1
|
Sivay MV, Totmenin AV, Zyryanova DP, Osipova IP, Nalimova TM, Gashnikova MP, Ivlev VV, Meshkov IO, Chokmorova UZ, Narmatova E, Motorov U, Akmatova Z, Asybalieva N, Bekbolotov AA, Kadyrbekov UK, Maksutov RA, Gashnikova NM. Characterization of HIV-1 Epidemic in Kyrgyzstan. Front Microbiol 2021; 12:753675. [PMID: 34721358 PMCID: PMC8554114 DOI: 10.3389/fmicb.2021.753675] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Kyrgyzstan has one of the highest rates of HIV-1 spread in Central Asia. In this study, we used molecular–epidemiological approaches to examine the HIV-1 epidemic in Kyrgyzstan. Samples were obtained from HIV-positive individuals who visited HIV/AIDS clinics. Partial pol gene sequences were used to identify HIV-1 subtypes and drug resistance mutations (DRMs) and to perform phylogenetic analysis. Genetic diversity and history reconstruction of the major HIV-1 subtypes were explored using BEAST. This study includes an analysis of 555 HIV-positive individuals. The study population was equally represented by men and women aged 1–72 years. Heterosexual transmission was the most frequent, followed by nosocomial infection. Men were more likely to acquire HIV-1 during injection drug use and while getting clinical services, while women were more likely to be infected through sexual contacts (p < 0.01). Heterosexual transmission was the more prevalent among individuals 25–49 years old; individuals over 49 years old were more likely to be persons who inject drugs (PWID). The major HIV-1 variants were CRF02_AG, CRF63_02A, and sub-subtype A6. Major DRMs were detected in 26.9% of the study individuals; 62.2% of those had DRMs to at least two antiretroviral (ARV) drug classes. Phylogenetic analysis revealed a well-defined structure of CRF02_AG, indicating locally evolving sub-epidemics. The lack of well-defined phylogenetic structure was observed for sub-subtype A6. The estimated origin date of CRF02_AG was January 1997; CRF63_02A, April 2004; and A6, June 1995. A rapid evolutionary dynamic of CRF02_AG and A6 among Kyrgyz population since the mid-1990s was observed. We observed the high levels of HIV-1 genetic diversity and drug resistance in the study population. Complex patterns of HIV-1 phylogenetics in Kyrgyzstan were found. This study highlights the importance of molecular–epidemiological analysis for HIV-1 surveillance and treatment implementation to reduce new HIV-1 infections.
Collapse
Affiliation(s)
- Mariya V Sivay
- Department of Retroviruses, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Russia
| | - Alexei V Totmenin
- Department of Retroviruses, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Russia
| | - Daria P Zyryanova
- Department of Retroviruses, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Russia
| | - Irina P Osipova
- Department of Retroviruses, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Russia
| | - Tatyana M Nalimova
- Department of Retroviruses, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Russia
| | - Mariya P Gashnikova
- Department of Retroviruses, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Russia
| | - Vladimir V Ivlev
- Department of Retroviruses, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Russia
| | | | - Umut Z Chokmorova
- Republican Center of AIDS, Ministry of Health of Kyrgyzstan, Bishkek, Kyrgyzstan
| | - Elmira Narmatova
- Osh Regional Center of AIDS Treatment and Prevention, Osh, Kyrgyzstan
| | - Ulukbek Motorov
- Osh Regional Center of AIDS Treatment and Prevention, Osh, Kyrgyzstan
| | - Zhyldyz Akmatova
- Republican Center of AIDS, Ministry of Health of Kyrgyzstan, Bishkek, Kyrgyzstan
| | - Nazgul Asybalieva
- Republican Center of AIDS, Ministry of Health of Kyrgyzstan, Bishkek, Kyrgyzstan
| | - Aybek A Bekbolotov
- Republican Center of AIDS, Ministry of Health of Kyrgyzstan, Bishkek, Kyrgyzstan
| | - Ulan K Kadyrbekov
- Republican Center of AIDS, Ministry of Health of Kyrgyzstan, Bishkek, Kyrgyzstan
| | - Rinat A Maksutov
- Department of Retroviruses, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Russia
| | - Natalya M Gashnikova
- Department of Retroviruses, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Russia
| |
Collapse
|
2
|
Brenner BG, Ibanescu RI, Osman N, Cuadra-Foy E, Oliveira M, Chaillon A, Stephens D, Hardy I, Routy JP, Thomas R, Baril JG, Leblanc R, Tremblay C, Roger M, The Montreal Primary HIV Infection (PHI) Cohort Study Group. The Role of Phylogenetics in Unravelling Patterns of HIV Transmission towards Epidemic Control: The Quebec Experience (2002-2020). Viruses 2021; 13:1643. [PMID: 34452506 PMCID: PMC8402830 DOI: 10.3390/v13081643] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 01/23/2023] Open
Abstract
Phylogenetics has been advanced as a structural framework to infer evolving trends in the regional spread of HIV-1 and guide public health interventions. In Quebec, molecular network analyses tracked HIV transmission dynamics from 2002-2020 using MEGA10-Neighbour-joining, HIV-TRACE, and MicrobeTrace methodologies. Phylogenetics revealed three patterns of viral spread among Men having Sex with Men (MSM, n = 5024) and heterosexuals (HET, n = 1345) harbouring subtype B epidemics as well as B and non-B subtype epidemics (n = 1848) introduced through migration. Notably, half of new subtype B infections amongst MSM and HET segregating as solitary transmissions or small cluster networks (2-5 members) declined by 70% from 2006-2020, concomitant to advances in treatment-as-prevention. Nonetheless, subtype B epidemic control amongst MSM was thwarted by the ongoing genesis and expansion of super-spreader large cluster variants leading to micro-epidemics, averaging 49 members/cluster at the end of 2020. The growth of large clusters was related to forward transmission cascades of untreated early-stage infections, younger at-risk populations, more transmissible/replicative-competent strains, and changing demographics. Subtype B and non-B subtype infections introduced through recent migration now surpass the domestic epidemic amongst MSM. Phylodynamics can assist in predicting and responding to active, recurrent, and newly emergent large cluster networks, as well as the cryptic spread of HIV introduced through migration.
Collapse
Affiliation(s)
- Bluma G. Brenner
- McGill Centre for Viral Diseases, Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada; (R.-I.I.); (N.O.); (E.C.-F.); (M.O.)
- Department of Microbiology and Immunology, McGill University, Montréal, QC H4A 3J1, Canada
- Department of Medicine (Surgery, Infectious Disease), McGill University, Montréal, QC H3A 2M7, Canada
| | - Ruxandra-Ilinca Ibanescu
- McGill Centre for Viral Diseases, Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada; (R.-I.I.); (N.O.); (E.C.-F.); (M.O.)
| | - Nathan Osman
- McGill Centre for Viral Diseases, Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada; (R.-I.I.); (N.O.); (E.C.-F.); (M.O.)
- Department of Microbiology and Immunology, McGill University, Montréal, QC H4A 3J1, Canada
| | - Ernesto Cuadra-Foy
- McGill Centre for Viral Diseases, Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada; (R.-I.I.); (N.O.); (E.C.-F.); (M.O.)
- Department of Microbiology and Immunology, McGill University, Montréal, QC H4A 3J1, Canada
| | - Maureen Oliveira
- McGill Centre for Viral Diseases, Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada; (R.-I.I.); (N.O.); (E.C.-F.); (M.O.)
| | - Antoine Chaillon
- Department of Medicine, University of California, San Diego, CA 93903, USA;
| | - David Stephens
- Department of Mathematics and Statistics, McGill University, Montréal, QC H3A 0B9, Canada;
| | - Isabelle Hardy
- Département de Microbiologie et d’Immunologie et Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CHUM), Montréal, QC H2X 0C1, Canada; (I.H.); (C.T.); (M.R.)
| | - Jean-Pierre Routy
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC H3A 3J1, Canada;
| | - Réjean Thomas
- Clinique Médicale l’Actuel, Montréal, QC H2L 4P9, Canada;
| | - Jean-Guy Baril
- Clinique Médicale Urbaine du Quartier Latin, Montréal, QC H2L 4E9, Canada;
| | - Roger Leblanc
- Clinique Médicale OPUS, Montréal, QC H3A 1T1, Canada;
| | - Cecile Tremblay
- Département de Microbiologie et d’Immunologie et Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CHUM), Montréal, QC H2X 0C1, Canada; (I.H.); (C.T.); (M.R.)
| | - Michel Roger
- Département de Microbiologie et d’Immunologie et Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CHUM), Montréal, QC H2X 0C1, Canada; (I.H.); (C.T.); (M.R.)
| | | |
Collapse
|
3
|
Monroe-Wise A, Mbogo L, Guthrie B, Bukusi D, Sambai B, Chohan B, Scott J, Cherutich P, Musyoki H, Bosire R, Dunbar M, Macharia P, Masyuko S, Wilkinson E, De Oliveira T, Ludwig-Barron N, Sinkele B, Herbeck J, Farquhar C. Peer-mediated HIV assisted partner services to identify and link to care HIV-positive and HCV-positive people who inject drugs: a cohort study protocol. BMJ Open 2021; 11:e041083. [PMID: 33895711 PMCID: PMC8074565 DOI: 10.1136/bmjopen-2020-041083] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Targeted, tailored interventions to test high-risk individuals for HIV and hepatitis C virus (HCV) are vital to achieving HIV control and HCV microelimination in Africa. Compared with the general population, people who inject drugs (PWID) are at increased risk of HIV and HCV and are less likely to be tested or successfully treated. Assisted partner services (APS) increases HIV testing among partners of people living with HIV and improves case finding and linkage to care. We describe a study in Kenya examining whether APS can be adapted to find, test and link to HIV care the partners of HIV-positive PWID using a network of community-embedded peer educators (PEs). Our study also identifies HCV-positive partners and uses phylogenetic analysis to determine risk factors for onward transmission of both viruses. METHODS This prospective cohort study leverages a network of PEs to identify 1000 HIV-positive PWID for enrolment as index participants. Each index completes a questionnaire and provides names and contact information of all sexual and injecting partners during the previous 3 years. PEs then use a stepwise locator protocol to engage partners in the community and bring them to study sites for enrolment, questionnaire completion and rapid HIV and HCV testing. Outcomes include number and type of partners per index who are mentioned, enrolled, tested, diagnosed with HIV and HCV and linked to care. ETHICS AND DISSEMINATION Potential index participants are screened for intimate partner violence (IPV) and those at high risk are not eligible to enrol. Those at medium risk are monitored for IPV following enrolment. A community advisory board engages in feedback and discussion between the community and the research team. A safety monitoring board discusses study progress and reviews data, including IPV monitoring data. Dissemination plans include presentations at quarterly Ministry of Health meetings, local and international conferences and publications. TRIAL REGISTRATION NUMBER NCT03447210, Pre-results stage.
