe liver toxicity related to nevirapine. This genetic evaluation could be included as toxicity assessment in HIV-1-positive subjects treated with nevirapine.
Collapse
Affiliation(s)
- Andrea Giacomelli
- Infectious Diseases Unit, DIBIC Luigi Sacco - University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy.
| | - Agostino Riva
- Infectious Diseases Unit, DIBIC Luigi Sacco - University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | | | - Maria Letizia Oreni
- Infectious Diseases Unit, DIBIC Luigi Sacco - University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Dario Cattaneo
- ASST Fatebenefratelli-Sacco, Clinical Pharmacology Unit, Milan, Italy
| | - Stefania Cheli
- ASST Fatebenefratelli-Sacco, Clinical Pharmacology Unit, Milan, Italy
| | - Giulia Renisi
- Infectious Diseases Unit, DIBIC Luigi Sacco - University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Valentina Di Cristo
- Infectious Diseases Unit, DIBIC Luigi Sacco - University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Angelica Lupo
- Infectious Diseases Unit, DIBIC Luigi Sacco - University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Emilio Clementi
- ASST Fatebenefratelli-Sacco, Clinical Pharmacology Unit, Milan, Italy.,E. Medea Scientific Institute, Bosisio Parini, Italy
| | - Stefano Rusconi
- Infectious Diseases Unit, DIBIC Luigi Sacco - University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Massimo Galli
- Infectious Diseases Unit, DIBIC Luigi Sacco - University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| | - Anna Lisa Ridolfo
- Infectious Diseases Unit, DIBIC Luigi Sacco - University of Milan, Via G.B. Grassi, 74, 20157, Milan, Italy
| |
Collapse
|
39
|
Drug-Induced Skin Adverse Reactions: The Role of Pharmacogenomics in Their Prevention. Mol Diagn Ther 2018; 22:297-314. [PMID: 29564734 DOI: 10.1007/s40291-018-0330-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adverse drug reactions (ADRs) affect many patients and remain a major public health problem, as they are a common cause of morbidity and mortality. It is estimated that ADRs are responsible for about 6% of hospital admissions and about 9% of hospitalization costs. Skin is the organ that is most frequently involved in ADRs. Drug-induced skin injuries vary from mild maculopapular eruptions (MPE) to severe cutaneous adverse reactions (SCARs) that are potentially life threatening. Genetic factors have been suggested to contribute to these SCARs, and most significant genetic associations have been identified in the major histocompatibility complex (MHC) genes. Common drugs associated with SCARs connected with strong genetic risk factors include antiepileptic drugs (AEDs), allopurinol, abacavir, nevirapine, sulfonamides, dapsone, non-steroidal anti-inflammatory drugs (NSAIDs), and analgesic drugs. However, genetic associations vary between different ethnic populations. Differences may in part be explained by the different prevalence of HLA (human leukocyte antigen) alleles among ethnic groups. In this review, we present and discuss the recent advances in genetic associations with ADRs in the skin. Many of these ADRs are now preventable with pharmacogenetic screening.
