1
|
Mihealsick E, Word A, Scully EP. The impact of sex on HIV immunopathogenesis and therapeutic interventions. J Clin Invest 2024; 134:e180075. [PMID: 39286972 PMCID: PMC11405047 DOI: 10.1172/jci180075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Globally, the majority of people living with HIV are women or girls, but they have been a minority of participants in clinical trials and observational studies of HIV. Despite this underrepresentation, differences in the pathogenesis of HIV have been observed between men and women, with contributions from both gender- and sex-based factors. These include differences in the risk of HIV acquisition, in viral load set point and immune activation in responses to viremia, and differences in HIV reservoir maintenance. These differences obligate adequate study in both males and females in order to optimize treatments, but also provide a powerful leverage point for delineating the mechanisms of HIV pathogenesis. The shifts in exposure to sex steroid hormones across a lifespan introduce additional complexity, which again can be used to focus on either genetic or hormonal influences as the driver of an outcome. In this Review, we discuss consistent and reproducible differences by sex across the spectrum of HIV, from acquisition through pathogenesis, treatment, and cure, and explore potential mechanisms and gaps in knowledge.
Collapse
Affiliation(s)
| | | | - Eileen P Scully
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Pierce CA, Loh LN, Steach HR, Cheshenko N, Preston-Hurlburt P, Zhang F, Stransky S, Kravets L, Sidoli S, Philbrick W, Nassar M, Krishnaswamy S, Herold KC, Herold BC. HSV-2 triggers upregulation of MALAT1 in CD4+ T cells and promotes HIV latency reversal. J Clin Invest 2023; 133:e164317. [PMID: 37079384 PMCID: PMC10232005 DOI: 10.1172/jci164317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/17/2023] [Indexed: 04/21/2023] Open
Abstract
Herpes simplex virus type 2 (HSV-2) coinfection is associated with increased HIV-1 viral loads and expanded tissue reservoirs, but the mechanisms are not well defined. HSV-2 recurrences result in an influx of activated CD4+ T cells to sites of viral replication and an increase in activated CD4+ T cells in peripheral blood. We hypothesized that HSV-2 induces changes in these cells that facilitate HIV-1 reactivation and replication and tested this hypothesis in human CD4+ T cells and 2D10 cells, a model of HIV-1 latency. HSV-2 promoted latency reversal in HSV-2-infected and bystander 2D10 cells. Bulk and single-cell RNA-Seq studies of activated primary human CD4+ T cells identified decreased expression of HIV-1 restriction factors and increased expression of transcripts including MALAT1 that could drive HIV replication in both the HSV-2-infected and bystander cells. Transfection of 2D10 cells with VP16, an HSV-2 protein that regulates transcription, significantly upregulated MALAT1 expression, decreased trimethylation of lysine 27 on histone H3 protein, and triggered HIV latency reversal. Knockout of MALAT1 from 2D10 cells abrogated the response to VP16 and reduced the response to HSV-2 infection. These results demonstrate that HSV-2 contributes to HIV-1 reactivation through diverse mechanisms, including upregulation of MALAT1 to release epigenetic silencing.
Collapse
Affiliation(s)
- Carl A. Pierce
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, USA
| | - Lip Nam Loh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, USA
| | | | - Natalia Cheshenko
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, USA
| | | | - Fengrui Zhang
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Leah Kravets
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, USA
| | | | - William Philbrick
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michel Nassar
- Department of Otorhinolaryngology–Head and Neck Surgery, Albert Einstein College of Medicine, New York, New York, USA
| | - Smita Krishnaswamy
- Department of Computational Biology
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kevan C. Herold
- Department of Immunobiology, and
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Betsy C. Herold
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, USA
- Department of Pediatrics, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
3
|
Prodger JL, Galiwango RM, Tobian AAR, Park D, Liu CM, Kaul R. How Does Voluntary Medical Male Circumcision Reduce HIV Risk? Curr HIV/AIDS Rep 2022; 19:484-490. [PMID: 36308579 PMCID: PMC9617235 DOI: 10.1007/s11904-022-00634-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Voluntary medical male circumcision (VMMC) is a surgical procedure that reduces HIV acquisition risk by almost two-thirds. However, global implementation is lagging, in part due to VMMC hesitancy. A better understanding of the mechanism(s) by which this procedure protects against HIV may increase acceptance of VMMC as an HIV risk reduction approach among health care providers and their clients. RECENT FINDINGS HIV acquisition in the uncircumcised penis occurs preferentially across the inner foreskin tissues, due to increased susceptibility that is linked to elevated inflammatory cytokine levels in the sub-preputial space and an increased tissue density of HIV-susceptible CD4 + T cells. Inflammation can be caused by sexually transmitted infections, but is more commonly induced by specific anaerobic components of the penile microbiome. Circumcision protects by both directly removing the susceptible tissues of the inner foreskin, and by inducing a less inflammatory residual penile microbiome. VMMC reduces HIV susceptibility by removing susceptible penile tissues, and also through impacts on the penile immune and microbial milieu. Understanding these mechanisms may not only increase VMMC acceptability and reinvigorate global VMMC programs, but may also lead to non-surgical HIV prevention approaches focused on penile immunology and/or microbiota.
Collapse
Affiliation(s)
- Jessica L Prodger
- Departments of Microbiology and Immunology and Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | | | - Aaron A R Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Daniel Park
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, 20052, USA
| | - Cindy M Liu
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, 20052, USA
| | - Rupert Kaul
- Departments of Medicine and Immunology, University of Toronto, Medical Sciences Building Rm. 6356, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- University Health Network, Toronto, ON, Canada.
| |
Collapse
|
4
|
Morris BJ, Moreton S, Krieger JN, Klausner JD. Infant Circumcision for Sexually Transmitted Infection Risk Reduction Globally. GLOBAL HEALTH: SCIENCE AND PRACTICE 2022; 10:GHSP-D-21-00811. [PMID: 36041835 PMCID: PMC9426975 DOI: 10.9745/ghsp-d-21-00811] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/21/2022] [Indexed: 12/26/2022]
Abstract
Population-based studies in high-income countries have failed to find that male circumcision protects against sexually transmitted infections. Using evidence from several sources, we show that male circumcision does protect against HIV during insertive intercourse for men who have sex with men.