Collapse
Affiliation(s)
- Aliza Monroe-Wise
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Loice Mbogo
- HIV Testing and Counseling and HIV Prevention, Kenyatta National Hospital, Nairobi, Kenya
| | - Brandon Guthrie
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - David Bukusi
- HIV Testing and Counseling and HIV Prevention, Kenyatta National Hospital, Nairobi, Kenya
| | - Betsy Sambai
- HIV Testing and Counseling and HIV Prevention, Kenyatta National Hospital, Nairobi, Kenya
| | - Bhavna Chohan
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Kenya Medical Research Institute, Nairobi, Kenya
| | - John Scott
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | | | - Rose Bosire
- Kenya Medical Research Institute, Nairobi, Kenya
| | - Matthew Dunbar
- Center for Studies in Demography and Ecology, University of Washinigton, Seattle, Washington, USA
| | | | - Sarah Masyuko
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Kenya's Ministry of Health, Nairobi, Kenya
| | - Eduan Wilkinson
- KwaZulu-Natal Research and Innovation Sequencing Platform, University of KwaZulu-Natal, Durban, South Africa
| | - Tulio De Oliveira
- KwaZulu-Natal Research and Innovation Sequencing Platform, University of KwaZulu-Natal, Durban, South Africa
| | | | - Bill Sinkele
- Support for Addiction Prevention and Treatment in Africa, Nairobi, Kenya
| | - Joshua Herbeck
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Carey Farquhar
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Kostaki EG, Gova M, Adamis G, Xylomenos G, Chini M, Mangafas N, Lazanas M, Metallidis S, Tsachouridou O, Papastamopoulos V, Chatzidimitriou D, Kakalou E, Antoniadou A, Papadopoulos A, Psichogiou M, Basoulis D, Pilalas D, Papageorgiou I, Paraskeva D, Chrysos G, Paparizos V, Kourkounti S, Sambatakou H, Bolanos V, Sipsas NV, Lada M, Barbounakis E, Kantzilaki E, Panagopoulos P, Petrakis V, Drimis S, Gogos C, Hatzakis A, Beloukas A, Skoura L, Paraskevis D. A Nationwide Study about the Dispersal Patterns of the Predominant HIV-1 Subtypes A1 and B in Greece: Inference of the Molecular Transmission Clusters. Viruses 2020; 12:E1183. [PMID: 33086773 PMCID: PMC7589601 DOI: 10.3390/v12101183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 01/22/2023] Open
Abstract
Our aim was to investigate the dispersal patterns and parameters associated with local molecular transmission clusters (MTCs) of subtypes A1 and B in Greece (predominant HIV-1 subtypes). The analysis focused on 1751 (28.4%) and 2575 (41.8%) sequences of subtype A1 and B, respectively. Identification of MTCs was based on phylogenetic analysis. The analyses identified 38 MTCs including 2-1518 subtype A1 sequences and 168 MTCs in the range of 2-218 subtype B sequences. The proportion of sequences within MTCs was 93.8% (1642/1751) and 77.0% (1982/2575) for subtype A1 and B, respectively. Transmissions within MTCs for subtype A1 were associated with risk group (Men having Sex with Men vs. heterosexuals, OR = 5.34, p < 0.001) and Greek origin (Greek vs. non-Greek origin, OR = 6.05, p < 0.001) and for subtype B, they were associated with Greek origin (Greek vs. non-Greek origin, OR = 1.57, p = 0.019), younger age (OR = 0.96, p < 0.001), and more recent sampling (time period: 2011-2015 vs. 1999-2005, OR = 3.83, p < 0.001). Our findings about the patterns of across and within country dispersal as well as the parameters associated with transmission within MTCs provide a framework for the application of the study of molecular clusters for HIV prevention.
Collapse
Affiliation(s)
- Evangelia Georgia Kostaki
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.G.K.); (M.G.); (I.P.); (A.H.)
| | - Maria Gova
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.G.K.); (M.G.); (I.P.); (A.H.)
| | - Georgios Adamis
- 1st Department of Internal Medicine, G. Gennimatas General Hospital, 11527 Athens, Greece; (G.A.); (G.X.)
| | - Georgios Xylomenos
- 1st Department of Internal Medicine, G. Gennimatas General Hospital, 11527 Athens, Greece; (G.A.); (G.X.)
| | - Maria Chini
- 3rd Department of Internal Medicine-Infectious Diseases Unit, “Korgialeneio-Benakeio” Red Cross General Hospital, 11526 Athens, Greece; (M.C.); (N.M.); (M.L.)
| | - Nikos Mangafas
- 3rd Department of Internal Medicine-Infectious Diseases Unit, “Korgialeneio-Benakeio” Red Cross General Hospital, 11526 Athens, Greece; (M.C.); (N.M.); (M.L.)
| | - Marios Lazanas
- 3rd Department of Internal Medicine-Infectious Diseases Unit, “Korgialeneio-Benakeio” Red Cross General Hospital, 11526 Athens, Greece; (M.C.); (N.M.); (M.L.)
| | - Simeon Metallidis
- 1st Department of Internal Medicine, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.M.); (O.T.)
| | - Olga Tsachouridou
- 1st Department of Internal Medicine, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.M.); (O.T.)
| | - Vasileios Papastamopoulos
- 5th Department of Internal Medicine and Infectious Diseases, Evaggelismos General Hospital, 10676 Athens, Greece; (V.P.); (E.K.)
| | - Dimitrios Chatzidimitriou
- National AIDS Reference Centre of Northern Greece, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (D.P.); (L.S.)
| | - Eleni Kakalou
- 5th Department of Internal Medicine and Infectious Diseases, Evaggelismos General Hospital, 10676 Athens, Greece; (V.P.); (E.K.)
| | - Anastasia Antoniadou
- 4th Department of Medicine, Attikon General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.A.); (A.P.)
| | - Antonios Papadopoulos
- 4th Department of Medicine, Attikon General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.A.); (A.P.)
| | - Mina Psichogiou
- 1st Department of Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.); (D.B.)
| | - Dimitrios Basoulis
- 1st Department of Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.); (D.B.)
| | - Dimitrios Pilalas
- National AIDS Reference Centre of Northern Greece, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (D.P.); (L.S.)
| | - Ifigeneia Papageorgiou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.G.K.); (M.G.); (I.P.); (A.H.)
| | - Dimitra Paraskeva
- Department of Internal Medicine, Tzaneio General Hospital, 18536 Piraeus, Greece; (D.P.); (G.C.); (S.D.)
| | - Georgios Chrysos
- Department of Internal Medicine, Tzaneio General Hospital, 18536 Piraeus, Greece; (D.P.); (G.C.); (S.D.)
| | - Vasileios Paparizos
- HIV/AIDS Unit, A. Syngros Hospital of Dermatology and Venereology, 16121 Athens, Greece; (V.P.); (S.K.)
| | - Sofia Kourkounti
- HIV/AIDS Unit, A. Syngros Hospital of Dermatology and Venereology, 16121 Athens, Greece; (V.P.); (S.K.)
| | - Helen Sambatakou
- HIV Unit, 2nd Department of Internal Medicine, Hippokration General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (H.S.); (V.B.)
| | - Vasileios Bolanos
- HIV Unit, 2nd Department of Internal Medicine, Hippokration General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (H.S.); (V.B.)
| | - Nikolaos V. Sipsas
- Department of Pathophysiology, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Malvina Lada
- 2nd Department of Internal Medicine, Sismanogleion General Hospital, 15126 Marousi, Greece;
| | - Emmanouil Barbounakis
- Department of Internal Medicine, University Hospital of Heraklion “PAGNI”, Medical School, University of Crete, 71110 Heraklion, Greece; (E.B.); (E.K.)
| | - Evrikleia Kantzilaki
- Department of Internal Medicine, University Hospital of Heraklion “PAGNI”, Medical School, University of Crete, 71110 Heraklion, Greece; (E.B.); (E.K.)
| | - Periklis Panagopoulos
- Department of Internal Medicine, University General Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.P.); (V.P.)
| | - Vasilis Petrakis
- Department of Internal Medicine, University General Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.P.); (V.P.)
| | - Stelios Drimis
- Department of Internal Medicine, Tzaneio General Hospital, 18536 Piraeus, Greece; (D.P.); (G.C.); (S.D.)
| | - Charalambos Gogos
- Department of Internal Medicine and Infectious Diseases, University Hospital of Patras, 26504 Rio, Greece;
| | - Angelos Hatzakis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.G.K.); (M.G.); (I.P.); (A.H.)
| | - Apostolos Beloukas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool L697BE, UK
- Department of Biomedical Sciences, School of Health Sciences, University of West Attica, 12243 Athens, Greece
| | - Lemonia Skoura
- National AIDS Reference Centre of Northern Greece, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (D.P.); (L.S.)