Collapse
|
40
|
Kaliyaperumal K, Grove JI, Delahay RM, Griffiths WJH, Duckworth A, Aithal GP. Pharmacogenomics of drug-induced liver injury (DILI): Molecular biology to clinical applications. J Hepatol 2018; 69:948-957. [PMID: 29792895 DOI: 10.1016/j.jhep.2018.05.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 12/14/2022]
Abstract
A 21-year old woman was admitted to hospital with a two-week history of painless jaundice, fatigue and anorexia having previously been fit and well. One month prior to presentation, the patient had taken a five-day course of amoxicillin-clavulanic acid for an infected skin cyst. Otherwise, she was only on the oral contraceptive pill and reported minimal alcohol intake. On examination, she was deeply jaundiced, but alert and oriented with no asterixis. She had no stigmata of chronic liver disease, but hepatomegaly extending 3 cm from below the right subcostal margin was evident. Investigations showed: white cell count 13.4 × 109/L (normal 3.6-9.3), haemoglobin 11.8 g/dl (normal 11-15), platelet count 356 × 109/L (normal 170-420), sodium 138 mmol/L (normal 134-144), potassium 3.5 mmol/L (normal 3.5-5.0), creatinine 32 µmol/L (normal 40-75), albumin 30 g/L (normal 35-48), alanine aminotransferase 707 IU/L (normal 15-54), alkaline phosphatase 151 IU/L (normal 30-130), bilirubin 384 µmol/L (normal 7-31) and prothrombin time 27.2 s (normal 11.7-14). Screening for hepatitis A, B, C, E, Epstein-Barr virus, cytomegalovirus and autoimmune hepatitis was negative. Tests for anti-smooth muscle, antinuclear, and anti-liver-kidney microsomal-1 antibodies were negative; immunoglobulin levels and ceruloplasmin levels were normal. Liver ultrasonography demonstrated a liver of normal contour with no biliary dilatation, a normal spleen size and patent vessels. Liver biopsy revealed severe portal interface hepatitis with lobular inflammation and scant plasma cells. Her clinical condition deteriorated in the following days with prothrombin time and bilirubin rising to 56.6 s and 470 µmol/L, respectively. At follow-up after 11 days, her alanine aminotransferase level was 1,931 IU/L. She developed grade 2 hepatic encephalopathy 14 days after presentation, and was listed for a super-urgent liver transplant. Human leucocyte antigen (HLA) typing was performed as a part of preparatory investigations and showed the patient carried the HLA haplotype HLA-DRB1∗15:02-DQB1∗06:01. Following orthotopic transplantation of a deceased donor graft her explant histology revealed severe ongoing hepatitis with multi-acinar necrosis (Fig. 1A and B). This case raised a number of important questions about the diagnosis of drug-induced liver injury and tools available for clinicians to make the best decisions for patient care: In this Grand Rounds article, we will explore these questions, describing the pathophysiology, diagnostic and prognostic biomarkers, and clinical management of drug-induced liver injury. We will also discuss ongoing areas of uncertainty.
Collapse
Affiliation(s)
- Kalaiyarasi Kaliyaperumal
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Jane I Grove
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham, UK
| | - Robin M Delahay
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham, UK
| | | | - Adam Duckworth
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Guruprasad P Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|
41
|
Karnes JH, Miller MA, White KD, Konvinse KC, Pavlos RK, Redwood AJ, Peter JG, Lehloenya R, Mallal SA, Phillips EJ. Applications of Immunopharmacogenomics: Predicting, Preventing, and Understanding Immune-Mediated Adverse Drug Reactions. Annu Rev Pharmacol Toxicol 2018; 59:463-486. [PMID: 30134124 DOI: 10.1146/annurev-pharmtox-010818-021818] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adverse drug reactions (ADRs) are a significant health care burden. Immune-mediated adverse drug reactions (IM-ADRs) are responsible for one-fifth of ADRs but contribute a disproportionately high amount of that burden due to their severity. Variation in human leukocyte antigen ( HLA) genes has emerged as a potential preprescription screening strategy for the prevention of previously unpredictable IM-ADRs. Immunopharmacogenomics combines the disciplines of immunogenomics and pharmacogenomics and focuses on the effects of immune-specific variation on drug disposition and IM-ADRs. In this review, we present the latest evidence for HLA associations with IM-ADRs, ongoing research into biological mechanisms of IM-ADRs, and the translation of clinical actionable biomarkers for IM-ADRs, with a focus on T cell-mediated ADRs.
