1
|
Chen JS, Matoga M, Massa C, Tegha G, Ndalama B, Bonongwe N, Mathiya E, Jere E, Banda G, Loftis AJ, Lancaster KE, Miller WC, Hoffman IF, Cohen MS. Effects of Urethritis on HIV in Semen: Implications for HIV Prevention and Cure. Clin Infect Dis 2020; 73:e2000-e2004. [PMID: 33033831 DOI: 10.1093/cid/ciaa1529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Prior to the widespread availability of antiretroviral therapy (ART), Men living with HIV with urethritis had increased concentration of HIV in semen. This study aims to better evaluate HIV shedding in men with urethritis receiving ART, and implications for the cure of HIV. METHODS Men living with HIV with urethritis taking ART ≥12 weeks were enrolled at a sexually transmitted infections clinic in Lilongwe, Malawi. Study follow-up included visits 1, 2, 4, 8, 12, 24, 36, and 48 weeks post urethritis diagnosis and treatment. Matched blood and semen samples were collected at all visits, and all additional episodes of urethritis were followed with extra visits 1, 2, and 4 weeks after treatment. RESULTS 111 men enrolled in the study between January 2017 - March 2019, and 77 (69%) were suppressed in the blood (<400 copies/mL). Among the 77 men, 87 episodes of urethritis were evaluated during follow-up. Of the 87 episodes, 15 episodes (17%) had instances of seminal viral shedding ≥400 copies/mL despite viral suppression in the blood. At follow-up of non-urethritis episodes, ≤6% of men at each visit had a viral load ≥400 copies/mL in the semen while maintaining viral suppression in the blood. CONCLUSIONS An HIV cure requires the elimination of HIV from every body compartment, but available ART does not currently accomplish this. Our study highlights the male genital tract as a local source of HIV that can be reversibly activated. A better understanding of this phenomenon is important to advance the HIV cure field.
Collapse
Affiliation(s)
- Jane S Chen
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | | | - Amy J Loftis
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | | | - William C Miller
- The Ohio State University College of Public Health, Columbus, OH, USA.,Department of Epidemiology, University of North Carolina, Chapel Hill, NC
| | - Irving F Hoffman
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Myron S Cohen
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Cavarelli M, Le Grand R. The importance of semen leukocytes in HIV-1 transmission and the development of prevention strategies. Hum Vaccin Immunother 2020; 16:2018-2032. [PMID: 32614649 PMCID: PMC7553688 DOI: 10.1080/21645515.2020.1765622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
HIV-1 sexual transmission occurs mostly through contaminated semen, which is a complex mixture of soluble factors with immunoregulatory functions and cells. It is well established that semen cells from HIV-1-infected men are able to produce the virus and that are harnessed to efficiently interact with mucosal barriers exposed during sexual intercourse. Several cofactors contribute to semen infectivity and may enhance the risk of HIV-1 transmission to a partner by increasing local HIV-1 replication in the male genital tract, thereby increasing the number of HIV-1-infected cells and the local HIV-1 shedding in semen. The introduction of combination antiretroviral therapy has improved the life expectancy of HIV-1 infected individuals; however, there is evidence that systemic viral suppression does not always reflect full viral suppression in the seminal compartment. This review focus on the role semen leukocytes play in HIV-1 transmission and discusses implications of the increased resistance of cell-mediated transmission to immune-based prevention strategies.