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.G.K.); (M.G.); (I.P.); (A.H.)
| |
Collapse
|
5
|
Kafando A, Serhir B, Doualla-Bell F, Fournier E, Sangaré MN, Martineau C, Sylla M, Chamberland A, El-Far M, Charest H, Tremblay CL. A Short-Term Assessment of Nascent HIV-1 Transmission Clusters Among Newly Diagnosed Individuals Using Envelope Sequence-Based Phylogenetic Analyses. AIDS Res Hum Retroviruses 2019; 35:906-919. [PMID: 31407606 PMCID: PMC6806616 DOI: 10.1089/aid.2019.0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The identification of transmission clusters (TCs) of HIV-1 using phylogenetic analyses can provide insights into viral transmission network and help improve prevention strategies. We compared the use of partial HIV-1 envelope fragment of 1,070 bp with its loop 3 (108 bp) to determine its utility in inferring HIV-1 transmission clustering. Serum samples of recently (n = 106) and chronically (n = 156) HIV-1-infected patients with status confirmed were sequenced. HIV-1 envelope nucleotide-based phylogenetic analyses were used to infer HIV-1 TCs. Those were constructed using ClusterPickerGUI_1.2.3 considering a pairwise genetic distance of ≤10% threshold. Logistic regression analyses were used to examine the relationship between the demographic factors that were likely associated with HIV-1 clustering. Ninety-eight distinct consensus envelope sequences were subjected to phylogenetic analyses. Using a partial envelope fragment sequence, 42 sequences were grouped into 15 distinct small TCs while the V3 loop reproduces 10 clusters. The agreement between the partial envelope and the V3 loop fragments was significantly moderate with a Cohen's kappa (κ) coefficient of 0.59, p < .00001. The mean age (<38.8 years) and HIV-1 B subtype are two factors identified that were significantly associated with HIV-1 transmission clustering in the cohort, odds ratio (OR) = 0.25, 95% confidence interval (CI, 0.04-0.66), p = .002 and OR: 0.17, 95% CI (0.10-0.61), p = .011, respectively. The present study confirms that a partial fragment of the HIV-1 envelope sequence is a better predictor of transmission clustering. However, the loop 3 segment may be useful in screening purposes and may be more amenable to integration in surveillance programs.
Collapse
Affiliation(s)
- Alexis Kafando
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Bouchra Serhir
- Laboratoire de Santé Publique du Québec, Institut National de Santé publique du Québec, Sainte-Anne-de-Bellevue, Canada
| | - Florence Doualla-Bell
- Laboratoire de Santé Publique du Québec, Institut National de Santé publique du Québec, Sainte-Anne-de-Bellevue, Canada
| | - Eric Fournier
- Laboratoire de Santé Publique du Québec, Institut National de Santé publique du Québec, Sainte-Anne-de-Bellevue, Canada
| | - Mohamed Ndongo Sangaré
- Département de Médecine Sociale et Préventive, École de Santé Publique, Université de Montréal, Montréal, Canada
| | - Christine Martineau
- Laboratoire de Santé Publique du Québec, Institut National de Santé publique du Québec, Sainte-Anne-de-Bellevue, Canada
| | - Mohamed Sylla
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| | - Annie Chamberland
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| | - Mohamed El-Far
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| | - Hugues Charest
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, Canada
- Laboratoire de Santé Publique du Québec, Institut National de Santé publique du Québec, Sainte-Anne-de-Bellevue, Canada
| | - Cécile L. Tremblay
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, Canada
- Laboratoire de Santé Publique du Québec, Institut National de Santé publique du Québec, Sainte-Anne-de-Bellevue, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| |
Collapse
|
6
|
Grossman Z, Avidor B, Girshengoren S, Katchman E, Maldarelli F, Turner D. Transmission Dynamics of HIV Subtype A in Tel Aviv, Israel: Implications for HIV Spread and Eradication. Open Forum Infect Dis 2019; 6:5538894. [PMID: 31363777 DOI: 10.1093/ofid/ofz304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/03/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Subtype-A HIV was introduced into Israel in the mid-1990s, predominantly by immigrants from the former Soviet Union (FSU) infected via intravenous drug use (IVDU). HIV subsequently spread beyond the FSU-IVDU community. In 2012, a mini-HIV outbreak, associated with injection of amphetamine cathinone derivatives, started in Tel Aviv, prompting public health response. To assess current trends and the impact of the outbreak and control measures, we conducted a phyloepidemiologic analysis. METHOD Demographic and clinical records and HIV sequences were compiled from 312 subtype-A HIV-infected individuals attending the Tel-Aviv Sourasky Medical Center between 2005-2016, where >40% of all subtype-A HIV-infected individuals in Israel are undergoing care. Molecular evolutionary genetics analysis (MEGA) and ayesian evolutionary analysis sampling trees (BEAST) programs were implemented in a phylogenetic analysis of pol sequences. Reconstructed phylogenies were assessed in the context of demographic information and drug-resistance profiles. Clusters were identified as sequence populations with posterior probability ≥0.95 of having a recent common ancestor. RESULTS After 2010, the subtype-A epidemic acquired substantial phylogenetic structure, having been unrecognized in studies covering the earlier period. Nearly 50% of all sequences were present in 11 distinct clusters consisting of 4-43 individuals. Cluster composition reflected transmission across ethnic groups, with men who have sex with men (MSM) playing an increasing role. The cathinone-associated cluster was larger than previously documented, containing variants that continued to spread within and beyond the IVDU community. CONCLUSIONS Phyloepidemiologic analysis revealed diverse clusters of HIV infection with MSM having a central role in transmission across ethic groups. A mini outbreak was reduced by public health measures, but molecular evidence of ongoing transmission suggests additional measures are necessary.
Collapse
Affiliation(s)
- Zehava Grossman
- School of Public Health, Tel Aviv University, Israel.,National Cancer Institute, Frederick, Maryland
| | - Boaz Avidor
- Crusaid Kobler AIDS Center, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel.,Laboratory of Viruses and Molecular Biology, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Shirley Girshengoren
- Crusaid Kobler AIDS Center, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel.,Laboratory of Viruses and Molecular Biology, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eugene Katchman
- Crusaid Kobler AIDS Center, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | - Dan Turner
- Crusaid Kobler AIDS Center, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
7
|
Villandré L, Labbe A, Brenner B, Ibanescu RI, Roger M, Stephens DA. Assessing the role of transmission chains in the spread of HIV-1 among men who have sex with men in Quebec, Canada. PLoS One 2019; 14:e0213366. [PMID: 30840706 PMCID: PMC6402664 DOI: 10.1371/journal.pone.0213366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/19/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Phylogenetics has been used to investigate HIV transmission among men who have sex with men. This study compares several methodologies to elucidate the role of transmission chains in the dynamics of HIV spread in Quebec, Canada. METHODS The Quebec Human Immunodeficiency Virus (HIV) genotyping program database now includes viral sequences from close to 4,000 HIV-positive individuals classified as Men who have Sex with Men (MSMs), collected between 1996 and early 2016. Assessment of chain expansion may depend on the partitioning scheme used, and so, we produce estimates from several methods: the conventional Bayesian and maximum likelihood-bootstrap methods, in combination with a variety of schemes for applying a maximum distance criterion, and two other algorithms, DM-PhyClus, a Bayesian algorithm that produces a measure of uncertainty for proposed partitions, and the Gap Procedure, a fast non-phylogenetic approach. Sequences obtained from individuals in the Primary HIV Infection (PHI) stage serve to identify incident cases. We focus on the period ranging from January 1st 2012 to February 1st 2016. RESULTS AND CONCLUSION The analyses reveal considerable overlap between chain estimates obtained from conventional methods, thus leading to similar estimates of recent temporal expansion. The Gap Procedure and DM-PhyClus suggest however moderately different chains. Nevertheless, all estimates stress that longer older chains are responsible for a sizeable proportion of the sampled incident cases among MSMs. Curbing the HIV epidemic will require strategies aimed specifically at preventing such growth.
Collapse
Affiliation(s)
- Luc Villandré
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montréal, Québec, Canada
- Department of Decision Sciences, HEC Montréal, Montreal, Québec, Canada
| | - Aurélie Labbe
- Department of Decision Sciences, HEC Montréal, Montreal, Québec, Canada
| | - Bluma Brenner
- McGill AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, Québec, Canada
| | | | - Michel Roger
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montreal, Québec, Canada
| | - David A. Stephens
- Department of Mathematics and Statistics, McGill University, Montréal, Québec, Canada
| |
Collapse
|
8
|
Insights on transmission of HIV from phylogenetic analysis to locally optimize HIV prevention strategies. Curr Opin HIV AIDS 2019; 13:95-101. [PMID: 29266012 DOI: 10.1097/coh.0000000000000443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Phylogenetic analysis can identify transmission networks by clustering genetically related HIV genotypes that are routinely collected. In this study, we will review phylogenetic insights gained on transmission of HIV and phylogenetically optimized HIV prevention strategies. RECENT FINDINGS Phylogenetic analysis reports that HIV transmission varies by geographical region and by route of transmission. In high-income countries, HIV is predominantly transmitted between recently infected MSM who live in the same country. In rural Uganda, transmission of HIV is frequently between different communities. Age-discrepant transmission has been reported across the world. Four studies have used phylogenetic optimization of HIV prevention. Three studies predict that immediate treatment after diagnosis would have prevented 19-42% of infections, and that preexposure prophylaxis would have prevented 66% of infections. One phylogenetic study guided a public health response to an actively ongoing HIV outbreak. Phylogenetic clustering requires a dense sample of patients and small time-gaps between infection and diagnosis. SUMMARY Phylogenetic analysis can be an important tool to identify a local strategy that prevents most infections. Future studies that use phylogenetic analysis for optimizing HIV prevention strategies should also include cost-effectiveness so that the most cost-effective prevention method is identified.
Collapse
|
9
|
Miller WC, Rutstein SE, Phiri S, Kamanga G, Nsona D, Pasquale DK, Rucinski KB, Chen JS, Golin CE, Powers KA, Dennis AM, Hosseinipour MC, Eron JJ, Chege W, Hoffman IF, Pettifor AE. Randomized Controlled Pilot Study of Antiretrovirals and a Behavioral Intervention for Persons With Acute HIV Infection: Opportunity for Interrupting Transmission. Open Forum Infect Dis 2019; 6:ofy341. [PMID: 30648131 PMCID: PMC6329906 DOI: 10.1093/ofid/ofy341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/18/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Persons with acute HIV infection (AHI) have heightened transmission risk. We evaluated potential transmission reduction using behavioral and biomedical interventions in a randomized controlled pilot study in Malawi. METHODS Persons were randomized 1:2:2 to standard counseling (SC), 5-session behavioral intervention (BI), or behavioral intervention plus 12 weeks of antiretrovirals (ARVs; BIA). All were followed for 26-52 weeks and, regardless of arm, referred for treatment according to Malawi-ARV guidelines. Participants were asked to refer partners for testing. RESULTS Among 46 persons (9 SC, 18 BI, 19 BIA), the average age was 28; 61% were male. The median viral load (VL) was 5.9 log copies/mL at enrollment. 67% (10/15) of BIA participants were suppressed (<1000 copies/mL) at week 12 vs 25% BI and 50% SC (P = .07). Although the mean number of reported condomless sexual acts in the past week decreased from baseline across all arms (1.5 vs 0.3 acts), 36% experienced incident sexually transmitted infection by 52 weeks (12% SC, 28% BI, 18% BIA). Forty-one percent (19/46) of participants referred partners (44% SC, 44% BI, 37% BIA); 15 of the partners were HIV-infected. CONCLUSIONS Diagnosis of AHI facilitates behavioral and biomedical risk reduction strategies during a high-transmission period that begins years before people are typically identified and started on ARVs. Sexually transmitted infection incidence in this cohort suggests ongoing risk behaviors, reinforcing the importance of early intervention with ARVs to reduce transmission. Early diagnosis coupled with standard AHI counseling and early ARV referral quickly suppresses viremia, may effectively change behavior, and could have tremendous public health benefit in reducing onward transmission.