Collapse
Affiliation(s)
- Jason H Karnes
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, Arizona 85721, USA.,Sarver Heart Center, University of Arizona College of Medicine, Tucson, Arizona 85724, USA.,Division of Pharmacogenomics, Center for Applied Genetics and Genomic Medicine (TCAG2M), Tucson, Arizona 85721, USA
| | - Matthew A Miller
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, Arizona 85721, USA
| | - Katie D White
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA;
| | - Katherine C Konvinse
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.,Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Rebecca K Pavlos
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Subiaco, Western Australia 6008, Australia.,Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia 6150, Australia
| | - Alec J Redwood
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia 6150, Australia
| | - Jonathan G Peter
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Cape Town, Cape Town 7925, South Africa.,Division of Dermatology, Department of Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Rannakoe Lehloenya
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Simon A Mallal
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA; .,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.,Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia 6150, Australia
| | - Elizabeth J Phillips
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA; .,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.,Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia 6150, Australia
| |
Collapse
|
42
|
Interaction of Nevirapine with the Peptide Binding Groove of HLA-DRB1*01:01 and Its Effect on the Conformation of HLA-Peptide Complex. Int J Mol Sci 2018; 19:ijms19061660. [PMID: 29867033 PMCID: PMC6032195 DOI: 10.3390/ijms19061660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 01/11/2023] Open
Abstract
Human leukocyte antigen (HLA)-DRB1*01:01 has been shown to be involved in nevirapine-induced hepatic hypersensitivity reactions. In the present study, in silico docking simulations and molecular dynamics simulations were performed to predict the interaction mode of nevirapine with the peptide binding groove of HLA-DRB1*01:01 and its possible effect on the position and orientation of the ligand peptide derived from hemagglutinin (HA). In silico analyses suggested that nevirapine interacts with HLA-DRB1*01:01 around the P4 pocket within the peptide binding groove and the HA peptide stably binds on top of nevirapine at the groove. The analyses also showed that binding of nevirapine at the groove will significantly change the inter-helical distances of the groove. An in vitro competitive assay showed that nevirapine (1000 μM) increases the binding of the HA peptide to HLA-DRB1*01:01 in an allele-specific manner. These results indicate that nevirapine might interact directly with the P4 pocket and modifies its structure, which could change the orientation of loaded peptides and the conformation of HLA-DRB1*01:01; these changes could be distinctively recognized by T-cell receptors. Through this molecular mechanism, nevirapine might stimulate the immune system, resulting in hepatic hypersensitivity reactions.
Collapse
|
43
|
Stillemans G, Belkhir L, Hesselink DA, Haufroid V, Elens L. Pharmacogenetic associations with cytochrome P450 in antiretroviral therapy: what does the future hold? Expert Opin Drug Metab Toxicol 2018; 14:601-611. [PMID: 29775551 DOI: 10.1080/17425255.2018.1478964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Several antiretroviral drugs used to treat infection with the human immunodeficiency virus (HIV) are substrates of enzymes belonging to the cytochrome P450 (CYP) superfamily, which are polymorphically expressed. It may therefore be useful to take into account the genetic variation in these enzymes to predict the likelihood of anti-HIV treatment success, toxicity and the potential for drug-drug interactions. Areas covered: In this manuscript, the authors discuss the current state of knowledge regarding pharmacogenetic associations between CYP and all major antiretrovirals, as well as the importance of these associations. Expert opinion: While many pharmacogenetic associations for CYP have been described in the literature, replication studies are sometimes lacking. The implementation of this knowledge in clinical practice also remains difficult. Further efforts are required both to expand this field of knowledge and to enable its use in everyday clinical practice.