Collapse
Affiliation(s)
- Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT) , Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT) , Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| |
Collapse
|
3
|
Quispe Calla NE, Vicetti Miguel RD, Glick ME, Kwiek JJ, Gabriel JM, Cherpes TL. Exogenous oestrogen inhibits genital transmission of cell-associated HIV-1 in DMPA-treated humanized mice. J Int AIDS Soc 2019; 21. [PMID: 29334191 PMCID: PMC5810324 DOI: 10.1002/jia2.25063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 01/02/2018] [Indexed: 12/11/2022] Open
Abstract
Introduction HIV affects more women than any other life‐threatening infectious agent, and most infections are sexually transmitted. HIV must breach the female genital tract mucosal barrier to establish systemic infection, and clinical studies indicate virus more easily evades this barrier in women using depot‐medroxyprogesterone acetate (DMPA) and other injectable progestins for contraception. Identifying a potential mechanism for this association, we learned DMPA promotes susceptibility of wild‐type mice to genital herpes simplex virus type 2 (HSV‐2) infection by reducing genital tissue expression of the cell‐cell adhesion molecule desmoglein‐1 (DSG‐1) and increasing genital mucosal permeability. Conversely, DMPA‐mediated increases in genital mucosal permeability and HSV‐2 susceptibility were eliminated in mice concomitantly administered exogenous oestrogen (E). To confirm and extend these findings, herein we used humanized mice to define effects of systemic DMPA and intravaginal (ivag) E administration on susceptibility to genital infection with cell‐associated HIV‐1. Methods Effects of DMPA or an intravaginal (ivag) E cream on engraftment of NOD‐scid‐IL‐2Rgcnull (NSG) mice with human peripheral blood mononuclear cells (hPBMCs) were defined with flow cytometry. Confocal microscopy was used to evaluate effects of DMPA, DMPA and E cream, or DMPA and the pharmacologically active component of the cream on vaginal tissue DSG‐1 expression and genital mucosal permeability to low molecular weight (LMW) molecules and hPBMCs. In other studies, hPBMC‐engrafted NSG mice (hPBMC‐NSG) received DMPA or DMPA and ivag E cream before genital inoculation with 106 HIV‐1‐infected hPBMCs. Mice were euthanized 10 days after infection, and plasma HIV‐1 load quantified by qRT‐PCR and splenocytes used to detect HIV‐1 p24 antigen via immunohistochemistry and infectious virus via TZM‐bl luciferase assay. Results Whereas hPBMC engraftment was unaffected by DMPA or E treatment, mice administered DMPA and E (cream or the pharmacologically active cream component) displayed greater vaginal tissue expression of DSG‐1 protein and decreased vaginal mucosal permeability to LMW molecules and hPBMCs versus DMPA‐treated mice. DMPA‐treated hPBMC‐NSG mice were also uniformly susceptible to genital transmission of cell‐associated HIV‐1, while no animal concomitantly administered DMPA and E cream acquired systemic HIV‐1 infection. Conclusion Exogenous E administration reduces susceptibility of DMPA‐treated humanized mice to genital HIV‐1 infection.
Collapse
Affiliation(s)
- Nirk E Quispe Calla
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Melissa E Glick
- The Ohio State University (OSU) College of Veterinary Medicine, Columbus, OH, USA
| | - Jesse J Kwiek
- Department of Microbiology, OSU College of Arts and Sciences, Columbus, OH, USA
| | | | - Thomas L Cherpes
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
4
|
Welch JL, Stapleton JT, Okeoma CM. Vehicles of intercellular communication: exosomes and HIV-1. J Gen Virol 2019; 100:350-366. [PMID: 30702421 PMCID: PMC7011712 DOI: 10.1099/jgv.0.001193] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022] Open
Abstract
The terms extracellular vesicles, microvesicles, oncosomes, or exosomes are often used interchangeably as descriptors of particles that are released from cells and comprise a lipid membrane that encapsulates nucleic acids and proteins. Although these entities are defined based on a specific size range and/or mechanism of release, the terminology is often ambiguous. Nevertheless, these vesicles are increasingly recognized as important modulators of intercellular communication. The generic characterization of extracellular vesicles could also be used as a descriptor of enveloped viruses, highlighting the fact that extracellular vesicles and enveloped viruses are similar in both composition and function. Their high degree of similarity makes differentiating between vesicles and enveloped viruses in biological specimens particularly difficult. Because viral particles and extracellular vesicles are produced simultaneously in infected cells, it is necessary to separate these populations to understand their independent functions. We summarize current understanding of the similarities and differences of extracellular vesicles, which henceforth we will refer to as exosomes, and the enveloped retrovirus, HIV-1. Here, we focus on the presence of these particles in semen, as these are of particular importance during HIV-1 sexual transmission. While there is overlap in the terminology and physical qualities between HIV-1 virions and exosomes, these two types of intercellular vehicles may differ depending on the bio-fluid source. Recent data have demonstrated that exosomes from human semen serve as regulators of HIV-1 infection that may contribute to the remarkably low risk of infection per sexual exposure.