Collapse
Affiliation(s)
- William C Miller
- Division of Epidemiology, The Ohio State University, Columbus, Ohio
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sarah E Rutstein
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | - Dana K Pasquale
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Katherine B Rucinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jane S Chen
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Carol E Golin
- Department of Health Behavior, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kimberly A Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ann M Dennis
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mina C Hosseinipour
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Joseph J Eron
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Wairimu Chege
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Irving F Hoffman
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Audrey E Pettifor
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
10
|
Transmission dynamics among participants initiating antiretroviral therapy upon diagnosis of early acute HIV-1 infection in Thailand. AIDS 2018; 32:2373-2381. [PMID: 30096068 DOI: 10.1097/qad.0000000000001956] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess transmission characteristics in a predominantly MSM cohort initiating antiretroviral therapy (ART) immediately following diagnosis of acute HIV-1infection (AHI). METHODS A longitudinal study (2009-2017) was performed in participants with AHI (n = 439) attending a single clinic in Bangkok. Plasma samples obtained prior to ART were used to obtain HIV-1 pol sequences and combined with clinical and epidemiologic data to assess transmission dynamics (cluster formation and size) using phylogenetic analysis. Clusters were estimated using maximum likelihood, genetic distance of 1.5% and visual inspection. The potential transmitter(s) in a cluster was determined using time to viral suppression and interview data. RESULTS The cohort was predominantly MSM (93%) and infected with HIV-1 CRF01_AE (87%). Medians (ranges) for age and viral load prior to ART were 26 (18-70) years and 5.9 (2.5-8.2) log10 HIV-1 RNA copies/ml. Median time from history of HIV-1 exposure to diagnosis was 19 (3-61) days. Viral suppression was observed in 388 of 412 (94%) participants at a median time of 12 weeks following ART. Twenty-six clusters with median cluster size of 2 (2-5) representing 62 of 439 (14%) participants were observed. Younger age was associated with cluster formation: median 28 versus 30 years for unique infections (P = 0.01). A potential transmitter was identified in 11 of 26 (42%) clusters. CONCLUSION Despite high rates of viral suppression following diagnosis and treatment of AHI within a cohort of young Thai MSM, HIV-1 transmission continued, reflecting the need to expand awareness and treatment access to the entire MSM population.
Collapse
|
11
|
Villandré L, Labbe A, Brenner B, Roger M, Stephens DA. DM-PhyClus: a Bayesian phylogenetic algorithm for infectious disease transmission cluster inference. BMC Bioinformatics 2018; 19:324. [PMID: 30217139 PMCID: PMC6137936 DOI: 10.1186/s12859-018-2347-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/29/2018] [Indexed: 12/24/2022] Open
Abstract
Background Conventional phylogenetic clustering approaches rely on arbitrary cutpoints applied a posteriori to phylogenetic estimates. Although in practice, Bayesian and bootstrap-based clustering tend to lead to similar estimates, they often produce conflicting measures of confidence in clusters. The current study proposes a new Bayesian phylogenetic clustering algorithm, which we refer to as DM-PhyClus (Dirichlet-Multinomial Phylogenetic Clustering), that identifies sets of sequences resulting from quick transmission chains, thus yielding easily-interpretable clusters, without using any ad hoc distance or confidence requirement. Results Simulations reveal that DM-PhyClus can outperform conventional clustering methods, as well as the Gap procedure, a pure distance-based algorithm, in terms of mean cluster recovery. We apply DM-PhyClus to a sample of real HIV-1 sequences, producing a set of clusters whose inference is in line with the conclusions of a previous thorough analysis. Conclusions DM-PhyClus, by eliminating the need for cutpoints and producing sensible inference for cluster configurations, can facilitate transmission cluster detection. Future efforts to reduce incidence of infectious diseases, like HIV-1, will need reliable estimates of transmission clusters. It follows that algorithms like DM-PhyClus could serve to better inform public health strategies. Electronic supplementary material The online version of this article (10.1186/s12859-018-2347-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luc Villandré
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, 1020 avenue des Pins Ouest, Montreal, H3A 1A2, QC, Canada.
| | - Aurélie Labbe
- Department of Decision Science, HEC Montréal, 3000, chemin de la Côte-Sainte-Catherine, Montreal, H3T 2A7, QC, Canada
| | - Bluma Brenner
- McGill AIDS Centre, Lady Davis Institute, Jewish General Hospital, 3755 chemin de la Côte-Sainte-Catherine, Montreal, H3T 1E2, QC, Canada
| | - Michel Roger
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue Saint-Denis, Pavillon R, Montreal, H2X 0A9, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Université de Montréal, 2900 boul. Edouard-Montpetit, Montreal, H3T 1J4, QC, Canada
| | - David A Stephens
- Department of Mathematics and Statistics, McGill University, 805 rue Sherbrooke Ouest, Montreal, H3A 0B9, QC, Canada
| |
Collapse
|
12
|
Kostaki EG, Nikolopoulos GK, Pavlitina E, Williams L, Magiorkinis G, Schneider J, Skaathun B, Morgan E, Psichogiou M, Daikos GL, Sypsa V, Smyrnov P, Korobchuk A, Malliori M, Hatzakis A, Friedman SR, Paraskevis D. Molecular Analysis of Human Immunodeficiency Virus Type 1 (HIV-1)-Infected Individuals in a Network-Based Intervention (Transmission Reduction Intervention Project): Phylogenetics Identify HIV-1-Infected Individuals With Social Links. J Infect Dis 2018; 218:707-715. [PMID: 29697829 PMCID: PMC6057507 DOI: 10.1093/infdis/jiy239] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/23/2018] [Indexed: 01/04/2023] Open
Abstract
Background The Transmission Reduction Intervention Project (TRIP) is a network-based intervention that aims at decreasing human immunodeficiency virus type 1 (HIV-1) spread. We herein explore associations between transmission links as estimated by phylogenetic analyses, and social network-based ties among persons who inject drugs (PWID) recruited in TRIP. Methods Phylogenetic trees were inferred from HIV-1 sequences of TRIP participants. Highly supported phylogenetic clusters (transmission clusters) were those fulfilling 3 different phylogenetic confidence criteria. Social network-based ties (injecting or sexual partners, same venue engagement) were determined based on personal interviews, recruitment links, and field observation. Results TRIP recruited 356 individuals (90.2% PWID) including HIV-negative controls; recently HIV-infected seeds; long-term HIV-infected seeds; and their social network members. Of the 150 HIV-infected participants, 118 (78.7%) were phylogenetically analyzed. Phylogenetic analyses suggested the existence of 13 transmission clusters with 32 sequences. Seven of these clusters included 14 individuals (14/32 [43.8%]) who also had social ties with at least 1 member of their cluster. This proportion was significantly higher than what was expected by chance. Conclusions Molecular methods can identify HIV-infected people socially linked with another person in about half of the phylogenetic clusters. This could help public health efforts to locate individuals in networks with high transmission rates.
Collapse
Affiliation(s)
- Evangelia-Georgia Kostaki
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Greece
| | | | | | - Leslie Williams
- National Development and Research Institutes, New York, New York
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Greece
| | - John Schneider
- Departments of Medicine and Public Health Sciences, University of Chicago Medical Center, Center for AIDS Elimination, Illinois
| | - Britt Skaathun
- Departments of Medicine and Public Health Sciences, University of Chicago Medical Center, Center for AIDS Elimination, Illinois
| | - Ethan Morgan
- Departments of Medicine and Public Health Sciences, University of Chicago Medical Center, Center for AIDS Elimination, Illinois
| | - Mina Psichogiou
- Laikon General Hospital, First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Greece
| | - Georgios L Daikos
- Laikon General Hospital, First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Greece
| | - Vana Sypsa
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Greece
| | | | | | - Meni Malliori
- Medical School, National and Kapodistrian University of Athens, Greece
| | - Angelos Hatzakis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Greece
| | | | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
13
|
Brenner BG, Ibanescu RI, Oliveira M, Roger M, Hardy I, Routy JP, Kyeyune F, Quiñones-Mateu ME, Wainberg MA. HIV-1 strains belonging to large phylogenetic clusters show accelerated escape from integrase inhibitors in cell culture compared with viral isolates from singleton/small clusters. J Antimicrob Chemother 2018; 72:2171-2183. [PMID: 28472323 PMCID: PMC7263826 DOI: 10.1093/jac/dkx118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/22/2017] [Indexed: 12/20/2022] Open
Abstract
Objectives: Viral phylogenetics revealed two patterns of HIV-1 spread among
MSM in Quebec. While most HIV-1 strains (n = 2011) were
associated with singleton/small clusters (cluster size 1–4), 30 viral lineages formed
large networks (cluster size 20–140), contributing to 42% of diagnoses between 2011 and
2015. Herein, tissue culture selections ascertained if large cluster lineages possessed
higher replicative fitness than singleton/small cluster isolates, allowing for viral
escape from integrase inhibitors. Methods: Primary HIV-1 isolates from large 20+ cluster
(n = 11) or singleton/small cluster
(n = 6) networks were passagedin
vitro in escalating concentrations of dolutegravir, elvitegravir and lamivudine
for 24–36 weeks. Sanger and deep sequencing assessed genotypic changes under selective
drug pressure. Results: Large cluster HIV-1 isolates selected for resistance to
dolutegravir, elvitegravir and lamivudine faster than HIV-1 strains forming small
clusters. With dolutegravir, large cluster HIV-1 variants acquired solitary R263K
(n = 7), S153Y
(n = 1) or H51Y
(n = 1) mutations as the dominant quasi-species within
8–12 weeks as compared with small cluster lineages where R263K
(n = 1/6), S153Y (1/6) or WT species (4/6) were
observed after 24 weeks. Interestingly, dolutegravir-associated mutations compromised
viral replicative fitness, precluding escalations in concentrations beyond 5–10 nM. With
elvitegravir, large cluster variants more rapidly acquired first mutations (T66I, A92G,
N155H or S147G) by week 8 followed by sequential accumulation of multiple mutations
leading to viral escape (>10 μM) by week 24. Conclusions: Further studies are needed to understand virological features of
large cluster viruses that may favour their transmissibility, replicative competence and
potential to escape selective antiretroviral drug pressure.