Collapse
Affiliation(s)
- Brian J Morris
- School of Medical Sciences, University of Sydney, Sydney, Australia.
| | | | - John N Krieger
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Jeffrey D Klausner
- Department of Medicine, Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Kaul R, Liu CM, Park DE, Galiwango RM, Tobian AAR, Prodger JL. The Penis, the Vagina and HIV Risk: Key Differences (Aside from the Obvious). Viruses 2022; 14:v14061164. [PMID: 35746636 PMCID: PMC9227947 DOI: 10.3390/v14061164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/14/2022] Open
Abstract
Globally, most Human Immunodeficiency Virus type 1 (HIV) transmission occurs through vaginal–penile sex (heterosexual transmission). The local immune environment at the site of HIV exposure is an important determinant of whether exposure during sex will lead to productive infection, and the vaginal and penile immune milieus are each critically shaped by the local microbiome. However, there are key differences in the microbial drivers of inflammation and immune quiescence at these tissue sites. In both, a high abundance of anaerobic taxa (e.g., Prevotella) is associated with an increased local density of HIV target cells and an increased risk of acquiring HIV through sex. However, the taxa that have been associated to date with increased risk in the vagina and penis are not identical. Just as importantly, the microbiota associated with comparatively less inflammation and HIV risk—i.e., the optimal microbiota—are very different at the two sites. In the vagina, Lactobacillus spp. are immunoregulatory and may protect against HIV acquisition, whereas on the penis, “skin type” flora such as Corynebacterium are associated with reduced inflammation. Compared to its vaginal counterpart, much less is known about the dynamics of the penile microbiome, the ability of clinical interventions to alter the penile microbiome, or the impact of natural/induced microbiome alterations on penile immunology and HIV risk.
Collapse
Affiliation(s)
- Rupert Kaul
- Departments of Medicine and Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Department of Medicine, University Health Network, Toronto, ON M5S 1A8, Canada
| | - Cindy M. Liu
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA; (C.M.L.); (D.E.P.)
| | - Daniel E. Park
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA; (C.M.L.); (D.E.P.)
| | | | - Aaron A. R. Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Jessica L. Prodger
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- Correspondence:
| |
Collapse
|
6
|
Prodger JL, Abraham AG, Tobian AA, Park DE, Aziz M, Roach K, Gray RH, Buchanan L, Kigozi G, Galiwango RM, Ssekasanvu J, Nnamutete J, Kagaayi J, Kaul R, Liu CM. Penile bacteria associated with HIV seroconversion, inflammation, and immune cells. JCI Insight 2021; 6:147363. [PMID: 33884964 PMCID: PMC8119186 DOI: 10.1172/jci.insight.147363] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/10/2021] [Indexed: 01/06/2023] Open
Abstract
The foreskin is a site of heterosexual acquisition of HIV-1 among uncircumcised men. However, some men remain HIV-negative despite repeated, unprotected vaginal intercourse with HIV-positive partners, while others become infected after few exposures. The foreskin microbiome includes a diverse group of anaerobic bacteria that have been linked to HIV acquisition. However, these anaerobes tend to coassociate, making it difficult to determine which species might increase HIV risk and which may be innocent bystanders. Here, we show that 6 specific anaerobic bacterial species, Peptostreptococcus anaerobius, Prevotella bivia, Prevotella disiens, Dialister propionicifaciens, Dialister micraerophilus, and a genetic near neighbor of Dialister succinatiphilus, significantly increased cytokine production, recruited HIV-susceptible CD4+ T cells to the inner foreskin, and were associated with HIV acquisition. This strongly suggests that the penile microbiome increases host susceptibility to HIV and that these species are potential targets for microbiome-based prevention strategies.
Collapse
Affiliation(s)
- Jessica L Prodger
- Department of Microbiology and Immunology and.,Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Alison G Abraham
- Department of Epidemiology, School of Public Health, and.,Department of Ophthalmology, School of Medicine, University of Colorado Denver, Denver, Colorado, USA.,Department of Epidemiology, Bloomberg School of Public Health, and
| | - Aaron Ar Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniel E Park
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Maliha Aziz
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Kelsey Roach
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Ronald H Gray
- Department of Epidemiology, Bloomberg School of Public Health, and
| | | | | | | | | | | | | | - Rupert Kaul
- Department of Medicine and.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Division of Infectious Diseases, University Health Network, Toronto, Ontario, Canada
| | - Cindy M Liu
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| |
Collapse
|
7
|
Yegorov S, Joag V, Galiwango RM, Good SV, Okech B, Kaul R. Impact of Endemic Infections on HIV Susceptibility in Sub-Saharan Africa. TROPICAL DISEASES TRAVEL MEDICINE AND VACCINES 2019; 5:22. [PMID: 31798936 PMCID: PMC6884859 DOI: 10.1186/s40794-019-0097-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Human immunodeficiency virus (HIV) remains a leading cause of global morbidity with the highest burden in Sub-Saharan Africa (SSA). For reasons that are incompletely understood, the likelihood of HIV transmission is several fold higher in SSA than in higher income countries, and most of these infections are acquired by young women. Residents of SSA are also exposed to a variety of endemic infections, such as malaria and various helminthiases that could influence mucosal and systemic immunology. Since these immune parameters are important determinants of HIV acquisition and progression, this review explores the possible effects of endemic infections on HIV susceptibility and summarizes current knowledge of the epidemiology and underlying immunological mechanisms by which endemic infections could impact HIV acquisition. A better understanding of the interaction between endemic infections and HIV may enhance HIV prevention programs in SSA.
Collapse
Affiliation(s)
- Sergey Yegorov
- 1Departments of Immunology and Medicine, University of Toronto, Toronto, Canada.,2Department of Pedagogical Mathematics and Natural Science, Faculty of Education and Humanities, Suleyman Demirel University, Almaty, Kazakhstan
| | - Vineet Joag
- 3Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN USA
| | - Ronald M Galiwango
- 1Departments of Immunology and Medicine, University of Toronto, Toronto, Canada
| | - Sara V Good
- 4Genetics & Genome Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON Canada.,5Community Health Sciences, University of Manitoba, Winnipeg, MB Canada
| | | | - Rupert Kaul
- 1Departments of Immunology and Medicine, University of Toronto, Toronto, Canada.,7Department of Medicine, University Health Network, Toronto, Canada
| |
Collapse
|
8
|
Schiffer JT, Gottlieb SL. Biologic interactions between HSV-2 and HIV-1 and possible implications for HSV vaccine development. Vaccine 2019; 37:7363-7371. [PMID: 28958807 PMCID: PMC5867191 DOI: 10.1016/j.vaccine.2017.09.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022]
Abstract
Development of a safe and effective vaccine against herpes simplex virus type 2 (HSV-2) has the potential to limit the global burden of HSV-2 infection and disease, including genital ulcer disease and neonatal herpes, and is a global sexual and reproductive health priority. Another important potential benefit of an HSV-2 vaccine would be to decrease HIV infections, as HSV-2 increases the risk of HIV-1 acquisition several-fold. Acute and chronic HSV-2 infection creates ulcerations and draws dendritic cells and activated CD4+ T cells into genital mucosa. These cells are targets for HIV entry and replication. Prophylactic HSV-2 vaccines (to prevent infection) and therapeutic vaccines (to modify or treat existing infections) are currently under development. By preventing or modifying infection, an effective HSV-2 vaccine could limit HSV-associated genital mucosal inflammation and thus HIV risk. However, a vaccine might have competing effects on HIV risk depending on its mechanism of action and cell populations generated in the genital mucosa. In this article, we review biologic interactions between HSV-2 and HIV-1, consider HSV-2 vaccine development in the context of HIV risk, and discuss implications and research needs for future HSV vaccine development.