Collapse
Affiliation(s)
- Gabriel Stillemans
- a Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics , Louvain Drug Research Institute, Université catholique de Louvain , Brussels , Belgium.,b Louvain centre for Toxicology and Applied Pharmacology, Institut de recherche expérimentale et clinique , Université catholique de Louvain , Brussels , Belgium
| | - Leila Belkhir
- b Louvain centre for Toxicology and Applied Pharmacology, Institut de recherche expérimentale et clinique , Université catholique de Louvain , Brussels , Belgium.,c AIDS Reference Center, Department of Internal Medicine , Cliniques universitaires Saint-Luc, Université catholique de Louvain , Brussels , Belgium
| | - Dennis A Hesselink
- d Department of Internal Medicine, Division of Nephrology and Transplantation and Rotterdam Transplant Group. Erasmus MC , University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Vincent Haufroid
- b Louvain centre for Toxicology and Applied Pharmacology, Institut de recherche expérimentale et clinique , Université catholique de Louvain , Brussels , Belgium.,e Department of Clinical Chemistry , Cliniques universitaires Saint-Luc , Brussels , Belgium
| | - Laure Elens
- a Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics , Louvain Drug Research Institute, Université catholique de Louvain , Brussels , Belgium.,b Louvain centre for Toxicology and Applied Pharmacology, Institut de recherche expérimentale et clinique , Université catholique de Louvain , Brussels , Belgium
| |
Collapse
|
44
|
Redwood AJ, Pavlos RK, White KD, Phillips EJ. HLAs: Key regulators of T-cell-mediated drug hypersensitivity. HLA 2018; 91:3-16. [PMID: 29171940 PMCID: PMC5743596 DOI: 10.1111/tan.13183] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/20/2017] [Indexed: 12/17/2022]
Abstract
Adverse drug reactions (ADR) can be broadly categorised as either on-target or off-target. On-target ADRs arise as a direct consequence of the pharmacological properties of the drug and are therefore predictable and dose-dependent. On-target ADRs comprise the majority (>80%) of ADRs, relate to the drug's interaction with its known pharmacological target and are a result of a complex interplay of genetic and ecologic factors. In contrast, off-target ADRs, including immune-mediated ADRs (IM-ADRs), are due to unintended pharmacological interactions such as inadvertent ligation of host cell receptors or non-pharmacological interactions mediated through an adaptive immune response. IM-ADRs can be classified according to the primary immune cell involved and include B-cell-mediated (Gell-Coombs type I-III reactions) and T-cell-mediated (Gell-Coombs type IV or delayed hypersensitivity) reactions. IM-ADRs mediated by T cells are associated with phenotypically distinct clinical diagnoses and can vary from a mild delayed rash to a life-threatening cutaneous, systemic or organ disease, such as Stephen Johnson syndrome/toxic epidermal necrolysis, drug reaction with eosinophilia and systemic symptoms and drug-induced liver disease. T-cell-mediated ADRs are strongly linked to the carriage of particular HLA risk alleles which are in the case of abacavir hypersensitivity and HLA-B*57:01 has led to translation into the clinic as a routine screening test. In this review, we will discuss the immunogenetics and pathogenesis of IM-ADRs and how HLA associations inform both pre-drug screening strategies and mechanistic understanding.
Collapse
Affiliation(s)
- Alec J. Redwood
- Institute for Immunology & Infectious Diseases, Murdoch University, Murdoch, Western Australia 6150
| | - Rebecca K. Pavlos
- Institute for Immunology & Infectious Diseases, Murdoch University, Murdoch, Western Australia 6150
| | - Katie D. White
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Elizabeth J. Phillips
- Institute for Immunology & Infectious Diseases, Murdoch University, Murdoch, Western Australia 6150
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pharmacology, Vanderbilt University School of Medicine
| |
Collapse
|
45
|
Genetics of Nevirapine Metabolic Pathways at Steady State in HIV-Infected Cambodians. Antimicrob Agents Chemother 2017; 61:AAC.00733-17. [PMID: 28947469 DOI: 10.1128/aac.00733-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/06/2017] [Indexed: 01/11/2023] Open
Abstract
Nevirapine is metabolized by several hepatic cytochrome P450 (CYP) isoforms to generate four primary hydroxylated metabolites: 2-hydroxynevirapine, 3-hydroxynevirapine, 8-hydroxynevirapine, and 12-hydroxynevirapine. The present study characterized associations between genetic polymorphisms and metabolite ratios in HIV-infected Cambodians. We demonstrate associations between CYP2B6 polymorphisms and metabolite ratios for both 3-hydroxynevirapine and 8-hydroxynevirapine, suggesting involvement of CYP2B6 in generating these metabolites.