Collapse
Affiliation(s)
- Bluma G Brenner
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Ruxandra-Ilinca Ibanescu
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Maureen Oliveira
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Michel Roger
- Département de Microbiologie et d'Immunologie et Centre de Recherche du Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Isabelle Hardy
- Département de Microbiologie et d'Immunologie et Centre de Recherche du Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | | | - Fred Kyeyune
- Departments of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Miguel E Quiñones-Mateu
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.,University Hospitals Translational Laboratory, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Mark A Wainberg
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | |
Collapse
|
14
|
Brenner BG, Ibanescu RI, Hardy I, Roger M. Genotypic and Phylogenetic Insights on Prevention of the Spread of HIV-1 and Drug Resistance in "Real-World" Settings. Viruses 2017; 10:v10010010. [PMID: 29283390 PMCID: PMC5795423 DOI: 10.3390/v10010010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 12/22/2017] [Accepted: 12/24/2017] [Indexed: 12/15/2022] Open
Abstract
HIV continues to spread among vulnerable heterosexual (HET), Men-having-Sex with Men (MSM) and intravenous drug user (IDU) populations, influenced by a complex array of biological, behavioral and societal factors. Phylogenetics analyses of large sequence datasets from national drug resistance testing programs reveal the evolutionary interrelationships of viral strains implicated in the dynamic spread of HIV in different regional settings. Viral phylogenetics can be combined with demographic and behavioral information to gain insights on epidemiological processes shaping transmission networks at the population-level. Drug resistance testing programs also reveal emergent mutational pathways leading to resistance to the 23 antiretroviral drugs used in HIV-1 management in low-, middle- and high-income settings. This article describes how genotypic and phylogenetic information from Quebec and elsewhere provide critical information on HIV transmission and resistance, Cumulative findings can be used to optimize public health strategies to tackle the challenges of HIV in “real-world” settings.
Collapse
Affiliation(s)
- Bluma G Brenner
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada.
| | - Ruxandra-Ilinca Ibanescu
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada.
| | - Isabelle Hardy
- Département de Microbiologie et d'Immunologie et Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC H2X 0A9, Canada.
| | - Michel Roger
- Département de Microbiologie et d'Immunologie et Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC H2X 0A9, Canada.
| |
Collapse
|
15
|
Abstract
The HIV pandemic has disproportionately impacted sub-Saharan Africa and Southern Africa in particular. The concurrent presence of overlapping epidemic drivers likely underpins how and why the HIV epidemic is so explosive in this region, with implications for understanding approaches to reduce transmission. In this review, we discuss the relative contribution and interaction between epidemic drivers in the Southern African context, including factors both distally and proximally associated with the likelihood and degree of exposure to HIV and factors that increase the probability of transmission when exposure occurs. In particular, we focus on young women as a key population in need of HIV prevention and highlight factors that increase their risk on several levels.
Collapse
Affiliation(s)
- Lyle R McKinnon
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Nelson R Mandela School of Medicine, 719 Umbilo Road, Private Bag X7, Congella, Durban, 4013, South Africa. .,Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada.
| | - Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Nelson R Mandela School of Medicine, 719 Umbilo Road, Private Bag X7, Congella, Durban, 4013, South Africa.,Department of Epidemiology, Columbia University, New York, USA
| |
Collapse
|
16
|
Dynamics and control of infections on social networks of population types. Epidemics 2017; 23:11-18. [PMID: 29137859 DOI: 10.1016/j.epidem.2017.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 10/18/2017] [Indexed: 11/24/2022] Open
Abstract
Random mixing in host populations has been a convenient simplifying assumption in the study of epidemics, but neglects important differences in contact rates within and between population groups. For HIV/AIDS, the assumption of random mixing is inappropriate for epidemics that are concentrated in groups of people at high risk, including female sex workers (FSW) and their male clients (MCF), injecting drug users (IDU) and men who have sex with men (MSM). To find out who transmits infection to whom and how that affects the spread and containment of infection remains a major empirical challenge in the epidemiology of HIV/AIDS. Here we develop a technique, based on the routine sampling of infection in linked population groups (a social network of population types), which shows how an HIV/AIDS epidemic in Can Tho Province of Vietnam began in FSW, was propagated mainly by IDU, and ultimately generated most cases among the female partners of MCF (FPM). Calculation of the case reproduction numbers within and between groups, and for the whole network, provides insights into control that cannot be deduced simply from observations on the prevalence of infection. Specifically, the per capita rate of HIV transmission was highest from FSW to MCF, and most HIV infections occurred in FPM, but the number of infections in the whole network is best reduced by interrupting transmission to and from IDU. This analysis can be used to guide HIV/AIDS interventions using needle and syringe exchange, condom distribution and antiretroviral therapy. The method requires only routine data and could be applied to infections in other populations.
Collapse
|
17
|
Transmission network characteristics based on env and gag sequences from MSM during acute HIV-1 infection in Beijing, China. Arch Virol 2017; 162:3329-3338. [PMID: 28726130 DOI: 10.1007/s00705-017-3485-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/29/2017] [Indexed: 10/19/2022]
Abstract
Molecular epidemiology can be used to identify human immunodeficiency virus (HIV) transmission clusters, usually using pol sequence for analysis. In the present study, we explored appropriate parameters to construct a simple network using HIV env and gag sequences instead of pol sequences for constructing a phylogenetic tree and a genetic transmission subnetwork, which were used to identify individuals with many potential transmission links and to explore the evolutionary dynamics of the virus among men who have sex with men (MSM) in Beijing. We investigated 70 acute HIV-1 infections, which consisted of HIV-1 subtype B (15.71%), the circulating recombinant forms CRF01_AE (47.14%), CRF07_BC (21.43%), CRF55_01B (1.43%), and CRF65_cpx (4.29%), and an unknown subtype (10.00%). By exploring the similarities and differences among HIV env, gag and pol sequences in describing the dynamics of the HIV-1 CRF01_AE transmission subnetwork among Beijing MSM, we found that four key points of the env sequences (strains E-2011_BJ.CY_16014, E-2011_BJ.FT_16017, E-2011_BJ.TZ_16064, and E-2011_BJ.XW_16035) contained more transmission information than gag sequences (three key points: strains G-2011_BJ.CY_16014, G-2011_BJ.FT_16017, and G-2011_BJ.XW_16035) and pol sequences (two key points: strains P-2011_BJ.CY_16014 and P-2011_BJ.XW_16035). Although the env and gag sequence results were similar to pol sequences in describing the dynamics of the HIV-1 CRF01_AE transmission subnetwork, we were able to obtain more precise information, allowing identification of key points of subnetwork expansion, based on HIV env and gag sequences instead of pol sequences. Taken together, the key points we found will improve our current understanding of how HIV spreads between MSM populations in Beijing and help to better target preventative interventions for promoting public health.
Collapse
|
18
|
Rutstein SE, Ananworanich J, Fidler S, Johnson C, Sanders EJ, Sued O, Saez-Cirion A, Pilcher CD, Fraser C, Cohen MS, Vitoria M, Doherty M, Tucker JD. Clinical and public health implications of acute and early HIV detection and treatment: a scoping review. J Int AIDS Soc 2017; 20:21579. [PMID: 28691435 PMCID: PMC5515019 DOI: 10.7448/ias.20.1.21579] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 05/29/2017] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION The unchanged global HIV incidence may be related to ignoring acute HIV infection (AHI). This scoping review examines diagnostic, clinical, and public health implications of identifying and treating persons with AHI. METHODS We searched PubMed, in addition to hand-review of key journals identifying research pertaining to AHI detection and treatment. We focused on the relative contribution of AHI to transmission and the diagnostic, clinical, and public health implications. We prioritized research from low- and middle-income countries (LMICs) published in the last fifteen years. RESULTS AND DISCUSSION Extensive AHI research and limited routine AHI detection and treatment have begun in LMIC. Diagnostic challenges include ease-of-use, suitability for application and distribution in LMIC, and throughput for high-volume testing. Risk score algorithms have been used in LMIC to screen for AHI among individuals with behavioural and clinical characteristics more often associated with AHI. However, algorithms have not been implemented outside research settings. From a clinical perspective, there are substantial immunological and virological benefits to identifying and treating persons with AHI - evading the irreversible damage to host immune systems and seeding of viral reservoirs that occurs during untreated acute infection. The therapeutic benefits require rapid initiation of antiretrovirals, a logistical challenge in the absence of point-of-care testing. From a public health perspective, AHI diagnosis and treatment is critical to: decrease transmission via viral load reduction and behavioural interventions; improve pre-exposure prophylaxis outcomes by avoiding treatment initiation for HIV-seronegative persons with AHI; and, enhance partner services via notification for persons recently exposed or likely transmitting. CONCLUSIONS There are undeniable clinical and public health benefits to AHI detection and treatment, but also substantial diagnostic and logistical barriers to implementation and scale-up. Effective early ART initiation may be critical for HIV eradication efforts, but widespread use in LMIC requires simple and accurate diagnostic tools. Implementation research is critical to facilitate sustainable integration of AHI detection and treatment into existing health systems and will be essential for prospective evaluation of testing algorithms, point-of-care diagnostics, and efficacious and effective first-line regimens.