Collapse
Affiliation(s)
- Joshua T Schiffer
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, WA, United States; Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, United States; University of Washington, Department of Medicine, Seattle, WA, United States.
| | - Sami L Gottlieb
- World Health Organization, Department of Reproductive Health and Research, Geneva, Switzerland
| |
Collapse
|
9
|
Pre-exposure prophylaxis differentially alters circulating and mucosal immune cell activation in herpes simplex virus type 2 seropositive women. AIDS 2019; 33:2125-2136. [PMID: 31335802 DOI: 10.1097/qad.0000000000002323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Oral tenofovir-based pre-exposure prophylaxis (PrEP) is an important tool for prevention of new HIV infections, which also reduces subclinical herpes simplex virus type 2 (HSV-2) shedding and symptomatic lesions in HIV-negative, HSV-2-seropositive individuals. However, the impact of PrEP on mucosal immunity has not been examined in detail. DESIGN Here we evaluate paired genital tissue and systemic immune profiles to characterize the immunological effects of PrEP in HIV-negative, HSV-2-seropositive African women sexually exposed to HIV. METHODS We compared local and systemic innate and T-cell characteristics in samples collected during PrEP usage and 2 months after PrEP discontinuation. RESULTS We found that frequencies of cervical CCR5CD4 cells, regulatory T cells, and tissue macrophages were significantly reduced during PrEP use compared with after PrEP discontinuation. In contrast, peripheral blood CD4 and CD8 T cells expressing markers of activation and trafficking were increased during PrEP usage. CONCLUSION Together, our data are consistent with PrEP altering immunity differentially in the female genital tract compared with circulation in HSV-2+ women. Further study including comparison with HSV-2 negative women is needed to define the overall impact and mechanisms underlying these effects. These results point to the critical need to study the human mucosal compartment to characterize immune responses to mucosal infections.
Collapse
|
10
|
Sennepin A, Real F, Duvivier M, Ganor Y, Henry S, Damotte D, Revol M, Cristofari S, Bomsel M. The Human Penis Is a Genuine Immunological Effector Site. Front Immunol 2017; 8:1732. [PMID: 29312291 PMCID: PMC5735067 DOI: 10.3389/fimmu.2017.01732] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/23/2017] [Indexed: 12/28/2022] Open
Abstract
The human penis is a main portal of entry for numerous pathogens, and vaccines able to control resulting infections locally are highly desirable. However, in contrast to the gastrointestinal or vaginal mucosa, the penile immune system and mechanisms inducing a penile immune response remain elusive. In this descriptive study, using multiparametric flow cytometry and immunohistochemistry, we characterized mucosal immune cells such as B, T, and natural killer (NK) cells from the urethra, fossa, and glans of human adult penile tissues. We show that memory B lymphocytes and CD138+ plasma cells are detected in all penile compartments. CD4+ and CD8+ T lymphocytes reside in the epithelium and lamina propria of the penile regions and have mostly a resting memory phenotype. All penile regions contain CD56dim NK cells surface expressing the natural cytotoxicity receptor NKp44 and the antibody-dependent cell cytotoxicity receptor CD16. These cells are also able to spontaneously secrete pro- and anti-inflammatory cytokines, such as IL-17 and IL-22. Finally, CCR10 is the main homing receptor detected in these penile cells although, together with CCR3, CCR6, and CCR9, their expression level differs between penile compartments. Unlike antigen-presenting cells which type differ between penile regions as we reported earlier, urethral, fossa, and glans content in immune B, T, and NK cells is comparable. However, median values per each analysis suggest that the glans, containing higher number and more activated NK cells together with higher number of terminally differentiate effector CD8+ T cells, is a superior effector site than the urethra and the fossa. Thus, the human penis is an immunologically active tissue containing the cellular machinery required to induce and produce a specific and effective response against mucosal pathogens. It can therefore be considered as a classic mucosal effector site, a feature that must be taken into account for the elaboration of efficient strategies, including vaccines, against sexually transmitted infections.
Collapse
Affiliation(s)
- Alexis Sennepin
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM, Paris, France.,CNRS, UMR8104, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Fernando Real
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM, Paris, France.,CNRS, UMR8104, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Marine Duvivier
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM, Paris, France.,CNRS, UMR8104, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Yonatan Ganor
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM, Paris, France.,CNRS, UMR8104, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Sonia Henry
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM, Paris, France.,CNRS, UMR8104, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Diane Damotte
- Anatomy and Pathological Cytology Service, GH Cochin-Saint Vincent de Paul, Paris, France
| | - Marc Revol
- Plastic Surgery Service, Saint Louis Hospital, Paris, France
| | | | - Morgane Bomsel
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM, Paris, France.,CNRS, UMR8104, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
11
|
Prodger JL, Kaul R. The biology of how circumcision reduces HIV susceptibility: broader implications for the prevention field. AIDS Res Ther 2017; 14:49. [PMID: 28893286 PMCID: PMC5594533 DOI: 10.1186/s12981-017-0167-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022] Open
Abstract
Circumcision reduces heterosexual HIV-1 acquisition in men by at least 60%. However, the biological mechanisms by which circumcision is protective remain incompletely understood. We test the hypothesis that the sub-preputial microenvironment created by the foreskin drives immune activation in adjacent foreskin tissues, facilitating HIV-1 infection through a combination of epithelial barrier disruption, enhanced dendritic cell maturation, and the recruitment/activation of neutrophils and susceptible CD4 T cell subsets such as Th17 cells. Furthermore, we provide evidence that the genital microbiome may be an important driver of this immune activation. This suggests that new modalities to reduce genital immune activation and/or alter the genital microbiome, used alone or in combination with topical microbicides, may be of significant benefit to HIV prevention.
Collapse
|
12
|
Shannon B, Yi TJ, Perusini S, Gajer P, Ma B, Humphrys MS, Thomas-Pavanel J, Chieza L, Janakiram P, Saunders M, Tharao W, Huibner S, Shahabi K, Ravel J, Rebbapragada A, Kaul R. Association of HPV infection and clearance with cervicovaginal immunology and the vaginal microbiota. Mucosal Immunol 2017; 10:1310-1319. [PMID: 28120845 PMCID: PMC5526752 DOI: 10.1038/mi.2016.129] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/10/2016] [Indexed: 02/04/2023]
Abstract
Cervical human papillomavirus (HPV) infection may increase HIV risk. Since other genital infections enhance HIV susceptibility by inducing inflammation, we assessed the impact of HPV infection and clearance on genital immunology and the cervico-vaginal microbiome. Genital samples were collected from 65 women for HPV testing, immune studies and microbiota assessment; repeat HPV testing was performed after 6 months. All participants were HIV-uninfected and free of bacterial STIs. Cytobrush-derived T cell and dendritic cell subsets were assessed by multiparameter flow cytometry. Undiluted cervico-vaginal secretions were used to determine cytokine levels by multiplex ELISA, and to assess bacterial community composition and structure by 16S rRNA gene sequence analysis. Neither HPV infection nor clearance were associated with broad differences in cervical T cell subsets or cytokines, although HPV clearance was associated with increased Langerhans cells and HPV infection with elevated IP-10 and MIG. Individuals with HPV more frequently had a high diversity cervico-vaginal microbiome (community state type IV) and were less likely to have an L. gasseri predominant microbiome. In summary, HPV infection and/or subsequent clearance was not associated with inflammation or altered cervical T cell subsets, but associations with increased Langerhans cells and the composition of the vaginal microbiome warrant further exploration.
