1
|
Chung NPY, Cheng CY. Testis Is a Sanctuary Site for HIV-1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:433-440. [PMID: 40301268 DOI: 10.1007/978-3-031-82990-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
In this review, we summarize some recent findings regarding the likely mechanisms by which HIV-1 uses the testis as a sanctuary site for evading the effects of antiviral drugs from reaching the testis, due to the presence of the blood-testis barrier. This discussion also sheds insights into the possibility of eradicating the small viral pool in the testis behind the blood-testis barrier in future functional studies. These findings also bridge the knowledge gap of eradicating viral particles hiding behind the blood-brain barrier in the brain since it is anticipated that the blood-tissue barriers, namely the blood-testis and the blood-brain barriers, are utilizing similar mechanisms to regulate the dynamic nature of their tight junctions.
Collapse
Affiliation(s)
- Nancy P Y Chung
- Department of Biological Sciences, New York City College of Technology, City University of New York, New York, NY, USA
| | - C Yan Cheng
- Department of Biology, St Francis College, New York, NY, USA
| |
Collapse
|
2
|
Gao L, Jiao YM, Ma P, Sun L, Zhao H, Guo AL, Fan X, Zhang C, Song JW, Zhang JY, Lu F, Wang FS. Characterization and distribution of HIV-infected cells in semen. Emerg Microbes Infect 2022; 11:860-872. [PMID: 35253610 PMCID: PMC8942556 DOI: 10.1080/22221751.2022.2049982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Semen is a known vector for both human immunodeficiency virus (HIV) infection and transmission. However, the distribution and characteristics of HIV-infected cells in semen remain unclear. Investigating the possibility of transmission through the spermatozoon in semen is of great clinical significance to improve the strategies for exposure prevention and assisted reproduction for HIV-infected partners. Twenty-six HIV-infected patients, including twelve treatment-naïve (TN) patients and fourteen antiretroviral treated (ART) patients, were enrolled in this study. HIV p24 protein in spermatozoa was detected using imaging flow cytometry and immunohistochemistry, and HIV RNA was identified using next-generation RNAscope in situ hybridization. Additionally, we described the rates of HIV-positive spermatozoon and CD4+ T lymphocytes in semen, and found that p24+ spermatozoon were mainly CD4 negative regardless of whether the patients received ART. Of note, p24-positive cells in semen are predominantly spermatozoa, and we confirmed that motile spermatozoa carried HIV into peripheral blood mononuclear cells of healthy men in vitro. Our findings provide evidence regarding the risk of HIV-infected spermatozoa.
Collapse
Affiliation(s)
- Lin Gao
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing, People's Republic of China.,Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China.,Peking University 302 Clinical Medical School, Beijing, People's Republic of China
| | - Yan-Mei Jiao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China
| | - Ping Ma
- Nankai University Second People's Hospital, School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Lijun Sun
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hongxin Zhao
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - An-Liang Guo
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing, People's Republic of China.,Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xing Fan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China
| | - Chao Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China
| | - Jin-Wen Song
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China
| | - Ji-Yuan Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing, People's Republic of China
| | - Fu-Sheng Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing, People's Republic of China.,Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China.,Peking University 302 Clinical Medical School, Beijing, People's Republic of China.,Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
3
|
Carbone L, Conforti A, La Marca A, Cariati F, Vallone R, Raffone A, Buonfantino C, Palese M, Mascia M, DI Girolamo R, Capuzzo M, Esteves SC, Alviggi C. The negative impact of most relevant infections on fertility and assisted reproduction technology. Minerva Obstet Gynecol 2022; 74:83-106. [PMID: 34137567 DOI: 10.23736/s2724-606x.21.04870-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Infections may act with variable impact on the physiopathology of the reproductive organs, determining infertility or reducing the outcomes of assisted reproduction technology. The aim of this narrative review is to describe the existing evidence regarding the pathogens with a supposed or recognized role in reproductive medicine. Viral hepatitis, as well as HIV, can reduce sperm quality. Syphilis carries a risk of erectile dysfunction and increased endometrial thickness. Chlamydia is the main cause of pelvic inflammatory disease. In relation to Mycoplasma and Ureaplasma spp., only few species seem to show a correlation with infertility and poor in-vitro fertilization outcomes. There is evidence of a role for bacterial vaginosis in early pregnancy loss. HPV infection in males seems to determine infertility. Herpesviruses are more a risk for fetuses than for fertility itself. Zika virus is responsible for altered early embryo development and waiting to conceive is recommended in suspected or confirmed cases. The impact of SARS-CoV-2 is yet to be elucidated. Rubella and toxoplasmosis can provoke important congenital defects and therefore screening is mandatory before conception; a vaccine for Rubella is recommended. Further and well-designed studies are still needed to better elucidate the role of some infectious agents, to improve fertility and its treatments.