Collapse
|
46
|
Pavlos R, White KD, Wanjalla C, Mallal SA, Phillips EJ. Severe Delayed Drug Reactions: Role of Genetics and Viral Infections. Immunol Allergy Clin North Am 2017; 37:785-815. [PMID: 28965641 PMCID: PMC5702581 DOI: 10.1016/j.iac.2017.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adverse drug reactions (ADRs) are a significant source of patient morbidity and mortality and represent a major burden to health care systems and drug development. Up to 50% of such reactions are preventable. Although many ADRs can be predicted based on the on-target pharmacologic activity, ADRs arising from drug interactions with off-target receptors are recognized. Off-target ADRs include the immune-mediated ADRs (IM-ADRs) and pharmacologic drug effects. In this review, we discuss what is known about the immunogenetics and pathogenesis of IM-ADRs and the hypothesized role of heterologous immunity in the development of IM-ADRs.
Collapse
Affiliation(s)
- Rebecca Pavlos
- Institute for Immunology and Infectious Diseases, Murdoch University, 6150 Murdoch, Western Australia, Australia
| | - Katie D White
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Celestine Wanjalla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Simon A Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, 6150 Murdoch, Western Australia, Australia; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, 6150 Murdoch, Western Australia, Australia; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
47
|
Multiphenotype association study of patients randomized to initiate antiretroviral regimens in AIDS Clinical Trials Group protocol A5202. Pharmacogenet Genomics 2017; 27:101-111. [PMID: 28099408 PMCID: PMC5285297 DOI: 10.1097/fpc.0000000000000263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Supplemental Digital Content is available in the text. Background High-throughput approaches are increasingly being used to identify genetic associations across multiple phenotypes simultaneously. Here, we describe a pilot analysis that considered multiple on-treatment laboratory phenotypes from antiretroviral therapy-naive patients who were randomized to initiate antiretroviral regimens in a prospective clinical trial, AIDS Clinical Trials Group protocol A5202. Participants and methods From among 5 9545 294 polymorphisms imputed genome-wide, we analyzed 2544, including 2124 annotated in the PharmGKB, and 420 previously associated with traits in the GWAS Catalog. We derived 774 phenotypes on the basis of context from six variables: plasma atazanavir (ATV) pharmacokinetics, plasma efavirenz (EFV) pharmacokinetics, change in the CD4+ T-cell count, HIV-1 RNA suppression, fasting low-density lipoprotein-cholesterol, and fasting triglycerides. Permutation testing assessed the likelihood of associations being by chance alone. Pleiotropy was assessed for polymorphisms with the lowest P-values. Results This analysis included 1181 patients. At P less than 1.5×10−4, most associations were not by chance alone. Polymorphisms with the lowest P-values for EFV pharmacokinetics (CYPB26 rs3745274), low-density lipoprotein -cholesterol (APOE rs7412), and triglyceride (APOA5 rs651821) phenotypes had been associated previously with those traits in previous studies. The association between triglycerides and rs651821 was present with ATV-containing regimens, but not with EFV-containing regimens. Polymorphisms with the lowest P-values for ATV pharmacokinetics, CD4 T-cell count, and HIV-1 RNA phenotypes had not been reported previously to be associated with that trait. Conclusion Using data from a prospective HIV clinical trial, we identified expected genetic associations, potentially novel associations, and at least one context-dependent association. This study supports high-throughput strategies that simultaneously explore multiple phenotypes from clinical trials’ datasets for genetic associations.