Collapse
Affiliation(s)
- Sarah E. Rutstein
- Department of Health Policy and Management, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jintanat Ananworanich
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Sarah Fidler
- Department of Medicine, Imperial College London, London, UK
| | - Cheryl Johnson
- HIV Department, World Health Organization, Geneva, Switzerland
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Eduard J. Sanders
- Department of Global Health, University of Amsterdam, Amsterdam, The Netherlands
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Omar Sued
- Fundación Huésped, Buenos Aires, Argentina
| | - Asier Saez-Cirion
- Institut Pasteur, HIV Inflammation and Persistance Unit, Paris, France
| | | | - Christophe Fraser
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Myron S. Cohen
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marco Vitoria
- HIV Department, World Health Organization, Geneva, Switzerland
| | - Meg Doherty
- HIV Department, World Health Organization, Geneva, Switzerland
| | - Joseph D. Tucker
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Project-China, Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
19
|
Abstract
Understanding HIV-1 transmission dynamics is relevant to both screening and intervention strategies of HIV-1 infection. Commonly, HIV-1 transmission chains are determined based on sequence similarity assessed either directly from a sequence alignment or by inferring a phylogenetic tree. This review is aimed at both nonexperts interested in understanding and interpreting studies of HIV-1 transmission, and experts interested in finding the most appropriate cluster definition for a specific dataset and research question. We start by introducing the concepts and methodologies of how HIV-1 transmission clusters usually have been defined. We then present the results of a systematic review of 105 HIV-1 molecular epidemiology studies summarizing the most common methods and definitions in the literature. Finally, we offer our perspectives on how HIV-1 transmission clusters can be defined and provide some guidance based on examples from real life datasets.
Collapse
|
20
|
Parveen N, Moodie E, Brenner B. Correcting covariate-dependent measurement error with non-zero mean. Stat Med 2017; 36:2786-2800. [PMID: 28393370 DOI: 10.1002/sim.7289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/25/2017] [Accepted: 02/28/2017] [Indexed: 11/06/2022]
Abstract
There are many settings in which the distribution of error in a mismeasured covariate varies with the value of another covariate. Take, for example, the case of HIV phylogenetic cluster size, large values of which are an indication of rapid HIV transmission. Researchers wish to find behavioral correlates of HIV phylogenetic cluster size; however, the distribution of its measurement error depends on the correctly measured variable, HIV status, and does not have a mean of zero. Further, it is not feasible to obtain validation data or repeated measurements. We propose an extension of simulation-extrapolation, an estimation technique for bias reduction in the presence of measurement error that does not require validation data and can accommodate errors whose distribution depends on other, error-free covariates. The proposed extension performs well in simulation, typically exhibiting less bias and variability than either regression calibration or multiple imputation for measurement error. We apply the proposed method to data from the province of Quebec in Canada to examine the association between HIV phylogenetic cluster size and the number of reported sex partners. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nabila Parveen
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Erica Moodie
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Bluma Brenner
- Lady Devis Research Institute, Montreal, Quebec, Canada
| |
Collapse
|
21
|
Abstract
OBJECTIVE HIV-1 epidemics among MSM remain unchecked despite advances in treatment and prevention paradigms. This study combined viral phylogenetic and behavioural risk data to better understand underlying factors governing the temporal growth of the HIV epidemic among MSM in Quebec (2002-2015). METHODS Phylogenetic analysis of pol sequences was used to deduce HIV-1 transmission dynamics (cluster size, size distribution and growth rate) in first genotypes of treatment-naïve MSM (2002-2015, n = 3901). Low sequence diversity of first genotypes (0-0.44% mixed base calls) was used as an indication of early-stage infection. Behavioural risk data were obtained from the Montreal rapid testing site and primary HIV-1-infection cohorts. RESULTS Phylogenetic analyses uncovered high proportion of clustering of new MSM infections. Overall, 27, 45, 48, 53 and 57% of first genotypes within one (singleton, n = 1359), 2-4 (n = 692), 5-9 (n = 367), 10-19 (n = 405) and 20+ (n = 1277) cluster size groups were early infections (<0.44% diversity). Thirty viruses within large 20+ clusters disproportionately fuelled the epidemic, representing 13, 25 and 42% of infections, first genotyped in 2004-2007 (n = 1314), 2008-2011 (n = 1356) and 2012-2015 (n = 1033), respectively. Of note, 35, 21 and 14% of MSM belonging to 20+, 2-19 and one (singleton) cluster groups were under 30 years of age, respectively. Half of persons seen at the rapid testing site (2009-2011, n = 1781) were untested in the prior year. Poor testing propensity was associated with fewer reported partnerships. CONCLUSION Addressing the heterogeneity in transmission dynamics among HIV-1-infected MSM populations may help guide testing, treatment and prevention strategies.
Collapse
|
22
|
Parczewski M, Leszczyszyn-Pynka M, Witak-Jędra M, Szetela B, Gąsiorowski J, Knysz B, Bociąga-Jasik M, Skwara P, Grzeszczuk A, Jankowska M, Barałkiewicz G, Mozer-Lisewska I, Łojewski W, Kozieł K, Grąbczewska E, Jabłonowska E, Urbańska A. Expanding HIV-1 subtype B transmission networks among men who have sex with men in Poland. PLoS One 2017; 12:e0172473. [PMID: 28234955 PMCID: PMC5325290 DOI: 10.1371/journal.pone.0172473] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/05/2017] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Reconstruction of HIV transmission links allows to trace the spread and dynamics of infection and guide epidemiological interventions. The aim of this study was to characterize transmission networks among subtype B infected patients from Poland. MATERIAL AND METHODS Maximum likelihood phylogenenetic trees were inferred from 966 HIV-1 subtype B protease/reverse transcriptase sequences from patients followed up in nine Polish HIV centers. Monophyletic clusters were identified using 3% within-cluster distance and 0.9 bootstrap values. Interregional links for the clusters were investigated and time from infection to onward transmission estimated using Bayesian dated MCMC phylogeny. RESULTS Three hundred twenty one (33.2%) sequences formed 109 clusters, including ten clusters of ≥5 sequences (n = 81, 8.4%). Transmission networks were more common among MSM (234 sequences, 68.6%) compared to other infection routes (injection drug use: 28 (8.2%) and heterosexual transmissions: 59 (17.3%) cases, respectively [OR:3.5 (95%CI:2.6-4.6),p<0.001]. Frequency of clustering increased from 26.92% in 2009 to 50.6% in 2014 [OR:1.18 (95%CI:1.06-1.31),p = 0.0026; slope +2.8%/year] with median time to onward transmission within clusters of 1.38 (IQR:0.59-2.52) years. In multivariate models clustering was associated with both MSM transmission route [OR:2.24 (95%CI:1.38-3.65),p<0.001] and asymptomatic stage of HIV infection [OR:1.93 (95%CI:1.4-2.64),p<0.0001]. Additionally, interregional networks were linked to MSM transmissions [OR:4.7 (95%CI:2.55-8.96),p<0.001]. CONCLUSIONS Reconstruction of the HIV-1 subtype B transmission patterns reveals increasing degree of clustering and existence of interregional networks among Polish MSM. Dated phylogeny confirms the association between onward transmission and recent infections. High transmission dynamics among Polish MSM emphasizes the necessity for active testing and early treatment in this group.
Collapse
Affiliation(s)
- Miłosz Parczewski
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Magdalena Leszczyszyn-Pynka
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Magdalena Witak-Jędra
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Bartosz Szetela
- Department of Infectious Diseases, Hepatology and Acquired Immune Deficiencies, Wrocław Medical University, Wrocław, Poland
| | - Jacek Gąsiorowski
- Department of Infectious Diseases, Hepatology and Acquired Immune Deficiencies, Wrocław Medical University, Wrocław, Poland
| | - Brygida Knysz
- Department of Infectious Diseases, Hepatology and Acquired Immune Deficiencies, Wrocław Medical University, Wrocław, Poland
| | - Monika Bociąga-Jasik
- Department of Infectious Diseases, Jagiellonian University Medical College, Kraków, Poland
| | - Paweł Skwara
- Department of Infectious Diseases, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Grzeszczuk
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Białystok, Poland
| | - Maria Jankowska
- Department of Infectious Diseases, Medical University in Gdańsk, Gdańsk, Poland
| | | | - Iwona Mozer-Lisewska
- Department of Infectious Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Władysław Łojewski
- Department of Infectious Diseases, Regional Hospital in Zielona Gora, Zielona Góra, Poland
| | - Katarzyna Kozieł
- Department of Infectious Diseases, Regional Hospital in Zielona Gora, Zielona Góra, Poland
| | - Edyta Grąbczewska
- Department of Infectious Diseases and Hepatology Nicolaus Copernicus University, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Elżbieta Jabłonowska
- Department of Infectious Diseases and Hepatology, Medical University of Łódź, Łódź, Poland
| | - Anna Urbańska
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
23
|
Ratmann O, van Sighem A, Bezemer D, Gavryushkina A, Jurriaans S, Wensing A, de Wolf F, Reiss P, Fraser C. Sources of HIV infection among men having sex with men and implications for prevention. Sci Transl Med 2016; 8:320ra2. [PMID: 26738795 DOI: 10.1126/scitranslmed.aad1863] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New HIV diagnoses among men having sex with men (MSM) have not decreased appreciably in most countries, even though care and prevention services have been scaled up substantially in the past 20 years. To maximize the impact of prevention strategies, it is crucial to quantify the sources of transmission at the population level. We used viral sequence and clinical patient data from one of Europe's nationwide cohort studies to estimate probable sources of transmission for 617 recently infected MSM. Seventy-one percent of transmissions were from undiagnosed men, 6% from men who had initiated antiretroviral therapy (ART), 1% from men with no contact to care for at least 18 months, and 43% from those in their first year of infection. The lack of substantial reductions in incidence among Dutch MSM is not a result of ineffective ART provision or inadequate retention in care. In counterfactual modeling scenarios, 19% of these past cases could have been averted with current annual testing coverage and immediate ART to those testing positive. Sixty-six percent of these cases could have been averted with available antiretrovirals (immediate ART provided to all MSM testing positive, and preexposure antiretroviral prophylaxis taken by half of all who test negative for HIV), but only if half of all men at risk of transmission had tested annually. With increasing sequence coverage, molecular epidemiological analyses can be a key tool to direct HIV prevention strategies to the predominant sources of infection, and help send HIV epidemics among MSM into a decisive decline.