Collapse
Affiliation(s)
- B Shannon
- Departments of Medicine (BS, TJY, SH, KS, RK), Immunology (BS, TJY, RK), and Laboratory Medicine and Pathobiology (AR), University of Toronto, Toronto, Ontario, Canada
| | - TJ Yi
- Departments of Medicine (BS, TJY, SH, KS, RK), Immunology (BS, TJY, RK), and Laboratory Medicine and Pathobiology (AR), University of Toronto, Toronto, Ontario, Canada
| | - S Perusini
- Public Health Ontario – Toronto Public Health Laboratory, Toronto, Ontario, Canada
| | - P Gajer
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD
| | - B Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD
| | - MS Humphrys
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD
| | - J Thomas-Pavanel
- Women's Health in Women's Hands Community Health Centre, Toronto, Ontario, Canada (LC, JT, MS, PJ, WT)
| | - L Chieza
- Women's Health in Women's Hands Community Health Centre, Toronto, Ontario, Canada (LC, JT, MS, PJ, WT)
| | - P Janakiram
- Women's Health in Women's Hands Community Health Centre, Toronto, Ontario, Canada (LC, JT, MS, PJ, WT)
| | - M Saunders
- Women's Health in Women's Hands Community Health Centre, Toronto, Ontario, Canada (LC, JT, MS, PJ, WT)
| | - W Tharao
- Women's Health in Women's Hands Community Health Centre, Toronto, Ontario, Canada (LC, JT, MS, PJ, WT)
| | - S Huibner
- Departments of Medicine (BS, TJY, SH, KS, RK), Immunology (BS, TJY, RK), and Laboratory Medicine and Pathobiology (AR), University of Toronto, Toronto, Ontario, Canada
| | - K Shahabi
- Departments of Medicine (BS, TJY, SH, KS, RK), Immunology (BS, TJY, RK), and Laboratory Medicine and Pathobiology (AR), University of Toronto, Toronto, Ontario, Canada
| | - J Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD
| | - A Rebbapragada
- Departments of Medicine (BS, TJY, SH, KS, RK), Immunology (BS, TJY, RK), and Laboratory Medicine and Pathobiology (AR), University of Toronto, Toronto, Ontario, Canada, Public Health Ontario – Toronto Public Health Laboratory, Toronto, Ontario, Canada
| | - R Kaul
- Departments of Medicine (BS, TJY, SH, KS, RK), Immunology (BS, TJY, RK), and Laboratory Medicine and Pathobiology (AR), University of Toronto, Toronto, Ontario, Canada, Women's Health in Women's Hands Community Health Centre, Toronto, Ontario, Canada (LC, JT, MS, PJ, WT)
| |
Collapse
|
13
|
Shannon B, Gajer P, Yi TJ, Ma B, Humphrys MS, Thomas-Pavanel J, Chieza L, Janakiram P, Saunders M, Tharao W, Huibner S, Shahabi K, Ravel J, Kaul R. Distinct Effects of the Cervicovaginal Microbiota and Herpes Simplex Type 2 Infection on Female Genital Tract Immunology. J Infect Dis 2017; 215:1366-1375. [PMID: 28201724 DOI: 10.1093/infdis/jix088] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/09/2017] [Indexed: 12/13/2022] Open
Abstract
Background Genital inflammation is a key determinant of human immunodeficiency virus (HIV) transmission, and may increase HIV-susceptible target cells and alter epithelial integrity. Several genital conditions that increase HIV risk are more prevalent in African, Caribbean, and other black (ACB) women, including bacterial vaginosis and herpes simplex virus type-2 (HSV-2) infection. Therefore, we assessed the impact of the genital microbiota on mucosal immunology in ACB women and microbiome-HSV-2 interactions. Methods Cervicovaginal secretions and endocervical cells were collected by cytobrush and Instead Softcup, respectively. T cells and dendritic cells were assessed by flow cytometry, cytokines by multiplex enzyme-linked immunosorbent assay (ELISA), and the microbiota by 16S ribosomal ribonucleic acid gene sequencing. Results The cervicovaginal microbiota of 51 participants were composed of community state types (CSTs) showing diversity (20/51; 39%) or predominated by Lactobacillus iners (22/51; 42%), L. crispatus (7/51; 14%), or L. gasseri (2/51; 4%). High-diversity CSTs and specific bacterial phyla (Gardnerella vaginalis and Prevotella bivia) were strongly associated with cervicovaginal inflammatory cytokines, but not with altered endocervical immune cells. However, cervical CD4+ T-cell number was associated with HSV-2 infection and a distinct cytokine profile. Conclusions This suggests that the genital microbiota and HSV-2 infection may influence HIV susceptibility through independent biological mechanisms.