Collapse
Affiliation(s)
- Luigi Carbone
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy -
| | - Alessandro Conforti
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Antonio La Marca
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Roberta Vallone
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Antonio Raffone
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Cira Buonfantino
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Michela Palese
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Marika Mascia
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Raffaella DI Girolamo
- Center for High-Risk Pregnancy and Fetal Care, Department of Obstetrics and Gynecology, University of Chieti, Chieti, Italy
| | - Martina Capuzzo
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Sandro C Esteves
- Division of Urology, Department of Surgery, University of Campinas (UNICAMP), Campinas, Brazil
- Faculty of Health, Aarhus University, Aarhus, Denmark
- ANDROFERT - Andrology and Human Reproduction Clinic, Campinas, Brazil
| | - Carlo Alviggi
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Mahé D, Matusali G, Deleage C, Alvarenga RLLS, Satie AP, Pagliuzza A, Mathieu R, Lavoué S, Jégou B, de França LR, Chomont N, Houzet L, Rolland AD, Dejucq-Rainsford N. Potential for Virus Endogenization in Humans through Testicular Germ Cell Infection: the Case of HIV. J Virol 2020; 94:e01145-20. [PMID: 32999017 PMCID: PMC7925188 DOI: 10.1128/jvi.01145-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Viruses have colonized the germ line of our ancestors on several occasions during evolution, leading to the integration in the human genome of viral sequences from over 30 retroviral groups and a few nonretroviruses. Among the recently emerged viruses infecting humans, several target the testis (e.g., human immunodeficiency virus [HIV], Zika virus, and Ebola virus). Here, we aimed to investigate whether human testicular germ cells (TGCs) can support integration by HIV, a contemporary retrovirus that started to spread in the human population during the last century. We report that albeit alternative receptors enabled HIV-1 binding to TGCs, HIV virions failed to infect TGCs in vitro Nevertheless, exposure of TGCs to infected lymphocytes, naturally present in the testis from HIV+ men, led to HIV-1 entry, integration, and early protein expression. Similarly, cell-associated infection or bypassing viral entry led to HIV-1 integration in a spermatogonial cell line. Using DNAscope, HIV-1 and simian immunodeficiency virus (SIV) DNA were detected within a few TGCs in the testis from one infected patient, one rhesus macaque, and one African green monkey in vivo Molecular landscape analysis revealed that early TGCs were enriched in HIV early cofactors up to integration and had overall low antiviral defenses compared with testicular macrophages and Sertoli cells. In conclusion, our study reveals that TGCs can support the entry and integration of HIV upon cell-associated infection. This could represent a way for this contemporary virus to integrate into our germ line and become endogenous in the future, as happened during human evolution for a number of viruses.IMPORTANCE Viruses have colonized the host germ line on many occasions during evolution to eventually become endogenous. Here, we aimed at investigating whether human testicular germ cells (TGCs) can support such viral invasion by studying HIV interactions with TGCs in vitro Our results indicate that isolated primary TGCs express alternative HIV-1 receptors, allowing virion binding but not entry. However, HIV-1 entered and integrated into TGCs upon cell-associated infection and produced low levels of viral proteins. In vivo, HIV-1 and SIV DNA was detected in a few TGCs. Molecular landscape analysis showed that TGCs have overall weak antiviral defenses. Altogether, our results indicate that human TGCs can support HIV-1 early replication, including integration, suggesting potential for endogenization in future generations.