Collapse
Affiliation(s)
- Oliver Ratmann
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W21PG, UK.
| | - Ard van Sighem
- Stichting HIV Monitoring, 1105 BD Amsterdam, the Netherlands
| | - Daniela Bezemer
- Stichting HIV Monitoring, 1105 BD Amsterdam, the Netherlands
| | | | - Suzanne Jurriaans
- Department of Medical Microbiology, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Annemarie Wensing
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Frank de Wolf
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W21PG, UK
| | - Peter Reiss
- Stichting HIV Monitoring, 1105 BD Amsterdam, the Netherlands. Department of Global Health, Academic Medical Center, 1105 BM Amsterdam, the Netherlands
| | - Christophe Fraser
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W21PG, UK
| | | |
Collapse
|
24
|
Bowring AL, Veronese V, Doyle JS, Stoove M, Hellard M. HIV and Sexual Risk Among Men Who Have Sex With Men and Women in Asia: A Systematic Review and Meta-Analysis. AIDS Behav 2016; 20:2243-2265. [PMID: 26781871 DOI: 10.1007/s10461-015-1281-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We performed a systematic review to estimate the proportion of men who have sex with men (MSM) in Asia who are bisexual and compare prevalence of HIV and sexual risk between men who have sex with men and women (MSMW) and men who have sex with men only (MSMO). Forty-eight articles based on 55 unique samples were identified from nine countries in Asia. Bisexual behaviour was common among MSM (pooled prevalence 32.8 %). Prevalence of HIV (pooled OR 0.90; 95 % CI 0.77-1.05), recent syphilis infection (pooled OR 0.99; 95 % CI 0.93-1.06) and unprotected anal intercourse (pooled OR 0.80; 95 % CI 0.57-1.11) were similar between MSMW and MSMO, but heterogeneity was high. MSMW had lower odds of reporting a prior HIV test than MSMO (OR 0.82; 95 % CI 0.70-0.95; p = 0.01, I(2) = 0 %). Targeted interventions are needed to increase uptake of HIV testing among MSMW. Increased reporting of disaggregated data in surveillance and research will help improve understanding of risk in MSMW and inform targeted interventions.
Collapse
Affiliation(s)
- A L Bowring
- Centre for Population Health, Burnet Institute, 85 Commercial Rd, Melbourne, VIC, 3004, Australia.
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.
| | - V Veronese
- Centre for Population Health, Burnet Institute, 85 Commercial Rd, Melbourne, VIC, 3004, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - J S Doyle
- Centre for Population Health, Burnet Institute, 85 Commercial Rd, Melbourne, VIC, 3004, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
- Department of Infectious Diseases, Alfred Health, Melbourne, Australia
| | - M Stoove
- Centre for Population Health, Burnet Institute, 85 Commercial Rd, Melbourne, VIC, 3004, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - M Hellard
- Centre for Population Health, Burnet Institute, 85 Commercial Rd, Melbourne, VIC, 3004, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
- Department of Infectious Diseases, Alfred Health, Melbourne, Australia
| |
Collapse
|
25
|
Junqueira DM, de Medeiros RM, Gräf T, Almeida SEDM. Short-Term Dynamic and Local Epidemiological Trends in the South American HIV-1B Epidemic. PLoS One 2016; 11:e0156712. [PMID: 27258369 PMCID: PMC4892525 DOI: 10.1371/journal.pone.0156712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/18/2016] [Indexed: 01/07/2023] Open
Abstract
The human displacement and sexual behavior are the main factors driving the HIV-1 pandemic to the current profile. The intrinsic structure of the HIV transmission among different individuals has valuable importance for the understanding of the epidemic and for the public health response. The aim of this study was to characterize the HIV-1 subtype B (HIV-1B) epidemic in South America through the identification of transmission links and infer trends about geographical patterns and median time of transmission between individuals. Sequences of the protease and reverse transcriptase coding regions from 4,810 individuals were selected from GenBank. Maximum likelihood phylogenies were inferred and submitted to ClusterPicker to identify transmission links. Bayesian analyses were applied only for clusters including ≥5 dated samples in order to estimate the median maximum inter-transmission interval. This study analyzed sequences sampled from 12 South American countries, from individuals of different exposure categories, under different antiretroviral profiles, and from a wide period of time (1989–2013). Continentally, Brazil, Argentina and Venezuela were revealed important sites for the spread of HIV-1B among countries inside South America. Of note, from all the clusters identified about 70% of the HIV-1B infections are primarily occurring among individuals living in the same geographic region. In addition, these transmissions seem to occur early after the infection of an individual, taking in average 2.39 years (95% CI 1.48–3.30) to succeed. Homosexual/Bisexual individuals transmit the virus as quickly as almost half time of that estimated for the general population sampled here. Public health services can be broadly benefitted from this kind of information whether to focus on specific programs of response to the epidemic whether as guiding of prevention campaigns to specific risk groups.
Collapse
Affiliation(s)
- Dennis Maletich Junqueira
- Centro Universitário Ritter dos Reis—Uniritter, Departamento de Ciências da Saúde, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Fundação Estadual de Produção e Pesquisa em Saúde (FEPPS), Porto Alegre, RS, Brazil
- * E-mail: ;
| | - Rubia Marília de Medeiros
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Fundação Estadual de Produção e Pesquisa em Saúde (FEPPS), Porto Alegre, RS, Brazil
| | - Tiago Gräf
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Fundação Estadual de Produção e Pesquisa em Saúde (FEPPS), Porto Alegre, RS, Brazil
- Programa de Pós-graduação em Biotecnologia e Biociências, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Sabrina Esteves de Matos Almeida
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Fundação Estadual de Produção e Pesquisa em Saúde (FEPPS), Porto Alegre, RS, Brazil
- Instituto de Ciências da Saúde, Universidade FEEVALE, Novo Hamburgo, RS, Brazil
| |
Collapse
|
26
|
Junqueira DM, Almeida SEDM. HIV-1 subtype B: Traces of a pandemic. Virology 2016; 495:173-84. [PMID: 27228177 DOI: 10.1016/j.virol.2016.05.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/01/2016] [Accepted: 05/03/2016] [Indexed: 11/18/2022]
Abstract
Human migration is a major process that shaped the origin and dissemination of HIV. Within HIV-1, subtype B (HIV-1B) is the most disseminated variant and it is assumed to be the causative agent in approximately 11% of all cases of HIV worldwide. Phylogenetic studies have revealed that HIV-1B emerged in Kinshasa (Africa) and was introduced into the Caribbean region via Haiti in or around 1966 by human migration. After localized dispersion, the virus was brought to the United States of America via homosexual/bisexual contact around 1969. Inside USA, the incidence of HIV-1B infection increased exponentially and it became established in the population, affecting not only homosexual individuals but also heterosexual individuals and injecting drug users. Soon after, the virus was disseminated and became established in other regions, including Europe, Asia, Latin America, and Australia. Recent studies suggest that, in addition to this pandemic clade, several lineages have emerged from Haiti and reached other Caribbean and Latin American countries via short-distance dissemination. Different subtype B genetic variants have also been detected in these epidemics. Four genetic variants have been described to date: subtype B', which mainly circulates in Thailand and other Asian countries; a specific variant mainly found in Trinidad and Tobago; the GPGS variant, which is primarily detected in Korea; and the GWGR variant, which is mainly detected in Brazil. This paper reviews the evolution of HIV-1B and its impact on the human population.
Collapse
Affiliation(s)
- Dennis Maletich Junqueira
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Fundação Estadual de Produção e Pesquisa em Saúde (FEPPS), Avenida Ipiranga, 5400 - Jd Botânico, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves, 9800 - Agronomia, Porto Alegre, RS, Brazil; Centro Universitário Ritter dos Reis - UniRitter, Departamento de Ciências da Saúde, Avenida Orfanotrófio, 555 - Teresópolis, Porto Alegre, RS, Brazil.
| | - Sabrina Esteves de Matos Almeida
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Fundação Estadual de Produção e Pesquisa em Saúde (FEPPS), Avenida Ipiranga, 5400 - Jd Botânico, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves, 9800 - Agronomia, Porto Alegre, RS, Brazil; Instituto de Ciências da Saúde, Universidade FEEVALE, Rodovia RS 239, 2755 - Vila Nova, Novo Hamburgo, RS, Brazil.
| |
Collapse
|
27
|
Villandre L, Stephens DA, Labbe A, Günthard HF, Kouyos R, Stadler T, The Swiss HIV Cohort Study. Assessment of Overlap of Phylogenetic Transmission Clusters and Communities in Simple Sexual Contact Networks: Applications to HIV-1. PLoS One 2016; 11:e0148459. [PMID: 26863322 PMCID: PMC4749335 DOI: 10.1371/journal.pone.0148459] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/18/2016] [Indexed: 02/06/2023] Open
Abstract
Background Transmission patterns of sexually-transmitted infections (STIs) could relate to the structure of the underlying sexual contact network, whose features are therefore of interest to clinicians. Conventionally, we represent sexual contacts in a population with a graph, that can reveal the existence of communities. Phylogenetic methods help infer the history of an epidemic and incidentally, may help detecting communities. In particular, phylogenetic analyses of HIV-1 epidemics among men who have sex with men (MSM) have revealed the existence of large transmission clusters, possibly resulting from within-community transmissions. Past studies have explored the association between contact networks and phylogenies, including transmission clusters, producing conflicting conclusions about whether network features significantly affect observed transmission history. As far as we know however, none of them thoroughly investigated the role of communities, defined with respect to the network graph, in the observation of clusters. Methods The present study investigates, through simulations, community detection from phylogenies. We simulate a large number of epidemics over both unweighted and weighted, undirected random interconnected-islands networks, with islands corresponding to communities. We use weighting to modulate distance between islands. We translate each epidemic into a phylogeny, that lets us partition our samples of infected subjects into transmission clusters, based on several common definitions from the literature. We measure similarity between subjects’ island membership indices and transmission cluster membership indices with the adjusted Rand index. Results and Conclusion Analyses reveal modest mean correspondence between communities in graphs and phylogenetic transmission clusters. We conclude that common methods often have limited success in detecting contact network communities from phylogenies. The rarely-fulfilled requirement that network communities correspond to clades in the phylogeny is their main drawback. Understanding the link between transmission clusters and communities in sexual contact networks could help inform policymaking to curb HIV incidence in MSMs.