Collapse
Affiliation(s)
- Jennifer L. Welch
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242-1109, USA
- Medical Service, Iowa City Veterans Affairs Medical Center, University of Iowa, 604 Highway 6, Iowa City, IA 52246-2208, USA
| | - Jack T. Stapleton
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242-1109, USA
- Medical Service, Iowa City Veterans Affairs Medical Center, University of Iowa, 604 Highway 6, Iowa City, IA 52246-2208, USA
| | - Chioma M. Okeoma
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Pharmacologic Sciences, Basic Sciences Tower, Rm 8-142, Stony Brook, University School of Medicine, Stony Brook, NY 11794-8651, USA
| |
Collapse
|
5
|
Patel EU, Kirkpatrick AR, Grabowski MK, Kigozi G, Gray RH, Prodger JL, Redd AD, Nalugoda F, Serwadda D, Wawer MJ, Quinn TC, Tobian AAR. Penile Immune Activation and Risk of HIV Shedding: A Prospective Cohort Study. Clin Infect Dis 2017; 64:776-784. [PMID: 28011606 DOI: 10.1093/cid/ciw847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/08/2016] [Indexed: 11/14/2022] Open
Abstract
Background Genital immune activation is suspected to modulate local human immunodeficiency virus (HIV) RNA levels and the risk of sexual HIV transmission. Methods A prospective, observational cohort study of 221 HIV-infected men undergoing male circumcision (MC) was conducted in Rakai, Uganda. Penile lavage samples collected from the coronal sulcus at baseline and 4 weekly visits after MC were assayed for pro-inflammatory cytokines and HIV RNA. The main analysis was limited to 175 men with detectable HIV plasma viral load (VL > 400 copies/mL; n = 808 visits). The primary exposures of interest were individual and total cytokine detection at the previous postoperative visit. Adjusted prevalence risk ratios (adjPRR) of detectable HIV shedding (VL > 40 copies/mL) were estimated by Poisson regression models with generalized estimating equations and robust variance estimators and included adjustment for plasma HIV VL. Findings Among men with a detectable plasma VL, penile HIV shedding was detected at 136 visits (16.8%). Detectable interleukin (IL)-1β (adjPRR = 2.14; 95% confidence interval (CI) = 1.02-4.48), IL-6 (adjPRR = 2.24; 95% CI = 1.28-3.90), IL-8 (adjPRR = 2.42; 95% CI = 1.15-5.08), IL-10 (adjPRR = 2.51; 95% CI = 1.67-3.80), and IL-13 (adjPRR = 1.87; 95% CI = 1.15-3.03) were associated with penile HIV shedding at the subsequent visit. Men with 2-4 (adjPRR = 2.36; 95% CI = 1.08-5.14) and 5-7 (adjPRR = 3.00; 95% CI = 1.28-7.01) detectable cytokines had a greater likelihood of detectable penile HIV shedding at the subsequent visit, compared to men with ≤ 1 detectable cytokine. The total number of detectable cytokines was also associated with a higher penile log10 HIV VL at the subsequent visit among HIV shedders. Interpretation Pro-inflammatory cytokine production had a dose-dependent and temporal association with penile HIV shedding, suggesting that genital immune activation may increase the risk of sexual HIV transmission by driving local HIV replication.