Collapse
Affiliation(s)
- Dominique Mahé
- Université Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S1085, Rennes, France
| | - Giulia Matusali
- Université Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S1085, Rennes, France
| | - Claire Deleage
- Université Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S1085, Rennes, France
| | - Raquel L L S Alvarenga
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Anne-Pascale Satie
- Université Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S1085, Rennes, France
| | - Amélie Pagliuzza
- Department of Microbiology, Infectiology and Immunology, Faculty of Medecine, Université de Montréal, and Centre de Recherche du CHUM, Montréal, Quebec, Canada
| | - Romain Mathieu
- Centre Hospitalier Universitaire de Pontchaillou, Service Urologie, Rennes, France
| | - Sylvain Lavoué
- Centre Hospitalier Universitaire de Pontchaillou, Centre de Coordination des Prélèvements, Rennes, France
| | - Bernard Jégou
- Université Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S1085, Rennes, France
| | - Luiz R de França
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nicolas Chomont
- Department of Microbiology, Infectiology and Immunology, Faculty of Medecine, Université de Montréal, and Centre de Recherche du CHUM, Montréal, Quebec, Canada
| | - Laurent Houzet
- Université Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S1085, Rennes, France
| | - Antoine D Rolland
- Université Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S1085, Rennes, France
| | - Nathalie Dejucq-Rainsford
- Université Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S1085, Rennes, France
| |
Collapse
|
5
|
van der Kuyl AC, Berkhout B. Viruses in the reproductive tract: On their way to the germ line? Virus Res 2020; 286:198101. [PMID: 32710926 DOI: 10.1016/j.virusres.2020.198101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 01/13/2023]
Abstract
Studies of vertebrate genomes have indicated that all species contain in their chromosomes stretches of DNA with sequence similarity to viral genomes. How such 'endogenous' viral elements (EVEs) ended up in host genomes is usually explained in general terms such as 'they entered the germ line at some point during evolution'. This seems a correct statement, but is also rather imprecise. The vast number of endogenous viral sequences suggest that common routes to the 'germ line' may exist, as relying on chance alone may not easily explain the abundance of EVEs in modern mammalian genomes. An increasing number of virus types have been detected in human semen and a growing number of studies have reported on viral infections that cause male infertility or subfertility and on viral infections that threaten in vitro fertilisation practices. Thus, it is timely to survey the pathway(s) that viruses can use to gain access to the human germ line. Embryo transfer and semen quality studies in livestock form another source of relevant information because virus infection during reproduction is clearly unwanted, as is the case for the human situation. In this review, studies on viruses in the male and female reproductive tract and in the early embryo will be discussed to propose a plausible viral route to the mammalian germ line.
Collapse
Affiliation(s)
- Antoinette Cornelia van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Naqvi KF, Endsley JJ. Myeloid C-Type Lectin Receptors in Tuberculosis and HIV Immunity: Insights Into Co-infection? Front Cell Infect Microbiol 2020; 10:263. [PMID: 32582566 PMCID: PMC7283559 DOI: 10.3389/fcimb.2020.00263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
C-type lectin receptors (CLRs) are carbohydrate binding pattern recognition receptors (PRRs) which play a central role in host recognition of pathogenic microorganisms. Signaling through CLRs displayed on antigen presenting cells dictates important innate and adaptive immune responses. Several pathogens have evolved mechanisms to exploit the receptors or signaling pathways of the CLR system to gain entry or propagate in host cells. CLR responses to high priority pathogens such as Mycobacterium tuberculosis (Mtb), HIV, Ebola, and others are described and considered potential avenues for therapeutic intervention. Mtb and HIV are the leading causes of death due to infectious disease and have a synergistic relationship that further promotes aggressive disease in co-infected persons. Immune recognition through CLRs and other PRRs are important determinants of disease outcomes for both TB and HIV. Investigations of CLR responses to Mtb and HIV, to date, have primarily focused on single infection outcomes and do not account for the potential effects of co-infection. This review will focus on CLRs recognition of Mtb and HIV motifs. We will describe their respective roles in protective immunity and immune evasion or exploitation, as well as their potential as genetic determinants of disease susceptibility, and as avenues for development of therapeutic interventions. The potential convergence of CLR-driven responses of the innate and adaptive immune systems in the setting of Mtb and HIV co-infection will further be discussed relevant to disease pathogenesis and development of clinical interventions.
Collapse
Affiliation(s)
- Kubra F Naqvi
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Janice J Endsley
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
7
|
Lubow J, Virgilio MC, Merlino M, Collins DR, Mashiba M, Peterson BG, Lukic Z, Painter MM, Gomez-Rivera F, Terry V, Zimmerman G, Collins KL. Mannose receptor is an HIV restriction factor counteracted by Vpr in macrophages. eLife 2020; 9:e51035. [PMID: 32119644 PMCID: PMC7051176 DOI: 10.7554/elife.51035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/25/2020] [Indexed: 12/21/2022] Open
Abstract
HIV-1 Vpr is necessary for maximal HIV infection and spread in macrophages. Evolutionary conservation of Vpr suggests an important yet poorly understood role for macrophages in HIV pathogenesis. Vpr counteracts a previously unknown macrophage-specific restriction factor that targets and reduces the expression of HIV Env. Here, we report that the macrophage mannose receptor (MR), is a restriction factor targeting Env in primary human monocyte-derived macrophages. Vpr acts synergistically with HIV Nef to target distinct stages of the MR biosynthetic pathway and dramatically reduce MR expression. Silencing MR or deleting mannose residues on Env rescues Env expression in HIV-1-infected macrophages lacking Vpr. However, we also show that disrupting interactions between Env and MR reduces initial infection of macrophages by cell-free virus. Together these results reveal a Vpr-Nef-Env axis that hijacks a host mannose-MR response system to facilitate infection while evading MR's normal role, which is to trap and destroy mannose-expressing pathogens.