Collapse
Affiliation(s)
- B Shannon
- Department of Medicine, and.,Department of Immunology, University of Toronto, Ontario, Canada
| | - P Gajer
- Institute for Genome Sciences, University of Maryland School of Medicine, and.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore
| | - T J Yi
- Department of Medicine, and.,Department of Immunology, University of Toronto, Ontario, Canada
| | - B Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, and.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore
| | - M S Humphrys
- Institute for Genome Sciences, University of Maryland School of Medicine, and
| | | | - L Chieza
- Women's Health in Women's Hands Community Health Centre, and
| | - P Janakiram
- Women's Health in Women's Hands Community Health Centre, and
| | - M Saunders
- Women's Health in Women's Hands Community Health Centre, and
| | - W Tharao
- Women's Health in Women's Hands Community Health Centre, and
| | | | | | - J Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, and.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore
| | - R Kaul
- Department of Medicine, and.,Department of Immunology, University of Toronto, Ontario, Canada.,University Health Network (RK), Toronto, Ontario, Canada
| |
Collapse
|
14
|
Prodger JL, Gray RH, Shannon B, Shahabi K, Kong X, Grabowski K, Kigozi G, Nalugoda F, Serwadda D, Wawer MJ, Reynolds SJ, Liu CM, Tobian AAR, Kaul R. Chemokine Levels in the Penile Coronal Sulcus Correlate with HIV-1 Acquisition and Are Reduced by Male Circumcision in Rakai, Uganda. PLoS Pathog 2016; 12:e1006025. [PMID: 27898732 PMCID: PMC5127584 DOI: 10.1371/journal.ppat.1006025] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/26/2016] [Indexed: 12/30/2022] Open
Abstract
Individual susceptibility to HIV is heterogeneous, but the biological mechanisms explaining differences are incompletely understood. We hypothesized that penile inflammation may increase HIV susceptibility in men by recruiting permissive CD4 T cells, and that male circumcision may decrease HIV susceptibility in part by reducing genital inflammation. We used multi-array technology to measure levels of seven cytokines in coronal sulcus (penile) swabs collected longitudinally from initially uncircumcised men enrolled in a randomized trial of circumcision in Rakai, Uganda. Coronal sulcus cytokine levels were compared between men who acquired HIV and controls who remained seronegative. Cytokines were also compared within men before and after circumcision, and correlated with CD4 T cells subsets in foreskin tissue. HIV acquisition was associated with detectable coronal sulcus Interleukin-8 (IL-8 aOR 2.26, 95%CI 1.04–6.40) and Monokine Induced by γ-interferon (MIG aOR 2.72, 95%CI 1.15–8.06) at the visit prior to seroconversion, and the odds of seroconversion increased with detection of multiple cytokines. Coronal sulcus chemokine levels were not correlated with those in the vagina of a man’s female sex partner. The detection of IL-8 in swabs was significantly reduced 6 months after circumcision (PRR 0.59, 95%CI 0.44–0.87), and continued to decline for at least two years (PRR 0.29, 95%CI 0.16–0.54). Finally, prepuce IL-8 correlated with increased HIV target cell density in foreskin tissues, including highly susceptible CD4 T cells subsets, as well as with tissue neutrophil density. Together, these data suggest that penile inflammation increases HIV susceptibility and is reduced by circumcision. The per-contact risk of infection with HIV through sexual exposure is low and highly variable. Understanding the biological basis for this variability could help in the development of new methods to prevent infection. There is some evidence that penile inflammation, even in the absence of any clinical symptoms, may increase HIV-susceptibility by recruiting CD4 T cells, the immune cell type that is the principal target of HIV. We analyzed soluble inflammatory mediators in prepuce swabs collected longitudinally from initially HIV-negative men enrolled in a randomized controlled trial of adult circumcision. We found that these inflammatory mediators were elevated in men who went on to acquire HIV. We also found that higher levels of these mediators were associated with an increased density of HIV-susceptible target cells in the underlying foreskin tissue and that circumcision reduced their levels, which may help to explain why circumcision reduces HIV risk by 60% or more. Together, these data suggest that penile inflammation, in the absence of genital infections, increases HIV susceptibility and is reduced by adult male circumcision.
Collapse
Affiliation(s)
- Jessica L Prodger
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Ronald H Gray
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Rakai Health Sciences Program, Kalisizo, Uganda
| | - Brett Shannon
- Department of Medicine, University of Toronto, Toronto, Canada
| | | | - Xiangrong Kong
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Kate Grabowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | | | | | - Maria J Wawer
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Rakai Health Sciences Program, Kalisizo, Uganda
| | - Steven J Reynolds
- Rakai Health Sciences Program, Kalisizo, Uganda.,Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,Johns Hopkins University School of Medicine, Department of Infectious Diseases, Baltimore, Maryland
| | - Cindy M Liu
- Department of Environmental and Occupational Health, George Washington University, Washington, District of Columbia.,Translational Genomics Research Institute, Flagstaff, Arizona
| | - Aaron A R Tobian
- Rakai Health Sciences Program, Kalisizo, Uganda.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rupert Kaul
- Department of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
15
|
Esra RT, Olivier AJ, Passmore JAS, Jaspan HB, Harryparsad R, Gray CM. Does HIV Exploit the Inflammatory Milieu of the Male Genital Tract for Successful Infection? Front Immunol 2016; 7:245. [PMID: 27446076 PMCID: PMC4919362 DOI: 10.3389/fimmu.2016.00245] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/10/2016] [Indexed: 12/16/2022] Open
Abstract
In many parts of the World, medical male circumcision (MMC) is used as standard prevention of care against HIV infection. This is based on seminal reports made over 10 years ago that removal of the foreskin provides up to 60% protection against HIV infection in males and seems currently the best antiretroviral-free prevention strategy yet against the global epidemic. We explore the potential mechanisms by which MMC protects against HIV-1 acquisition and that one of the oldest, albeit re-invented, rituals of removing a foreskin underscores the exploitative nature of HIV on the anatomy and tissue of the uncircumcised penis. Furthermore, foreskin removal also reveals how males acquire HIV, and in reality, the underlying mechanisms of MMC are not known. We argue that the normal sequelae of inflammation in the male genital tract (MGT) for protection from sexually transmitted infections (STI)-induced pathology represents a perfect immune and microbial ecosystem for HIV acquisition. The accumulation of HIV-1 target cells in foreskin tissue and within the urethra in response to STIs, both during and after resolution of infection, suggests that acquisition of HIV-1, through sexual contact, makes use of the natural immune milieu of the MGT. Understanding immunity in the MGT, the movement of HIV-1 target cells to the urethra and foreskin tissue upon encounter with microbial signals would provide more insight into viral acquisition and lay the foundation for further prevention strategies in males that would be critical to curb the epidemic in all sexual partners at risk of infection. The global female-centric focus of HIV-1 transmission and acquisition research has tended to leave gaps in our knowledge of what determines HIV-1 acquisition in men and such understanding would provide a more balanced and complete view of viral acquisition.
Collapse
Affiliation(s)
- Rachel T. Esra
- Department of Pathology, Division of Immunology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Abraham J. Olivier
- Department of Pathology, Division of Immunology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Jo-Ann S. Passmore
- Department of Pathology, Division of Virology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Services, Cape Town, South Africa
| | - Heather B. Jaspan
- Department of Pathology, Division of Immunology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Rushil Harryparsad
- Department of Pathology, Division of Immunology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Clive M. Gray
- Department of Pathology, Division of Immunology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Services, Cape Town, South Africa
| |
Collapse
|
16
|
Kaul R, Prodger J, Joag V, Shannon B, Yegorov S, Galiwango R, McKinnon L. Inflammation and HIV Transmission in Sub-Saharan Africa. Curr HIV/AIDS Rep 2016; 12:216-22. [PMID: 25877253 DOI: 10.1007/s11904-015-0269-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While the per-contact risk of sexual HIV transmission is relatively low, it is fourfold higher in sub-Saharan Africa, and this may partly explain the major global disparities that exist in HIV prevalence. Genital immune parameters are key determinants of HIV transmission risk, including epithelial integrity and the presence of highly HIV-susceptible intraepithelial or submucosal CD4+ T cell target cells. Biological parameters that may enhance mucosal HIV susceptibility in highly HIV-affected regions of sub-Saharan Africa include increased levels of mucosal inflammation, which can affect both epithelial integrity and target cell availability, as well as the increased mucosal surface area that is afforded by an intact foreskin, contraceptive choices, and intravaginal practices. There are multifactorial causes for increased mucosal inflammation, with the prevalence and nature of common co-infections being particularly relevant.