Collapse
Affiliation(s)
- Eshan U Patel
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Baltimore, Maryland, USA.,Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Allison R Kirkpatrick
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Baltimore, Maryland, USA
| | - Mary Kate Grabowski
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.,Rakai Health Sciences Program, Entebbe, Uganda
| | | | - Ronald H Gray
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.,Rakai Health Sciences Program, Entebbe, Uganda
| | - Jessica L Prodger
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Baltimore, Maryland, USA.,Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrew D Redd
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Baltimore, Maryland, USA.,Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - David Serwadda
- Rakai Health Sciences Program, Entebbe, Uganda.,Institute of Public Health, Makerere University, Kampala, Uganda
| | - Maria J Wawer
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.,Rakai Health Sciences Program, Entebbe, Uganda
| | - Thomas C Quinn
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Baltimore, Maryland, USA.,Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.,Rakai Health Sciences Program, Entebbe, Uganda.,Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aaron A R Tobian
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Introini A, Boström S, Bradley F, Gibbs A, Glaessgen A, Tjernlund A, Broliden K. Seminal plasma induces inflammation and enhances HIV-1 replication in human cervical tissue explants. PLoS Pathog 2017; 13:e1006402. [PMID: 28542587 PMCID: PMC5453613 DOI: 10.1371/journal.ppat.1006402] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/01/2017] [Accepted: 05/06/2017] [Indexed: 12/16/2022] Open
Abstract
The most immediate and evident effect of mucosal exposure to semen in vivo is a local release of proinflammatory mediators accompanied by an influx of leukocytes into the female genital mucosa (FGM). The implication of such response in HIV-1 transmission has never been addressed due to limitations of currently available experimental models. Using human tissue explants from the uterine cervix, we developed a system of mucosal exposure to seminal plasma (SP) that supports HIV-1 replication. Treatment of ectocervical explants with SP resulted in the upregulation of inflammatory and growth factors, including IL-6, TNF, CCL5, CCL20, CXCL1, and CXCL8, and IL1A, CSF2, IL7, PTGS2, as evaluated by measuring protein levels in explant conditioned medium (ECM) and gene expression in tissue. SP treatment was also associated with increased recruitment of monocytes and neutrophils, as observed upon incubation of peripheral blood leukocytes with ECM in a transwell system. To evaluate the impact of the SP-mediated response on local susceptibility to HIV-1, we infected ectocervical explants with the CCR5-tropic variant HIV-1BaL either in the presence of SP, or after explant pre-incubation with SP. In both experimental settings SP enhanced virus replication as evaluated by HIV-1 p24gag released in explant culture medium over time, as well as by HIV-1 DNA quantification in explants infected in the presence of SP. These results suggest that a sustained inflammatory response elicited by SP soon after coitus may promote HIV-1 transmission to the FGM. Nevertheless, ectocervical tissue explants did not support the replication of transmitted/founder HIV-1 molecular clones, regardless of SP treatment. Our system offers experimental and analytical advantages over traditional models of HIV-1 transmission for the study of SP immunoregulatory effect on the FGM, and may provide a useful platform to ultimately identify new determinants of HIV-1 infection at this site.
Collapse
Affiliation(s)
- Andrea Introini
- Unit of Infectious Diseases, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Stéphanie Boström
- Unit of Infectious Diseases, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Frideborg Bradley
- Unit of Infectious Diseases, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Anna Gibbs
- Unit of Infectious Diseases, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Axel Glaessgen
- Department of Clinical Pathology and Cytology, Unilabs AB, Capio St Göran Hospital, Stockholm, Sweden
| | - Annelie Tjernlund
- Unit of Infectious Diseases, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Broliden
- Unit of Infectious Diseases, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Nair RR, Verma P, Singh K. Immune-endocrine crosstalk during pregnancy. Gen Comp Endocrinol 2017; 242:18-23. [PMID: 26965955 DOI: 10.1016/j.ygcen.2016.03.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 02/25/2016] [Accepted: 03/05/2016] [Indexed: 12/27/2022]
Abstract
The success of pregnancy depends mostly on a synchronized immune-endocrine crosstalk at the maternal-fetal interface. Hormones are important in terms of maintaining the suitable environment and sufficient nutrition for the developing fetus. They also play a major role during the process of parturition and lactation. Maternal immunomodulation is important for the tolerance of semiallogeneic fetus. This is achieved in concert with a variety of endocrine stimulation. Estrogen, progesterone, and Human Chorionic Gonadotropin play a major role in immune modulation during pregnancy. Hormones modulate B cells, dendritic cells, uterine natural killer cells, macrophages, neutrophils to adopt fetal friendly immune phenotypes. Recently the use of hormones in assisted reproductive technology has been found to improve the pregnancy outcome. The present review focuses on the pregnancy-related hormones, their role in immunomodulation for successful pregnancy outcome. This also shed light on the immune-endocrine crosstalk at maternal-fetal interface during pregnancy.