Collapse
|
48
|
Carr DF, Bourgeois S, Chaponda M, Takeshita LY, Morris AP, Castro EMC, Alfirevic A, Jones AR, Rigden DJ, Haldenby S, Khoo S, Lalloo DG, Heyderman RS, Dandara C, Kampira E, van Oosterhout JJ, Ssali F, Munderi P, Novelli G, Borgiani P, Nelson MR, Holden A, Deloukas P, Pirmohamed M. Genome-wide association study of nevirapine hypersensitivity in a sub-Saharan African HIV-infected population. J Antimicrob Chemother 2017; 72:1152-1162. [PMID: 28062682 PMCID: PMC5400091 DOI: 10.1093/jac/dkw545] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/20/2016] [Indexed: 01/11/2023] Open
Abstract
Background The antiretroviral nevirapine is associated with hypersensitivity reactions in 6%-10% of patients, including hepatotoxicity, maculopapular exanthema, Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). Objectives To undertake a genome-wide association study (GWAS) to identify genetic predisposing factors for the different clinical phenotypes associated with nevirapine hypersensitivity. Methods A GWAS was undertaken in a discovery cohort of 151 nevirapine-hypersensitive and 182 tolerant, HIV-infected Malawian adults. Replication of signals was determined in a cohort of 116 cases and 68 controls obtained from Malawi, Uganda and Mozambique. Interaction with ERAP genes was determined in patients positive for HLA-C*04:01 . In silico docking studies were also performed for HLA-C*04:01 . Results Fifteen SNPs demonstrated nominal significance ( P < 1 × 10 -5 ) with one or more of the hypersensitivity phenotypes. The most promising signal was seen in SJS/TEN, where rs5010528 ( HLA-C locus) approached genome-wide significance ( P < 8.5 × 10 -8 ) and was below HLA -wide significance ( P < 2.5 × 10 -4 ) in the meta-analysis of discovery and replication cohorts [OR 4.84 (95% CI 2.71-8.61)]. rs5010528 is a strong proxy for HLA-C*04:01 carriage: in silico docking showed that two residues (33 and 123) in the B pocket were the most likely nevirapine interactors. There was no interaction between HLA-C*04:01 and ERAP1 , but there is a potential protective effect with ERAP2 [ P = 0.019, OR 0.43 (95% CI 0.21-0.87)]. Conclusions HLA-C*04:01 predisposes to nevirapine-induced SJS/TEN in sub-Saharan Africans, but not to other hypersensitivity phenotypes. This is likely to be mediated via binding to the B pocket of the HLA-C peptide. Whether this risk is modulated by ERAP2 variants requires further study.
Collapse
Affiliation(s)
- Daniel F Carr
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Stephane Bourgeois
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mas Chaponda
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK.,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Malawi
| | - Louise Y Takeshita
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Andrew P Morris
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK.,Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Elena M Cornejo Castro
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Ana Alfirevic
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Andrew R Jones
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Daniel J Rigden
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sam Haldenby
- Centre for Genomic Research, University of Liverpool, Liverpool, UK
| | - Saye Khoo
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | | | - Robert S Heyderman
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Malawi.,Division of Infection and Immunity, University College London, London, UK
| | - Collet Dandara
- Division of Human Genetics, University of Cape Town, Cape Town, South Africa
| | - Elizabeth Kampira
- Division of Human Genetics, University of Cape Town, Cape Town, South Africa
| | - Joep J van Oosterhout
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Malawi.,Dignitas International, Zomba, Malawi
| | - Francis Ssali
- Joint Clinical Research Centre, Headquarters, Kampala, Uganda
| | - Paula Munderi
- UVRI/MRC Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | | | | | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.,Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| |
Collapse
|
49
|