Collapse
Affiliation(s)
- Rupert Kaul
- Departments of Medicine and Immunology, University of Toronto, Medical Sciences Building Rm. 6356, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada,
| | | | | | | | | | | | | |
Collapse
|
17
|
Schistosoma mansoni Infection in Ugandan Men Is Associated with Increased Abundance and Function of HIV Target Cells in Blood, but Not the Foreskin: A Cross-sectional Study. PLoS Negl Trop Dis 2015; 9:e0004067. [PMID: 26335139 PMCID: PMC4559468 DOI: 10.1371/journal.pntd.0004067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/18/2015] [Indexed: 01/01/2023] Open
Abstract
Background Schistosoma mansoni infection has been associated with an increased HIV prevalence in humans and SHIV incidence in primate models. We hypothesized that immune activation from this gastrointestinal mucosa infection would increase highly HIV-susceptible CD4 T cell subsets in the blood and the foreskin through common mucosal homing. Methodology/Principal Findings Foreskin tissue and blood were obtained from 34 HIV- and malaria-uninfected Ugandan men who volunteered for elective circumcision, 12 of whom were definitively positive for S. mansoni eggs in stool and 12 definitively negative for both S. mansoni eggs and worm antigen. Tissue and blood T cell subsets were characterized by flow cytometry and immunohistochemistry (IHC). Th17 and Th1 cells from both the blood and foreskin expressed higher levels of CCR5 and were more activated than other CD4 T cell subsets. S. mansoni-infected men had a higher frequency of systemic Th1 cells (22.9 vs. 16.5% of blood CD4 T cells, p<0.05), Th17 cells (2.3 vs. 1.5%, p<0.05), and Th22 cells (0.5 vs. 0.3%, p<0.01) than uninfected men. Additionally, Th17 cells in the blood of S. mansoni-infected men demonstrated enhanced function (28.1 vs. 16.3% producing multiple cytokines, p = 0.046). However, these immune alterations were not observed in foreskin tissue. Conclusions/Significance S. mansoni infection was associated with an increased frequency of highly HIV-susceptible Th1, Th17 and Th22 cell subsets in the blood, but these T cell immune differences did not extend to the foreskin. S. mansoni induced changes in T cell immunology mediated through the common mucosal immune system are not likely to increase HIV susceptibility in the foreskin. Fishing communities in East Africa have a very high prevalence of HIV, and also high rates of other endemic infections such as malaria and the fluke Schistosoma mansoni. Genital infections are known to increase HIV susceptibility through the recruitment and activation of mucosal CD4 T cells to the site of HIV sexual exposure. These activated CD4 T cells are necessary for an effective host immune response but are also preferentially infected by HIV. We hypothesized that S. mansoni infection in the gut mucosa might increase recruitment and activation of HIV target cells at other mucosal sites, and thereby contribute to high HIV rates in fishing communities. We enrolled men from a fishing community in Uganda and examined the frequency of highly HIV-susceptible cell types in their blood and foreskin tissue (a main site of HIV acquisition in heterosexual men). We found that men with S. mansoni infection had a greater frequency of HIV target cells in their blood, but not their foreskin tissue, perhaps because foreskin cells did not express mucosal homing markers. It is possible that HIV target cells observed in the blood of S. mansoni-infected individuals may traffic to other mucosae, such as the vagina or gut, and so the possibility that S. mansoni infection increases risk at these sites should be explored.
Collapse
|
18
|
Dinh MH, Anderson MR, McRaven MD, Cianci GC, McCoombe SG, Kelley ZL, Gioia CJ, Fought AJ, Rademaker AW, Veazey RS, Hope TJ. Visualization of HIV-1 interactions with penile and foreskin epithelia: clues for female-to-male HIV transmission. PLoS Pathog 2015; 11:e1004729. [PMID: 25748093 PMCID: PMC4352059 DOI: 10.1371/journal.ppat.1004729] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/04/2015] [Indexed: 12/16/2022] Open
Abstract
To gain insight into female-to-male HIV sexual transmission and how male circumcision protects against this mode of transmission, we visualized HIV-1 interactions with foreskin and penile tissues in ex vivo tissue culture and in vivo rhesus macaque models utilizing epifluorescent microscopy. 12 foreskin and 14 cadaveric penile specimens were cultured with R5-tropic photoactivatable (PA)-GFP HIV-1 for 4 or 24 hours. Tissue cryosections were immunofluorescently imaged for epithelial and immune cell markers. Images were analyzed for total virions, proportion of penetrators, depth of virion penetration, as well as immune cell counts and depths in the tissue. We visualized individual PA virions breaching penile epithelial surfaces in the explant and macaque model. Using kernel density estimated probabilities of localizing a virion or immune cell at certain tissue depths revealed that interactions between virions and cells were more likely to occur in the inner foreskin or glans penis (from local or cadaveric donors, respectively). Using statistical models to account for repeated measures and zero-inflated datasets, we found no difference in total virions visualized at 4 hours between inner and outer foreskins from local donors. At 24 hours, there were more virions in inner as compared to outer foreskin (0.0495 +/- 0.0154 and 0.0171 +/- 0.0038 virions/image, p = 0.001). In the cadaveric specimens, we observed more virions in inner foreskin (0.0507 +/- 0.0079 virions/image) than glans tissue (0.0167 +/- 0.0033 virions/image, p<0.001), but a greater proportion was seen penetrating uncircumcised glans tissue (0.0458 +/- 0.0188 vs. 0.0151 +/- 0.0100 virions/image, p = 0.099) and to significantly greater mean depths (29.162 +/- 3.908 vs. 12.466 +/- 2.985 μm). Our in vivo macaque model confirmed that virions can breach penile squamous epithelia in a living model. In summary, these results suggest that the inner foreskin and glans epithelia may be important sites for HIV transmission in uncircumcised men.