Collapse
Affiliation(s)
- Rohini R Nair
- Division of Genetics and Cell Biology, San Raffaele University and Institute, Milano, Italy
| | - Priyanka Verma
- Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi 221005, India
| | - Kiran Singh
- Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
8
|
Modulation of innate and adaptive cellular immunity relevant to HIV-1 vaccine design by seminal plasma. AIDS 2017; 31:333-342. [PMID: 27835615 DOI: 10.1097/qad.0000000000001319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Mucosal exposure to HIV-1 infection generally occurs in the presence of semen. Immunomodulation by seminal plasma is well described in the reproductive biology literature. Little is known, however, about the impact of seminal plasma on innate and adaptive anti-HIV-1 cellular immunity. DESIGN The study investigated the effects of seminal plasma on immune responses considered important for prophylactic HIV-1 vaccine development, namely innate and adaptive cellular immunity mediated by natural killer (NK) cells and T cells, respectively. METHODS The ability of seminal plasma to modulate direct, antibody-dependent and cytokine-stimulated NK cell activation was assessed utilizing intracellular cytokine staining. Direct and antibody-dependent cellular cytotoxicity was assessed using lactate dehydrogenase release assays. The effects of seminal plasma on T-cell activation upon stimulation with staphylococcus enterotoxin B or HIV-1 Gag peptides were assessed by intracellular cytokine staining. The impact of seminal plasma on redirected cytolysis mediated by T cells was measured using lactate dehydrogenase release assays. RESULTS Both direct and antibody-dependent NK cell activation were dramatically impaired by the presence of either HIV-1-uninfected or HIV-1-infected seminal plasma in a dose-dependent manner. Additionally, seminal plasma suppressed both direct and antibody-dependent NK cell-mediated cytolysis, including anti-HIV-1 antibody-dependent cytolysis of gp120-pulsed CEM.NKr-CCR5 cells. Finally, seminal plasma attenuated both HIV-1 Gag-specific and staphylococcus enterotoxin B-induced CTL activation. CONCLUSIONS Semen contains potent immunosuppressors of both NK cell and CD8 T-cell-mediated anti-HIV-1 immune responses. This could impede attempts to provide vaccine-induced immunity to HIV-1.
Collapse
|
9
|
Robertson SA, Sharkey DJ. Seminal fluid and fertility in women. Fertil Steril 2016; 106:511-9. [PMID: 27485480 DOI: 10.1016/j.fertnstert.2016.07.1101] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022]
Abstract
Seminal fluid is often viewed as simply a vehicle to carry sperm to fertilize the oocyte, but a more complex function in influencing female reproductive physiology is now evident. Remarkably, seminal fluid contains soluble and exosome-born signaling agents that interact with the female reproductive tract to prime the immune response, with consequences for fertility and pregnancy outcome. Experiments in rodent models demonstrate a key role for seminal fluid in enabling robust embryo implantation and optimal placental development. In particular, seminal fluid promotes leukocyte recruitment and generation of regulatory T cells, which facilitate embryo implantation by suppressing inflammation, assisting uterine vascular adaptation, and sustaining tolerance of fetal antigens. There is emerging evidence of comparable effects in women, where seminal fluid provokes an adaptive immune response in the cervical tissues after contact at intercourse, and spermatozoa accessing the higher tract potentially affect the endometrium directly. These biological responses may have clinical significance, explaining why [1] intercourse in IVF ET cycles improves the likelihood of pregnancy, [2] inflammatory disorders of gestation are more common in women who conceive after limited exposure to seminal fluid of the prospective father, and [3] preeclampsia incidence is elevated after use of donor oocytes or donor sperm where prior contact with conceptus alloantigens has not occurred. It will be important to define the mechanisms through which seminal fluid interacts with female reproductive tissues, to provide knowledge that may assist in preconception planning and infertility treatment.
Collapse
Affiliation(s)
- Sarah A Robertson
- Robinson Research Institute and School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.
| | - David J Sharkey
- Robinson Research Institute and School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
10
|
Keogan S, Siegert K, Wigdahl B, Krebs FC. Variability in human semen content and its potential effects in the female reproductive tract. ACTA ACUST UNITED AC 2016. [DOI: 10.7243/2054-0841-4-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|