Collapse
Affiliation(s)
- Jay Lubow
- Department of Microbiology and Immunology, University of MichiganAnn ArborUnited States
| | - Maria C Virgilio
- Cellular and Molecular Biology Program, University of MichiganAnn ArborUnited States
| | - Madeline Merlino
- Department of Internal Medicine, University of MichiganAnn ArborUnited States
| | - David R Collins
- Department of Microbiology and Immunology, University of MichiganAnn ArborUnited States
| | - Michael Mashiba
- Graduate Program in Immunology, University of MichiganAnn ArborUnited States
| | - Brian G Peterson
- Department of Biological ChemistryUniversity of MichiganAnn ArborUnited States
| | - Zana Lukic
- Department of Internal Medicine, University of MichiganAnn ArborUnited States
| | - Mark M Painter
- Graduate Program in Immunology, University of MichiganAnn ArborUnited States
| | | | - Valeri Terry
- Department of Internal Medicine, University of MichiganAnn ArborUnited States
| | - Gretchen Zimmerman
- Graduate Program in Immunology, University of MichiganAnn ArborUnited States
| | - Kathleen L Collins
- Cellular and Molecular Biology Program, University of MichiganAnn ArborUnited States
- Department of Internal Medicine, University of MichiganAnn ArborUnited States
- Graduate Program in Immunology, University of MichiganAnn ArborUnited States
| |
Collapse
|
8
|
Young CD, Tatieng S, Kongmanas K, Fongmoon D, Lomenick B, Yoon AJ, Kiattiburut W, Compostella F, Faull KF, Suree N, Angel JB, Tanphaichitr N. Sperm can act as vectors for HIV-1 transmission into vaginal and cervical epithelial cells. Am J Reprod Immunol 2019; 82:e13129. [PMID: 31066971 DOI: 10.1111/aji.13129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/02/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
PROBLEM Sperm are the major cells in semen. Human sperm possess a number of HIV-1 gp120 binding ligands including sulfogalactosylglycerolipid (SGG). However, the mechanisms of how sperm capture HIV-1 onto their surface are unclear. Furthermore, the ability of sperm to deliver HIV-1 to vaginal/cervical epithelial cells lining the lower female reproductive tract, as a first step in HIV-1 transmission, needs to be determined. METHOD OF STUDY Sperm from healthy donors were incubated with dual-tropic HIV-1CS204 (clinical isolate), and virus capture was determined by p24 antigen ELISA. The involvement of SGG in HIV-1 capture was assessed by determining Kd values of HIV-1 gp120-SGG binding as well as computational docking of SGG to the gp120 V3 loop. The ability of sperm-associated HIV-1 to infect peripheral blood mononuclear cells (PBMCs) and TZM-bl indicator cells was determined. Lastly, infection of vaginal (Vk2/E6E7), ectocervical (Ect1/E6E7), and endocervical (End1/E6E7) epithelial cells mediated by HIV-1-associated sperm was evaluated. RESULTS Sperm were able to capture HIV-1 in a dose-dependent manner, and the capture reached a maximum within 5 minutes. Captured HIV-1, however, could be removed from sperm by Percoll-gradient centrifugation. Affinity of gp120 for SGG was substantial, implicating sperm SGG in HIV-1 capture. Sperm-associated HIV-1 could productively infect PBMCs and TZM-bl cells, and was capable of being transmitted into vaginal/cervical epithelial cells. CONCLUSION Sperm are able to capture HIV-1, which remains infectious and is able to be transmitted into vaginal/cervical epithelial cells, a result indicating the importance of sperm in HIV transmission.