Collapse
Affiliation(s)
- Minh H. Dinh
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| | - Meegan R. Anderson
- Department of Cell & Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Michael D. McRaven
- Department of Cell & Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Gianguido C. Cianci
- Department of Cell & Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Scott G. McCoombe
- Department of Cell & Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- School of Medicine, Deakin University, Melbourne, Australia
| | - Z. L. Kelley
- Department of Cell & Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Casey J. Gioia
- Department of Cell & Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Angela J. Fought
- Department of Preventative Medicine, Biostatistical Collaboration Core Center, Northwestern University, Chicago, Illinois, United States of America
| | - Alfred W. Rademaker
- Department of Preventative Medicine, Biostatistical Collaboration Core Center, Northwestern University, Chicago, Illinois, United States of America
| | - Ronald S. Veazey
- Department of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Thomas J. Hope
- Department of Cell & Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
19
|
Röhl M, Tjernlund A, Mehta SD, Pettersson P, Bailey RC, Broliden K. Comparable mRNA expression of inflammatory markers but lower claudin-1 mRNA levels in foreskin tissue of HSV-2 seropositive versus seronegative asymptomatic Kenyan young men. BMJ Open 2015; 5:e006627. [PMID: 25694458 PMCID: PMC4336463 DOI: 10.1136/bmjopen-2014-006627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES Skin biopsies from local sites of herpes simplex virus 2 (HSV-2)-induced ulcers can show infiltrates of inflammatory cells several months after macroscopic healing. We hypothesise that foreskin tissue samples of asymptomatic HSV-2 seropositive men had remaining signs of inflammation at the molecular level. Even in the absence of clinical lesions, genital inflammation may contribute to increased HIV susceptibility on sexual exposure to the virus. SETTING Foreskin tissue samples were collected from men undergoing elective circumcision in Kisumu, Kenya. PARTICIPANTS The foreskin tissue samples (n=86) were stratified into study groups based on HSV-2 serology and assessed for mRNA expression of inflammatory markers. Markers of interest were further assessed by immunohistochemical staining within the tissue samples. RESULTS The two study groups had comparable levels of all molecular markers (CD3, CD4, CD8, CD69, CCR5, HLA-DR, Langerin, DC-SIGN, Mannose Receptor 1, IL-1, IL-6, TNF-α, β7, IgA, IFN-α, CCL5, E-cadherin, ZO-1 and occludin), except for lower mRNA levels of the epithelial junction protein claudin-1 in the HSV-2 seropositive group (p=0.008). Although mRNA levels of claudin-1 were lower in HSV-2 seropositive individuals, the corresponding protein could be visualised in the foreskin epithelium of all samples tested. CONCLUSIONS Whereas no general inflammation was demonstrated in the foreskin of asymptomatic HSV-2 seropositive individuals, a decreased expression of claudin-1 indicates a less robust genital epithelial barrier. An intact epithelial barrier is essential for blocking mucosal entry of genital infections, including HIV.
Collapse
Affiliation(s)
- Maria Röhl
- Unit of Infectious Diseases, Department of Medicine Solna, Karolinska University Hospital, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annelie Tjernlund
- Unit of Infectious Diseases, Department of Medicine Solna, Karolinska University Hospital, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Supriya D Mehta
- Division of Epidemiology, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pernilla Pettersson
- Unit of Infectious Diseases, Department of Medicine Solna, Karolinska University Hospital, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Robert C Bailey
- Division of Epidemiology, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kristina Broliden
- Unit of Infectious Diseases, Department of Medicine Solna, Karolinska University Hospital, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Hirbod T, Kong X, Kigozi G, Ndyanabo A, Serwadda D, Prodger JL, Tobian AA, Nalugoda F, Wawer MJ, Shahabi K, Rojas OL, Gommerman JL, Broliden K, Kaul R, Gray RH. HIV acquisition is associated with increased antimicrobial peptides and reduced HIV neutralizing IgA in the foreskin prepuce of uncircumcised men. PLoS Pathog 2014; 10:e1004416. [PMID: 25275513 PMCID: PMC4183701 DOI: 10.1371/journal.ppat.1004416] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 08/21/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The foreskin is the site of most HIV acquisition in uncircumcised heterosexual men. Although HIV-exposed, seronegative (HESN) uncircumcised men demonstrate HIV-neutralizing IgA and increased antimicrobial peptides (AMPs) in the foreskin prepuce, no prospective studies have examined the mucosal immune correlates of HIV acquisition. METHODS To assess the association of foreskin immune parameters with HIV acquisition, antimicrobial peptides and IgA with the capacity to neutralize a primary clade C HIV strain were quantified by blinded investigators, using sub-preputial swabs collected longitudinally during a randomized trial of male circumcision for HIV prevention in Rakai, Uganda. RESULTS Participants were 99 men who acquired HIV (cases) and 109 randomly selected controls who remained HIV seronegative. At enrollment, 44.4% of cases vs. 69.7% of controls demonstrated IgA neutralization (adjusted OR = 0.31; 95% CI, 0.16-0.61). IgA neutralization was detected in 38.7% of cases and 70.7% of controls at the last seronegative case visit prior to HIV acquisition and the comparable control visit (adjusted OR 0.21; 95% CI, 0.11-0.39). Levels of the α-defensins and secretory leukocyte protease inhibitor (SLPI) were over ten-fold higher in the foreskin prepuce of cases who acquired HIV, both at enrollment (mean 4.43 vs. 3.03 and 5.98 vs. 4.61 log(n) pg/mL, P = 0.005 and 0.009, respectively), and at the last seronegative visit (mean 4.81 vs. 3.15 and 6.46 vs. 5.20 log(n) pg/mL, P = 0.0002 and 0.013). CONCLUSIONS This prospective, blinded analysis is the first to assess the immune correlates of HIV acquisition in the foreskin. HIV-neutralizing IgA, previously associated with the HESN phenotype, was a biomarker of HIV protection, but other HESN associations correlated with increased HIV acquisition. This emphasizes the importance of prospective epidemiological studies or in vitro tissue studies to define the impact of mucosal parameters on HIV risk.
Collapse
Affiliation(s)
- Taha Hirbod
- Infectious Diseases Unit, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Xiangrong Kong
- Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | | | | | - David Serwadda
- Rakai Health Sciences Program, Kalisizo, Uganda
- School of Public Health, College of Medicine, Makerere University, Kampala, Uganda
| | - Jessica L. Prodger
- Departments of Medicine and Immunology, University of Toronto, Toronto, Canada
| | - Aaron A. Tobian
- Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | | | - Maria J. Wawer
- Infectious Diseases Unit, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
- Rakai Health Sciences Program, Kalisizo, Uganda
| | - Kamnoosh Shahabi
- Departments of Medicine and Immunology, University of Toronto, Toronto, Canada
| | - Olga L. Rojas
- Departments of Medicine and Immunology, University of Toronto, Toronto, Canada
| | | | - Kristina Broliden
- Infectious Diseases Unit, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Rupert Kaul
- Departments of Medicine and Immunology, University of Toronto, Toronto, Canada
- * E-mail:
| | - Ronald H. Gray
- Infectious Diseases Unit, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
- Rakai Health Sciences Program, Kalisizo, Uganda
| |
Collapse
|
21
|
Immune correlates of HIV exposure without infection in foreskins of men from Rakai, Uganda. Mucosal Immunol 2014; 7:634-44. [PMID: 24150258 PMCID: PMC3997757 DOI: 10.1038/mi.2013.83] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/21/2013] [Accepted: 09/09/2013] [Indexed: 02/04/2023]
Abstract
Human immunodeficiency virus (HIV) susceptibility is heterogenous, with some HIV-exposed but seronegative (HESN) individuals remaining uninfected despite repeated exposure. Previous studies in the cervix have shown that reduced HIV susceptibility may be mediated by immune alterations in the genital mucosa. However, immune correlates of HIV exposure without infection have not been investigated in the foreskin. We collected sub-preputial swabs and foreskin tissue from HESN (n=20) and unexposed control (n=57) men undergoing elective circumcision. Blinded investigators assayed swabs for HIV-neutralizing IgA, innate antimicrobial peptides, and cytokine levels. Functional T-cell subsets from foreskin tissue were assessed by flow cytometry. HESN foreskins had elevated α-defensins (3,027 vs. 1,795 pg ml(-1), P=0.011) and HIV-neutralizing IgA (50.0 vs. 13.5% of men, P=0.019). Foreskin tissue from HESN men contained a higher density of CD3 T cells (151.9 vs. 69.9 cells mm(-2), P=0.018), but a lower proportion of these was Th17 cells (6.12 vs. 8.04% of CD4 T cells, P=0.007), and fewer produced tumor necrosis factor α (TNFα) (34.3 vs. 41.8% of CD4 T cells, P=0.037; 36.9 vs. 45.7% of CD8 T cells, P=0.004). A decrease in the relative abundance of susceptible CD4 T cells and local TNFα production, in combination with HIV-neutralizing IgA and α-defensins, may represent a protective immune milieu at a site of HIV exposure.