Karnes JH, Shaffer CM, Cronin R, Bastarache L, Gaudieri S, James I, Pavlos R, Steiner H, Mosley JD, Mallal S, Denny JC, Phillips EJ, Roden DM. Influence of Human Leukocyte Antigen (HLA) Alleles and Killer Cell Immunoglobulin-Like Receptors (KIR) Types on Heparin-Induced Thrombocytopenia (HIT). Pharmacotherapy 2017; 37:1164-1171. [PMID: 28688202 PMCID: PMC5600645 DOI: 10.1002/phar.1983] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heparin-induced thrombocytopenia (HIT) is an unpredictable, life-threatening, immune-mediated reaction to heparin. Variation in human leukocyte antigen (HLA) genes is now used to prevent immune-mediated adverse drug reactions. Combinations of HLA alleles and killer cell immunoglobulin-like receptors (KIR) are associated with multiple autoimmune diseases and infections. The objective of this study is to evaluate the association of HLA alleles and KIR types, alone or in the presence of different HLA ligands, with HIT. HIT cases and heparin-exposed controls were identified in BioVU, an electronic health record coupled to a DNA biobank. HLA sequencing and KIR type imputation using Illumina OMNI-Quad data were performed. Odds ratios for HLA alleles and KIR types and HLA*KIR interactions using conditional logistic regressions were determined in the overall population and by race/ethnicity. Analysis was restricted to KIR types and HLA alleles with a frequency greater than 0.01. The p values for HLA and KIR association were corrected by using a false discovery rate q<0.05 and HLA*KIR interactions were considered significant at p<0.05. Sixty-five HIT cases and 350 matched controls were identified. No statistical differences in baseline characteristics were observed between cases and controls. The HLA-DRB3*01:01 allele was significantly associated with HIT in the overall population (odds ratio 2.81 [1.57-5.02], p=2.1×10-4 , q=0.02) and in individuals with European ancestry, independent of other alleles. No KIR types were associated with HIT, although a significant interaction was observed between KIR2DS5 and the HLA-C1 KIR binding group (p=0.03). The HLA-DRB3*01:01 allele was identified as a potential risk factor for HIT. This class II HLA gene and allele represent biologically plausible candidates for influencing HIT pathogenesis. We found limited evidence of the role of KIR types in HIT pathogenesis. Replication and further study of the HLA-DRB3*01:01 association is necessary.
Collapse
Affiliation(s)
- Jason H Karnes
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, AZ
- Sarver Heart Center, Tucson, AZ
| | - Christian M Shaffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Robert Cronin
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville
| | - Silvana Gaudieri
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Nedlands, Western Australia, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Ian James
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Rebecca Pavlos
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Heidi Steiner
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, AZ
| | - Jonathan D Mosley
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Simon Mallal
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Joshua C Denny
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville
| | - Elizabeth J Phillips
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Dan M Roden
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
50
|
Shared peptide binding of HLA Class I and II alleles associate with cutaneous nevirapine hypersensitivity and identify novel risk alleles. Sci Rep 2017; 7:8653. [PMID: 28819312 PMCID: PMC5561238 DOI: 10.1038/s41598-017-08876-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/05/2017] [Indexed: 11/08/2022] Open
Abstract
Genes of the human leukocyte antigen (HLA) system encode cell-surface proteins involved in regulation of immune responses, and the way drugs interact with the HLA peptide binding groove is important in the immunopathogenesis of T-cell mediated drug hypersensitivity syndromes. Nevirapine (NVP), is an HIV-1 antiretroviral with treatment-limiting hypersensitivity reactions (HSRs) associated with multiple class I and II HLA alleles. Here we utilize a novel analytical approach to explore these multi-allelic associations by systematically examining HLA molecules for similarities in peptide binding specificities and binding pocket structure. We demonstrate that primary predisposition to cutaneous NVP HSR, seen across ancestral groups, can be attributed to a cluster of HLA-C alleles sharing a common binding groove F pocket with HLA-C*04:01. An independent association with a group of class II alleles which share the HLA-DRB1-P4 pocket is also observed. In contrast, NVP HSR protection is afforded by a cluster of HLA-B alleles defined by a characteristic peptide binding groove B pocket. The results suggest drug-specific interactions within the antigen binding cleft can be shared across HLA molecules with similar binding pockets. We thereby provide an explanation for multiple HLA associations with cutaneous NVP HSR and advance insight into its pathogenic mechanisms.
Collapse
|