Collapse
Affiliation(s)
- Charlene D Young
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Suriya Tatieng
- Multidisciplinary Program in Biotechnology, The Graduate School, Division of Biochemistry and Biochemical Technology, Faculty of Science, Department of Chemistry, Chiang Mai University, Chiang Mai, Thailand
| | - Kessiri Kongmanas
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Duriya Fongmoon
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Brett Lomenick
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, Los Angeles, California
| | - Alexander J Yoon
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, Los Angeles, California
| | - Wongsakorn Kiattiburut
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Federica Compostella
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, Los Angeles, California
| | - Nuttee Suree
- Multidisciplinary Program in Biotechnology, The Graduate School, Division of Biochemistry and Biochemical Technology, Faculty of Science, Department of Chemistry, Chiang Mai University, Chiang Mai, Thailand
| | - Jonathan B Angel
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Division in Infectious Diseases, Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Nongnuj Tanphaichitr
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Faculty of Medicine, Department of Obstetrics & Gynecology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Enwuru C, Iwalokun B, Enwuru V, Ezechi O, Oluwadun A. The effect of presence of facultative bacteria species on semen and sperm quality of men seeking fertility care. AFRICAN JOURNAL OF UROLOGY 2016. [DOI: 10.1016/j.afju.2016.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Jindal SK, Rawlins RG, Muller CH, Drobnis EZ. Guidelines for risk reduction when handling gametes from infectious patients seeking assisted reproductive technologies. Reprod Biomed Online 2016; 33:121-30. [PMID: 27235103 DOI: 10.1016/j.rbmo.2016.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/22/2016] [Accepted: 04/26/2016] [Indexed: 02/07/2023]
Abstract
According to the Americans with Disabilities Act (1990), couples with blood-borne viruses that lead to infectious disease cannot be denied fertility treatment as long as the direct threat to the health and safety of others can be reduced or eliminated by a modification of policies or procedures. Three types of infectious patients are commonly discussed in the context of fertility treatment: those with human immunodeficiency virus (HIV), hepatitis C or hepatitis B. Seventy-five per cent of hepatitis C or HIV positive men and women are in their reproductive years, and these couples look to assisted reproductive techniques for risk reduction in conceiving a pregnancy. In many cases, only one partner is infected. Legal and ethical questions about treatment of infectious patients aside, the question most asked by clinical embryologists and andrologists is: "What are the laboratory protocols for working with gametes and embryos from patients with infectious disease?" The serostatus of each patient is the key that informs appropriate treatments. This guidance document describes protocols for handling gametes from seroconcordant and serodiscordant couples with infectious disease. With minor modifications, infectious patients with stable disease status and undetectable or low viral load can be accommodated in the IVF laboratory.
Collapse
Affiliation(s)
- Sangita K Jindal
- Department Obstetrics, Gynecology and Women's Health, Albert Einstein College of Medicine, Montefiore's Institute for Reproductive Medicine and Health, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | - Richard G Rawlins
- Department Obstetrics and Gynecology, Rush University Medical Center, 1653 West Congress Parkway, Chicago, IL 60612
| | - Charles H Muller
- Male Fertility Lab, Department Urology, University of Washington, 4245 Roosevelt Way NE, Seattle, WA 98105
| | - Erma Z Drobnis
- Reproductive Medicine and Fertility, Department Obstetrics, Gynecology and Women's Health, University of Missouri, 500 N. Keene St, Suite 203, Columbia, MO 65201
| |
Collapse
|
11
|
Ghosh M. Secreted mucosal antimicrobials in the female reproductive tract that are important to consider for HIV prevention. Am J Reprod Immunol 2014; 71:575-88. [PMID: 24754244 DOI: 10.1111/aji.12250] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/14/2014] [Indexed: 01/13/2023] Open
Abstract
The mucosal microenvironment of the female reproductive tract (FRT) is rich in secreted endogenous antimicrobials that provide the first line of defense against pathogens. This review focuses on the spectrum of secreted antimicrobials found in the FRT that have anti-HIV functions and are regulated by the natural hormonal changes in women's life cycle. Understanding the complex nature of FRT, mucosal microenvironment will enable us to better design therapeutic interventions for women against sexually transmitted pathogens.
Collapse
Affiliation(s)
- Mimi Ghosh
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| |
Collapse
|
12
|
A review of nanotechnological approaches for the prophylaxis of HIV/AIDS. Biomaterials 2013; 34:6202-28. [PMID: 23726227 DOI: 10.1016/j.biomaterials.2013.05.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 05/06/2013] [Indexed: 01/06/2023]
Abstract
Successful treatment and control of HIV/AIDS is one of the biggest challenges of 21st century. More than 33 million individuals are infected with HIV worldwide and more than 2 million new cases of HIV infection have been reported. The situation demands development of effective prevention strategies to control the pandemic of AIDS. Due to lack of availability of an effective HIV vaccine, antiretroviral drugs and nucleic acid therapeutics like siRNA have been explored for HIV prophylaxis. Clinical trials shave shown that antiretroviral drugs, tenofovir and emtricitabine can offer some degree of HIV prevention. However, complete prevention of HIV infection has not been achieved yet. Nanotechnology has brought a paradigm shift in the diagnosis, treatment and prevention of many diseases. The current review discusses potential of various nanocarriers such as dendrimers, polymeric nanoparticles, liposomes, lipid nanocarriers, drug nanocrystals, inorganic nanocarriers and nanofibers in improving efficacy of various modalities available for HIV prophylaxis.