Collapse
Affiliation(s)
- Luc Villandre
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montréal, Québec, Canada
| | - David A. Stephens
- Department of Mathematics and Statistics, McGill University, Montréal, Québec, Canada
| | - Aurelie Labbe
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montréal, Québec, Canada
- Department of Psychiatry, Douglas Mental Health University Institute, Montréal, Québec, Canada
| | - Huldrych F. Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Kanton Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Roger Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Kanton Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Basel-Landschaft, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- * E-mail:
| | | |
Collapse
|
28
|
Long-Range HIV Genotyping Using Viral RNA and Proviral DNA for Analysis of HIV Drug Resistance and HIV Clustering. J Clin Microbiol 2015; 53:2581-92. [PMID: 26041893 DOI: 10.1128/jcm.00756-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022] Open
Abstract
The goal of the study was to improve the methodology of HIV genotyping for analysis of HIV drug resistance and HIV clustering. Using the protocol of Gall et al. (A. Gall, B. Ferns, C. Morris, S. Watson, M. Cotten, M. Robinson, N. Berry, D. Pillay, and P. Kellam, J Clin Microbiol 50:3838-3844, 2012, doi:10.1128/JCM.01516-12), we developed a robust methodology for amplification of two large fragments of viral genome covering about 80% of the unique HIV-1 genome sequence. Importantly, this method can be applied to both viral RNA and proviral DNA amplification templates, allowing genotyping in HIV-infected subjects with suppressed viral loads (e.g., subjects on antiretroviral therapy [ART]). The two amplicons cover critical regions across the HIV-1 genome (including pol and env), allowing analysis of mutations associated with resistance to protease inhibitors, reverse transcriptase inhibitors (nucleoside reverse transcriptase inhibitors [NRTIs] and nonnucleoside reverse transcriptase inhibitors [NNRTIs]), integrase strand transfer inhibitors, and virus entry inhibitors. The two amplicons generated span 7,124 bp, providing substantial sequence length and numbers of informative sites for comprehensive phylogenic analysis and greater refinement of viral linkage analyses in HIV prevention studies. The long-range HIV genotyping from proviral DNA was successful in about 90% of 212 targeted blood specimens collected in a cohort where the majority of patients had suppressed viral loads, including 65% of patients with undetectable levels of HIV-1 RNA loads. The generated amplicons could be sequenced by different methods, such as population Sanger sequencing, single-genome sequencing, or next-generation ultradeep sequencing. The developed method is cost-effective-the cost of the long-range HIV genotyping is under $140 per subject (by Sanger sequencing)-and has the potential to enable the scale up of public health HIV prevention interventions.
Collapse
|
29
|
Tamalet C, Ravaux I, Moreau J, Brégigeon S, Tourres C, Richet H, Abat C, Colson P. Emergence of clusters of CRF02_AG and B human immunodeficiency viral strains among men having sex with men exhibiting HIV primary infection in southeastern France. J Med Virol 2015; 87:1327-33. [PMID: 25873310 DOI: 10.1002/jmv.24184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2015] [Indexed: 11/05/2022]
Abstract
The number of new HIV diagnoses is increasing in the western world and transmission clusters have been recently identified among men having sex with men despite Highly Active Antiretroviral Therapy efficacy. The objective of this study was to assess temporal trends, epidemiological, clinical and virological characteristics of primary HIV infections. A retrospective analysis of 79 patients presenting primary HIV infections from 2005 to 2012 was performed in Marseille University Hospitals, southeastern France. Clinical, epidemiological and immunovirological data including phylogeny based on the polymerase gene were collected. 65 males and 14 females were enrolled. The main transmission route was homosexual contact (60.8%). Patients were mostly infected with subtype B (73.4%) and CRF02_AG (21.5%) HIV-1 strains. An increase in the annual number of HIV seroconversions among new HIV diagnoses from 5% in 2005 to 11.2% in 2012 (P = 0.06) and of the proportion of CRF02_AG HIV strains among primary HIV infections in 2011-2012 as compared to 2005-2010 (P = 0.055) was observed. Phylogenetic analysis revealed four transmission clusters including three transmission clusters among men having sex with men: two large clusters of nine CRF02_AG, six B HIV strains; and one small cluster of three B HIV strains. Clusters involved more frequently men (P = 0.01) belonging to caucasian ethicity (P = 0.05), with a higher HIV RNA load at inclusion (P = 0.03). These data highlight the importance of improving epidemiological surveillance and of implementing suitable prevention strategies to control the spread of HIV transmission among men having sex with men.
Collapse
Affiliation(s)
- Catherine Tamalet
- Mediterranean Institute for Infectious Diseases, Timone Hospital, Virology Department, Marseille, Cedex 05, France
| | - Isabelle Ravaux
- Mediterranean Institute for Infectious Diseases, Conception Hospital, Infectious Diseases Department, Marseille, France
| | - Jacques Moreau
- Mediterranean Institute for Infectious Diseases, Nord Hospital, Tropical and Infectious Diseases Department, Marseille, France
| | - Sylvie Brégigeon
- Immunohematology Unit, Sainte-Marguerite Hospital, INSERM U912 (SESSTIM), Marseille, France
| | - Christian Tourres
- Mediterranean Institute for Infectious Diseases, Timone Hospital, Virology Department, Marseille, Cedex 05, France
| | - Hervé Richet
- Mediterranean Institute for Infectious Diseases, Timone Hospital, Virology Department, Marseille, Cedex 05, France
| | - Cedric Abat
- Mediterranean Institute for Infectious Diseases, Timone Hospital, Virology Department, Marseille, Cedex 05, France
| | - Philippe Colson
- Mediterranean Institute for Infectious Diseases, Timone Hospital, Virology Department, Marseille, Cedex 05, France
| |
Collapse
|
30
|
Dennis AM, Herbeck JT, Brown AL, Kellam P, de Oliveira T, Pillay D, Fraser C, Cohen MS. Phylogenetic studies of transmission dynamics in generalized HIV epidemics: an essential tool where the burden is greatest? J Acquir Immune Defic Syndr 2014; 67:181-95. [PMID: 24977473 PMCID: PMC4304655 DOI: 10.1097/qai.0000000000000271] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Efficient and effective HIV prevention measures for generalized epidemics in sub-Saharan Africa have not yet been validated at the population level. Design and impact evaluation of such measures requires fine-scale understanding of local HIV transmission dynamics. The novel tools of HIV phylogenetics and molecular epidemiology may elucidate these transmission dynamics. Such methods have been incorporated into studies of concentrated HIV epidemics to identify proximate and determinant traits associated with ongoing transmission. However, applying similar phylogenetic analyses to generalized epidemics, including the design and evaluation of prevention trials, presents additional challenges. Here we review the scope of these methods and present examples of their use in concentrated epidemics in the context of prevention. Next, we describe the current uses for phylogenetics in generalized epidemics and discuss their promise for elucidating transmission patterns and informing prevention trials. Finally, we review logistic and technical challenges inherent to large-scale molecular epidemiological studies of generalized epidemics and suggest potential solutions.
Collapse
Affiliation(s)
- Ann M. Dennis
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Andrew Leigh Brown
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Paul Kellam
- Wellcome Trust Sanger Institute, Cambridge, UK
- Division of Infection and Immunity, University College London, London, UK
| | - Tulio de Oliveira
- Wellcome Trust-Africa Centre for Health and Population Studies, University of Kwazula-Natal, ZA
| | - Deenan Pillay
- Division of Infection and Immunity, University College London, London, UK
| | - Christophe Fraser
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Myron S. Cohen
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
31
|
Grebely J, Lima VD, Marshall BDL, Milloy MJ, DeBeck K, Montaner J, Simo A, Krajden M, Dore GJ, Kerr T, Wood E. Declining incidence of hepatitis C virus infection among people who inject drugs in a Canadian setting, 1996-2012. PLoS One 2014; 9:e97726. [PMID: 24897109 PMCID: PMC4045728 DOI: 10.1371/journal.pone.0097726] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/03/2014] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND People who inject drugs (PWID) are at high risk of hepatitis C virus (HCV) infection. Trends in HCV incidence and associated risk factors among PWID recruited between 1996 and 2012 in Vancouver, Canada were evaluated. METHODS Data were derived from a long-term cohort of PWID in Vancouver. Trends in HCV incidence were evaluated. Factors associated with time to HCV infection were assessed using Cox proportional hazards regression. RESULTS Among 2,589, 82% (n = 2,121) were HCV antibody-positive at enrollment. Among 364 HCV antibody-negative participants with recent (last 30 days) injecting at enrollment, 126 HCV seroconversions were observed [Overall HCV incidence density: 8.6 cases/100 person-years (py); 95% confidence interval (95% CI): 7.2, 10.1; HCV incidence density among those with injecting during follow-up: 11.5 cases/100 py; 95% CI 9.7, 13.6]. The overall HCV incidence density declined significantly from 25.0/100 py (95% CI: 20.2, 30.3) in 1996-99, as compared to 6.0/100 py (95% CI: 4.1, 8.5) in 2000-2005, and 3.1/100 py (95% CI: 2.0, 4.8) in 2006-2012. Among those with injecting during follow-up, the overall HCV incidence density declined significantly from 27.9/100 py (95% CI: 22.6, 33.6) in 1996-99, as compared to 7.5/100 py (95% CI: 5.1, 10.6) in 2000-2005, and 4.9/100 py (95% CI: 3.1, 7.4) in 2006-2012. Unstable housing, HIV infection, and injecting of cocaine, heroin and methamphetamine were independently associated with HCV seroconversion. CONCLUSIONS HCV incidence has dramatically declined among PWID in this setting. However, improved public health strategies to prevent and treat HCV are urgently required to reduce HCV-associated morbidity and mortality.
Collapse
Affiliation(s)
- Jason Grebely
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
- * E-mail:
| | - Viviane Dias Lima
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Division of AIDS, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brandon D. L. Marshall
- Department of Epidemiology, Brown University, Providence, Rhode Island, United States of America
| | - M-J Milloy
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kora DeBeck
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- School of Public Policy, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Julio Montaner
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Division of AIDS, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Annick Simo
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Division of AIDS, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mel Krajden
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Gregory J. Dore
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
| | - Thomas Kerr
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Division of AIDS, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Evan Wood
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Division of AIDS, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|