Collapse
|
22
|
Shannon B, Yi TJ, Thomas-Pavanel J, Chieza L, Janakiram P, Saunders M, Tharao W, Huibner S, Remis R, Rebbapragada A, Kaul R. Impact of asymptomatic herpes simplex virus type 2 infection on mucosal homing and immune cell subsets in the blood and female genital tract. THE JOURNAL OF IMMUNOLOGY 2014; 192:5074-82. [PMID: 24760150 DOI: 10.4049/jimmunol.1302916] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
HSV-2 infection is common and generally asymptomatic, but it is associated with increased HIV susceptibility and disease progression. This may relate to herpes-mediated changes in genital and systemic immunology. Cervical cytobrushes and blood were collected from HIV-uninfected African/Caribbean women in Toronto, and immune cell subsets were enumerated blindly by flow cytometry. Immune differences between groups were assessed by univariate analysis and confirmed using a multivariate model. Study participants consisted of 46 women, of whom 54% were infected with HSV-2. T cell activation and expression of the mucosal homing integrin α4β7 (19.60 versus 8.76%; p < 0.001) were increased in the blood of HSV-2-infected women. Furthermore, expression of α4β7 on blood T cells correlated with increased numbers of activated (coexpressing CD38/HLA-DR; p = 0.004) and CCR5(+) (p = 0.005) cervical CD4(+) T cells. HSV-2-infected women exhibited an increase in the number of cervical CD4(+) T cells (715 versus 262 cells/cytobrush; p = 0.016), as well as an increase in the number and proportion of cervical CD4(+) T cells that expressed CCR5(+) (406 versus 131 cells, p = 0.001; and 50.70 versus 34.90%, p = 0.004) and were activated (112 versus 13 cells, p < 0.001; and 9.84 versus 4.86%, p = 0.009). Mannose receptor expression also was increased on cervical dendritic cell subsets. In conclusion, asymptomatic HSV-2 infection was associated with significant systemic and genital immune changes, including increased immune activation and systemic α4β7 expression; correlation of the latter with highly HIV-susceptible CD4(+) T cell subsets in the cervix may provide a mechanism for the increased HIV susceptibility observed in asymptomatic HSV-2-infected women.
Collapse
Affiliation(s)
- Brett Shannon
- Department of Medicine, University of Toronto, Toronto, Ontario M5G 2C4, Canada; Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;
| | - Tae Joon Yi
- Department of Medicine, University of Toronto, Toronto, Ontario M5G 2C4, Canada; Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jamie Thomas-Pavanel
- Women's Health in Women's Hands Community Health Centre, Toronto M5B 7J3, Ontario, Canada
| | - Lisungu Chieza
- Women's Health in Women's Hands Community Health Centre, Toronto M5B 7J3, Ontario, Canada
| | - Praseedha Janakiram
- Women's Health in Women's Hands Community Health Centre, Toronto M5B 7J3, Ontario, Canada
| | - Megan Saunders
- Women's Health in Women's Hands Community Health Centre, Toronto M5B 7J3, Ontario, Canada
| | - Wangari Tharao
- Women's Health in Women's Hands Community Health Centre, Toronto M5B 7J3, Ontario, Canada
| | - Sanja Huibner
- Department of Medicine, University of Toronto, Toronto, Ontario M5G 2C4, Canada; Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Robert Remis
- Department of Epidemiology, University of Toronto, Toronto, Ontario M5T 3M7, Canada; Public Health Ontario - Toronto Public Health Laboratory, Toronto, Ontario M9P 3T1, Canada; and
| | - Anu Rebbapragada
- Department of Medicine, University of Toronto, Toronto, Ontario M5G 2C4, Canada; Public Health Ontario - Toronto Public Health Laboratory, Toronto, Ontario M9P 3T1, Canada; and
| | - Rupert Kaul
- Department of Medicine, University of Toronto, Toronto, Ontario M5G 2C4, Canada; Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; University Health Network, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
23
|
Prodger JL, Hirbod T, Gray R, Kigozi G, Nalugoda F, Galiwango R, Reynolds SJ, Huibner S, Wawer MJ, Serwadda D, Kaul R. HIV Infection in Uncircumcised Men Is Associated With Altered CD8 T-cell Function But Normal CD4 T-cell Numbers in the Foreskin. J Infect Dis 2014; 209:1185-94. [PMID: 24277744 PMCID: PMC3969543 DOI: 10.1093/infdis/jit644] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/29/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV)-infected (HIV+) men are more susceptible to sexually transmitted infections, and may be superinfected by HIV. We hypothesized that HIV induces immune alterations in the foreskin that may impact the subsequent acquisition/clearance of genital coinfections. METHODS Foreskin tissue and blood were obtained from 70 HIV-uninfected and 20 HIV+ men undergoing circumcision. T cells were characterized by flow cytometry, immunohistochemistry, and polymerase chain reaction. RESULTS There was substantial influx of CD8 T-cells into the foreskins of HIV+ men (108.8 vs 23.1 cells/mm(2); P < .001); but foreskin CD4 T-cell density was unchanged (43.0 vs 33.7/mm(2); P = .67), despite substantial blood depletion (409.0 vs 877.8 cells/µL; P < .001). While frequencies of foreskin C-C chemokine receptor type 5(+) (CCR5(+)) T cells, T regulatory cells, and T-helper 17 cells were unaltered in HIV+ men, CD8 T-cell production of tumor necrosis factor α (TNFα) was decreased. HIV-specific CD8 T cells were present in the foreskins of HIV+ men, although their frequency and function was reduced compared to the blood. CONCLUSIONS Foreskin CD4 T-cell density and CCR5 expression were not reduced during HIV infection, perhaps explaining susceptibility to HIV superinfection. Foreskin CD8 T-cell density was increased, but decreased production of TNFα may enhance susceptibility to genital coinfections in HIV+ men.
Collapse
Affiliation(s)
- Jessica L Prodger
- Clinical Science Division, Department of Medicine, University of Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|