Collapse
|
13
|
Jadhav SK, Velhal SM, Deshpande A, Bandivdekar AH. Association of human mannose receptor in sexual transmission of human immunodeficiency virus in serodiscordant couples. AIDS Res Hum Retroviruses 2013; 29:156-63. [PMID: 23148569 DOI: 10.1089/aid.2012.0101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
HIV binds specifically to the human mannose receptor (hMR) on vaginal epithelial cells that are devoid of a conventional CD4 receptor. HIV binding to hMR on vaginal epithelial cells induces the production of matrix metalloproteinase 9 (MMP9) leading to degradation of the extracellular matrix, which may increase the risk of HIV entry into vaginal epithelial cells and further transmission into distal cells. Immunofluorescent localization of hMR on vaginal epithelial cells of seronegative females from the general population included the control group (n=52) and seronegative females from serodiscordant couples. There was PCR amplification of DNA from peripheral blood mononuclear cells (PBMCs) of the serodiscordant females for the CCR5 gene flanking the CCR5-Δ32 region; PCR amplification and sequencing of the C2-V3 region of HIV variants in PBMCs and sperm of the infected male partners of the serodiscordant couples; and the presence of hMR on 0-11% of the vaginal epithelial cells of seronegative females (n=39) from serodiscordant couples and 90-95% that of a control group of females (n=52). Nine of these serodiscordant females did not show a CCR5-Δ32 deletion. The translated amino acid sequence of the C2-V3 region of the env gene of HIV-1C in PBMCs (n=9) and sperm (n=5) of the male partners showed the presence of distinct variants and the variation in PBMCs and sperm of serodiscordant males was almost similar to that of infected males from concordant couples. The presence of hMR in a smaller number of vaginal epithelial cells of serodiscordant females prevented binding and HIV entry into these cells and therefore prevented sexual transmission of HIV.
Collapse
Affiliation(s)
- Shivaji K. Jadhav
- National Institute for Research in Reproductive Health [NIRRH], Indian Council of Medical Research [ICMR], Parel, Mumbai, India
| | - Shilpa M. Velhal
- National Institute for Research in Reproductive Health [NIRRH], Indian Council of Medical Research [ICMR], Parel, Mumbai, India
| | - Alaka Deshpande
- ART Center, Grant Medical College and Sir J. J. Group of Hospitals, Byculla, Mumbai, India
| | - Atmaram H. Bandivdekar
- National Institute for Research in Reproductive Health [NIRRH], Indian Council of Medical Research [ICMR], Parel, Mumbai, India
| |
Collapse
|
14
|
Treatment of human sperm with serine protease during density gradient centrifugation. J Assist Reprod Genet 2012; 29:1273-9. [PMID: 22956335 DOI: 10.1007/s10815-012-9851-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 08/08/2012] [Indexed: 10/27/2022] Open
Abstract
PURPOSE Seminal pathogens can bind specifically or non-specifically to spermatozoa, rendering semen decontamination procedures ineffective, whereby vertical or horizontal transmission of the infection could occur. Serine proteases have been demonstrated to effectively inactivate viruses and to break pathogen-sperm bonds. However, the addition of a protease to density gradient layers during semen processing could negatively impact on sperm parameters. This study investigated the effect of the addition of a recombinant, human-sequence protease (rhProtease) on sperm parameters during density gradient centrifugation. METHODS (i) Pooled semen samples (n = 9) were split and processed by density gradient centrifugation, with the top density layers supplemented, or non-supplemented with rhProtease at three different concentrations (diluted 2, 10 and 20 times). Sperm parameters were then analysed by flow cytometry and computer-assisted semen analyses. (ii) Semen samples (n = 5) were split and similarly processed using PureSperm® Pro, with rhProtease in the 40 % density gradient layer, or standard PureSperm® not supplemented with rhProtease (Nidacon, International) respectively. The Hemizona assay was then utilized to compare sperm-zona binding post processing. RESULTS Evaluation of sperm parameters indicated that rhProtease did not, at any of the tested concentrations, have an impact on (i) mitochondrial membrane potential, vitality, motility, or (ii) zona binding potential. CONCLUSION We report that the addition of rhProtease to density gradients is a non-detrimental approach that could improve the effectiveness of semen processing for the elimination of seminal pathogens, and benefit assisted reproduction outcome.
Collapse
|
15
|
HIV gp120 binds to mannose receptor on vaginal epithelial cells and induces production of matrix metalloproteinases. PLoS One 2011; 6:e28014. [PMID: 22132194 PMCID: PMC3222676 DOI: 10.1371/journal.pone.0028014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/30/2011] [Indexed: 01/25/2023] Open
Abstract
Background During sexual transmission of HIV in women, the virus breaches the multi-layered CD4 negative stratified squamous epithelial barrier of the vagina, to infect the sub-epithelial CD4 positive immune cells. However the mechanisms by which HIV gains entry into the sub-epithelial zone is hitherto unknown. We have previously reported human mannose receptor (hMR) as a CD4 independent receptor playing a role in HIV transmission on human spermatozoa. The current study was undertaken to investigate the expression of hMR in vaginal epithelial cells, its HIV gp120 binding potential, affinity constants and the induction of matrix metalloproteinases (MMPs) downstream of HIV gp120 binding to hMR. Principal Findings Human vaginal epithelial cells and the immortalized vaginal epithelial cell line Vk2/E6E7 were used in this study. hMR mRNA and protein were expressed in vaginal epithelial cells and cell line, with a molecular weight of 155 kDa. HIV gp120 bound to vaginal proteins with high affinity, (Kd = 1.2±0.2 nM for vaginal cells, 1.4±0.2 nM for cell line) and the hMR antagonist mannan dose dependently inhibited this binding. Both HIV gp120 binding and hMR exhibited identical patterns of localization in the epithelial cells by immunofluorescence. HIV gp120 bound to immunopurified hMR and affinity constants were 2.9±0.4 nM and 3.2±0.6 nM for vaginal cells and Vk2/E6E7 cell line respectively. HIV gp120 induced an increase in MMP-9 mRNA expression and activity by zymography, which could be inhibited by an anti-hMR antibody. Conclusion hMR expressed by vaginal epithelial cells has high affinity for HIV gp120 and this binding induces production of MMPs. We propose that the induction of MMPs in response to HIV gp120 may lead to degradation of tight junction proteins and the extracellular matrix proteins in the vaginal epithelium and basement membrane, leading to weakening of the epithelial barrier; thereby facilitating transport of HIV across the vaginal epithelium.
Collapse
|
16
|
Cardona-Maya W, Velilla PA, Montoya CJ, Cadavid Á, Rugeles MT. In vitro human immunodeficiency virus and sperm cell interaction mediated by the mannose receptor. J Reprod Immunol 2011; 92:1-7. [PMID: 22015004 DOI: 10.1016/j.jri.2011.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 08/29/2011] [Accepted: 09/01/2011] [Indexed: 02/03/2023]
Abstract
Leukocytes are considered to be the main source of HIV-1 infection in semen. However, HIV-1 interaction with spermatozoa has also been demonstrated, suggesting that both spermatozoa and leukocytes might play a role during sexual transmission of HIV-1. The purpose of the present study was to evaluate if HIV-1 particles interact with sperm cells through the mannose receptor (MR), and then to determine the ability of "infected" sperm cells to transmit the virus to susceptible targets. The expression of classical HIV-1 receptor and co-receptors and the MR by sperm cells was determined by flow cytometry; the interaction in vitro between sperm and HIV-1 was evaluated by fluorescence microscopy. Additionally, the in vitro interaction of sperm cells and HIV-1 was determined detecting viral nucleic acids by PCR. D-Mannose was used to block HIV-1-sperm cell interaction. Sperm cells preincubated with HIV-1 particles and activated mononuclear cells were co-cultured to determine viral transmission. The presence of viral RNA was detected in 28% of the samples in which sperm cells were preincubated with HIV-1 particles. Mannose was able to block interaction in 75% of the cases. Finally, we demonstrated that "infected" sperm cells were able to transmit the HIV-1 infection to susceptible targets. In conclusion, these results indicate that the MR is involved in sperm cell-HIV-1 interaction. Our results also suggest that sperm cells could be an important source of infection.
Collapse
|
17
|
Reina R, Glaria I, Cianca S, Crespo H, Andrés XD, Goñi C, Lasarte JM, Luján L, Amorena B, de Andrés DF. Use of small ruminant lentivirus-infected rams for artificial insemination. Vet J 2011; 189:106-7. [DOI: 10.1016/j.tvjl.2010.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/30/2010] [Accepted: 07/02/2010] [Indexed: 11/28/2022]
|
18
|
Jadhav SK, Velhal SM, Deshpande A, Maitra A, Chinnaraj S, Bandivdekar AH. Characterization of human immunodeficiency virus (HIV1C) variants in peripheral blood mononuclear cells and spermatozoa. J Med Virol 2011; 83:760-7. [DOI: 10.1002/jmv.22041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Le Tortorec A, Dejucq-Rainsford N. HIV infection of the male genital tract--consequences for sexual transmission and reproduction. INTERNATIONAL JOURNAL OF ANDROLOGY 2010; 33:e98-108. [PMID: 19531082 PMCID: PMC2816356 DOI: 10.1111/j.1365-2605.2009.00973.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Revised: 04/18/2009] [Accepted: 04/21/2009] [Indexed: 01/03/2023]
Abstract
Despite semen being the main vector of human immunodeficiency virus (HIV) dissemination worldwide, the origin of the virus in this bodily fluid remains unclear. It was recently shown that several organs of the male genital tract (MGT) are infected by HIV/simian immunodeficiency virus (SIV) and likely to contribute to semen viral load during the primary and chronic stages of the infection. These findings are important in helping answer the following questions: (i) does the MGT constitute a viral reservoir responsible for the persistence of virus release into the semen of a subset of HIV-infected men under antiretroviral therapy, who otherwise show an undetectable blood viral load? (ii) What is the aetiology of the semen abnormalities observed in asymptomatic HIV-infected men? (iii) What is the exact nature of the interactions between the spermatozoa, their testicular progenitors and HIV, an important issue in the context of assisted reproductive techniques proposed for HIV-seropositive (HIV+) men? Answers to these questions are crucial for the design of new therapeutic strategies aimed at eradicating the virus from the genital tract of HIV+ men--thus reducing its sexual transmission--and for improving the care of serodiscordant couples wishing to have children. This review summarizes the most recent literature on HIV infection of the male genital tract, discusses the above issues in light of the latest findings and highlights future directions of research.
Collapse
Affiliation(s)
- A Le Tortorec
- INSERM U625, Rennes, Rennes I University, Groupe d'Etude de la Reproduction chez l'Homme et les Mammifères, IFR 140, Campus de Beaulieu, Rennes, France
| | | |
Collapse
|
20
|
|
21
|
Influence of recovery method and microbial contamination on the response to freezing–thawing in ibex (Capra pyrenaica) epididymal spermatozoa. Cryobiology 2009; 59:357-62. [DOI: 10.1016/j.cryobiol.2009.09.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 09/22/2009] [Accepted: 09/22/2009] [Indexed: 01/08/2023]
|
22
|
Ceballos A, Remes Lenicov F, Sabatté J, Rodríguez Rodrígues C, Cabrini M, Jancic C, Raiden S, Donaldson M, Agustín Pasqualini R, Marin-Briggiler C, Vazquez-Levin M, Capani F, Amigorena S, Geffner J. Spermatozoa capture HIV-1 through heparan sulfate and efficiently transmit the virus to dendritic cells. ACTA ACUST UNITED AC 2009; 206:2717-33. [PMID: 19858326 PMCID: PMC2806607 DOI: 10.1084/jem.20091579] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Semen is the main vector for HIV-1 dissemination worldwide. It contains three major sources of infectious virus: free virions, infected leukocytes, and spermatozoa-associated virions. We focused on the interaction of HIV-1 with human spermatozoa and dendritic cells (DCs). We report that heparan sulfate is expressed in spermatozoa and plays an important role in the capture of HIV-1. Spermatozoa-attached virus is efficiently transmitted to DCs, macrophages, and T cells. Interaction of spermatozoa with DCs not only leads to the transmission of HIV-1 and the internalization of the spermatozoa but also results in the phenotypic maturation of DCs and the production of IL-10 but not IL-12p70. At low values of extracellular pH (∼6.5 pH units), similar to those found in the vaginal mucosa after sexual intercourse, the binding of HIV-1 to the spermatozoa and the consequent transmission of HIV-1 to DCs were strongly enhanced. Our observations support the notion that far from being a passive carrier, spermatozoa acting in concert with DCs might affect the early course of sexual transmission of HIV-1 infection.
Collapse
Affiliation(s)
- Ana Ceballos
- Centro Nacional de Referencia para SIDA, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
The presence of bacteria species in semen and sperm quality. J Assist Reprod Genet 2008; 26:47-56. [PMID: 19089609 DOI: 10.1007/s10815-008-9283-5] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 12/04/2008] [Indexed: 10/21/2022] Open
Abstract
PURPOSE To verify the prevalence of semen bacterial contamination and whether the contamination could decrease sperm quality. METHODS Spermiogram, semen culture, and sperm transmission electron microscopy (TEM) analysis were performed. TEM data were elaborated using a mathematical formula that calculates a fertility index (FI)--able to define patients as fertile or infertile--and the percentage of sperm apoptosis, immaturity and necrosis. We aligned the amino acid sequence of beta-tubulin with protein of the most frequent species isolated from semen. RESULTS Patients were divided according to the contaminating species; in each group, we observed fertile individuals, in whom the semen quality was similar to that of controls and infertile men whose sperm quality was significantly decreased, in terms of motility, FI, apoptosis and necrosis. Partial homology between beta-tubulin and bacterial proteins was observed. CONCLUSION Sperm bacterial contamination is quite frequent and could contribute to the deterioration of the sperm quality of infertile men.
Collapse
|